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Page 396 The Z-Transform

6.1 INTRODUCTION

As we studied in previous chapter, the Laplace transform
is an important tool for analysis of continuous time signals
and systems. Similarly, z-transforms enables us to analyze
discrete time signals and systems in the z-domain.

Like, the Laplace transform, it is also classified as
bilateral z-transform and unilateral z-transform.

The bilateral or two-sided z-transform is used to
analyze both causal and non-causal LTT discrete systems,
while the unilateral z-transform is defined only for causal
signals.

6.1.1 The Bilateral or Two-Sided z-transform

The z-transform of a discrete-time sequence x[n], is defined
as

X(2) = Z{all} = Yz (6.1.1)

n=—0oo

Where, X(2) is the transformed signal and Z
represents the z-transformation. z is a complex variable.
In polar form, z can be expressed as

z = re
where r is the magnitude of z and {2 is the angle of z. This

corresponds to a circle in z plane with radius r as shown
in figure 6.1.1 below

Im(2)

z-plane

2= rel”

a
< QJ > Re(2)

'

Fig 6.1.1 z-plane
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6.1.2 The Unilateral or One-sided z-transform

The z-transform for causal signals and systems is referred
to as the unilateral z-transform. For a causal sequence
z[n] =0, for n<0

Therefore, the unilateral z-transform is defined as

[ee)

X(2) =D z[n] 2" (6.1.2)

n=>0

» EXAMPLE

The bilateral z-transform of sequence z[n] =— a"u[— n — 1]
will be
1 a
W) =y ®) s
-1 1
©) =i o) 1y

SOLUTION :

The bilateral z-transform of z[n] is given by

[}

X(z) = > z[n]z"=— ia”u[—n—l]z’”

n=—o00 n=—o00

We know that

u[—n—1] :{
So  X(z) =-— i(az’l)"

n=—co

1, for—nmn—1=0o0rn=<-1

0, n>-1

substituting n =— k

:o (az )" :—i(a_lz)k

k=1

k
—a'z 1
—1

:1—a 2z 1l—az!

—_

s}

Hence (A) is correct option.

» EXAMPLE

The unilateral z-transform of sequence z[n] = {%,2,2, 1} is
equal to

3 2,2 1
(A) 1422422+ 2 (B)1+E+?+?

3 1, 1 1,2 ,2 1
(C) #+22+22" + (D);+?+?+?+1
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SOLUTION :

The unilateral z-transform of sequence z[n] is given by

z[0] 2"+ 2[1] 27 + 2[2] 27 + z[3] 27
=1+4+27"'+22%+ 277
142,21

=15+ 5+

Hence (B) is correct option.

6.2 EXISTENCE OF Z-TRANSFORM

Consider the bilateral z-transform given by equation (6.1.1)
X7 = Zx[n] z"
The z-transform exists when the infinite sum in above
equation converges. For this summation to be converged
|z[n] 2" | must be absolutely summable.

Substituting z = re

X[ = Safn] (re?) "

n=—0co

or,

X[d = 3l iy e

n=—00
Thus for existence of z-transform

| X(2)| < o0

S an] " < oo (6.2.1)

n=—00

6.3 ReGION oF CONVERGENCE

The existence of z-transform is given from equation (6.2.1).

n

The values of r for which z[n]r™" is absolutely summable
is referred to as region of convergence. Since,z = re’ so
r= ‘ z ‘ Therefore we conclude that the range of values
of the variable |z | for which the sum in equation (6.1.1)

converges is called the region of convergence. This can be

Chapter 6
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explained through the following examples.

» EXAMPLE

The Region of convergence for the z-transform of sequence

z[n| =— a"ul— n— 1] will be
(A) |z|>]a] (B) [2]>0
(C) |z|<|a| (D) |z <0

SOLUTION :

As solved in example (1), z-transform of z[n] is

X() == 3} () == 3 (e

—=—00
&

:_l;(aflz)k
=—la"2+ (a'2)* + (a?2)° + ....]]

This series converges if |a™'z| < 1 or |z|<|a]
Hence (C) is correct option.

» EXAMPLE

The region of convergence of z-transform of sequence
z[n] = a"u[n] is

(A)|z|<a B) |z]>a

(C) |z|>0 (D) entire z-plane
SOLUTION :

The z-transform of sequence a"u[n] is

(o)

X(z)= > z[n]z"= ia"u[n]z‘"

n=—oo n=—0co

{1, forn =10
uln] =

0, otherwise
S0,

This series converges if |az™' | < 1
or |z| >]a]
Thus ROC of X(2) is |z|>|a|
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Hence (B) is correct option.

Note : In example (3) and (4) we have seen that z-transform
of —a"u[— n— 1] and a"u[n] is same but ROC of transform
is different for both. Thus, z-transform of a sequence is
completely specified if both the expression [X(z)] and ROC
are given to us.

6.3.1 Poles & Zeros of Rational z-transforms

The most common form of z-transform is a rational
function. Let X(z) be the z-transform of sequence z[n] ,
expressed as a ratio of two polynomials N(z) and D(z).
N(z)
D(2)

The roots of numerator polynomial i.e. values of z for
which X(2) =0 is referred to as zeros of X(z). The roots
of denominator polynomial for which X(z) = oo is referred

X(2) =

to as poles of X(z). The representation of X(z) through its
poles and zeros in the z-plane is called pole-zero plot of
X(2).

For example consider a rational transfer function X(z)
given as

o z
A =55 7%

_ z
(z—2)(2—3)

Now, the zeros of X(z) are roots of numerator that is z =0

and poles are roots of equation (z—2)(z—3) =0 which

are given as z= 2 and z= 3. The poles and zeros of X(2)

are shown in pole-zero plot of figure 6.3.1.

Im(z)

o0 %% Re(z)

\

Fig 6.3.1 Pole-zero plot of X(z)
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6.3.2 Properties of ROC

The various properties of ROC are summarized as follows.
These properties can be proved by taking appropriate
examples of different DT signals.

Property 1 : The ROC is a concentric ring in the 2z
-plane centered about the origin.

Proof :

The z-transform is defined as

[}

X(2) = Djz[n]z™"

n=-—oo

Put z= re'”
X(2) = X(re"”) = Yan]r e’

n

X (z) converges for those values of z for which z[n]r " is
absolutely summbable that is

iz[n] r "< oo

n=-—0oo

Thus, convergence is dependent only on r, where, r= ’ z ‘
The equation z = re’”, describes a circle in z-plane. Hence
the ROC will consists of concentric rings centered at zero.

Property 2 : The ROC cannot contain any poles.

Proof :

ROC is defined as the values of z for which z-transform
X (z) converges. We know that X(z) will be infinite at pole,
and, therefore X(z) does not converge at poles. Hence the
region of convergence does not include any pole.

Property 3 : If z[n| is a finite duration two-sided
sequence then the ROC is entire z-plane except at
z=0 and z= 0.

Page 401
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Proof :

A sequence which is zero outside a finite interval of time is
called ‘finite duration sequence’. Consider a finite duration
sequence z[n| shown in figure 6.3.2a; x[n] is non-zero only
for some interval Ny < n < N,.

I[{l]

S N N

N, 0 N,

*—0—0—> N

Fig 6.3.2a A finite duration sequence

The z-transform of z[n] is defined as
N,

n=N,

This summation converges for all finite values of z. If N;
is negative and N, is positive, then X(z) will have both
positive and negative powers of z. The negative powers of z
becomes unbounded (infinity) if | z | > 0. Similarly positive
powers of z becomes unbounded (infinity) if | z| = ©. So
ROC of X(z) is entire z-plane except possible z= 0 and/
or z= 00,

Property 4 : If z[n] is a right-sided sequence, and if the
circle ‘z ‘ =1 is in the ROC, then all values of z for
which ‘ z ’ > 1 will also be in the ROC.

Proof :

A sequence which is zero prior to some finite time is called
the ‘right-sided sequence’. Consider a right-sided sequence
z[n| shown in figure 6.3.2b; that is;

z[n] =0 for n < M.
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N, 0
Fig 6.3.2b A right-sided sequence

Let the z-transform of z[n| converges for some value of
‘z ‘(i.e. ’ z ‘ = 7‘0>. From the condition of convergence we
can write

[}

2 xln] 2

n=-—0o

< &0

i | z[n]|re" < o0

n=—00
The sequence is right sided, so limits of above summation
changes as

Z | z[n]|re" < oo (6.3.1)

n=N
now if we take another value of z as ‘ z ‘ =7, with r; < rg ,

then z[n|r " decays faster than z[n]r," for increasing n.
Thus we can write

Z’x ‘ :Z‘x ’z‘”ro_”ro”

n=N, n=>N

:Z‘x I|ro < )7" (6.3.2)

n=N;
From equation (6.3.1) we know that z[n]r;" is absolutely

summable. Let, it is bounded by some value M,, then
equation (6.3.2) becomes as

Z zn)[2" = M, Z (r())*” (6.3.3)

n=N, n=DN,
The right hand side of above equation converges only if

‘i‘> 1or‘z‘> To
To
Thus, we conclude that if the circle ‘ z ‘ = 1 is in the ROC,

then all values of z for which ‘z ‘ > 1 will also be in the
ROC. The ROC of a right-sided sequence is illustrated in
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figure 6.3.2c.

ROC : |2|>1,

> Re(z)

'
Fig 6.3.2c ROC of a right-sided sequence

Property 5 : If z[n] is a left-sided sequence, and if the
circle ‘z ‘ =1, is in the ROC, then all values of z for
which ‘ z ’ < mny will also be in the ROC.

Proof :

A sequence which is zero after some finite time interval is
called a ‘left-sided signal’. Consider a left-sided signal z[n]
shown in figure 6.3.2d; that is z[n] = 0 for n > N,.

0 N,
Fig 6.3.2d A left-sided sequence

Let z-transform of z[n] converges for some values of E2
(i.e.‘ z ‘ = 7“0). From the condition of convergence we write

[}

:Z_:O:f[n] Z" < oo
or i | z[n]|re" < o0 (6.3.4)

n=-—0oo
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The sequence is left sided, so the limits of summation

changes as

N,

2 |xln]|re" < oo (6.3.5)
now if take another value of z as ‘z ‘ = ry, then we can
write

N, N,

>, | z[n]]z" = >, | z[n]|z "o "

N,
= _Z_: ‘x[n”r&”(%) (6.3.6)

(3

From equation (6.3.4), we know that x[n]r;" is absolutely
summable. Let it is bounded by some value M,, then
equation (6.3.6) becomes as

% ‘x[n”z’" < M, gz: <%>n

n=—0oo n=——00

. . 1
the above summation converges if ‘;0

‘> 1 (because n is
increasing negatively), so ‘ z ‘ < ro will be in ROC.
The ROC of a left-sided sequence is illustrated in

figure 6.3.2e.

Tm(2)

ROC : |z]<r,

y

Fig 6.3.2e ROC of a left-sided sequence

Property 6 : If z[n] is a two-sided signal, and if the
circle ‘ z ‘ = 1 is in the ROC, then the ROC consists of
a ring in the z-plane that includes the circle ’ z ’ =7

Proof :

A sequence which is defined for infinite extent for both
n > 0 and n < 0 is called ‘two-sided sequence’. A two-sided

Page 405



Page 406 The Z-Transform Chapter 6

signal z[n] is shown in figure 6.3.2f.

S

0

Fig 6.3.2f A two-sided sequence

For any time N,, a two-sided sequence can be divided into
sum of left-sided and right-sided sequences as shown in
figure 6.3.2g.

zg[n)
& “ 0
[ ]
n |
N, 0 N, 0

Fig 6.3.2g A two sided sequence divided into sum of a
left-sided and right-sided sequence

The z-transform of z[n] converges for the values of z for
which the transform of both zz[n] and z;[n] converges.
From property 4, the ROC of a right-sided sequence is
a region which is bounded on the inside by a circle and
extending outward to infinity i.e. | z| > n. From property 5,
the ROC of a left sided sequence is bounded on the outside
by a circle and extending inward to zero i.e. |z|< n. So
the ROC of combined signal includes intersection of both
ROCs which is ring in the z-plane.

