VHDL

COMPUTER ARCHITECTURE
LAB MANUAL

PREPARED BY
AVIJT BOSE
SOMA BANDYOPADHYAY

VHDL

Contents
INTRODUCTION ...ccutteiiteiite et ettt ettt sttt ettt she e sat e st s bt e bt e bt e sb e e s ae e eat e e st e bt e sbeesheesanesanesane e neenneennees 1
CHAPTER-1 STRUCTURAL CODEcciiiiiiitittie ettt ettt e e e sttt e e e e e seabrbeeeeeesesannnnnaeeaesesenannns 3
O Y 1 T = T T Lot TSRS 3
1.2 FUNA@MENTal VHDL UNITS ...eeiiiiiiiiiiiieeeeesee sttt sttt ettt s e st 3
00 B 1 T T o USRS 4
1202 ENILY ettt et b e bt she e sae e sab e e b e bt e beenneennees 4
R I Y ol T =Tt (] O OO PP P RO UUTPPROTOUSRRR 4
G o [)V do Yo [To =T T X oY= o USRS 4
1.3.1 Purpose of IEEE library packagesc.cooiiiiiiii ittt e e e 5
O X o 1 Y PP P PPPPPPPPPPPRt 5
1.5 APCRIEECTUIE ettt st ettt et e s bt e she e satesane s bt e nbeenneesnees 6
CHAPTER-2 DATA TYPES... .ottt ettt st st sttt b e bt e s me e st e et e et e et e e sbeesbeesanesanesane 7
2.1 Pre-defined data tyPes. ... ittt e e e e e e e e e e e e b e e e e e e e e nnraaaeeaeeeeennes 7
2.2 USer-DefiNed Data TYPES .uuueeeeeeeiecciiiieeee e e eeecittte e e e e s eeecbtree e e e e e seesanbtaaeeeeessesnsstaaeeeeeseanssssasaeeeanas 10
DG YU o1 4] o1 UER SRR 10
B Y o -1 PSP PP POPPPPPPPPPRPPPRE 11
2.5 Signed and UNnSigned Data TYPeS.....uuiiiiiiie ettt e et etee e e eate e e e e aae e e e s rae e e e s aaeeeenanes 12
2.6 Data CONVEISION ...oiciiiiiiiiiii ittt sa e s sra e e s s sras e s s sanas 13
CHAPTER-3 OPERATORS AND ATTRIBUTES. ..ottt ettt ettt e e et e e e e e seeneeeeeeeeeas 15
0 XY T = 10 0 1= N o] =1 -1 o1 15
I oY {Tor | oY o T=T - 11 SRR 15
Rl Va1 o[0 [4 o o] o T=T - | o] (PP 16
RSN O] aqT o aF ol g o] o1=] - 1 1o] (oo 16
I a1y o] o =T - | o] B PP 16
3.5 ALETIDULES ettt e et s e st e e bt e e s b e e he e e s b e e e be e e s bt e e reeeenreesaneeesareaeas 17
CHAPTER-4 CODE CONCURRENCY ...iiiiittieeee ettt e e e ettt e e e e e s e aie et e e e e e sesanseeeeeeeeeseannaeeeeeeaeas 18
O RV T 0 01T o] PR 18
4.2 WHEN (Simple and SEIECTEA)......c.uviiiiiiiiie ittt e e e e e e b e e e e eaaaee s 18
4.2.1 WHEN/ELSE SYNTAX..0utettrtirterteieieteieeiestesiessessesseseeeesessesbestessessessesseneesessessessessessessensensenesnes 18
4.2.2 WITH/SELECT/WHENoiiiieieeee ettt te et te ettt s e ete e e e s taestaesaaesateenteenteensaessaesnnes 18
L B 1= o 1= L= PR PTOPT PRI 18
B8 BLOGK ... uetteiieee ettt e e ettt et e e e e s ettt et e e e e e s auaab b et e eee e e e s anbaeaeaeeesaa s bbbeeeeeeesaansbbeeeeeeeeeannrraees 19

