
VHDL

COMPUTER ARCHITECTURE

LAB MANUAL

PREPARED BY

AVIJIT BOSE

SOMA BANDYOPADHYAY

VHDL

Contents
INTRODUCTION... 1

CHAPTER-1 STRUCTURAL CODE.. 3

1.1 VHDL Basics... 3

1.2 Fundamental VHDL units .. 3

1.2.1 Library .. 4

1.2.2 Entity .. 4

1.2.3 Architecture ... 4

1.3 How to declare Library:... 4

1.3.1 Purpose of IEEE library packages ... 5

1.4 Entity ... 5

1.5 Architecture .. 6

CHAPTER-2 DATA TYPES.. 7

2.1 Pre-defined data types.. 7

2.2 User-Defined Data Types ..10

2.3 Subtypes..10

2.4 Arrays ..11

2.5 Signed and Unsigned Data Types..12

2.6 Data Conversion..13

CHAPTER-3 OPERATORS AND ATTRIBUTES...15

3.1 Assignment operator ..15

3.2 Logical operator ..15

3.3 Arithmetic operator ..16

3.3 Comparison operator..16

3.4 Shift operator..16

3.5 Attributes ..17

CHAPTER-4 CODE CONCURRENCY ..18

4.1 With Operators ...18

4.2 WHEN (simple and selected)...18

4.2.1 WHEN/ELSE syntax...18

4.2.2 WITH/SELECT/WHEN ...18

4.3 Generate ...18

4.4 BLOCK..19

4.4.1 ..19

VHDL

4.4.2 Guarded Block..20

CHAPTER-5 SEQUENTIAL CODE...21

5.1 PROCESS..21

5.2 Difference between Signals and Variables..21

5.3 IF syntax ..21

5.4 WAIT..22

5.5 CASE ..22

5.6 LOOP ...22

5.7 DIFFERENCE BETWEEN CASE AND IF...23

5.8 DIFFERENCE BETWEEN CASE AND WHEN...24

CHAPTER-6 VARIABLES AND SIGNALS...25

6.1 Where can be used? ...25

6.2 CONSTANT...25

6.3 SIGNAL...25

6.4 Variable ...25

CHAPTER-7 FUNCTION AND PROCEDURE...26

7.1 What are Functions and Procedures?...26

7.2 FUNCTION ...26

7.2.1 Function call ...26

7.3 PROCEDURE ..27

7.3.1 PROCEDURE CALL...27

GETTING STARTED WITH VHDL...28

EXAMPLE CODES ...40

VHDL

1

INTRODUCTION
VHDL is a hardware description language. It describes the behavior of an electronic circuit or system
from which the physical circuit or system can be attained or implemented.

What does VHDL stands for?

VHDL stands for VHSIC hardware description language. VHSIC is an abbreviation for very high speed
integrated circuit.

VHDL is intended for circuit synthesis as well as circuit simulation, however all constructs are not
synthesizable. VHDL is a standard, technology/ vendor independent language and is therefore portable
and reusable.

Application of VHDL lies in the following area

 CPLD :- Complex Programmable logic device
 ASIC :- Application Specific Integrated Circuit

 FPGA :- Field Programmable GATE Array

It should be taken into consideration that once the VHDL code has been written it can be used to
implement the circuit in a programmable device (e.g. Altera, Xilinx etc.).

Why VHDL is referred as code?

VHDL is referred to as code because it is not sequential but rather it is concurrent (parallel). However
it may be considered that statements placed inside a process, function or procedure are executed
sequentially.

One of the major utilities of VHDL is that it allows the synthesis of circuit or system in a programmable
device (PLD/FPGA).

VHDL Entry (RTL Level)

Net List (GATE level)

Optimized Net List

(Gate Level)

Physical device

Compilation

Optimization

Place and Route

Simulation

Simulation

Figure 1-. Figure depicting the execution sequence

VHDL

2

Writing the first code:-

Let us consider the following circuit for Full Adder circuit

a

Figure-2 Full Adder Circuit

and the truth table will look as follows:-

A B cin S cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

The code now will look as follows

Entity full_adder is

Port(a,b,cin : IN bit ;

S, cout : out bit);

End full_adder;

Architecture dataflow of full_adder is

begin

s<= a XOR b XOR cin;

cout<= (a AND b) OR (a AND cin) OR(b AND cin);

end dataflow;

Full Adder Circuit

b
C in

S

cout

VHDL

3

CHAPTER-1 STRUCTURAL CODE
1.1 VHDL Basics
VHDL is a hardware description language that can be used to model a digital system. The digital system
can be as simple as a logic gate or as complex as a complete electronic system. A hardware abstraction
of this digital system is called an entity in this text. An entity X, when used in another entity Y, becomes
a component for the entity Y. Therefore a component is also an entity, depending on the level at which
you are trying to model.
To describe an entity, VHDL provides five different types of primary constructs, called design units.
They are:

1. Entity declaration
2. Architecture body
3. Configuration declaration
4. Package declaration
5. Package body

An entity is modeled using an entity declaration and at least one architecture body. The entity
declaration describes the external view of the entity; for example, the input and output signal names.
The architecture body contains the internal description of the entity; for example, as a set of concurrent
or sequential statements that represents the behavior of the entity.

A configuration declaration is used to create a configuration for an entity. It specifies the binding of one
architecture body from many architecture bodies that may be associated with the entity. It may also
specify the bindings of components used in the selected architecture body to other entities.

A package declaration encapsulates a set of related declarations, such as type declarations, subtype
declarations, and subprogram declarations, which can be shared across two or more design units. A
package body contains the definitions of subprograms declared in a package declaration.