The ROC for the right-sided sequence zp[n], the left-
sequence zr[n] and their combination which is a two sided
sequence z[n] are shown in figure 6.3.2h.
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Im(2) Im(z) Im(z)
‘ ROC « [o|>7y ‘ Y ROC: r<|d< 1,

/

L
NPARN

ROC : |z]<r,

~Re(z) = / \ - Re(2)

RN

Fig 6.3.2h ROC of a left-sided sequence, a right-sided sequence
and two sided sequence

Property 7 : If the z-transform X(2) of z[n| is rational,
then its ROC is bounded by poles or extends to infinity.

Proof : The exponential DT signals also have rational z
-transform and the poles of X(z) determines the boundaries

of ROC.

Property 8 : If the z-transform X(z) of z[n] is rational
and z[n] is a right-sided sequence then the ROC is the
region in the z-plane outside the outermost pole i.e.
ROC is the region outside a circle with a radius greater
than the magnitude of largest pole of X (2).

Proof :

This property can be be proved by taking property 4 and
7 together.

» EXAMPLE

The region of convergence of the z-transform of sequence
z[n] = (%)nu[n] + <—z13>nu[n] is
1 1 1
(A) ]2]< B) 1<|zl<d

(©) |z]< 1 (D) |2]> &
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SOLUTION :

The z-transform of sequence z[n] is obtained as

X(z) = Zx[n] Z"

N ni(é)nu[n] Pt n_io<_i1’>>n“["] o
S & . 2(2,— 1
:ZO<212>+20<_312>: (1 6>1

1 — (2)s)

Poles are z=1/2, z=—1/3

summation I converges if ‘ 21—2‘ <1or ‘ z ‘ > %
summation IT converges if ‘% ‘ <1lor ‘ z ‘ > %

ROC is intersection of above two conditions so

ROC : |z |> % (which is outside the outermost pole)

Im(z)

A

ROC

Re(2)

wl— X
o[ —

\J

Hence (D) is correct Option.

Property 9 : If the z-transform X(z) of z[n] is rational
and z[n] is a left-sided sequence then the ROC is the
region in the z-plane inside the innermost pole i.e. ROC
is the region inside a circle with a radius equal to the
smallest magnitude of poles of X(2).

Chapter 6
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Proof :

This property can be be proved by taking property 5 and
7 together.

» EXAMPLE

The region of convergence of the z-transform of sequence

z[n] = (—%)Tbu[— n—1] — (—é)nu[— n—1] is

(A) | 2]< 3 (B) 3<||<}%
(©)|2]>3 (D) |2|<}

SOLUTION :

z-transform of z[n] is

[}

X(z) = > z[n]z"

n=—0o

2z (— 32)

(1-22) (1432

 —22(1432) +32(1 — 22
- (1—22)(1+32)

(z—122°)
(1—-22)(1+32)

_ z(1—122)
—2<z — %)(3)(2—1— :1,)>
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1
A%
- 1 1
(=)= +3)
1 1
Poles are z = 9, 2 =3

ROC : Summation I converges if ‘Qz ‘ <1or ‘ z ‘ < %

summation II converges it ‘3z ‘ <1or ‘ z ‘ <

The Z-Transform

ROC is intersection of both so ‘ z ‘ < %
(which is inside the innermost pole)

Im(2)

ROC

> Re(z2)

C»DI»—*
IS <

Hence (A) is correct Option.

Z-Transform of Some Basic Functions

Z-transform of basic functions are summarized in the

following table with their respective ROCs.

TABLE 6.1 : z-Transform of Basic Discrete Time Signals

DT sequence x[n| | z-transform ROC

entire z

1. 5[n] 1
-plane
entire z
-pl

2. | 6[n— ny Z" Prame.
except

z=0

Chapter 6
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3 L _ = > 1
b 1z |
4. | o'uln] 1 _ = |2|> ||
l—az! 22—«
5. | " tu[n—1] 2 1 |z|>]|a]
l—az! z—«
6. | nuln] 2 | z|>1
(1-29" (2-1)
7. | na’uln] az! _ oz |z|>a
1-az")® (z—a)’
1 — z'sin £2, or
1—22"cos§+ 2°
8. cos (£2m) u[n] ¢ oSt |z|>1
z[z — cos (2
2 —2zcos 2+ 1
2 'sin £2, or
. 1—22"cos (2 =
9. | sin(2n)uln| eI |z|>1
zsin (2
2 —2zco8 2+ 1
1 — az 'cos 2
1 — 20z 'cos 2+ o’z 2
10. | " cos (£2yn) u[n] ’ |z|>]a]
or z[z — accos (2
2 —2azcos 2+ o
az 'sin £2,
1 . 2 —1 Q 2 -2
11. | o"sin(2on) u[n] e |2|>
or azsin (2
2 —2azcos 2+ o
A+ B!
12, ra"sin (2yn+ 0) u[n]| 1+ 272"+ ?27? 2| < ‘a‘(“

with o« € R

. 2(Az+ B)
24+ 2vz+ 72
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6.4 THE INVERSE Z-TRANSFORM

Let X(z) be the z-transform of a sequence z[n]. To obtain
the sequence z[n| from its z-transform is called the inverse

z-transform. The inverse z-transform is given as
z[n] = %}{X(z) 7' 'dz

This method involves the contour integration, so
difficult to solve. There are other commonly used methods
to evaluate the inverse z-transform given as follows
1. Partial fraction method

2.  Power series expansion

6.4.1 Partial fraction method

If X(2) is a rational function of z then it can be expressed
as follows.

N(z)

D(2)

It is convenient if we consider X(z)/z rather than

X(2) =

X (z) to obtain the inverse z-transform by partial fraction
method.

Let pi, ps, ps....p, are the roots of denominator
polynomial, also the poles of X(z). Then, using partial
fraction method X(z)/z can be expressed as

X(z)_ A, A, A; A,
z _z—p1+z—p2+z—p3+“'+z—pn
o 2 Z 2
X(Z)_Alz—p1+A22—p2+"'+z—pn

Now, the inverse z-transform of above equation can be
obtained by comparing each term with the standard z
-tranform pair given in table 6.1. The values of coefficients
Ay, Ay, As....A, depends on whether the poles are real &
distinct or repeated or complex. Three cases are given as
follows

Case I : Poles are simple and real

X(z)/z can be expanded in partial fraction as

X(z)_ A, A, A; A,
o _Z_p1+z_p2+z_p3+...+—z_pn (6.4.1)
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where A, A,,... A, are calculated as follows

X
A =(z—p) Z(Z)
Z=m
X
Ay = (2—po) ZZ)
Z=DP2
In general,
A, =(z—p)X(2) L:p, (6.4.2)

Case II : If poles are repeated

In this case X(z)/z has a different form. Let p, be the root
which repeats [ times, then the expansion of equation must
include terms
X(2) _ Ay + Ay
z 2=DPr  (z2— )
Ai Ay

e O M ¥/ S
(2= i) (2= py)'
The coefficient A, are evaluated by multiplying both sides
of equation (6.4.3) by (z— p;)’, differentiating (I— i) times

S

+ (6.4.3)

and then evaluating the resultant equation at z = pj.
Thus,

Cy = @%[(z — i)’ XZ(Z)]

Case III : Complex poles

(6.4.4)

If X(2) has complex poles then partial fraction of the
X(z)/z can be expressed as
X(2) _ A A
= + .
Z =P z—pi

where A.* is complex conjugate of A; and pi* is complex

(6.4.5)

conjugate of z. The coefficients are obtained by equation
(6.4.2)

» EXAMPLE

Let X(2) be the z-transform of a sequence z[n| given as
following

1
X(2) =
() =115, 1057

Match List I (ROC of X(z)) with List II (corresponding
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sequence z[n]) and select the correct answer using the
codes given below

List I List 1I

(ROC) (z[n])
P. |z|>1 1. [2—(0.5)"u[— n]
Q. |z[<0.5 2. —2u[—n—1]—(0.5)"u[n|
R. 05<|z|<1 3. [-24(0.5)"u[—n—1]

4. [2—(0.5)"u[n]

Codes :
P Q R
(A) 4 3 2
(B) 2 3 4
(Cc) 1 2 4
(D) 4 3 1
SOLUTION :
1
X&) = 15 5052
7
X&) =2 15705
To use partial fraction method, consider X(z)/z
X(2) _ Z _ Z
z 2 —152z+05 (2—1)(z—0.5)
X Z) o z
z  (2—=1)(2—10.5)

Since poles are simple and real. So @ can be expanded

in partial fraction as

X(z 1 5
i):zél+zf05
A= =)0
1
=GV —os) 2
Ay:@_05y%@ )
= (2—0.5) 0.5 =1

Chapter 6
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X(2) _ 2 1
S0, z —z—1 2z-05
_ 2z oz
X(Z)_z—l z2—0.5
__ 2 1
1—2' 1-052"
ROCZ‘Z‘>1

Since ROC is right to the right most pole so both the terms
in equation (1) corresponds to right-sided sequence. (Refer

property # 8, section 6.3)

Im(2)

A

ROC

- / > Re(2)

) K 05 ]1 i

1—z"
.
So z[n] = [2 — (0.5)"| u[n]
ROC: |z|<05
Tm(z)

ROC

Re(2)
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Since ROC is left to the leftmost pole so both the terms
in equation (1) corresponds to a left-sided sequences.
(Property # 9, section 6.3)
2 z"
[ ~=— —2u[—n—1]

1 z! n

So
z[n] ==2u[—n—1]—[(=0.5)"u[— n—1]]
=—2ul—n—1]+(0.5)"u[— n—1]
=[—2+(0.5)"u[—n—1]
ROC: 0.5 <|z|<1

Tm(2)

A

ROC

N

Since ROC has a greater radius than the pole at z=0.5.
So the second term in equation (i) corresponds the right-
sided sequence, that is

1 z n
105, = (0.5)"u[n]

ROC ’z ‘ < 1, which is left to the pole at z= 1. So this

terms will corresponds to a left sided equation.
2 z!
1—2"
So z[n] =—2u[—n—1] — (0.5)"u[n]
Hence (A) is correct option.

—2u[—n—1]

6.4.2 Power series expansion Method

Power series method is also convenient in calculating the
inverse z-transform. The z-transform of sequence z[n] is
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given as
X(2) = Zx[n] Z"

Now, X(2) is expanded in the following form

X(2) = .. +z[-2] 7+ x[-1]2" +2[0] + z[1] 7"+ z[2] 27 + ...
To obtain inverse z-transform(i.e.z[n]), represent the given
X (2) in the form of above power series. Then by comparing

we can get
z[n] = {...z[- 2], z[- 1], z[0], =[1], z[2],...}

» EXAMPLE

The time sequence z[n|, corresponding to z-transform
X(z)=(1+217, (z|>01is

(A) {%’),3,1,1} (B) {%,3,3,1}

(C) {1,3,3,%} (D) {1,2;),3,1}
SOLUTION :

Given
X(2)=1+2Y=14+32"+372+2"

From the defination of z-transform

[}

X(z) = > z[n]z"

= nz::ox[n] 7"
X(z) = 2[0] 2"+ z[1] 2"+ 2[2] 72 + =[3] 2 °
By comparing
z[0] =1, z[1] =3, z[2] =3, z[3] =1

Hence (B) is correct option.

6.5 PROPERTIES OF Z-TRANSFORM

The unilateral and bilateral z-transforms possess a set of
properties, which are useful in the analysis of DT signals
and systems. The proofs of properties are given for bilateral
transform only and can be obtained in a similar way for
the unilateral transform.
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6.5.1 Linearity

z

Let o [n] < Xi(2), with ROC: R,
and 23 [n] << X, (2), with ROC: R,

then, am[n] + ba[n] <> aXi(2) + bXs(2),

with ROC: at least B, N Ry
for both unilateral and bilateral z-transform.