VHDL

4.4.2 GUArdEd BIOCK....cc ettt et e sar e s ne e e sareeea 20
CHAPTER-5 SEQUENTIAL CODE-....ccttiiiiiiiiiiiteeee ettt e e e e e ettt e e e e e s e saiteeee e e e e sesanneeeeeeesesannnnaeeeeaeanas 21
BLL PROCESS ...ttt sttt ettt ettt st ettt et e s bt e sh e e sae e san e e bt e bt e bt e be e she e e ne e et e et e et e ereens 21
5.2 Difference between Signals and Variables...........coooiiiii i 21
T B 1SV | - b G 21

o T [22
DD A SE ettt e e e e ettt e e e e e s e h bttt e e e e e e e b aeeeee e e e e e hbaaeeeeeeeenannraaaeeeeens 22
BB LOOP .ttt ettt h e sh e e st s bt e bt e bt e bt e bt e eae e eaeeeabeebeeteenbeens 22
5.7 DIFFERENCE BETWEEN CASE AND IF....coiuiiiiiiiiiieetteteestee sttt st st e nnee e 23
5.8 DIFFERENCE BETWEEN CASE AND WHENccueiiiiiiieitenee ettt sttt 24
CHAPTER-6 VARIABLES AND SIGNALS......oouttittettenee sttt ettt ettt ettt n e esneesmees 25
6.1 Where Can B USEAToo ittt ettt st e s bt e s e s be e e smreesneeesaneanas 25
6.2 CONST ANT ettt ettt et e ettt e e e e e st bbb et e e e e e saaabbe e e e e e e e s e aassbeeeeeesesaunsbbteeaeeesanannnenaaaaeanss 25
5.3 SIGINAL. ...ttt ettt ettt et b e b s he e sttt e bt e bt e bt e e he e s re e et e e e e ereereens 25
B.4 VANIADIE .. e ettt ettt re e 25
CHAPTER-7 FUNCTION AND PROCEDUREooiiiiieiienieeteeieereesite sttt ettt s s 26
7.1 What are FUNctions and ProCeUIES?........coouiiiiiiiiiieeie ettt e s sanee e 26
T2 FUNCTION L.ttt ettt ettt e e e ettt e e e e e sttt et e e e e e s anssbeeeeeesesaansbabeeeeeesannnneneaaaeanss 26
7.2 1 FUNCHION Call ettt st et e st ae e e s e e nee e sareeeanes 26

7.3 PROCEDURE ...ttt ettt sttt ettt et e b e she e sae e st sab e s bt e bt e beesmeesmeeemteemneenreenseens 27
7.3. 1 PROCEDURE CALL.....eiiiiiiiiieeteeteesttesi ettt ettt st st sttt e s e s s e e e neenne e 27
GETTING STARTED WITH VHDL ...ttt ettt et st s s 28

EXAMPLE CODES ...ttt ettt ettt ettt e e sttt e e sme et e e same et e e samnnee e samreeeesmreeessamneeessannneessans 40

VHDL

INTRODUCTION

VHDL is a hardware description language. It describes the behavior of an electronic circuit or system
from which the physical circuit or system can be attained or implemented.

What does VHDL stands for?

VHDL standsfor VHSIC hardware description language. VHSIC is an abbreviation for very high speed
integrated circuit.

VHDL is intended for circuit synthesis as well as circuit simulation, however al constructs are not
synthesizable. VHDL isastandard, technology/ vendor independent language and is therefore portable
and reusable.

Application of VHDL liesin the following area

CPLD :- Complex Programmable logic device
ASIC :- Application Specific Integrated Circuit
FPGA :- Field Programmable GATE Array

It should be taken into consideration that once the VHDL code has been written it can be used to
implement the circuit in a programmabl e device (e.g. Altera, Xilinx etc.).

Why VHDL isreferred as code?

VHDL isreferred to as code because it is not sequential but rather it is concurrent (parallel). However
it may be considered that statements placed inside a process, function or procedure are executed
sequentialy.

One of themgjor utilitiesof VHDL isthat it allowsthe synthesis of circuit or system in aprogrammable
device (PLD/FPGA).