1.2 Fundamental VHDL units

Figure-3 Basic VHDL code

Library
Declaration

Entity

Architecture

Basic VHDL
Code

VHDL

4

Figure-4 Fundamental parts of a Library

VHDL Code basically comprises of three parts

1) Library
2) Entity
3) Architecture

1.2.1 Library
Contains a list of libraries to be used in the design e.g.

a) ieee
b) std
c) work etc.

1.2.2 Entity
Specifies the I/O pins of the circuit.

1.2.3 Architecture
Contains the VHDL code which describes how the circuit should behave.

1.3 How to declare Library:
A Library is a commonly used piece of code. Placing such pieces inside a library allows them to be
reused or shared by other designs. To declare a Library (that is to make it visible to the design) 2 lines
of code are needed, one containing the name of the library, and the other use a clause as shown below:

Library library_name;
Use library_name.package_name.package_parts;

At least 3 packages from 3 different libraries are needed
a) ieee.std_logic_1164 (from ieee)
b) standard (from the std library)
c) work (work library)

The declaration will look as follows

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

usework.all

Library Package Functions

Procedures

Components

Constants

Types

VHDL

5

Note:- The libraries std and work are made visible by default so no need to declare them. Only the IEEE
library must be explicitly written.

However IEEE library should be necessary when std_logic or standard_ulogic data type is employed in
the design.

Std_logic_1164 of IEEE library specifies multilevel logic system.

std is a resource library (data types, text i/o) work library is where we save our design.

ieee library consists of :

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

1.3.1 Purpose of IEEE library packages
(i) Std_logic_1164:- specifies the std_logic (8 levels) and std_ulogic (9 levels) for multivalued logic
systems.

(ii) std_logic_arith:- specifies the signed and unsigned data types and related arithmetic and comparison
operation. It also contains several data conversion function which allows one type to be converted to
another for example conv_integer(p) which converts a parameter p to a type integer.
Conv_unsigned(p,b) converts a parameter p to unsigned value of b bits.

(iii) std _logic_unsigned:- contains functions that allow operations with std_logic_vector to be
performed as if data were of type unsigned.

1.4 Entity
An entity is a list with specification of all input and output pins (PORTS) of the circuit. Its syntax is
shown as below

ENTITY entity_name IS

PORT (

port_name : signal_mode signal_type;

port_name : signal_mode signal_type;

…………..)

END entity name;

the mode of the signal can be IN,OUT,INOUT, BUFFER. IN and OUT are truly unidirectional pins
while INOUT is bidirectional. BUFFER is employed when the output signal must be used (read)
internally. The type of the signal can be BIT, STD_LOGIC, and INTEGER etc. Name of the entity can
be basically any name except VHDL reserved words..

ENTITY nand_gate IS

VHDL

6

PORT (a, b: IN BIT;

x: OUT BIT);

END nand_gate;

All three signals data type is of data type BIT.

1.5 Architecture
Architecture is a description of how the circuit should behave and its syntax is as follows:-

ARCHITECTURE architecture_name of entity_name IS

[declaration]

BEGIN

(code)

END architecture_name;

Note that declarative part is optional where signals and constants are declared and the code part is
written down from BEGIN. For example

ARCHITECTURE XYZ OF nand_gate IS

BEGIN

X <= a NAND b;

END XYZ;

VHDL

7

CHAPTER-2 DATA TYPES

In order to write VHDL code efficiently its essential to know what data types are allowed.

2.1 Pre-defined data types
IEEE 1076 and IEEE 1164 specify pre defined data types. Let’s see what are the libraries and
the corresponding packages and data types associated with it.

Library Package Data Types
Std Standard Bit, Boolean, integer and real
ieee Std_logic_1164 STD_LOGIC, STD_ULOGIC
ieee Std_logic_arith SIGNED and UNSIGNED data type

plus several data conversion function
like conv_integer(p), conv_unsigned
(p,b)
Conv_signed(p,b) and
conv_std_logic_vector(p,b)

ieee Std_logic_signed
Std_logic_unsigned

STD_LOGIC_VECTOR as if the data
is of type signed or unsigned.

Pre-defined data types are described below

BIT (BIT_VECTOR): 2 level logic (‘0’,’1’)

Examples:

SIGNAL x: BIT

 X is declared as a one digit signal of type BIT

SIGNAL y: BIT_VECTOR (3 DOWNTO 0)

 Y is a 4 bit vector with the leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 to 7)

w is a 8 bit vector with the rightmost bit being the MSB.

x<=’1’;

x is a single bit signal whose value is ‘1’ note that single quotes are used for a single bit.

y<=”0111”

y is a 4 bit signal whose value is “0111” (MSB=’0’). Note that double quotes are used for vectors.

w<=”01110001”;

w is a 8 bit signal whose value is “01110001” (MSB=’1’)

Some of the examples are given below:-

VHDL

8

SIGNAL x: STD_LOGIC;

 x is declared as a one digit (scalar) signal of type STD_LOGIC

SIGNAL y: STD_LOGIC_VECTOR (3 down to 0):=”0001”;

 y is declared as a 4 bit vector with the leftmost bit being the MSB. The leftmost bit being the
MSB. The initial value of y is “0001” Note that “:=” operator is used to establish the initial
value.

Some of the data types and their range

(i) Boolean :- True/false
(ii) Integer :- 32 bit integer (ranges from -2,147,483,647 to +2,147,483,647)
(iii) Natural: - Non negative integers (0 - +2,147,483,647).
(iv) Real :- Real numbers ranging from -1.0E38 to +1.0E38
(v) Physical literals: Used to inform physical quantities like time, voltage etc.
(vi) Character literals:- Single ASCII character or a string of such characters.
(vii) SIGNED and UNSIGNED: - data types defined in the std_logic_arith package of the

IEEE library. They have the appearance of STD_LOGIC_VECTOR, but accept
arithmetic operations which are typical of INTEGER data types.