Proof :
The z-transform of signal {az[n]+ baz[n]} is given by

equation (6.1.1) as follows

Z{anln] + balnl} = 3 {am[n] + bas[n]} =

n=-—0o

=a ixl[n] Z"+b ixg[n] Z"

n=—oo n=—oo

= aXi(2) + bXy(2)
Hence, az [n] + bas[n] <= aXi(2) + bXs(2)
ROC : Since, the z-transform X;(z) is finite within the
specified ROC, R;. Similarly, X,(z) is finite within its ROC,

R,. Therefore, the linear combination aXi(z2)+ bX2(2)
should be finite at least within region R; (N R,.

» EXAMPLE

The z-transform of the sequence

z[n] = 2" uln] + 3" u[—n—1] is

5412271 7t
A B
(A) 1—52"'4+6272 (B) 1—52"'4+62"
5 -1
C D
() 1—-52"462" (D) 1-52"462"

SOLUTION :

z[n] = 2(2"u[n]) +3(3"u[— n—1])
z[n] = 2z [n] + 3z [n]

From table 6.1, we have standard transformation
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_ on 2, 1
x[n] = 2"u[n] o 1= Xi(2)
nln) = 3"u[-n—1] <= _—31[1 = X,(2)

From the linearity property of z-transform

2a1[n] + 315[n] <Z> 2X,(2) + 3X,(2)

z 2 3
1-2z" 1-3z"
z 2-627'-3+62"
(1-22(1—-327"
z -1
1-52"+627
Hence (D) is correct option.

6.5.2 Time shifting

For the bilateral z-transform

If z[n] <= X(2), with ROC R,
then x[n — ny <= ™ X(2),
and z[n + gl <= 2" X (2),

with ROC : R, except for the possible deletion or
addition of z=0 or z= 0.

Proof :

The bilateral z-transform of signal z[n— ng| is given by

equation (6.1.1) as follows

Z{z[n—n} = ix[n— nol 2"

n=—00

Substituting n — np = a on RHS, we get
Z{aln—n) = Yala] s

oa=—00
oo
— Zx[a] 27”02’70‘
n=—00
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Z{zn—n} = 2" X|[7]

Similarly we can prove

Z{z[n+n|} = 2" X|[7]

ROC : The ROC of shifted signals is altered because of the

No — g

terms 2" or z

in X(2).

, which affects the roots of the denominator

For the unilateral z-transform

If z[n] <= X(2), with ROC R,
then z[n — n ~E z"”(X(z) + zqzx[— m zm>,
m=1
nyg—1
and z[n+ no| «= z’“(X(z) - Zx[m] z"”),
m=0

with ROC : R, except for the possible deletion or
addition of z=0 or z= co.

Proof :

The unilateral z-transform of signal xz[n — ng| is given by

equation (6.1.2) as follows

o

Z{z[n—n} = Zx[n— nol 2"

n=0

Multiplying RHS by 2™ and 2™

Z{zln—nd} =D a[n—mngz "2z "

Substituting n—mny = «
Limits; whenn = 0, a = — ng

whenn - 400, @ >4
Now, Z{z[n—mnl}=2z" Zx[a] Z

=z™ Zﬂa] 4™ ix[a] z
a=0

a=—"ny

or, Z{z[n—mn}=2z" Zx[a] 4™ ix[a] z ¢

a=0 a=—ng
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or, Z{z[n—ng} == ix[a] 2O+ ix[—
a=0 a=1

by changing the variables as o« > n and a = m in first
and second summation respectively

Ty

Z{z[n—ny} =2 i [n] 27"+ 2" > a[—m] 2"

m=1

=z "X+ 2" Zx[— m] 2"

m=1

In similar way, we can also prove that

z[n+n <= z”“(X(z) - Elx[m] z‘m>

» EXAMPLE

Let z[n] be a non-causal sequence with initial values
z[— 1] =2, z[— 2] = 3. If X(2) represents the z-transform
of z[n] then z-transform of sequence

y[n] = ((z[n] — 3z[n—1]) + 4z[n — 2]) u[n] will be
A) X(2)[1—32"4+427+6+82"
B) X(2)[1+5z "'+ 4277
C) X(2)[1+52"+427 +6
D) X(2)[1—-32"+427

SOLUTION :

(
(
(
(

u[n] =1, n=0
So X(z) is unilateral z-transform of z[n]. For unilateral z
-transform, we have time shifting property as

zln — g uln] <<~ zﬂu(X(z) + nﬁ:lx[— m] z’"’)

Thus
z[n—1]uln ~Es < 2) + Z ’”>
m=1
~ z’l(X(z) + z[—1]2)
7' X(2) +2
Similarly

z[n— 2] u[n]

ot
X(2) + [— 1]z+ :U[— 2] zz)
«E _ZX(z) +27'43
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So z-transform of y[n]
Y(2) = X(2) =3[z ' X(2) + 2]+ 4[2 * X (2) + 22 ' + 3]

=X(2)[1-32"+427+6+82"
Hence (A) is correct option.

» EXAMPLE

Let X(2) be the bilateral z-transform of a sequence z[n]

given as
X(z):ﬁ, ROC : [Z|< 2
The z-transform of signal z[n — 2] will be
W) 555 ®) G=ar=1
)
(C) zzz— 4 (D) m

SOLUTION :

For bilateral z-transform time shifting property states that
If, z[n] <E> X(2)
x[n — n < z " X(2)

So zln—2] %> 27X(2) = ZZZ;24

Hence (C) is correct option.

6.5.3 Time Reversal

If z[n] <> X(2),  with ROC : R,
then o[- n] <=~ X<%) with ROC : 1/R,

For bilateral z-transform.

Proof :

The bilateral z-transform of signal z[—n| is given by
equation (6.1.1) as follows

Z{al-n} = Pl

n=—oo

Substituting —n = k on the RHS, we get
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Z{al- 1]} = Y0l

e}

= D[k (=)

k=—co

20
Hence, z[— n <= X(%)

ROC:7'€ R,or zE 1/R,

» EXAMPLE

Let o"u[n] «~%>1/(1—az"), then what will be the z
-transform of sequence o "u[—n| ?

(A) 1 (B) -2

(C) =2 (D) —

Z— Z—
SOLUTION :

n z 1
otuln =

By time reversal property
2= n] <> X()
z 1 1

l—a(zh)"' 1-az

So a "u[—n] =

Hence (A) is correct option.

6.5.4 Differentiation in the z-domain

If z[n] <% X(2),  with ROC : R,
then naln] <> — zd)(gigz), with ROC : R,

For both unilateral and bilateral z-transforms.

Proof :

The bilateral z-transform of signal z[n] is given by equation
(6.1.1) as follows
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X(2) = i z[n|z "

n=—0oo

Differentiating both sides with respect to z gives

B = Fraf s = Sl e

n=—00

Multiplying both sides by — z, we obtain
dX(z) - .
—r g = n;O:L:E[n] Z

Hence, nxln] <= — zd)ééz)

ROC : This operation does not affect the ROC.

» EXAMPLE

Which of the following corresponds to z-transform of the
sequence z[n] = (n+ 1) a"u[n|?

W) a B iy
1 (1+az)
©) =g D) {1

SOLUTION :

z[n] = na"uln] + a"u[n]
We know that

auln] <E-
(1—az)
Using property of z-domain differentiation
na"uln| zdz[(l vy
Zz az’!
(1—az")?
Using Linearity property
n n z 1 !
a"u[n] + na"uln| (1= a2 + {a _azaz_l)Q
é} %
(1—az")?

Hence (C) is correct option.
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6.5.5 Scaling in z-domain

If z[n] << X(2), with ROC : R,
then a"z[n] < (%), with ROC : | a |R,

For both unilateral and bilateral transform.

Proof :

The bilateral z-transform of signal z[n] is given by equation
(6.1.1) as

Z{ad"z[n]} = Zaa:

n=—0oo

[}

= Dafn)[a4™

a"z[n] < X(£>
ROC : If z is a point in the ROC of X(z) then the point
|a|z is in the ROC of X(z/a).

» EXAMPLE

If the z-transform of unit step sequence is given as

(7] 1
(
(

Q

g then the z-transform of sequence

%) WIH be

N S
(1—z D) (B) 3(1—27h

(©) (_1%) D) 755

SOLUTION :

A)

If z[n] <> X(2)
a'z[n] <=~ X(%)

[Property of scaling in z-domain]

(l)"u[n] 4 1 _ 1

3 (AN (1oL
=(is) (1757

Hence (C) is correct option.
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6.5.6 Time Scaling

As we discussed in Chapter 2, there are two types of
scaling in the DT domain decimation(compression) and
interpolation(expansion).

Time Compression

Since the decimation (compression) of DT signals is an
irreversible process (because some data may lost), therefore
the z-transform of z[n] and its decimated sequence
y[n] = x[an] not be related to each other.

Time Expansion

In the discrete time domain, time expansion of sequence
z[n] is defined as

i [n] = :
0 otherwise
Time-scaling property of z-transform is derived only for

z[n/k| if nisa multiple of integer k (6.5.1)

time expansion which is given as

If  z[n] <> X(2), with ROC : R,
then z[n] <= X,(2) = X (&), with ROC : (R,)"*

For both the unilateral and bilateral z-transform.

Proof :

The unilateral z-transform of expanded sequence a;[n] is
given by

Z{nn)} = ’ioxk[n] =

= 5 [0] + ap[1) 27 4 ... + 2 [K] 2°
+ap[k+ 1] 2D 4 L [2K] 27

Since the expanded sequence z;[n] is zero everywhere
except when n is a multiple of k. This reduces the above
transform as follows
ZA{xmn)} = 2 [0] + [k 2" + 2 [2K) 27 + 2 [3K] 2 + ...
As defined in equation 6.5.1, interpolated sequence is
[n] = x[n/k]
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n=0 z:[0] = «[0],
n==k . [k] = z[1]
n =2k i [2k] = x[2]

Thus, we can write

Z{nn]} = 2[0] + z[1] 2"+ z[2] 2 + 2[3] 27" + ...
= ;x[n] (&)= X(<)

» EXAMPLE

Let X(2) be z-transformofa DT sequence z[n] = (— 0.5)" u[n
.Consider another signal y[n] and its z-transform 1/(z2)

given as
Y(2) = X(7)
What is the value of y[n] at n=4 7
(A) 2 (B) 4
(C) 1/2 (D) 1/4
SOLUTION :
We know that
if z[n] <= X(2)
x[%] <% X(2) (time expansion property)
So y[n] = x[%]
—0.5)"" =0,2,4,6...
y[n] — ( ) ) n ) .a )
0, otherwise
So y[4] = (- 0.5)° =}
Hence (D) is correct option.
6.5.7 Time Differencing
If z[n] <> X(z),  with ROC : R,

then z[n] — z[n—1] <> (1 — 2 X(2),
with the ROC : R, except for the possible deletion of
z=0.

For both unilateral and bilateral transform.
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Proof :
The z-transform of z[n] — z[n— 1] is given by equation
(6.1.1) as follows

Z{aln] - aln—1]} = Y {z[n] - aln— 1]}z

= ij[n] 7" — io.z:[n— 1] 2

In the second summation, substituting n—1=r

ZA{z[n] —z[n—1]} = ig;[ Z"E o7 (D

n=—00 r=-—00

= ix[n] 7=t ix[r] z"

= X(2) — 7' X(2)
Hence,

z[n] — zn—1] <> (1 - 2 X(2)

» EXAMPLE

If the z-transform of unit-step sequence is given as

u[n «E 1 1 —, then the z-transform of au[n] — bu[n — 1]
—Z

will be

O B) §
© =5 ) =

SOLUTION :

1
(1-27)

From time differencing property
ax[n] = ba[n— 1] <=~ (a— bz’ )X()
[n]—bu[n—1]<—> (a— bzt (1 )

Let z[n] = uln|, X(2) =

Hence (C) is correct option.
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6.5.8 Time Convolution

Let i [n] << Xi(2), ROC : R,
and wn] <> X,(2), ROC : R,

then the convolution property states that

2 [n] * [n] <> X1(2) Xa(2),

ROC : at least Ry N R,

For both unilateral and bilateral z-transforms.