VHDL Entry (RTL Level)

A A

Compilation

v

Net List (GATE level)

Optimization

v
Optimized Net List

(Gate Level)
Simulation

Place and Route

v
Physical device

Simulation

Figure 1-. Figure depicting the execution sequence

VHDL

Writing the first code:-

Let us consider the following circuit for Full Adder circuit

a Full Adder Circuit

b
Cin

—— 3 Cout

Figure-2 Full Adder Circuit

and the truth table will 1ook as follows:-

Q.
=

Q
—

Rl |o|lo|lkr|lolo>
ROl |olrk|lorlo|lm

R RPRFRPRFPRPOOOIO

R OOk, OFRrIFIOW]m

PPk o|k|o|loo|

The code now will look as follows
Entity full_adder is
Port(a,b,cin: IN bit ;
S, cout : out bit);

End full_adder;
Architecture dataflow of full_adder is
begin

s<=aXOR b XORcin;
cout<= (aAND b) OR (aAND cin) OR(b AND cin);

end dataflow;

VHDL

CHAPTER-1 STRUCTURAL CODE

1.1 VHDL Basics

VHDL isahardware description language that can be used to model adigital system. Thedigital system
can be assimple asalogic gate or as complex as a complete el ectronic system. A hardware abstraction
of thisdigital systemiscalled an entity in thistext. An entity X, when used in another entity Y, becomes
a component for the entity Y. Therefore a component is aso an entity, depending on the level at which
you are trying to model.

To describe an entity, VHDL provides five different types of primary constructs, called design units.
They are:

Entity declaration

Architecture body

Configuration declaration

Package declaration

Package body

grLODdDE

An entity is modeled using an entity declaration and at least one architecture body. The entity
declaration describes the external view of the entity; for example, the input and output signal names.
The architecture body contains theinternal description of the entity; for example, as a set of concurrent
or sequential statements that represents the behavior of the entity.

A configuration declaration is used to create a configuration for an entity. It specifiesthe binding of one
architecture body from many architecture bodies that may be associated with the entity. It may also
specify the bindings of components used in the selected architecture body to other entities.

A package declaration encapsulates a set of related declarations, such as type declarations, subtype

declarations, and subprogram declarations, which can be shared across two or more design units. A
package body contains the definitions of subprograms declared in a package declaration.

1.2 Fundamental VHDL units

Library \

Declaration

Entity Basic VHDL
Code

Architecture

Figure-3 Basic VHDL code

VHDL

Library Package

Functions
Procedures
Components
Constants

Types

Figure-4 Fundamental parts of a Library

VHDL Code basically comprises of three parts

1) Library
2) Entity
3) Architecture

121Library

Contains alist of libraries to be used in the design e.g.
a) ieee
b) std
c) work etc.

1.2.2 Entity
Specifiesthe 1/O pins of the circuit.

1.2.3 Architecture
Contains the VHDL code which describes how the circuit should behave.

1.3How todeclareLibrary:

A Library is a commonly used piece of code. Placing such pieces inside a library allows them to be
reused or shared by other designs. To declare a Library (that isto make it visible to the design) 2 lines
of code are needed, one containing the name of the library, and the other use a clause as shown below:

Library library_name;
Use library_name.package name.package parts;

At least 3 packages from 3 different libraries are needed
a) ieeestd logic 1164 (from ieee)
b) standard (fromthe std library)
c) work (work library)

The declaration will look as follows
library 1EEE;

 UseIEEE.STD_LOGIC_1164.ALL;
 use|EEE.STD_LOGIC_ARITH.ALL:
. use |EEE.STD_LOGIC_UNSIGNED.ALL;

usework.all

VHDL

Note:- Thelibraries std and work are made visible by default so no need to declare them. Only the IEEE
library must be explicitly written.

However |EEE library should be necessary when std_logic or standard _ulogic datatypeis employedin
the design.

Std_logic 1164 of IEEE library specifies multilevel logic system.

std isaresource library (data types, text i/0) work library is where we save our design.

useIEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

1.3.1 Purpose of |EEE library packages
(i) Std_logic_1164:- specifies the std_logic (8 levels) and std_ulogic (9 levels) for multivalued logic
systems.

(i) std_logic_arith:- specifiesthe signed and unsigned datatypes and related arithmetic and comparison
operation. It also contains several data conversion function which alows one type to be converted to
another for example conv_integer(p) which converts a parameter p to a type integer.
Conv_unsigned(p,b) converts a parameter p to unsigned value of b bits.

(iii) std _logic_unsigned:- contains functions that allow operations with std_logic_vector to be
performed as if data were of type unsigned.

1.4 Entity
An entity is alist with specification of al input and output pins (PORTS) of the circuit. Its syntax is
shown as below

ENTITY entity_namelS
PORT (
port_name: signal_mode signal_type;

port_name : signal_mode signal_type;

END entity name;

the mode of the signal can be IN,OUT,INOUT, BUFFER. IN and OUT are truly unidirectiona pins
while INOUT s bidirectional. BUFFER is employed when the output signal must be used (read)
internally. The type of thesignal can be BIT, STD_LOGIC, and INTEGER etc. Name of the entity can
be basically any name except VHDL reserved words.