Some of the examples are given below:-

X0<=’0’; // std _logic, std_ulogic, bit value ‘0’

X1<=”00011111”

//bit_vector, std_logic_vector, std_ulogic_vector, signed or unsigned

X2 <=”0001_1111”;

// underscore allowed to ease visualization

X3<=”101111”

// binary representation of decimal 47

X4<=B”101111”

// binary representation of decimal 47

X5<=o”57”

// octal representation of decimal 47

X6<=X”2F”

// hexadecimal representation of decimal 47

N<=1200

//integer

VHDL

9

M<=1_200

// integer underscore allowed

If ready then…..

// Boolean and executed if ready=true

Y<=1.2E-5

//real, not synthesizable

Q<=d after 10ns

// physical not synthesizable

Next let us take an example and see whether operation between different data types is legal or illegal

SIGNAL a : BIT;

SIGNAL b: BIT_VECTOR (7 DOWNTO 0)

SIGNAL c : STD_LOGIC;

SIGNAL d : STD_LOGIC_VECTOR (7 downto 0)

SIGNAL e : INTEGER range 0 to 255;

……………………

a<=b(5)

allowed because same data type bit.

b(0) <=a;

legal same scalar type BIT

c<=d(5)

legal same scalar type STD_LOGIC

d(0) <=c;

legal same scalar type STD_LOGIC

a<=c

illegal type mismatch between BIT and STD_LOGIC

b<=d

illegal type mismatch between bit_vector and std_logic vector

e<=b

VHDL

10

illegal type mismatch between integer and bit vector

e<=d

illegal type mismatch between integer and std_logic_vector.

2.2 User-Defined Data Types
VHDL allows the user to define user his own data type. Two categories of user defined data types are
shown as integer and enumerated.

 User defined integer type

TYPE integer IS RANGE -2147483647 TO +2147483647

// pre-defined type INTEGER

TYPE natural IS RANGE 0 TO +2147483647

// predefined type natural

TYPE my_ integer IS RANGE -32 to 32

// a user defined subset of integers

TYPE student_ grade IS RANGE 0 TO 100

// a user defined subset of integers or naturals

TYPE bit IS (‘0’ , ‘1’);

// this is indeed the pre-defined type Bit

TYPE my_logic IS (‘0’,’1’,’Z’)

// A user –defined subset of std_logic

2.3 Subtypes
A SUBTYPE is a TYPE with a constraint. The main reason for using a subtype rather than specifying
a new type is that , though operations between data of different types are not allowed , between a subtype
and its corresponding base type.

SUBTYPE natural IS INTEGER RANGE 0 TO INTEGER’HIGH

// as expected NATURAL is a subtype (subset) of INTEGER

Let us see an example between legal and illegal operation between types and subtypes

SUBTYPE my_logic IS STD_LOGIC RANGE ‘0’ TO’1’

SIGNAL a: BIT

SIGNAL b: STD_LOGIC

SIGNAL c: my_logic

VHDL

11

……………………

b<=a;

// illegal BIT versus STD_LOGIC

b<=c;

// legal (same “base” type: STD_LOGIC

2.4 Arrays
Arrays are collection of objects of the same type. They can be one-dimensional (1D) , two-dimensional
(2D) or one-dimensional-by-one dimensional (1DX1D). They can also be higher dimension, but then
they are generally not synthesizable. The pre-defined synthesizable types in each of these categories are
the following:-

Scalars: - BIT, STD_LOGIC,STD_ULOGIC and BOOLEAN.

Vectors:BIT_VECTOR,STD_LOGIC_VECTOR,STD_ULOGIC_VECTOR,INTEGER,SIGNED
AND UNSIGNED.

The declaration is as follows:-

TYPE type_name IS ARRAY (specification) OF data_type;

SIGNAL signal_name: type_name := initial_value;

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

// 1D Array

TYPE matrix IS ARRAY (0 TO 3) OF row;

//1DX1D array

SIGNAL x : matrix;

// 1Dx1D array

TYPE matrix IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR (7 DOWNTO 0)

From a data –compatibility point of view the latter might be advantageous over the previous example.

Example: - 2D Array

The array below is truly 2 dimensional. Note that its construction is not based on vectors, but rather
entirely on scalars.

TYPE MATRIX2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

 2D Array

Example: Array initialization

Signal x: =”0001”

VHDL

12

// this is the assignment for 1D array

Signal x :=(‘0’,’0’,’0’,’1’);

// this is the assignment for 1D array

Signal y:=((‘0’,’1’,’1’,’1’),(‘1’,’1’,’1’,’0’))

// 2 dimensional array initialization.

Note:- Here it must be remembered that assignment is possible only when data types are same as well
as dimensional are also same.

2.5 Signed and Unsigned Data Types
As presented signed and unsigned data types are defined in the std_logic_arith package of ieee library.
Their syntax is described as follows:-

SIGNAL x: SIGNED (7 DOWNTO 0)

SIGNAL y : UNSIGNED (0 TO 3)

An unsigned value is a number lower than 0. For example “0101” represents the decimal 5 while”1101”
signifies 13. However if type signed is used the value can be positive or negative. Therefore “0101”
would represent the decimal 5 while “1101” would mean -3. To use signed and unsigned data types are
mainly intended for arithmetic operations, that is, contrary to STD_LOGIC_VECTOR, they accept
arithmetic operations. On the other hand logical operations are not allowed. However comparison
operation there is no restriction.