Proof :
As discussed in chapter 4, the convolution of two sequences
is given by

x[n] x 22[n] = le Ty[n—

k=—co

Taking the z-transform of both sides gives

alnlxml] <2 3 3 wlfnln— 4z

n=—0o0 k=—co

By interchanging the order of the two summations, we get

11 [n] * 5[N] < ixl[k:] ixg[n— Kz

k=—co n=—0co

Substituting n — k= « in the second summation

z[n] * 22[n] <= le K] Z:@[a ~(a+h)

k=—o0 o=—00

or 2[n] % mo[n] ~Z ( S >< S nyfa] 7

k=—o0 o=—00

@i [n] * 2[n] <= X1(2) Xa(2)

» EXAMPLE

Consider a sequence z[n] = z;[n] * 25[n] and its z-transform

X(2). It is given that
n[n] = {1,2,2}

1, 0=n<2
and Bn] =
0, elsewhere
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then X(z)| _ will be

(A) 8 (B) 15
(C) 7 (D) 4
SOLUTION :

z[n] = z1[n] * 2[n]
Using convolution property

X(2) = Xi(2) X2(2)

x[n] = {1,2,2}
Xi(z) = 22:0331[71] z"
= 17—|— 27142277
»nn] ={1,1,1}
Xo(z) = Zg%:vg[n] Z"
= 1_+ 7427

X(2)=(1+22"+22)(1+ 2"+ 27
=(1+2"+27°+27"+2272+277°

+227 427042271

=1432'4+52244234+221
=1+3+5+4+2

=15
Hence (B) is correct option.

6.5.9 Conjugation Property

If z[n] <= X(2), with ROC : R,
then 2" [n] << X*(#%), with ROC: R,

If z[n] is real, then

X(2) = X*(2%)

Proof :

The z-transform of signal 2*[n] is given by equation (6.1.1)

as follows
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Z{H ) = Do)z

n=—0oo

= 3 [l (29T (6.5.2)

n=-—0o

Let z-transform of z[n] is X(2)

X(2) = Zx[n] Z"
by taking complex conjugate on both sides of above
equation

[}

X*(2) = Xlaln] )"

n=—0oo

Replacing z = 2, we will get
%k

X5 = S [aln] ()] (6.5.3)

n=-—0co

Comparing equation (6.5.2) and (6.5.3)
Z{7*[n]} = X* () (6.5.4)

For real z[n], 2*[n] = z[n], so

Z{z"[n]} = :Z:O:Oz:[n] 7"=X(z) (6.5.5)

Comparing equation (6.5.4) and (6.5.5)
X(2) = X*(2%)

6.5.10 Initial Value Theorem

If z[n] <%= X(2),  with ROC : R,
then initial-value theorem states that,
z[0] = lim X(2)

The initial-value theorem is valid only for the unilateral
Lapalce transform

Proof :

For a causal signal z[n]

e}

X(2) = Z:z:[n] Z"

n=0
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= z[0] + 2[1] 2 '+ 2[2] 27+ ...
Taking limit as z = ©© on both sides we get

}LHoloX(Z) = }Lrgo(x[O] +a[l]z " +z[2] 277+ ..)

= z[0]
z[0] = lim X(2)

7z — 00

» EXAMPLE

The z—transform of a causal system is given as

915z
X(2) =
() =115, 1057

The value of x[0] is

(A) —1.5 (B) 2
(C) 1.5 (D) 0
SOLUTION :

Causal signal z[0] = lim X(z) = 2

2 — 00

Hence (B) is correct option.

6.5.11 Final Value Theorem

If z[n] <= X(2), with ROC : R,
then final-value theorem states that
z[°] = lim (z—1)X(2)

The final-value theorem, can be applicable with either
the unilateral or bilateral z-transform.

Proof :

k
Z{zln+ 1]} - Z{z[n]} = lim Y {a[n+1] - a[n]} 2"
" (6.5.6)
From the time shifting property of unilateral z-transform
discussed in section 6.5.2

o[n+ng <= z"”(X(z) - :Z:::x[m] z-m>

For ny=1
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tln+1] <~ Z<X(z) - Wijox[m] ﬂ)

zln+1] <> 2(X(2) — z[0])
Put above transformation in the equation (6.5.6)

M-

2X[2] — 20(0] = X[2] = lim , (z[n + 1] = a[n]) 2™

I
o

n

(z[n+1] — a[n]) 2"

M-

(z—1) X[z — 2z[0] = I

3
Il
o

Taking limit as z = 1 on both sides we get

lim (z— 1) X[2] — =[0] = lir mix[n—l— 1] — z[n]

L { (1] = z[0]) + (2[2] = 2[1]) + (2[3] — 2[2]) + ...
o+ (2[k+ 1] — z[k])

lim (z — 1) X[2] — 2[0] = @[°0] — 0]

Hence, z[oo] = lzilr%(z— 1) X(2)

» EXAMPLE

Given the z —transforms

2(82—1T)

X =2 703

The limit of z[oo] is

(A) 1 (B) 2
(C) eo (D) 0
SOLUTION :

The function has poles at z = 1,% Thus final value theorem

applies.

limz(n) =lim(z— 1) X(2)

n— z—1

Hence (A) is correct option.
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Summary :

Let, z[n]
21 [n]

B[n] <> X, (2)

£ X(2),
Xi(2)

Y
9

The properties of z-transforms are

following table.

The Z-Transform

with ROC R,
with ROC R;
with ROC R,

summarized in the

Chapter 6

TABLE 6.2 Properties of z-transform

Properties Time domain z-transform ROC
Linearity azi[n] + bz [n) aXi(2) + bXs(2) at least Ry N R,
— R, except for the
Time shifting e e Possiblepdeletion
(bilateral or non- or addition of
causal) z[n + ny 2 X(2) ot 7= o
- - z[n — ny| z”“(X(z) + ;1x[_ m| zm> R, except for the
1n.1e shifting possible deletion
(unilateral or ny—1 or addition of
causal no ~m
) z[n + ny) “ (X(z)—mz_:om[m]z ) z=0o0rz=
Time reversal z[— n] X< l) 1/R,
2
Differentiation in dX(2)
2 domain sl i B,
Scaling in =z n o
domain @"z{n] X(E) |a|R.
TlIIl.e ) l’k[n] = a;[n/]{;] X(Z]c) (R:c) 1/k
scaling(expansion)
R, , except for the
Time differencing | z[n] — z[n — 1] (1-2"X(2) possible deletion of

the origin
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= lim (2 — 1) X(2)

Time convolution zi[n] * 22 [n] Xi(2) Xa(2) at least Ry N R,
Conjugations 2*[n] X* (25 R,
Initial-value L provided z[n] =0
theorem 20} = :}LHL}OX(Z) for n <0
Final-value a[oo] = T}ergoa:[n] provided z[oo] exists
theorem

6.6 ANALYSIS OF DISCRETE LTI SysTems UsING
Z-TRANSFORM

The z-transform is very useful tool in the analysis of
discrete LTI system. As the Laplace transform is used in
solving differential equations which describe continuous
LTI systems, the z-transform is used to solve difference
equation which describe the discrete LTI systems.

Similar to Laplace transform, for CT domain, the
z-transform gives transfer function of the LTI discrete
systems which is the ratio of the z-transform of the output
variable to the z-transform of the input variable.

These applications are discussed as follows

6.6.1 Response of LTI Continuous Time System

As discussed in chapter 4 (section 4.8), a discrete-time LTI
system is always described by a linear constant coefficient
difference equation given as follows

g;)aky[n— k| = ébw[n— K|

avy[n— N+ ay_1y[n— (N=1)] +....... + ary[n— 1] + aoy[n]
= byz[n— M+ by1z[n— (M —=1)] + ... + biz[n — 1] + byz[n] (6.6.1)
where, N is order of the system.

The time-shift property of z-transform
z[n — ng )¢ (2), is used to solve the above difference
equation which converts it into an algebraic equation. By
taking z-transform of above equation
ayz N Y(2) 4+ ay 1 2 VY ()] + o +az '+ a Y(2)
= by 2 M X(2) 4+ by 1z PIX(2) 4o+ b2 X (2) 4 DX (2)
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Y(2) _ by M by 2 A b by
X(Z) (ZNZN+ GN71ZN_1+ ----- + a1+ ao

this equation can be solved for Y(z) to find the response

y[n].The solution or total response y[n] consists of two
parts as discussed below.

1. Zero-input Response or Free Response or Natural
Response

The zero input response y,[n] is mainly due to initial

output in the system. The zero-input response is obtained

from system equation (6.6.1) when input z[n] = 0.

By substituting z[n] =0 and y[n] = y.[n] in equation

(6.6.1), we get

ayy[n— N+ ay_1y[n—(N— D]+ ....... + ay[n—1]+ ayln] =0
On taking z-transform of the above equation with

given initial conditions, we can form an equation for

Y.i(2). The zero-input response y,;[n] is given by inverse z

-transform of Y,;(2).

2. Zero-State Response or Forced Response

The zero-state response y.[n| is the response of the system
due to input signal and with zero initial conditions. The
zero-state response is obtained from the difference equation
(6.6.1) governing the system for specific input signal z[n]
for n = 0 and with zero initial conditions.

On substituting y[n] = y.s[n] in equation (6.6.1) we get,

anyus[n— N+ ay_1ys[n— (N=1)] + ....... + @ y.s[n— 1] + agy.s[n]
=byz[n— M+ by_1z[n— (M—1)]+ ..... + biz[n — 1] + byx[n]
By taking z-transform of the above equation with zero
initial conditions for output (i.e., y[— 1] = y[—2]... =0 we
can form an equation for Y,(2).
The zero-state response y,[n] is given by inverse z
-transform of Y, (2).

Total Response

The total response y[n] is the response of the system due
to input signal and initial output. The total response can
be obtained in following two ways :

By taking z-transform of equation (6.6.1) with non-
zero initial conditions for both input and output, and
then substituting for X(z) we can form an equation for
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Y(2). The total response y[n] is given by inverse Laplace
transform of Y(s).

Alternatively, that total response y[n] is given by sum
of zero-input response y.;[n] and zero-state response y.[n].
.. Total response,

yln] = yai[n] + ye.[n]

» EXAMPLE

A discrete time system has the following input-output
relationship

y[n] — Syln— 1] = z[n]

If an input z[n] = u[n| is applied to the system, then its
zero state response will be

(A) [g~ @)Juln] ®) [2- ()

o)

SOLUTION :

ul7] (D) [2 = (2)"uln]

zero state response refers to response of the system with
zero initial conditions.
By taking z-transform

Y(2)~ 521 Y(2) = X(2)

For an input z[n] = un], X(2) = ﬁ
50, Y() = = 0m oD
2
V(o) =G (=09)
Y(2) z

By partial fraction

Y(2) 2 1
2 z—1 2z-—0.5
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_ 2z Z
Y(z)_z—l z—0.5

By taking inverse z-transform

y[n] = 2uln] = (0.5)"u[n]
Hence (B) is correct option.

6.6.2 Impulse Response and Transfer Function

System function or transfer function is defined as the ratio
of the z-transform of the output y[n] and the input z[n]
with zero initial conditions.

Let z[n ~E X(2) is the input and y[n] <=~ Y(2) is the
output of an LTI discrete time system having impulse
response h(n) <= H(z). The response y[n] of the discrete
time system is given by convolution sum of input and
impulse response as
y[nl = a[n] * hin]
By applying convolution property of z-transform we obtain
Y(2) = X(2) H(2)
Y(2)
X(2)

where, H(2) is defined as the transfer function of the

H(z) =

system. It is the z-transform of the impulse response.

Alternatively we can say that the inverse z-transform
of transfer function is the impulse response of the system.
Impulse response

hin] = ZHH(2)} = zl{Y(Z)}

X(2)

» EXAMPLE

A system is described by the difference equation
y[n] — Syln—1] = 2a[n— 1]

The impulse response of the system is

(A) gguln—1] (B) giguln+1]

(C) =iyuln—2] (D)

2n72 U

[n—2]

2n72 U
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SOLUTION :

Y(z)[l — 271] =27"X(2)

= hin] = 2<%>nlu[n 1

Hence (A) is correct option.