ENTITY nand_gate IS

VHDL

PORT (a, b: IN BIT;
x: OUT BIT);
END nand_gate;

All three signals data type is of datatype BIT.

1.5 Architecture
Architecture is a description of how the circuit should behave and its syntax is as follows:-

ARCHITECTURE architecture_name of entity_name IS
[declaration]

BEGIN
(code)

END architecture_name;

Note that declarative part is optional where signals and constants are declared and the code part is
written down from BEGIN. For example

ARCHITECTURE XYZ OF nand_gate IS
BEGIN
X <=aNAND b;

END XYZ;

VHDL

CHAPTER-2DATA TYPES
In order to write VHDL code efficiently its essential to know what data types are allowed.
2.1 Pre-defined data types

|EEE 1076 and |IEEE 1164 specify pre defined data types. Let’s see what are the libraries and
the corresponding packages and data types associated with it.

Library Package Data Types

Std Standard Bit, Boolean, integer and real

iece Std logic 1164 STD_LOGIC, STD_ULOGIC

iece Std _logic_arith SIGNED and UNSIGNED datatype

plus severa data conversion function
like conv_integer(p), conv_unsigned
(p.b)

Conv_signed(p,b) and

conv_std logic_vector(p,b)

iece Std_logic_signed STD_LOGIC VECTOR asif the data
Std _logic_unsigned is of type signed or unsigned.

Pre-defined data types are described below
BIT (BIT_VECTOR): 2 level logic (‘0°,’1")
Examples:
SIGNAL x: BIT

B X isdeclared asaonedigit signal of type BIT
SIGNAL y: BIT_VECTOR (3DOWNTO 0)

B Y isa4 bit vector with the leftmost bit being the M SB.
SIGNAL w: BIT_VECTOR (0to 7)

w is a8 hit vector with the rightmost bit being the M SB.

x<=’1";
X is a single bit signal whose value is ‘1’ note that single quotes are used for a single bit.
y<="0111"
y isa4 bit signal whose valueis“0111” (MSB="0"). Note that double quotes are used for vectors.
w<="01110001";
w is a 8 bit signal whose value is “01110001” (MSB="1")

Some of the examples are given below:-

VHDL

SIGNAL x: STD_LOGIC;
B xisdeclared asaonedigit (scaar) signa of type STD_LOGIC
SIGNAL y: STD_LOGIC_VECTOR (3 down to 0):="0001";

B yisdeclared as a4 bit vector with the leftmost bit being the MSB. The leftmost bit being the
MSB. The initial value of y is “0001” Note that “:=" operator is used to establish the initial
value.

Some of the data types and their range

() Boolean :- True/false

(i) Integer :- 32 bit integer (ranges from -2,147,483,647 to +2,147,483,647)

(iii) Natura: - Non negative integers (0 - +2,147,483,647).

(iv) Real :- Real numbers ranging from -1.0E38 to +1.0E38

(V) Physical literas: Used to inform physical quantities like time, voltage etc.

(vi) Character literals:- Single ASCII character or a string of such characters.

(vii) SIGNED and UNSIGNED: - data types defined in the std_logic_arith package of the

IEEE library. They have the appearance of STD LOGIC VECTOR, but accept
arithmetic operations which are typical of INTEGER datatypes.

Some of the examples are given below:-
X0<="0; // std _logic, std_ulogic, bit value ‘0’
X1<="00011111"

//bit_vector, std_logic_vector, std_ulogic_vector, signed or unsigned
X2 <="0001_1111";

/I underscore allowed to ease visualization
X3<="101111"

/I binary representation of decimal 47
X4<=B"101111"

/Il binary representation of decimal 47
X5<=0"57"

/I octal representation of decimal 47
X6<=X"2F”

/I hexadecimal representation of decimal 47
N<=1200

[linteger

VHDL

M<=1 200

/l integer underscore allowed

If ready then.....