Example: - Legal and illegal operation with signed/unsigned data types

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

SIGNAL a : IN SIGNED (7 DOWNTO 0);

SIGNAL b: In SIGNED (7 DOWNTO 0)

SIGNAL x : OUT SIGNED(7 DOWNTO 0);

……………………………………….

v<= a+b; // legal arithmetic operation ok

w <= a AND b;//illegal

Example:- Legal and illegal operation with std_logic_vector

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

VHDL

13

SIGNAL a : IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0)

SIGNAL x : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

…………………………………….

v<= a+b; // illegal arithmetic operation ok

w <= a AND b;//legal

But how can we make the second example to work perfectly its simple just add two extra packages.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

2.6 Data Conversion
VHDL does not allow direct operations (arithmetic, logical etc) between data of different types.
Therefore it is often necessary to convert data from one type to another. This can be done in two ways
by writing a piece of VHDL code or if we invoke a function from a pre-defined package which is
capable of doing this.

Let us look at the following subset example and see how it happens

TYPE long IS INTEGER RANGE -100 TO 100;

TYPE short IS INTEGER RANGE -10 TO 10;

SIGNAL x : short

SIGNAL y : long

…………………….

y <= 2*x + 5;// error

In order to avoid the above error we should write

y<= long (2* x + 5)

Several data conversion functions can be found in the std_logic_arith package of the ieee library. They
are as follows:-

(i) conv_integer(p):- converts a parameter p of type INTEGER,UNSIGNED,SIGNED,
STD_ULOGIC to an INTEGER value.

(ii) conv_unsigned(p,b):- Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED or STD_ULOGIC to an unsigned value with size b bits.

(iii) conv_signed(p,b):- Converts a parameter p of type INTEGER, UNSIGNED,SIGNED
or STD_ULOGIC to a SIGNED value with size b bits.

VHDL

14

(iv) conv_ std_logic_vector(p,b):- Converts a parameter p of type INTEGER,
UNSIGNED,SIGNED or STD_LOGIC to a STD_LOGIC_VECTOR value with size b
bits.

Let us see an example of this data conversion

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

…………………..

SIGNAL a: IN UNSIGNED (7 DOWNTO 0)

SIGNAL b: IN UNSIGNED (7 DOWNTO 0)

SIGNAL y : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

y <= conv_STD_LOGIC_VECTOR((a+b),8);

// Legal operation a+b is converted from unsigned to a 8 bit STD_LOGIC_VECTOR value and then
assigned to y. Alternatively we can add std_ logic_signed or std_logic_unsigned packages from the
ieee library and such packages allow operations with STD_LOGIC_VECTOR data to be performed
as if the data were of type SIGNED or UNSIGNED respectively.

VHDL

15

CHAPTER-3 OPERATORS AND ATTRIBUTES
VHDL provides several kinds of pre-defined operators:-

(a) Assignment operator
(b) Logical operator
(c) Arithmetic operator
(d) Relational operator
(e) Shift operator
(f) Concatenation operator

3.1 Assignment operator
These are used to assign values to signals, variables or constants. They are

<= used to assign values to a signal.

:= used to assign value to a variable, constant or generic. Used also for establishing initial values.

= > used to assign values to individual vector elements or with others.

Let us see the following example

SIGNAL x : STD_LOGIC

VARIABLE y : STD_LOGIC_VECTOR (3 DOWNTO 0)

// leftmost bit is MSB

SIGNAL w: STD_LOGIC_VECTOR (0 TO 7)

Then the following assignments are legal:

X<=’1’;

Y:=”0000”

W<=”10000000”

W<=(0=>’1’ ,OTHERS=>’0’);

3.2 Logical operator
Used to perform logical operation. The data must be of type BIT, STD_LOGIC, STD_ULOGIC. The
logical operators are:-

(i) NOT
(ii) AND
(iii) OR
(iv) NAND
(v) NOR
(vi) XOR
(vii) XNOR

VHDL

16

Note that operators have been put together as per precedence. However students are advised to try with
XNOR and check whether that is working.

Examples:-

Y<= NOT a AND b; (a’.b)

Y <= NOT (a and b); (a.b)’

Y<= a NAND b;

3.3 Arithmetic operator
As mentioned earlier that data can be of type integer, signed, unsigned or real. However real data types
cannot be synthesized. If the std_logic_signed or std_logic_unsigned package of the ieee library is used
then STD_LOGIC_VECTOR can be employed directly in addition and subtraction operation.

+ Addition

--Subtraction

* Multiplication

/ divison

** Exponentiation

MOD modulus

REM remainder

ABS absolute value

However there are no synthesis restriction regarding addition and subtraction and the same is true for
multiplication. For divison only power of 2 dividers (shift operation) are allowed. For exponentiation
only static values of base and exponent are accepted. y mod x returns the remainder of y/x with the
signal of x, while y rem x returns the remainder of y/x with the signal of y. abs returns the absolute

value. However mod, rem, abs there is no synthesis support.

3.3 Comparison operator
The relational operators are
= equal to
/= not equal to

< less than

 Greater than

<= less than or equal to

>= greater than or equal to

3.4 Shift operator
The general syntax is as follows

VHDL

17

< left operand><shift operation> < right operand>

The left operand must be of type vector and the right operand must be of type integer.

Sll shift left logic; positions on the right are filled with 0

Srl shift right logic; positions on the left are filled with 0

Sla shift left arithmetic ; rightmost bit is replicated on the right.

Sra shift right arithmetic; leftmost bit is replicated on the left.

Rol rotate left logic

Ror rotate right logic

3.5 Concatenation operator

.&

.(,,,)

Example

Z<= x & “1000000”;

If x=1 then z = 11000000;

Z<=(‘1’,’1’,’0’,’0’,’0’,’0’,’0’,’0’)

Z= “ 11000000”

3.5 Attributes
Attributes are divided into two parts

(a) Data attribute:- returns information (a value) regarding a data vector.
(b) Signal attribute:- Serve to monitor a signal.(return true or false).