6.7 STtaBILITY & CAusALITY oF LTI DISCRETE
SyYSTEMS USING Z-TRANSFORM

z-transform is also used in characterization of LTT discrete
systems. In this section, we derive a z-domain condition to
check the stability and causality of a system directly from
its z-transfer function.

6.7.1 Causality

A linear time-invariant discrete time system is said to be
causal if the impulse response h[n| = 0, for n < 0 and it is
therefore right-sided. The ROC of such a system H(z) is
the exterior of a circle. If H(z) is rational then the system
is said to be causal if

(A) The ROC is the exterior of a circle outside the
outermost pole ; and

(B) The degree of the numerator polynomial of H(z)
should be less than or equal to the degree of the
denominator polynomial.

6.7.2 Stability

An LTT discrete-time system is said to be BIBO stable if
the impulse response h[n| is summable. That is

[}

Z ‘h[n” <

n=—00

z-transform of h[n| is given as
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H(z) = Sh[n]z

Let z= e’ (which describes a unit circle in the z-plane),
then

i h[n] e "

n=-—00

< i‘ h[n] e_m”‘

n=-—0oo

e

= 3 [hln][< o0

n=-—oo

which is the condition for the stability. Thus we can
conclude that

An LTI system is stable if the ROC of its system
function H(z) contains the unit circle |z |=1

6.7.3 Stability & Causality

As we discussed previously, for a causal system with
rational transfer function H(z), the ROC is outside the
outermost pole. For the BIBO stability the ROC should
include the unit circle ‘ z ‘ = 1. Thus, for the system to be
causal and stable theses two conditions are satisfied if all
the poles are within the unit circle in the z-plane.

An LTT discrete time system with the rational system

function H(2) is said to be both causal and stable if all
the poles of H(z2) lies inside the unit circle.

» EXAMPLE

A Linear time-invariant system has the following system
function

1 2
1 _%51 T3

H(z) =

Consider the following statements about the system
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1.  The system is stable if ROC : ‘ z ‘ >

NI N

2. The system is causal if ROC : ‘ z ‘ >

3. The system is stable if ROC : % < ‘ z ‘ <3

4. The system is causal if ROC : |z |> 3

Which of the above statement is/are correct?
(A) 1 and 2 (B) 1 and 3

(C) 2 and 3 (D) 3 and 4
SOLUTION :

1 2
H =
(Z) 1_%2:_1—}_1_32:1

The system has poles at z = 1

Stability:

(N
©
=
o
N

I
w

An LTT system is stable only if ROC of H(z) contains unit

circle so ROC : %<‘z‘<3
Im(z)

A

ROC |2 =1
(Unit circle)

> Re(2)
0.5 /1 3

dh

Causility:

For an LTI System to be causal the ROC must be exterior
of a circle outside the outer most pole. Here outer most

pole is z = 3. So for a causal system ROC : ‘ z ‘ >3
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Im(z)

ROC

0.5 3

« / ~ Re(2)
N

Hence (D) is correct option.

» EXAMPLE

The transfer function of a discrete LTI system is given by

1 1
H =
(Z) 1_%Z_1+1_2Z—1

Consider the following statements:
S; : The system is unstable and causal for ROC : ‘ z ‘ > 2

Sy : The system is stable but not causal for ROC :
0.5 < \ z \ <2

S3 : The system is neither stable nor causal for ROC :
‘ z ‘ <0.5

Which of the above statement is true?

(A) All S, 5, and S; are true

(B) Both S; and S, are true
(C) Both S, and S; are true
(D) Both S; and S; are true

SOLUTION :

The system has poles at z=1/2 and z= 2. Now consider
the different ROCs.

ROC : ‘ z ‘ > 2
Stability:

Since ROC does not contain unit circle. Hence the system
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is not stable.

Causality:

ROC is exterior to outer most pole (z = 2) so the system
is causal.

Im(z)

A

ROC

=1
(Unit circle)

Re(2)

ROC : 0.5<’z‘<2

Stability:

ROC contains unit circle, so the system is stable.
Causility:

ROC is not exterior to outer most pole (z=2) so the
system is not causal.

Im(2)

dh

ROC:‘z‘<O.5
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Stability:

ROC does not contain unit circle so the system is unstable.
Causility:

ROC is not exterior to outer most pole (z = 2), hence it is
not causal.

Im(2)
A
ROC

Hence (A) is correct option.

» EXAMPLE

The impulse response of a system is given by
—1y ~1
hln] = 10<7> uln] — 9<T>u[n]

For this system two statement are

Statement (i) : System is causal and stable
Statement (ii) : Inverse system is causal and stable.
The correct option is

(A) (i) is true (B) (ii) is true
(C) Both are true (D) Both are false
SOLUTION :

10 9
H(2) = -
(2) 1+t 14321

_ 1—27"
u+;z%1+izv

Pole of this system are inside ‘z ‘ = 1. So the system is
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stable and causal.

For the inverse system not all pole are inside ‘z ‘ =1. So
inverse system is not stable and causal.

Hence (A) is correct option.

6.8 BLock DIAGRAM REPRESENTATION

In z-domain, the input-output relation of an LTI discrete
time system is represented by the transfer function
H(z) ,which is a rational function of z, as shown in equation

:bQZM+ ble_1+ bQZM_2+...+bM,12+ bM
w4+ a2 a4 av_12+ ay

where, N = Order of the system, M < N and ay=1
The above transfer function is realized using unit

delay elements, unit advance elements, adders and
multipliers. Basic elements of block diagram with their z
-domain representation is shown in table 6.3.
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TABLE 6.3 : Basic Elements of Block Diagram

Elements of Block

. Time domain representation
diagram

s-domain representation

Adder

a[n] nlnl+oln] [ X(2)

X, (2)+X,(2)

Constant multiplier a{n] 4’%’ az(n]

Unit delay element a{n] z = afn—1]

Unit advance

aln) —— z —— 1[n+1]
element

The different types of structures for realizing discrete time
systems are same as we discussed for the continuous-time
system in the previous chapter.
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6.8.1 Direct Form I Realization

Consider the difference equation governing the discrete
time system with ay = 1,

y[n] + aiyn— 1+ aay[n—2]+ .... + ayy[n — N]|

= boz[n| + biz[n— 1] + bax[n— 2] + ... + byz[n — M|
On taking Z transform of the above equation we get,
Y(2)=— a1z 'Y (2) — 2 ° Y (2) — ... —anz V Y(2) +

boX(2) + b2 ' X(2) + b2 > X(2) + ... + bz M X(2)

(6.8.1)

The above equation of Y(2) can be directly represented by
a block diagram as shown in figure 6.8.1a. This structure is
called direct form-I structure. This structure uses separate
delay elements for both input and output of the system.
So, this realization uses more memory.

X(z) > Y(z
an] | o1l .
271X(2) 27Y(2)
aln—1] yln—1]
272X(2) 272Y(2)
n—2] y[n—2]
21 o1
2~ M=DX(2) 2~ (V=DY ()
an—(M-1)] yln—(N-1)]
zil zil
2 MX(2) 2 VY(2)
xn—M] y[n—N]

Fig 6.8.1a General structure of direct form-I realization

For example consider a discrete LTI system which has the
following impulse response
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Y(2) _1+422"'422°
H pu— pu—
& =X T 14T+ 527

Y(2) +42'Y(2) +327°Y(2) = 1X(2) + 22 ' X(2) + 22° X (2)
Comparing with standard form of equation (6.8.1), we get

a=4, aa=3 and by=1, by=2, by=2. Now put these

values in general structure of Direct form-I realization we

get

oY

Fig 6.8.1b

6.8.2 Direct Form II Realization

Consider the general difference equation governing a
discrete LTI system
y[n| + ay[n— 1]+ ay[n— 2]+ .... + ayy[n — N]
= bpz[n] + biz[n — 1] + byz[n— 2] + ... + by z[n — M|
On taking Z transform of the above equation we get,
Y(2)=— a2 'Y (2) — a32° Y (2) — ... —anz V Y(2) +
boX(2) + 012 ' X(2) + by2 2 X(2) + ... + bz M X(2)
It can be simplified as,
Y[l + @z + ez 4.+ avz "]
= X(2)[bo+ b1z '+ boz 2+ ... 4 bz V]

V() _W(2) . Y()
where,
W(z) 1
= 8.2
X(Z) 1+a12_1+ CLQZ_2+---+(INZ_N (68 )
Y - B _
W((ZZ)) = b+ b2 b by (6'8'3)

Equation (6.8.2) can be simplified as,
W(2)+ a2z ' W(2) + a2 > W(2) + ... + anz ¥ W(z) = X(2)
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W(z) = X(2) — az " W(2) — a2 > W(2) — ... — ay2 " W(2)
(6.8.4)

Similarly by simplifying equation (6.8.3), we get

Y(2) = b W(2) + biz " W(2) + bz 2 W(2) + ... + by 2z " W(2)
(6.8.5)

Equation (6.8.4) and (6.8.5) can be realized together by a

direct structure called direct form-II structure as shown in

figure 6.8.2a. It uses less number of delay elements then the

Direct Form I structure.

Fig 6.8.2a General structure of direct form-II realization

For example, consider the same transfer function H(z)
which is discussed above

Y(2) 1427142272
H(z) = 2)  1+42'4327

X(
_ Y W(2)
X (2)  W(2) ™ X(2)

X

Chapter 6
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2) 14474327
(2)
(2
so, W(z2) = X(2) —4z"'W(z) — 32> W(2)
and  Y(2) = 1W(2) + 22" W(z) + 22> W(2)

Comparing these equations with standard form of

equation (6.8.4) and (6.8.5), we have a¢; =4, a, =3 and
bp=1,b; = 2,b, = 2. Substitute these values in general

where,

W(z 1
X(

h<

= 142214227

=

structure of Direct form II , we get

Xi 1 Y1
(2) n _ 1 (7 (2)
\
zfl
+ )= - - ~(+
4 2
A
51
—3 9
Fig 6.8.2b

6.8.3 Cascade Form

The transfer function H(z) of a discrete time system can be

expressed as a product of several transfer functions. Each

of these transfer functions is realized in direct form-I or

direct form II realization and then they are cascaded.

Consider a system with transfer function

H(z) = (bio + b z:l + b ziz) (byo + bm,z_l + mef_Z)
(14 anz '+ apz?) (1 + @z + a2 ?)

= H,(2) Hy(2)

bio+ bz '+ bz’
WhereHl(Z): 1k0+ akIIlZ*l -+ CLJ:;Q[Q

b+ by 2 L bz 2
(2 = 1l:—+am11z_1 ++am22z_2
Realizing H,(z) and H,(2) in direct form II and cascading
we obtain cascade form of the system function H(z) as
shown in figure 6.8.3.
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— Qg ka —a

m2 me

Fig 6.8.3 Cascaded form realization of discrete LTI system

6.8.4 Parallel Form

The transfer function H(z) of a discrete time system can
be expressed as the sum of several transfer functions using
partial fractions. Then the individual transfer functions are
realized in direct form I or direct form II realization and
connected in parallel for the realization of H(z). Let us
consider the transfer function

Hz)=c4+-—94 + 2 4 N

1—pz' 1—p.2"! 1—p,2
Now each factor in the system is realized in direct form II
and connected in parallel as shown in figure 6.8.4.

X(2) k&

Co

Py

Fig 6.8.4 Parallel form realization of discrete
LTT system
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6.9 RELATIONSHIP BETWEEN S-PLANE & 2z
=PLANE

There exists a close relationship between the Laplace and z
-transforms. We know that a DT sequence z[n] is obtained
by sampling a CT signal z(t) with a sampling interval T |
the CT sampled signal z,(t) is written as follows

[}

z,(t) = Da(nT)§(t—nT)

where x(nT) are sampled value of z(t) which equals the
DT sequence z[n]. By taking the Laplace transform of
z;(t) , we have

X(9) = L{n(0)} = Ya(nT) L{5(t— nT))

n=—00

= iX(nT) e " (6.9.1)

n=—00

The z-transform of z[n] is given by

Comparing equation (6.9.1) and (6.9.2)
X(s) = X(2)|_.