// Boolean and executed if ready=true

Y<=1.2E-5

/Ireal, not synthesizable

Q<=d after 10ns

Il physical not synthesizable

Next let us take an example and see whether operation between different datatypesislegal or illegal
SIGNAL a: BIT;

SIGNAL b: BIT_VECTOR (7 DOWNTO 0)
SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR (7 downto 0)
SIGNAL e: INTEGER range O to 255;

a<=b(5)

allowed because same data type bit.

b(0) <=a;

legal same scalar type BIT

c<=d(5)

legal same scalar type STD_LOGIC

d(0) <=c;

legal same scalar type STD_LOGIC

a<=c

illegal type mismatch between BIT and STD_LOGIC
b<=d

illegal type mismatch between bit_vector and std_logic vector

e<=b

VHDL

illegal type mismatch between integer and bit vector
e<=d
illegal type mismatch between integer and std_logic_vector.

2.2 User-Defined Data Types
VHDL allows the user to define user his own data type. Two categories of user defined data types are
shown as integer and enumerated.

User defined integer type
TYPE integer IS RANGE -2147483647 TO +2147483647
/I pre-defined type INTEGER
TYPE natural ISRANGE 0 TO +2147483647
/I predefined type natural
TYPE my_integer ISRANGE -32 to 32
/I auser defined subset of integers
TYPE student_ grade ISRANGE 0 TO 100
/I auser defined subset of integers or naturals
TYPE bit IS (0", “17);
/I thisisindeed the pre-defined type Bit
TYPE my_logic IS (:0°,’1°,"Z’)
/I A user —defined subset of std_logic

2.3 Subtypes

A SUBTYPE isaTYPE with a constraint. The main reason for using a subtype rather than specifying
anew typeisthat , though operations between data of different typesare not allowed , between a subtype
and its corresponding base type.

SUBTY PE natural IS INTEGER RANGE 0 TO INTEGER’HIGH

/I as expected NATURAL is a subtype (subset) of INTEGER

Let us see an example between legal and illegal operation between types and subtypes
SUBTYPE my_logic IS STD_LOGIC RANGE ‘0’ TO’1’

SIGNAL a BIT

SIGNAL b: STD_LOGIC

SIGNAL c: my_logic

10

VHDL

b<=g;

/l'illegal BIT versus STD_LOGIC

b<=c;

I/ legal (same “base” type: STD_LOGIC

2.4 Arrays

Arrays are collection of objects of the sametype. They can be one-dimensional (1D) , two-dimensional
(2D) or one-dimensional-by-one dimensiona (1DX1D). They can aso be higher dimension, but then
they are generally not synthesizable. The pre-defined synthesi zable typesin each of these categories are
the following:-

Scalars. - BIT, STD_LOGIC,STD_ULOGIC and BOOLEAN.

Vectors:BIT_VECTOR,STD_LOGIC_VECTOR,STD_ULOGIC_VECTOR,INTEGER,SIGNED
AND UNSIGNED.

The declaration is as follows:-

TYPE type_name IS ARRAY (specification) OF data_type;

SIGNAL signa_name: type_name ;= initial_value;

TYPE row ISARRAY (7 DOWNTO 0) OF STD_LOGIC;

/1 1D Array

TYPE matrix ISARRAY (0 TO 3) OF row;

[[1DX1D array

SIGNAL X : matrix;

// 1Dx1D array

TYPE matrix ISARRAY (0 TO 3) OF STD_LOGIC_VECTOR (7 DOWNTO 0)
From a data—compatibility point of view the latter might be advantageous over the previous example.
Example: - 2D Array

The array below is truly 2 dimensional. Note that its construction is not based on vectors, but rather
entirely on scalars.

TYPE MATRIX2D ISARRAY (0 TO 3,7 DOWNTO 0) OF STD_LOGIC,;
B 2D Array
Example: Array initialization

Signal x: ="0001”

11

VHDL

/I thisisthe assignment for 1D array
Signal x :=(“0",’0’,°0","1");

I thisisthe assignment for 1D array
Signal y:=((0",1",’1","1"),(‘1,’1",’1°,’0"))
[/l 2 dimensional array initialization.

Note:- Here it must be remembered that assignment is possible only when data types are same as well
as dimensional are aso same.

2.5 Signed and Unsigned Data Types
As presented signed and unsigned data types are defined in the std_logic_arith package of ieee library.
Their syntax is described as follows:-

SIGNAL x: SIGNED (7 DOWNTO 0)
SIGNAL y : UNSIGNED (0 TO 3)

An unsigned value is a number lower than 0. For example “0101” represents the decimal 5 while”1101”
signifies 13. However if type signed is used the value can be positive or negative. Therefore “0101”
would represent the decimal 5 while “1101” would mean -3. To use signed and unsigned data types are
mainly intended for arithmetic operations, that is, contrary to STD_LOGIC_VECTOR, they accept
arithmetic operations. On the other hand logical operations are not allowed. However comparison
operation there is no restriction.