VHDL

18

CHAPTER-4 CODE CONCURRENCY
Code concurrency is achieved when we use the following

(a) Operators
(b) WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN)
(c) GENERATE statement
(d) Block statement.

4.1 With Operators
Just when we use the logical, arithmetic, comparison, shift or

Concatenation operator to generate the concurrent code. Example

Y<= (a AND NOT s1 and NOT s0) OR…etc

4.2 WHEN (simple and selected)

4.2.1 WHEN/ELSE syntax
Assignment WHEN condition ELSE

Assignment WHEN condition ELSE

…..;

4.2.2 WITH/SELECT/WHEN
WITH identifier SELECT

Assignment WHEN value,

Assignment WHEN value,

………;

Example with WHEN/ELSE

Outp<=”000” WHEN (inp=’0’ OR reset=’1’)ELSE

……………….

Example with SELECT/WHEN

WITH control SELECT

Output<=”000” WHEN reset;

…….

4.3 Generate
It follows the same feature as sequential code loop i.e it allows the section of code to be repeated number
of times thus creating several instances of the same assignment.

Syntax :-

VHDL

19

FOR/GENERATE

Label: FOR identifier IN range GENERATE

(concurrent assignments)

END GENERATE;

Syntax:-

IF/GENERATE

Label1: For identifier in range GENERATE

…….

Label2: IF CONDITION GENERATE

(concurrent assignments)

END GENERATE;

……

END GENERATE;

Example:-

SIGNAL x: BIT_VECTOR(7 DOWNTO 0)

SIGNAL x: BIT_VECTOR(15 DOWNTO 0)

SIGNAL x: BIT_VECTOR(7 DOWNTO 0)

G1: FOR I IN x’ GENERATE

Z(i) <=x(i) AND y(i+8);

END GENERATE;

4.4 BLOCK
4.4.1
The block statement in its simplest form represents only a way of locally partitioning the code. It allows
a set of concurrent statements to be clustered into a BLOCK.

General Syntax is:-

label : BLOCK

[declarative part]

BEGIN

(concurrent statements)

VHDL

20

END BLOCK label;

An example of the BLOCK is

b1 : BLOCK

SIGNAL a : STD_LOGIC;

BEGIN

A<= input_sig when ena =’1’ else ‘z’;

End block b1;

4.4.2 Guarded Block
A guarded block is a special kind of block which includes an additional expression called guard
expression. A guarded statement in a guarded block is executed only when the guard expression is true.

Guarded Block:-

Label : BLOCK (guard expression)

(declarative part)

BEGIN

(concurrent guarded and unguarded statements)

END BLOCK label;

Example:-

B1=BLOCK(clk’EVENT AND CLK=’1’)

BEGIN

Q<= GUARDED ‘0’ WHEN rst=’1’ ELSE d;

VHDL

21

CHAPTER-5 SEQUENTIAL CODE
Till now we have seen that VHDL code is concurrent. However PROCESSES, FUNCTIONS and
PROCEDURES are the only sections of code that are executed sequentially. Another important concept
regarding sequential code is that it is not limited to sequential logic indeed we can build sequential or
combinational circuit or both together. Note that IF, WAIT, CASE and LOOP are all sequential and are
allowed inside PROCESSES, FUNCTIONS and PROCEDURES.

5.1 PROCESS
A process is sequential section and is characterized by the presence of IF, WAIT, CASE or LOOP by
a sensitivity list. Sensitivity list is the same concept as arguments in functions that is used in high level
language.

The syntax of PROCESS is as follows:-

[label:] PROCESS (sensitivity list)

[VARIABLE name type [range] [:= initial_value;]]

BEGIN

(sequential code)

END PROCESS [label];

Example:-

PROCESS (clk,rst)

BEGIN

IF (rst = ‘1’) THEN

Q<=’0’;

…………

5.2 Difference between Signals and Variables
For passing non static values signals and variables are used. A signal can be declared in a package,
entity or architecture. A variable can only be declared in a piece of sequential code i.e process for
example.

5.3 IF syntax
The general syntax of IF is

IF condition then assignments;

ELSIF condition THEN assignments;

………

ELSE assignments;

END IF;

VHDL

22

5.4 WAIT
The operation of WAIT is similar to that of IF. However more than one form of WAIT is available.
There are 3 basic syntax what we follow:-

WAIT UNTIL signal_condition;

WAIT ON SIGNAL [,signal2,…];

WAIT for time;

Example:-

Wait until (clk’event and clk=’1’)…

Wait on clk,rst;

5.5 CASE
Case is another statement intended exclusively for sequential code. Its syntax is as follows:-

CASE identifier IS

WHEN value => assignments;

WHEN value=> assignments;

END CASE;

Example is:-

CASE control IS

WHEN “00” => x<=a;y<=b;

END CASE;

5.6 LOOP
As the name says LOOP is useful when a piece of code must be instantiated several times like IF,WAIT
and CASE. There are several ways of using LOOP and the syntax looks as below:-

FOR loop:-

[label:] FOR identifier IN range LOOP

(sequential statements)

END LOOP [label];

WHILE loop:-

[label:] WHILE condition LOOP

(sequential statements)

END LOOP[label];

VHDL

23

EXIT:- is used for ending the loop.

[label :] EXIT [label] [WHEN condition];

NEXT:- used for skipping loop steps.