T

Rk KOkoksk skook ok kok
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PRACTICE EXERCISE

LEVEL-1

McQ 6.1 Consider a DT signal which is defined as follows
1y >
o =|(2) =0
0, n <0

The z-transform of z[n] will be

) 24 ®) 551
© 4 (D) 51
2

McQ 6.2 If the z-transform of a sequence z[n| = {1,1,— 1, — %} is X(2), then what is the
value of X(1/2) 7

(A)9 (B) —1.125
(C) 1.875 (D) 15
MCQ 6.3 The z-transform and its ROC of a discrete time sequence
1 n
o =|(2)s <0
0, n=0
will be
2z 1 z 1
(A) 22— 1 ‘z‘>§ (B) z2—2’ ‘z‘<§
2z 1 27" 1
©) 5771 [2[<3 D) 21 21> 3
McaQ 6.4 The region of convergence of z-transform of the discrete time sequence
z[n] = (%)'n is
(A) 5 <|z|<2 (B) |2|>2
(C) —2<|z|<2 (D) |z]< 5
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McCQ 6.5 Consider a discrete-time signal
z[n] = <§> u[n] +<§> u[—n—1]

The ROC of its z-transform is

(A) 3<|z]<2 (B) |z|<3
(© |2]> 3 D) 3<|2|<3

McCQ 6.6 For a signal z[n] = [@" + a "] u[n], the ROC of its z-transform would be

(A)‘z>min<a‘,%‘> (B) |z|>|a]
(C)‘z>max<a‘,‘é> (D) 2] <|a|

McaQ 6.7 Match List I (discrete time sequence) with List II (z-transform) and choose the
correct answer using the codes given below the lists

List-I List-11
(Discrete time sequence) (z-transform)
P. u[n-—2] 1. 1 1
71—z ‘ ? ‘ <
= — 1
Q. u[—n— 3] 2. 1_ZZ71’ 2|<1
R. wu[n+4] 3. 1 1
71— ‘ ¢ ‘ -
_ )
S.  u[—n 4. 15[1’ 2> 1
Codes :
P Q R S
A) 1 4 2 3
B 2 4 1 3
e 4 1 3 2
D 4 2 3 1
McCQ 6.8 The 2-transform of signal z[n] = ¢ u[n] is
z . 2 .
z ) 1 :
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McCQ 6.9 Consider the pole zero diagram of an LTI system shown in the figure which
corresponds to transfer function H(z).

Im(z)

\unit circle
> % *—> Re(2)

4

o

Match List I (The impulse response) with List II (ROC which corresponds to above

diagram) and choose the correct answer using the codes given below:
{Given that H(1) =1}

List-1 List-I1

(Impulse response) (ROC)
P. [(—4)2"+6(3)"uln] 1. does not exist
Q. (—4)2"u[n] + (—6)3"u[—n—1] 2. |z[>3
R. (4)2"u[-n—1]+(=6)3"u[-n—1] 3. |z]|<2
S. 4(2)"ul-n—1]4(—6)3"uln] 4. 2<|z[<3
Codes :

p Q R S
A 4 1 3 2
B 2 1 3 4
e 1 4 2 3
M 2 4 3 1
MCQ 6.10  The z-transform of a discrete time signal z[n] is
_oz+1
X(2) = z2(z—1)

What are the values of z[0], z[1] and z[2] respectively 7
(A) 1,2,3 (B)O, 1,2
Q) 1,1, 2 (D) —1,0,2

MCQ 6.11  The z-transform of a signal x[n] is
X(2) = e+ e 2|+ 0
z[n| would be

(A) 8[n] + -

ln

(C) uln—1]+n (D) 8[n] +|n—1
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MCQ 6.12

MCQ 6.13

MCQ 6.14

MCQ 6.15

MCQ 6.16

MCQ 6.17

The z-Transform Chapter 6

Statement For Q. 12 - 14

Consider a discrete time signal z[n] and its z-transform X(z) given as

X(2) = zzz—z—;jf 3

If ROC of X(z) is | z| < 1, then signal z[n] would be

(A) [=203)"+ (= D" u[-n—1] (B) 2(3)" = (= 1)"u[n]
(C) =203)"u[=n—1] = (= 1)"u[n] (D) [2(3)" + 1 u[n]

If ROC of X(z) is | z|> 3, then signal z[n] would be
(A) 2(3)" = (= 1)"u[n] (B) [=23)"+ (=D Tu[-n—1]
(C) =203)"u[=n—=1] = (= 1)"u[n] (D) [2(3)" + 1 u[n]

If ROC of X(z) is 1 <|z|< 3, the signal z[n] would be

(A) 2B3)" = (= 1) uln] (B) [=2(3)"+ (= 1)Tu[-n—1]
(C) =203)"u[=n—1] = (= 1)"u[n] (D) 2B3)"+ (= Dul-n—1]

Consider a DT sequence
#[n] = @ [n] + w[n]
where, m[n] = (0.7)"u[n — 1] and
nn] = (—0.4)"u[n— 2]
The region of convergence of z-transform of z[n] is
(A) 0.4 <|z|<0.7 (B) [z]>0.7
C)|z[<04 (D) none of these

The z-transform of a DT signal z[n] is

o V4
X =575, 1

What will be the z-transform of z[n —4] 7

(z+4) 2
(4) 8(z+4)*—2(2+4)—1 (B) 87 —2z—1
4z 1
(€) 12827 —82—1 (D) 82 — 27 — 7

If z[n] = o"u[n], then the z-transform of z[n+ 3] u[n] will be

(A) 2 (B) -2

Z—

(@) o*(575) D) g
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MCQ 6.18

MCQ 6.19

McCQ 6.20

MCQ 6.21

MCQ 6.22

The z-Transform Page 459

Let mi[n], 23[n] and x3][n| be three discrete time signals and Xi(z), Xa(2) and X;(2)
are their z-transform respectively given as

56 = tasy
Xo(2) = (z—1) (Zz 0.5)
and X3(2) = G=1) (1z 0.5)

Then z;[n], 22[n] and z3[n] are related as
(A) m[n—2] = x[n— 1] = x3[n

(C) m[n] = mn—1] = z3[n— 2]

The inverse z-transform of a function X(z) = ZZ_ is
(A) o "uln—10] (B) a"u[n— 10|
(C) " u[n] (D) " uln—9]

Let z[n] <=~ X(2) be a z-transform pair, where

X(2) = ZZ_ 3
the value of z[5] is
(A) 3 (B) 9
(€)1 (D) 0

The z-transform of the discrete time signal z[n] shown in the figure is

an]
1
@ @ o—> 1N
k-1
—k —k

A) 2 B) %

( ) 1 _ z—l ( ) 1 _|_ z—l
1—z" 142"
1=z D) T2

(C) 1_ 271 ( ) 1 o 271

Consider the unilateral z-transform pair z[n] D¢ (2) = p z - The

z-transform of z[n — 1] and z[n + 1] are respectively
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McCQ 6.23

MCQ 6.24

McCQ 6.25

The z-Transform

7 1 1 7
A) 221 201 B) ;21 2-1
1 z z 7
S L D) 221 221
A discrete time causal signal z[n] has the z-transform
X(2) =ﬁ, ROC:|z|> 0.4
The ROC for z-transform of the even part of z[n] will be
(A) same as ROC of X(2) (B) 0.4 <|z|<25
(C) |z][>0.2 (D) |z|>0.8
The z-transform of a discrete time sequence y[n] = n[n+ 1] u[n] is
27 2(z+1)
A [ B :
c) —= D) 1

Chapter 6

Match List I (Discrete time sequence) with List II (z-transform) and select the

correct answer using the codes given below the lists.

List-I List-II
Discrete time sequence z-transform
(
n —1
P. n(—1)"u[n] 1. i _Z—Zfl)w ROC:|z|> 1
. —nu|l—n-— . 1
Q. —nu[—n—1] 2 T ROC:|z|> 1
n —1
R. (= 1)"u[n] 3. (1—271)2 ROC:| z| < 1
—1
8. muln] + 11 e ROCHz[>1
Codes :
P Q R S
(A) 4 1 2 3
(B) 4 3 2 1
(C) 3 1 4 2
(D) 2 4 1 3
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MCQ 6.26

McCQ 6.27

MCQ 6.28

McCQ 6.29

McCQ 6.30

The z-Transform Page 461

A signal z[n]| has the following z-transform
X(2) =log(1l —2z), ROC:|z|<1/2
signal z[n] is

(A) (5) uln) (B) () vl
(©) 4(z) ul-n—1 (D)

A discrete time sequence is defined as
2] = (= 2) " u[-n—1]

—_

% nu[— n—1]

—

The z-transform of z[n] is

(A) log(z—k%), ROCZ‘Z‘<% (B) log(z—%) ROCZ‘Z‘<%

(C) log(2—2), ROC:|z|>2 (D) log(2+2), ROC:|z|<2

Consider a z-transform pair z[n] . (2) with ROC R,. The z transform and its
ROC for y[n] = a"x[n] will be
(B) X(2+ a),

(A) X(%) ROC:|a|R, ROC:R,

(C) 2°X(2), ROC:R, (D) X(az), ROC:|a|R,

Let X(2) be the z-transform of a causal signal z[n] = a"u[n] with ROC:|z|> a
. Match the discrete sequences S, S5, S3 and Sy with ROC of their z-transforms
R1, R2 and R3.

Sequences ROC

Si: z[n—2] Ri: |z]|>a
Sy: z[n+ 2] Ry: |z|<a
Ss: z[— n R;: ‘z‘<%
Sat (= 1)"z[n]

(A) (S1, Ry), (S5, Ry), (S5, R3), (S4, Rs)

(B) (51,31),(SQ,R1),(53,R3),(5'4,R1)

(C) (S1,Ra), (2 Ry), (S5, Ra), (S, Ry)

(D) (81, Ry), (52, Rs), (S5, Ra), (S, Rs)

Consider a discrete time signal z[n] = " u[n] and its z-transform X(z). Match List
I (discrete signals) with List II (z-transform) and select the correct answer using
the codes given below:
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McCQ 6.31

MCQ 6.32

MCQ 6.33

MCQ 6.34

The z-Transform Chapter 6

List-1 List-11

(Discrete time signal) (z-transform)
P. z[n/2] 1. 27°X(2)
Q. z[n—2u[n—2] 2. X(2)
R. z[n+2|uln] 3. X(2/8%
S, 5l 1. *X(2)
Codes :

p Q R S

(A) 1 2 4 3
B 2 4 1 3
(C) 1 4 2 3
(D) 2 1 4 3

Let z[n] <= X(2) be a z-transform pair. Consider another signal y[n] defined as

2[n/2], if niseven
yln) =[] o
0, if n is odd
The z-transform of y[n] is

(A) 3X(2) (B) X(2)
(C) X(22) (D) X(2/2)

The z-transform of a discrete sequence z[n] is X(z), then the z-transform of x[2n]
will be

(A) X(22) (8) X(3)
(C) A[X(/2) + X(~V2) (D) X(V/2)

Let X(2) be z-transform of a discrete time sequence z[n| = <—%)nu[n]

Consider another signal y[n] and its z-transform Y(z) given as

Y(2) = X(7)
What is the value of y[n] at n=4 7
(A) 0 (B) 27"
(C) 2" (D) 1
Consider a signal z[n] and its z transform X(z) given as
o 4z
X&) =g

The z-transform of the following sequence will be
y[n] = z[0] + z[1] + z[2] + ..... + z[n]
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MCQ 6.35

MCQ 6.36

McCQ 6.37

MCQ 6.38

McCQ 6.39

MCQ 6.40
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477 4z(z—1)
O P Y B oy B) §2—2—1
47 4z(z+1)
(©) (2+1)(827—22—1) (D) 87 —2z—1

Let h[n]={1,2,0,—1,1} and z[n]={1,3,—1,—2} be two discrete time
sequences. What is the value of convolution y[n] = h[n]* z[n] at n=4 7

(A) =5 (B) 5

(C) -6 (D) -1

What is the convolution of two DT sequence z[n] = {— %,2,0,3} and hln| = {2,0,%3}

(A) {~2,-4.3,6,9} (B) {~2.4,-3,12,0,9}
(C) {9.6,3,—4,-2} (D) {~3.6.,7.4,6}

If z[n] <=~ X(z) be a z-transform pair, then which of the following is true?