Example: - Legal and illega operation with signed/unsigned data types
LIBRARY ieeg

USE ieeestd logic_1164.all;

USE ieeestd logic arith.all;

SIGNAL a: IN SIGNED (7 DOWNTO 0);

SIGNAL b: In SIGNED (7 DOWNTO 0)

SIGNAL x : OUT SIGNED(7 DOWNTO 0);

v<= atb; // legal arithmetic operation ok

w <=aAND b;//illegal

Example:- Legal and illegal operation with std_logic_vector
LIBRARY ieeg;

USE ieeestd logic_1164.all;

USE ieeestd logic arith.all;

12

VHDL

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0)

SIGNAL x : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

v<=atb; // illega arithmetic operation ok

w <=aAND b;//legd

But how can we make the second exampl e to work perfectly its smple just add two extra packages.
LIBRARY ieeg;

USE ieeestd logic 1164.all;

USE ieee.std_|ogic_unsigned.al;

2.6 Data Conversion

VHDL does not allow direct operations (arithmetic, logical etc) between data of different types.
Therefore it is often necessary to convert data from one type to another. This can be done in two ways
by writing a piece of VHDL code or if we invoke a function from a pre-defined package which is
capable of doing this.

Let uslook at the following subset example and see how it happens
TYPE long ISINTEGER RANGE -100 TO 100;

TYPE short ISINTEGER RANGE -10 TO 10;

SIGNAL x : short

SIGNAL y : long

y <=2*x + 5;/ error

In order to avoid the above error we should write

y<=long (2* X +5)

Several data conversion functions can be found in the std_logic_arith package of the ieeelibrary. They
are asfollows:-

() conv_integer(p):- converts a parameter p of type INTEGER,UNSIGNED,SIGNED,
STD_ULOGIC to an INTEGER value.

(i) conv_unsigned(p,b):- Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED or STD_ULOGIC to an unsigned value with size b bits.

(iii) conv_signed(p,b):- Converts a parameter p of type INTEGER, UNSIGNED,SIGNED

or STD_ULOGIC to a SIGNED value with size b hits.

13

VHDL

(iv) conv_ std logic vector(p,b):- Converts a parameter p of type INTEGER,
UNSIGNED,SIGNED or STD_LOGICtoaSTD_LOGIC_VECTOR vauewithsizeb
bits.

L et us see an example of this data conversion

LIBRARY ieeg;

USE ieeestd logic 1164.all;

USE ieeestd logic_arith.all;

SIGNAL a IN UNSIGNED (7 DOWNTO 0)

SIGNAL b: IN UNSIGNED (7 DOWNTO 0)

SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
y <= conv_STD_LOGIC_VECTOR((a+h),8);

/I Legal operation at+bis converted fromunsignedtoa8 bit STD_LOGIC_VECTOR value and then
assigned toy. Alternatively we can add std_logic_signed or std_logic_unsigned packages from the
ieeelibrary and such packages allow operationswith STD_LOGIC_VECTOR datato be performed
asif the data were of type SIGNED or UNSIGNED respectively.

14

VHDL

CHAPTER-3 OPERATORSAND ATTRIBUTES
VHDL provides severa kinds of pre-defined operators:-

€) Assignment operator
(b) Logical operator

(© Arithmetic operator

(d) Relational operator

(e Shift operator

) Concatenation operator

3.1 Assignment oper ator
These are used to assign values to signals, variables or constants. They are

<= used to assign valuesto asignal.

:= used to assign value to avariable, constant or generic. Used aso for establishing initial values.
= > used to assign values to individual vector elements or with others.
Let us see the following example

SIGNAL x: STD_LOGIC

VARIABLEY: STD_LOGIC VECTOR (3DOWNTO 0)

/I leftmost bitisMSB

SIGNAL w: STD_LOGIC_VECTOR (0TO 7)

Then the following assignments are legal:

X<="1";

Y:="0000"

W<="10000000"

W<=(0=>"1" ,OTHERS=>"0");

3.2 Logical operator
Used to perform logical operation. The data must be of type BIT, STD_LOGIC, STD_ULOGIC. The
logical operators are:-

(i) NOT
(ii) AND
(iii) OR
(iv) NAND
(v) NOR
(Vi) XOR
(vii) XNOR

15

VHDL

Note that operators have been put together as per precedence. However students are advised to try with
XNOR and check whether that is working.