[label:] NEXT[loop_label][WHEN condition]

Example of FOR/LOOP

For I IN 0 TO 5 LOOP

X(i)<= enable AND w(i+2);

Y(0,i)<=w(i);

END LOOP;

Example of WHILE LOOP

WHILE (i<10) LOOP

WAIT until clk’event and clk=’1’;

……..

END LOOP;

Example of NEXT

FOR I in 0 TO 15 LOOP

NEXT WHEN i=skip;

………

END LOOP;

5.7 DIFFERENCE BETWEEN CASE AND IF
The codes below show the difference in the implementation of the multiplexer circuit.

IF(sel=”00”) THEN x<=a;

ELSIF(sel=”01”) THEN x<=b;

ELSIF(sel=”10”) THEN x<=c;

ELSE x<=d;

The implementation of the same program with CASE is

CASE sel IS

WHEN “00”=> x<=a;

WHEN “01” => x<=b;

VHDL

24

WHEN “10” => x<=c;

WHEN OTHERS => x<=d;

END CASE;

5.8 DIFFERENCE BETWEEN CASE AND WHEN
While WHEN is concurrent the CASE is sequential. Now let’s see the code with WHEN

WITH sel SELECT

x <= a WHEN “000”

b WHEN “001”

c WHEN “010”

……………………………………………..

The same program while being implemented with case will look as follows:-

CASE sel IS

WHEN “000”=> x<=a;

WHEN “001” => x <=b;

…………………………………………………………..

VHDL

25

CHAPTER-6 VARIABLES AND SIGNALS
6.1 Where can be used?
CONSTANT and SIGNAL can be global and can be used in either type of code concurrent or sequential.
A VARABLE on the other hand is local for it can be used inside a piece of sequential code i.e. in a
PROCESS, FUNCTION or PROCEDURE and its value can never be passed out directly.

6.2 CONSTANT
The syntax for CONSTANT is as follows:-

CONSTANT name: type: =value;

Example:

CONSTANT set_bit : BIT :=’1’;
CONSTANT datamemory : memeory :=((‘0’,’0’,’0’,’0’),(‘0’,’0’,’0’,’1’),…);

A CONSTANT can be declared in a PACKAGE, ENTITY or ARCHITECTURE. When declared in an
entity it is global to all architectures that follow that entity. Finally when declared in an architecture it
is global to that architectures code only. Generally CONSTANT is declared in an ARCHITECTURE
or in a PACKAGE.

6.3 SIGNAL
SIGNAL serves to pass values in and out the circuit as well as between internal circuits. For example
all ports of an entity are signals by default. The syntax for signal are as follows:-

SIGNAL name: type (range) (:=initial value);

Example:-

SIGNAL control: BIT: =’0’;
SIGNAL count: INTEGER RANGE 0 TO 100;

The declaration of a SIGNAL can be made in the same place as the declaration of a CONSTANT.
However it must be noted that the value of a signal is not updated unless the PROCESS, FUNCTION
or PROCEDURE gets completed. It is not synthesizable and will only be considered during simulation.

6.4 Variable
Compared to CONSTANT and SIGNAL a VARIABLE represents only local information. It can only
be used inside a PROCESS, FUNCTION or PROCEDURE. Its update is immediate so the new value
can be promptly used in the next line of code.

To declare a VARABLE the following syntax should be used:

VARIABLE name: type [range][:= init_value];

Example:-

VARABLE y: STD_LOGIC_VECTOR (7 DOWNTO 0) :=”10001000”;

Exercise Left for the Learner:-

1. What is the difference between SIGNAL and VARIABLE?

VHDL

26

CHAPTER-7 FUNCTION AND PROCEDURE
7.1 What are Functions and Procedures?
Functions and Procedures are collectively called subprograms. From a construction point of view they
are very similar to a PROCESS for they are the only pieces of sequential VHDL code , and thus employs
the same sequential statements seen (IF,CASE,LOOP,WAIT is not allowed) . Where the PROCESS
and FUNCTION are intended for immediate use in the main code, others are intended mainly for
LIBRARY allocation.

7.2 FUNCTION
A FUNCTION is a section of sequential code. Its purpose is to create new functions to deal with
commonly encountered problems, like data type conversions, logical operations, arithmetic
computations and new operators and attributes. By writing such code as a FUNCTION , it can be shared
and reused, also propitiating the main code to be shorter and easier to understand.

The syntax for the FUNCTION are shown as below

FUNCTION function_name [<parameter list >] return data_type IS

[declarations]

BEGIN

[sequential statements]

END function_name;

An example is shown as below

Function f1 (a, b: INTEGER; SIGNAL c : STD_LOGIC_VECTOR)

RETURN BOOLEAN IS

BEGIN

(sequential statements)

END f1;

7.2.1 Function call
A function is called as part of an expression. The expression can appear by itself or associated to a
statement.

Example:-

X<= conv_integer (a);

VHDL

27

7.3 PROCEDURE
A PROCEDURE is very similar to a FUNCTION and has the same basic purpose. However the
procedure can return more than one value. Like a FUNCTION two parts are necessary to construct and
use a PROCEDURE: the procedure itself (procedure body) and a procedure call.

The syntax for Procedure will look as follows:-

PROCEDURE procedure_name [<parameter list>] IS

[declarations]

BEGIN

(sequential statements)

END procedure_name;

Example :-

PROCEDURE my_procedure (a: IN BIT; SIGNAL b,c: IN BIT; SIGNAL x : OUT BIT_VECTOR (7
DOWNTO 0);

SIGNAL y : INOUT INTEGER RANGE 0 TO 99) IS

BEGIN

………

END my_procedure;

7.3.1 PROCEDURE CALL
A PROCEDURE call is a statement on its own. It can appear by itself or associated to a statement.

Example of PROCEDURE call

compute_min_max(in1,in2,in3,out1,out2);

// statement by itself

N.B. A PROCEDURE has the same location as those of a FUNCTION and can also be located in the
main code.