(A) 2*[n] <= X*(= 2) (B) &*[n] <= — X*(2)
(C) a[n] == X*() (D) a*[n] <=~ X*(= )
A discrete time sequence is defined as follows
1, mniseven
z[n] =
{0, otherwise
What is the final value of z[n] ?
(A) 1 (B) 1/2
(C)0 (D) does not exist
Let X(2) be the z-transform of a DT signal x[n] given as
_ 0.57"

X === 05)
The initial and final values of z[n] are respectively
(A) 1, 0.5 (B) 0, 1
(C) 0.5, 1 (D) 1,0

A discrete-time system with input z[n] and output y[n] is governed by following

difference equation

y[n] — %y[n — 1] = z[n], with initial condition y[— 1] =3

The impulse response of the system
5 51y
(A) 5(%- 1), n=0 (B) §(§>, n=0
9
2

(C) g@)l n=0 (D)
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McCQ 6.41

MCQ 6.42

MCQ 6.43

MCQ 6.44

MCQ 6.45

MCQ 6.46
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Consider a causal system with impulse response h[n] = (2)"u[n]. If z[n] is the
input and y[n| is the output to this system, then which of the following difference
equation describes the system ?

(A) y[n] +2y[n+1] = z[n] (B) yln] = 2y[n—1] = z[n]

(C) yln] +2y[n — 1] = a[n] (D) yln] — Fyln— 1] = a[n]

The impulse response of a system is given as
ln] = 8] (5 f uln

For an input z[n| and output y[n|, the difference equation that describes the system
is

(A) y[n] +2y[n— 1] = 2z[n] (B) y[n] +0.5y[n— 1] = 0.5z[n — 1]

(C) y[n] + 2ny[n— 1] = z[n] (D) y[n] — 0.5y[n— 1] = 0.5z[n — 1]

The input-output relationship of a system is given as

yln] = 0.4y[n—1] = z[n]
where, z[n] and y[n] are the input and output respectively. The zero state response
of the system for an input z[n] = (0.4)"u[n] is

(A) n(0.4)"u[n] (B) n*(0.4)"u[n]
(C) (n+1)(0.4)"u[n] (D) %(04)”u[n]

A discrete time system has the following input-output relationship

y[n] — yln—1] = aln]

If an input z[n] = u[n] is applied to the system, then its zero state response will be

(A) [g~ @)Juln] B) [2=(5) |ut
(© |5 (g) |0 (D) [2~ (2)"]uln
Consider the transfer function of a system
_ 2z2(2—1)

H(z) = Z+4z+4
For an input z[n] = 26[n] 4+ 6[n + 1], the system output is
(A) 26[n+1]+6(2)"u[n] (B) 26[n] —6(—2)"u[n]
(C) 26[n+1] — 6(— 2)"u[n] (D) 26[n+ 1] +6<%)"’u[n]

The signal z[n] = (0.5)"u[n| is when applied to a digital filter, it yields the following
output

yln] = 6[n] — 26[n— 1]
If impulse response of the filter is h[n], then what will be the value of sample h[1] ?
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MCQ 6.48

MCQ 6.49

McCQ 6.50

McCQ 6.51
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(A) 1 (B) —2.5
(C) 0 (D) 0.5

The transfer function of a discrete time LTI system is given as

H(z) = zQ—Zl—l’ ROC:|z|>1

Consider the following statements
1. The system is causal and BIBO stable.

2. The system is causal but BIBO unstable.

3.  The system is non-causal and BIBO unstable.

4. Impulse response h[n| = Siﬂ(%n>u[n]

Which of the above statements are true ?
(A) 1 and 4 (B) 2 and 4

(C) 1 only (D) 3 and 4

Which of the following statement is not true?
An LTT system with rational transfer function H(z) is
(A) causal if the ROC is the exterior of a circle outside the outermost pole.

(B) stable if the ROC of H(z) includes the unit circle | z|= 1.
(C) causal and stable if all the poles of H(z) lie inside unit circle.
(D)

D) none of above

If h[n| denotes the impulse response of a causal system, then which of the following
system is not stable?

(A) hln) = n(3) uln (B) hln] = 36[n]
(C) hln) = 8ln] ~(— ) uln] (D) Aln] = [(2)" = (3)"Tulr]

A causal system with input z[n] and output y[n| has the following relationship
y[n] + 3y[n— 1] 4 2y[n — 2] = 2z[n] + 3z[n — 1]

The system is

(A) stable (B) unstable

(C) marginally stable (D) none of these

A causal LTI system is described by the following difference equation
y[n] = zln] + y[n 1]

Consider the following statement

1. Impulse response of the system is h[n] = u[n]

2. The system is BIBO stable
3. For an input z[n] = (0.5)"u[n], system output is y[n] = 2u[n] — (0.5)

n
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Which of the above statements is/are true?
(A) 1 and 2 (B) 1 and 3

(C) 2 and 3 (D) 1,2 and 3

Match List I (system transfer function) with List II (property of system) and
choose the correct answer using the codes given below

List-1 List-11
(System transfer function) (Property of system)
P. 2 1. non causal but stable
H = : 1.2
(2) =12)" ROC ‘z‘>
Q.. I 2 ROC 2. neither causal nor
-z Jz]< 1.2
(2) (z—1.2)° ‘ ‘ ‘ stable
R. _ 2 . 3. causal but not stable
S. _ 2 ‘ 4. both causal and stable
Codes :
P Q R S
A) 4 2 1 3
B 1 4 2 3
(C) 3 1 2 4
M 3 2 1 4
The transfer function of a DT feedback system is
) = 14+ P Piz
+P(:=79)
The range of P, for which the system is stable will be
(A) -19<P<—-0.1 (B) P<O
(C) P>—-1 (D) P>—0.1or P<—1.9

Consider three stable LTI systems S5,.5; and S3 whose transfer functions are given

as
1
S :H(z)=— 2
1
At 3
2 16
2+ H(2) 2 3 1 - 4
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1 2 4
1+527"—%32
Sy : H(z) = -1 % -1 . 1
S

which of the above systems is/are causal?
(A) Sl only (B) Sl and SQ

(C) Sl and Sg (D) Sl,SQ and Sg

The transfer function for the system realization shown in the figure will be

2z+ 3
(A) z2—4

4
(C) 55

Consider a cascaded system shown in the figure

SN g SN ey IR

where, Iu[n] = 8[n] +56[n— 1] and, hy[n]= <%>nu[n]

If an input z[n| = cos(nm) is applied, then output y[n] equals to

(A) %COS(H’]T) (B) %COS(TL’/T)
(C) %cos(mr) (D) cos(nm)

The block diagram of a discrete time system is shown in the figure below

X(2) = Y(2)

az >

The range of a for which the system is BIBO stable, will be
(A) a>1 B) -1l<ax<l
(C) a>0 (D) a<0

soksfok ok ok ok ok ok



PRACTICE EXERCISE

LEVEL-2

McQ 6.1 Let z[n] = 6[n— 1] 4+ 6[n+ 2]. The unilateral z - transform is

(A) 27 (B) #
(C) —227 (D) 27

McQ 6.2 The unilateral z - transform of signal z[n] = u[n+ 4] is
(A) 1+ 24 2+ 32+ 2 (B) %
C)y1+2"+ 22+ 27+ 21 (D) ] _1271

McQ 6.3 The 2z transform of §[n— k|, k> 0 is

(A) 2,2>0 (B) 2" 2>0

(C) &2+ 0 (D) 2% 2+ 0
McaQ 6.4 The z transform of §[n+ k|, k> 0 is

(A) 2% 2# 0 (B) 2,2 # 0

(C) 2%, all 2 (D) ', all z

McaQ 6.5 The z transform of u[n] is

1 1
(A)l_z_l,z‘>1 (B)l—z‘l’z‘<1
z z
(C)l—z’“‘z‘<1 (D)l_z,l,‘2‘>1
McCQ 6.6 The z transform of <}l>n(u[n] — u[n—5])
A 2—0.25" 0.25 B 2—0.25" 0
e Y Py T N (B) o025
5 5 5 5
(€) 2=025" ' 95 (D) 2025 .y,

Z'(2—0.25) Z'(z—0.25)’
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McaQ 6.7 The z transform of is <£11>4u[— n] is

(&) porlz> g B) poplz]<g

©) 1=gl2|> 1 (O) 1=/ < g
MCQ 6.8  The z transform of 3"u[— n — 1] is

(A) 52| 2[>3 (B) 35—|7|<3

(© 525/2/>3 D) 525 )2]<3

McCQ 6.9 The z transform of <§>|n is

(4) (22—??)5(§z—2)’_g< 2<—3
(B) (22—3_)5(?3z—2)’§<z<g
(€) (22—3??3z—2)%<2<%
(D) (2z—3§?32—2)’_%< <3

MCQ 6.10 The 2 transform of cos(%n)u[n] is
2(2—2+1)

(2z—1)
(#—z+1)

2 1-2z2
() 5%,%4«

(A) 0<]z|<1

(B)

‘z‘>1

[NGIEN

(D) 2(Z =241

‘z‘>1

MCQ 6.11  The z transform of {3,0,0,0,0,6,1, — 4}
(A)32+6+2"'—42720 < |z| <
(B) 327 +6+ 2" —427°0 <|z|<
(C) 32°4+ 6+ 2— 42,0 <|z|<
(D) 32746+ 2—420 < |z|<
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MCQ 6.12

McCQ 6.13

MCQ 6.14

McCQ 6.15

MCQ 6.16

MCQ 6.17

The z-Transform Chapter 6

The z transform of z[n] = {2,4,5,7,0,1}
(A) 227 +42+5+ T2+ 2 2+ o

(B) 222 +42 ' +5+ 72+ 2% 2+ o

(C) 2z—2+4z_1+5+7z+z3,0<‘z‘< o
(D) 22 +42+5+ 72"+ 270 <| 2| < o0

The z transform of z[n] = {1,0,—1,0,1, — 1} is

(A)1+22°—42"'+527° B)1—z2"+2"'—27
(C)1—-27+47'—52 D)1 -2+ -7
The ti : . 2 —3z
e time signal corresponding to 3 < ‘ z ‘ < 2is
T9%
(A) —gruln] =2 u[-n—1] (B) —gruln] =2 'uln+1]
(C) gruln] + 2" u[n+ 1] (D) ruln] =27 "u[- n 1]
37 — %z
The time signal corresponding to m,‘ z|>4is
4 n 4 n 4 n 4 n
(A) [55(~ 4)" + 3547 |uln] (B) 594" + 354 |uln)
(C) 35 (—4)"ul—n] + 354 ul1] (D) 594" uln] + 57 (~ 4)"u[~ 1]
4 3
The time signal corresponding to 2z — zzzj 1_ zz,‘ z ‘ > 1is
(A) 26[n—2]+[1—(—1)"u[n—2]
(B) 26[n+2]+[1—(—1)"u[n+2]
(C) 26[n+2]+[(—1)"—=1]uln+ 2|
(D) 26[n—2]+[(=1)" = 1u[n—2]

The time signal corresponding to 1 + 22 %4 4278,‘ z ‘ >0 is
(A) 6[n] +26[n— 6] +46[n— §]

[
[—n] +26[— n+6] +46[— n+§]
[—n]+26[—n—6]+46]—n—§|
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MCQ 6.18

McCQ 6.19

McCQ 6.20

MCQ 6.21

MCQ 6.22

McCQ 6.23

The z-Transform Page 471

10
The time signal corresponding to Y] %z‘k,‘ z ‘ >0 is
k=5

(A) k:rllgé[n-l—k] ZO;]}:
©) 3 Fol-n+ o) 3 Lol

The time signal corresponding to (1+ z7"), |z|>0is
(A) 6[—n]+36[-n—1]+36[—n—2]+ 6[— n— 3]
(B) 6[—n]+36[—n+1]+36[—n+2]+6[— n+ 3]
(C) 6[n]+36[n+1]+36[n+ 2]+ 6[n+ 3]