Examples:-

Y<=NOT aAND b; (a’.h)
Y <=NOT (aandb); (a.b)’
Y<=aNAND b;

3.3 Arithmetic operator

As mentioned earlier that data can be of type integer, signed, unsigned or real. However real datatypes
cannot be synthesized. If the std_logic_signed or std_logic_unsigned package of theieeelibrary is used
then STD_LOGIC_VECTOR can be employed directly in addition and subtraction operation.

+ Addition
--Subtraction

* Multiplication

/ divison

** Exponentiation
MOD modulus
REM remainder
ABS absolute value

However there are no synthesis restriction regarding addition and subtraction and the same is true for
multiplication. For divison only power of 2 dividers (shift operation) are allowed. For exponentiation
only static values of base and exponent are accepted. y mod x returns the remainder of y/x with the
signal of x, whiley rem x returns the remainder of y/x with the signal of y. abs returns the absolute
value. However mod, rem, abs there is no synthesis support.

3.3 Comparison operator
Therelational operators are
= equa to
/=not equal to

<lessthan
» Greater than
<= lessthan or equd to

>= greater than or equal to

3.4 Shift operator
The genera syntax isasfollows

16

VHDL

< |eft operand><shift operation> < right operand>

The left operand must be of type vector and the right operand must be of type integer.
SlI = shift left logic; positions on the right are filled with O

Srl = shift right logic; positions on the left are filled with O

Sla > shift left arithmetic ; rightmost bit is replicated on the right.
Sra > shift right arithmetic; leftmost bit is replicated on the | eft.
Rol - rotate left logic

Ror-> rotate right logic

3.5 Concatenation operator

&

(in)

Example

Z<=x & “1000000;

If x=1 then z = 11000000;

Z<=(‘1’,"1",0°,°0",’0’,’0",’0","0")

Z=*11000000"

3.5 Attributes
Attributes are divided into two parts

@ Data attribute:- returnsinformation (avalue) regarding a data vector.
(b) Signal attribute:- Serve to monitor asignal.(return true or false).

17

VHDL

CHAPTER-4 CODE CONCURRENCY

Code concurrency is achieved when we use the following

@ Operators

(b) WHEN statement (WHEN/EL SE or WITH/SELECT/WHEN)
(© GENERATE statement

(d) Block statement.

4.1 With Operators
Just when we use the logical, arithmetic, comparison, shift or

Concatenation operator to generate the concurrent code. Example
Y<=(aAND NOT sl and NOT s0) OR...etc

4.2 WHEN (smple and selected)

4.2.1 WHEN/EL SE syntax
Assignment WHEN condition ELSE

Assignment WHEN condition EL SE

422 WITH/SELECT/WHEN
WITH identifier SELECT

Assignment WHEN value,

Assignment WHEN value,

Example with WHEN/EL SE

Outp<="000" WHEN (inp="0" OR reset="1")ELSE
Example with SELECT/WHEN

WITH control SELECT

Output<="000" WHEN reset;

4.3 Generate

It followsthe samefeature as sequential codeloopi.eit allowsthe section of codeto be repeated number

of times thus creating several instances of the same assignment.

Syntax :-

18

VHDL

FOR/GENERATE

Label: FOR identifier IN range GENERATE
(concurrent assignments)

END GENERATE;

Syntax:-

IF/GENERATE

Label1: For identifier in range GENERATE
Label2: IF CONDITION GENERATE
(concurrent assignments)

END GENERATE;

END GENERATE;

Example:-

SIGNAL x: BIT_VECTOR(7 DOWNTO 0)
SIGNAL x: BIT_VECTOR(15 DOWNTO 0)
SIGNAL x: BIT_VECTOR(7 DOWNTO 0)
G1l: FOR I IN x> GENERATE

Z(i) <=x(i) AND y(i+8);

END GENERATE;

4.4 BLOCK

441
Theblock statement in its ssimplest form represents only away of locally partitioning the code. It alows
aset of concurrent statements to be clustered into a BLOCK.