VHDL

28

GETTING STARTED WITH VHDL
CREATION OF PROJECT

The steps to create a project in Xilinx ISE are as follows:

Create a new project by clicking File menu > New Project.

VHDL

29

When the Create New Project window is displayed, choose your working directory and type your new
project name in the project name field. Select “Top-level source type” as “HDL”. Add project
description if you need.

Click Next and you will go to the "Select the device and design flow for the project" interface.

Use the following settings to specify device and project properties.
1. Evaluation Development Board: - None Specified (default option)
2. Product Category: - All (default option)
3. Family: - Spartan3E
4. Device: - XC3S250E
5. Package: - CP132
6. Speed: - -4
7. Top-Level Source Type: - HDL (default option)
8. Synthesis Tool: - XST (VHDL/Verilog)
9. Simulator: - ISim (VHDL/Verilog)
10. Preferred Language: - VHDL

Note: - For the purpose of this course you can use the default settings for the remaining
properties.

VHDL

30

Click “Next” button and this will lead you to the “Project Summary” page of the “New Project Wizard”.

Click “Finish” to complete new project setup and go to the Project Navigator window.

VHDL

31

Create New Source You have three options in creating a new source file.
Option 1: Use the toolbar on the left-hand side of the project navigator window to create a new source.
Click on the new source icon (the topmost) to create a new source.

Option 2: Use the toolbar menu on the top. Project -> New Source to create a new source.

VHDL

32

Option 3: Use the project in the “Hierarchy” section of the “Design” tab. Select the project (lab2 here),
right-click and select “New Source” to create a new source.

This brings up the “New Source Wizard” with options for various source types.

In the "New Source Wizard" interface choose VHDL Module from ‘Select Source Type’ and enter a
name, “halfadder11”, for the new source file in the File Name field.

VHDL

33

Make sure that “Add to project” option is selected. Click Next to continue. You will be asked to input
the ports information, you can use the wizard or you just click Next. Note:-This information will be
used by the tool, Xilinx ISE, to create a skeleton code to help you. You can edit the VHDL code
generated if needed, for e.g., You can delete, add or modify port signals that might have specified.

In this, we just click Next and then get the following summarized information for this source file.

VHDL

34

Click the "Finish" button to continue. You will return to Xilinx ISE interface and see that the new
source file, halfadder11.vhd, has been added to the project.

You can see in the right-hand window that a template of the VHDL source file, based on information
you provided while creating the new source, is already generated for you by Xilinx ISE. You need to
complete the source code based on your own design project.

Note:-If you have an existing source file that you would like to add to the project you can either use the
“Add Source” or “Add Copy of Source” option. “Add Source” can be used when the source file is either
in the project directory or in a remote directory whereas “Add Copy of Source” is used when the source
file is in a remote directory. “Add Copy of Source” copies the source file to the project directory.

VHDL

35

Note: You should clearly understand what statements are automatically generated and what are needed
to be coded by yourself.

To open an existing project the following steps should be followed:-

or

VHDL

36

ADDING EXISTING SOURCE

Option 1

Option 2

VHDL

37

Option 3

SYNTHESIZE DESIGN

1. Save the file by click Save All under file menu.
2. Select top-level entity. Here, halfadder11 is already on the top-level.
3. Double click Synthesize - XST to start the synthesizing process. When this process is finished,

"Process "Synthesize - XST" completed successfully" is displayed in the console window

VHDL

38

If synthesize report is OK If synthesize fails

Note:

1. Synthesis is the process of converting the abstract circuit behavior, described by a VHDL (or
any HDL) code, into a hardware implementation in terms of logic gates.

2. To observe the results of the synthesis, expand Synthesize - XST in "Process: halfadder11 (click
on the + sign).

Source Code Simulation

For Source Code simulation the following steps should be followed:

VHDL

39

ISIM Behavioral Mode

VHDL

40

EXAMPLE CODES

VHDL introduction

Some Examples of Basic Logic gates

AND Gate

entity and1 is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
y : out STD_LOGIC);

end and1;

architecture Behavioral of and1 is
begin
y<=a and b;
end Behavioral;

OR Gate

entity or1 is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
y : out STD_LOGIC);

end or1;

architecture Behavioral of or1 is
begin
y<= a or b;
end Behavioral;

XOR Gate

entity xor1 is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
y : out STD_LOGIC);

end xor1;

architecture Behavioral of xor1 is
begin
y<=a xor b;
end Behavioral;

VHDL

41

Some Examples of Digital Logic Circuits

Half Adder using XOR and AND Gate as Component

entity hanew is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
sum : out STD_LOGIC;
carry : out STD_LOGIC);

end hanew;

architecture Behavioral of hanew is

component xornew is
Port (x : in STD_LOGIC;

y : in STD_LOGIC;
z : out STD_LOGIC);

end component;

component andnew is
Port (l : in STD_LOGIC;

m : in STD_LOGIC;
n : out STD_LOGIC);

end component;

begin
X1: entity xornew port map(a,b,sum);
A1: entity andnew port map(a,b,carry);
end Behavioral;

entity xornew is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
c : out STD_LOGIC);

end xornew;

architecture Behavioral of xornew is
begin
c<= a xor b;
end Behavioral;

entity andnew is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
c : out STD_LOGIC);

end andnew;

architecture Behavioral of andnew is
begin
c<= a and b;
end Behavioral

Design of 2 to 4 Decoder

entity decoder2x4 is
Port (a : in STD_LOGIC;