(D) 6[n]+36[n—1]+36[n— 2]+ 6[n — 3]

The time signal corresponding to 2 + 2° 4+ 3 + 22 ° + 274,‘ z ‘ >0 is

(A) 6[n+ 6]+ 8[n+ 2]+ 36[n] +26[n— 3]+ 6[n — 4]
(B) 6[n—6]+06[n—2]+30[n] +26[n+ 3]+ 6[n+4]
(C) 6[— +6]+5[ n+ 2] 4+ 36[— n] + 26[— n+ 3] + 6[— n+ 4]
(D) 6[-n—6]+6[—n—2]+36[—n]+26[—n—3]+6[—n—4]
The time signal corresponding to 1_11112_2,‘ z ‘ > i
27", nevenandn = 0 1 2"u "
(4) {O, otherwise (B) <4> %
() {(2)", nodd,n > 0 (D) 2 "u[n]
, neven , N

The time signal corresponding to ﬁ,‘ z ‘ <pls
—4z

(A) = 322405 [~ 2 (k+ 1)]

(B) — izw%[_ n+2(k+1)]

() — izﬂkﬂ@[w 2(k+ 1)]

(D) — 3226085 — 2 (k+ 1)]

The ti£ne signal corresponding to In (1 + 2" ‘ z ‘ >0 is

() E sy 8“2 s+
© S -1 ) ED (1)
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MCQ 6.24

MCQ 6.25

MCQ 6.26

The z-Transform Chapter 6

If z - transform is given by
X(2) = cos(z’?’),‘ z[>0
The value of z[12] is

1 1
(A) =571 (B) 51
1 1
(© -1 ) L
X[7] of a system is specified by a pole zero pattern in below.
Im
‘ z - plane
Re
1 2
I

Consider three different solution of z[n]

z[n] [2" — (%)ﬂ u[n
wn] =—2"u[n—1] — %u[n]
x3[n] =—2"u[n — 1] +%u[— n—1]
Correct solution is
(A) a[n] (B) 2[n]
(C) x3[n] (D) All three
Consider three different signal
z[n] =|2" —(%)ﬂ u[n]
Bn] =—2"u[—n—1] —}—%u[— n—1]
rn] =—2"u[—n—1] — %u[n]

Following figure shows the three different region. Choose the correct for the ROC
of signal

R,

_p-
1 Re
2
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R1 RQ R3
(A)  @n] [ w3
(B)  z[n] w3[n @1 [n]
(C)  mn] ws[n] (1)
(D) 3[n] [ @1 [n]
MCQ 6.27 Given the z transform
1+ %z’l

X(2) =

i)

For three different ROC consider there different solution of signal z[n] :

a) | z|> g,aln] = [211_<—31> uln]
b) | 2| < 5.aln] = 2—11+<—31) [~ n+1]
(c) % <|z|< %,x[n] :—%u[— n—1]— <_31>nu[n]
Correct solution are
(A) (a) and (b) (B) (a) and (c)
(C) (b) and (c) (D) (a), (b), (c)
MCQ 6.28 The X(z) has poles at z—% and z=—1. If z[l] = 1z[- 1] =1, and the ROC
includes the point z = % The time signal z[n] is
() giruln) = (= 1)"u[= n—1] (B) gruln] = (1) u[-n—1]
(C) g uln] + ul-n+1] (D) o uln] + u[- n+1]

MCQ 6.29  The z[n] is right-sided, X(2) has a signal pole, and z[0] = 2, z[2] = %,x[n] is

(A)?;ﬂ ®) 4
© Y () a1

MCQ 6.30 The z transform of <%>nu[n] + (}1>nu[— n—1]is

1 1
A , z<
(A) 1_[4\\

1
4

1 1 1

B) =3+ —1 1 1</%[<3
1
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McCQ 6.31

MCQ 6.32

McCQ 6.33

MCQ 6.34

MCQ 6.35

The z-Transform Chapter 6
1 1 1
© 1 - 1.%>2
1—52z" 1—>2"
2 4

(D) None of the above

Statement for Q. 31-36 :

Given the z - transform pair
z[n] : 2

— 16

The z transform of the signal z[n — 2] is

,‘z‘<4

(&) 7775 ®) G+2r-16
1 (z—2)*
(€) Z—16 (D) (z—2)*—16
The z transform of the signal y[n| = %x[n] is
(24 2)* 2
@A) 16 B) 73
(z—2)* 7
(€) (z—2)"— 16 (D) 7 — 64
The z transform of the signal z[— n| * z[n| is
Z —162
(A) 167 2577~ 16 (B) 1672
7 162°
(€) 2577 — 162" — 16 (D) (¥ —16)*
The z transform of the signal nz|n] is
327 —322
(M) 22 gy B) 7167
32z —32z
N ERTE )2 16
The z transform of the signal z[n+ 1] + z[n — 1] is
(z41)? (z—1)° 2(Z+1)
O PR o TR P LT B) 16
Z(—1+2)

(C) 716 (D) None of the above
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MCQ 6.36

McCQ 6.37

MCQ 6.38

MCQ 6.39

MCQ 6.40

McCQ 6.41

MCQ 6.42

The z-Transform

The z transform of the signal z[n] x z[n — 3] is

ST RIESTE
© & 5 ©) 1)

Statement for Q. 37-41 :

Given the z transform pair
3"n’uln] < X(2)

The time signal corresponding to X (22) is

(A) n23"u[27] (B) <—§>”n2u[n]
(C) <%>7ln2u[n] (D) 6"n*u[n]
The time signal corresponding to X(z ') is

(A) n*37"u[— n] (B) n*3 " u[— n]
(©) L3ruln] (D) ;3rul-n]

The time signal corresponding to %X (2) is

(A) (n—1)*3"""u[n—1] (B) n*3"u[n—1]

(C) (1—n)*3" "uln—1] (D) (n—1)*3""un]

The time signal corresponding to z - X (2) is

(A)

DNO|— DO

(C)

The time signal corresponding to {X(z)}? is
(A) [z[n]” (B) z[n] « x[n]

(C) 2(n) * z[—n] (D) @[=n] * (= 1]

A causal system has input

z[n] = é[n] -I—%é‘[n— 1] — %5[n — 2] and output

yln] = 8[n] — 38[n— 1]

(z[n+ 2] — z[n—2]) (B) z[n+ 2] — z[n— 2]

z[n— 2] — z[n+ 2]) (D) z[n—2] — z[n+ 2]

Page 475
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MCQ 6.43

MCQ 6.44

MCQ 6.45

MCQ 6.46

MCQ 6.47

The z-Transform

The impulse response of this system is

o ()

C) %[5(%)

y[n] =

(A) [7@

u[n] [5 + 2 Tl n u[n]
"u[n) 3[ +2 i) u[n]
A causal system has input z[n] = (— 3)"u[n] and output
4(2)" - <%) uln]
The impulse response of this system is
)"’— 10(%)” u[n] (B) [7(2") 10(%)" u[n]
%)2 - 7(2)”]u[n] (D) [10 (2) 7(%) uln]

(C) [10(

A system has impulse response h[n|] = (% nu . The output y[n| to

the input x[n| is given by y[n] = 26[n
(A) 26[—
(C) 26—

n—

4] — 6[— n— 5]

n+4] — 6[— n+ 5]

—4

B) 26[n+4] — 6[n+ 5]

]. The input z[n] is
(
(D) 26[n—4] — 6[n— 5]

~_ —

A system is described by the difference equation
y[n] = z[n] — [z — 2] + z[n — 4] — z[n — 6]
The impulse response of system is
(A) 6[n] —26[n+ 2] +46[n+ 4] — 66[n+ 6]

(B) &[n] +26[n—2] —46[n— 4] + 66[n — 6]
(C) 8[n] = 6[n— 2]+ 6[n— 4] = 6[n— 6]
(D) 6[n] —6[n+2]+ 6[n+4] — 6[n+ 6]

The impulse response of a system is given by

h{n] =

3
4TL

—-uln—1]

The difference equation representation for this system is
(A) 4y[n] — y[n—1] = 3z[n— 1]
(C) 4y[n] + y[n—1] =— 3z[n— 1]

(B) 4y[n] — y[n+ 1] = 3z[n+ 1]

(D) 4y[n] + y[n+ 1] = 3z[n+

The impulse response of a system is given by

hin] = 6[n] — 6[n— 5]
The difference equation representation for this system is
(A) yln] = 2[n] — z[n— 5]

(C) yln] =

z[n] 4+ bx[n — 5]

(B) yln] = 2[n] — z[n + 5]
(D) y[n] = z[n] — 5z[n+ 5]

1]

Chapter 6
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MCQ 6.48

McCQ 6.49

McCQ 6.50

McCaQ 6.51

MCQ 6.52
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Consider the following three systems
yi[n] = 0.2y[n — 1] 4+ z[n] — 0.3z[n — 1] + 0.02z[n — 2]
y[n] = z[n] — 0.1z[n — 1]
ys[n] = 0.5y[n— 1] 4+ 0.4z[n] — 0.3z[n — 1]

The equivalent system are

(A) yi[n] and y,[n] (B) w:[n] and y;[n]
(C) ys[n] and y[n] (D) all
The z - transform function of a stable system is given as
3 1
2—-5%
H(z) = -
1-229(1 +52 N

The impulse response h[n] is

(A) 2"u[—n+1] - <%>nu[n] (B) 2"u[— n—1] + <_21>nu[n]
(C) —2"u[—n— 1] +<—71)”u[n] (D) 2"u[n] — <%>nu[n]

The z-transform of a anti causal system is

3 —Tz4127
The value of z[0] is
7
() -1 (B) 0
(C) 4 (D) Does not exist
The transfer function of a causal system is given as
H(z) = —Sf— 6
The impulse response is
(A) 3"+ (= 1)"2" ) u[n] (B) (3" +2(=2)") u[n]
(C) B+ (=1)"2" ) uln] (D) (3" "= (=2)")uln]
The transfer function of a system is given by
2(3z2—2)
H(z) = 53—+
(2) R

The system is
(A) Causal and Stable

B) Causal, Stable and minimum phase

(B)
(C) Minimum phase
(D)

None of the above



Page 478

MCQ 6.53

MCQ 6.54

McCQ 6.55

MCQ 6.56

MCQ 6.57

The z-Transform Chapter 6

The z - transform of a signal z[n] is given by

3
X(2) = -7 4 2
3

If X(z) converges on the unit circle, x[n] is

1 3n+3 1 3n+3
(A) —gamrgulnl —=g-ul-n-1] (B) ga=igulnl —=g—ul-1]
1 37L+3 1 37L+3
() ﬂu["]—Tu[— ] (D) —ﬂu[n]—Tu[— ]
The transfer function of a system is given as
477! 1
H(2)=—"—=]|z|>+
() (1_}1'21)2‘ ‘ 4
The h[n] is
(A) Stable (B) Causal
(C) Stable and Causal (D) None of the above
The transfer function of a system is given as
2(z+ 5
H(z) = (1Z ) 1
(2=2)(?—3)
Consider the two statements
Statement (i) : System is causal and stable.
Statement (ii) : Inverse system is causal and stable.
The correct option is
(A) (i) is true (B) (ii) is true
(C) Both (i) and (ii) are true (D) Both are false
The system

yln] = cy[n—1] — 0.12y[n — 2] + z[n — 1] + z[n — 2]
is stable if
(A) ¢ < 1.12 (B) ¢ > 1.12

(O) [e|< 112 (D) |¢|> 1.12

The impulse response of the system shown below is
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The z-Transform

(C) 26°2(1 + (= 1)) uln] — L 6[n]

(D) 21+ (= 1) uln] — 6[r]

The system diagram for the transfer function

_ z
() =5 0

is shown below.

The system diagram is a
(A) Correct solution

B

(B) Not correct solution
(C) Correct and unique solution
(D)

D) Correct but not unique solution

>R 3K 3k oKk ok ok ok >k >k >k
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