VHDL

42

b : in STD_LOGIC;
enable : in STD_LOGIC;
z : out STD_LOGIC_VECTOR (3 downto 0));

end decoder2x4;

architecture Behavioral of decoder2x4 is

component inv is
Port (pin : in STD_LOGIC;

pout : out STD_LOGIC);
end component;

component nand3 is
Port (d0 : in STD_LOGIC;

d1 : in STD_LOGIC;
d2 : in STD_LOGIC;
dz : out STD_LOGIC);

end component;

signal abar,bbar:STD_LOGIC;

begin
v0: entity inv port map(a,abar);
v1: entity inv port map(b,bbar);
n0:entity nand3 port map(enable,abar,bbar,z(0));
n1:entity nand3 port map(enable,abar,b,z(1));
n2:entity nand3 port map(enable,a,bbar,z(2));
n3:entity nand3 port map(enable,a,b,z(3));
end Behavioral;

Design of Full Adder

entity fa is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
c : in STD_LOGIC;
sum : out STD_LOGIC;
carry : out STD_LOGIC);

end fa;

architecture Behavioral of fa is
begin
sum<= a xor b xor c;
carry<= (a and b) or (b and c) or (c and a);
end Behavioral;

VHDL

43

Design of J-K Flip-Flop

entity jkflipflop is
Port (J : in STD_LOGIC;

K : in STD_LOGIC;
CLK: in STD_LOGIC;
Q : inout STD_LOGIC;
QN : inout STD_LOGIC);

end jkflipflop;

architecture Behavioral of jkflipflop is
begin

process(CLK,J,K)
begin

if (CLK='1' and CLK'event) then
if(J='0' and K='0') then

Q <=Q;
QN <=QN;

elsif(J='0' and K='1') then
Q <= '0';
QN <= '1';

elsif(J='1' and K='0') then
Q <= '1';
QN <= '0';

elsif(J='1' and K='1') then
Q <= NOT Q;
QN <= NOT QN;

end if;
end if;

end process;
end Behavioral;

VHDL

44

Implementation of Multiplier using Booth’s Algorithm

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
library IEEE;
entity multiplier2 is

Port (mplr : in STD_LOGIC_VECTOR (1 downto 0);
mpcd : in STD_LOGIC_VECTOR (1 downto 0);
start : in STD_LOGIC;
result : out STD_LOGIC_VECTOR (3 downto 0));

end multiplier2;

architecture Behavioral of multiplier2 is

begin
process(start,mpcd,mplr)
variable br,nbr:std_logic_vector(1 downto 0);
variable acqr:std_logic_vector(3 downto 0);
variable qn1:std_logic;
begin

if(start='1') then
acqr(3 downto 2):=(others=>'0');
acqr(1 downto 0):=mplr;
br:=mpcd;
nbr:=(not mpcd)+'1';
qn1:='0';

loop1:for i in 1 downto 0 loop
if(acqr(0)='0' and qn1='0') then

qn1:=acqr(0);
acqr(2 downto 0):=acqr(3 downto 1);

end if;
if(acqr(0)='0' and qn1='1') then

acqr(3 downto 2):=acqr(3 downto 2)+br;
qn1:=acqr(0);
acqr(2 downto 0):=acqr(3 downto 1);

end if;
if(acqr(0)='1' and qn1='0') then

acqr(3 downto 2):=acqr(3 downto 2)+nbr;
qn1:=acqr(0);
acqr(2 downto 0):=acqr(3 downto 1);

end if;
if(acqr(0)='1' and qn1='1') then

qn1:=acqr(0);
acqr(2 downto 0):=acqr(3 downto 1);

end if;

end loop loop1;

VHDL

45

result<=acqr;
end if;

end process;

end Behavioral;

Implementation of Divisor

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity divisor is
Port (a,b: in integer range 0 to 15;

y : out STD_LOGIC_VECTOR (3 downto 0);
rest : out integer range 0 to 15;
err : out STD_LOGIC);

end divisor;

architecture Behavioral of divisor is

begin
process(a,b)

variable temp1 : integer range 0 to 15;
variable temp2 : integer range 0 to 15;

begin
temp1 :=a;
temp2 :=b;
if(b=0)then err <='1';
else err <='0';
end if;
if(temp1>=temp2*8) then
y(3)<='1';
temp1:=temp1-temp2*8;
else y(3)<='0';
end if;

if(temp1>=temp2*4) then
y(2)<='1';
temp1:=temp1-temp2*4;
else y(2)<='0';
end if;

if(temp1>=temp2*2) then
y(1)<='1';
temp1:=temp1-temp2*2;
else y(1)<='0';
end if;

VHDL

46

if(temp1>=temp2) then
y(0)<='1';
temp1:=temp1-temp2;
else y(0)<='0';
end if;
rest<=temp1;
end process;

end Behavioral;

VHDL

47

Design of different Computer System

Implementation of Shift Register

entity shiftregister is

Port (CLK : in STD_LOGIC;
SI : in STD_LOGIC;
SO : out STD_LOGIC);

end shiftregister;

architecture Behavioral of shiftregister is

signal tmp: std_logic_vector(7 downto 0);
begin
process (CLK)
begin
if (CLK'event and CLK='1') then
for i in 0 to 6 loop
tmp(i+1) <= tmp(i);
end loop;
tmp(0) <= SI;
end if;
end process;
SO <= tmp(7);

end Behavioral;

VHDL

48

Design of RAM

entity rams_01 is
port (clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));
end rams_01;

architecture syn of rams_01 is

type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);

signal RAM: ram_type;

begin

process (clk)

begin

if clk'event and clk = '1' then
if en = '1' then
if we = '1' then
RAM(conv_integer(addr)) <= di;
end if;
do <= RAM(conv_integer(addr)) ;
end if;
end if;

end process;

end syn;