Genera Syntax is:-
label : BLOCK

[declarative part]
BEGIN

(concurrent statements)

19

VHDL

END BLOCK labd;

An example of the BLOCK is

bl: BLOCK

SIGNAL a: STD_LOGIC;

BEGIN

A<= input_sig when ena ="1" else ‘z’;
End block b1;

4.4.2 Guarded Block
A guarded block is a special kind of block which includes an additional expression called guard
expression. A guarded statement in a guarded block is executed only when the guard expressionistrue.

Guarded Block:-

Label : BLOCK (guard expression)
(declarative part)

BEGIN

(concurrent guarded and unguarded statements)
END BLOCK labd;

Example:-

B1=BLOCK(clk’EVENT AND CLK="1")
BEGIN

Q<= GUARDED ‘0" WHEN rst="1" ELSE d,

20

VHDL

CHAPTER-5 SEQUENTIAL CODE

Till now we have seen that VHDL code is concurrent. However PROCESSES, FUNCTIONS and
PROCEDURES are the only sections of code that are executed sequentially. Another important concept
regarding sequential code is that it is not limited to sequentia logic indeed we can build sequential or
combinational circuit or both together. Notethat IF, WAIT, CASE and LOOP are all sequential and are
allowed inside PROCESSES, FUNCTIONS and PROCEDURES.

5.1 PROCESS
A processis sequential section and is characterized by the presence of IF, WAIT, CASE or LOOP by

asengitivity list. Sensitivity list isthe same concept as arguments in functions that is used in high level
language.

The syntax of PROCESS is as follows:-
[label:] PROCESS (sensitivity list)
[VARIABLE nametype [range] [:= initia_value]]
BEGIN

(sequentia code)

END PROCESS [label];

Example:-

PROCESS (clk,rst)

BEGIN

IF (rst= 1) THEN

Q<="07;

5.2 Difference between Signalsand Variables

For passing non static values signals and variables are used. A signa can be declared in a package,
entity or architecture. A variable can only be declared in a piece of sequential code i.e process for
example.

5.3 I F syntax
The genera syntax of IFis

IF condition then assignments;
ELSIF condition THEN assignments;
EL SE assignments;

END IF;

21

VHDL

5.4WAIT
The operation of WAIT is similar to that of IF. However more than one form of WAIT is available.
There are 3 basic syntax what we follow:-

WAIT UNTIL signa_condition;
WAIT ON SIGNAL [,signal2,...];
WAIT for time;

Example:-

Wait until (clk’event and clk="1’)...
Wait on clk,rst;

5.5CASE
Caseis another statement intended exclusively for sequentia code. Its syntax is as follows:-

CASE identifier IS

WHEN value => assignments;
WHEN value=> assignments;
END CASE;

Exampleis:-

CASE control IS

WHEN “00” => x<=3a;y<=b;
END CASE;

5.6 LOOP
Asthe name says LOOP s useful when apiece of code must beinstantiated several timeslike IF,WAIT
and CASE. There are several ways of using LOOP and the syntax looks as below:-

FOR loop:-

[label:] FOR identifier IN range LOOP
(sequential statements)

END LOOP [label];

WHILE loop:-

[label:] WHILE condition LOOP
(sequential statements)

END LOOP]label];

22

VHDL

EXIT:- isused for ending the loop.

[label :] EXIT [label] [WHEN condition];
NEXT:- used for skipping loop steps.
[label:] NEXT[loop_label][WHEN condition]
Example of FOR/LOOP

For | INOTOS5LOOP

X(i)<=enable AND w(i+2);

Y (0,i)<=w(i);

END LOOP;

Example of WHILE LOOP

WHILE (i<10) LOOP

WAIT until clk’event and clk="1";

END LOOP;

Example of NEXT

FOR1in0TO 15 LOOP

NEXT WHEN i=skip;

END LOOP;

5.7 DIFFERENCE BETWEEN CASE AND IF
The codes below show the difference in the implementation of the multiplexer circuit.

IF(sel="00") THEN x<=a;
ELSIF(sel="01") THEN x<=b;

ELSIF(sel="10") THEN x<=c;

EL SE x<=d;

The implementation of the same program with CASE is
CASE s IS

WHEN *“00”=> x<=3,;

WHEN “01” => x<=b;

23

VHDL

WHEN “10” => x<=c;
WHEN OTHERS => x<=d;
END CASE;

5.8 DIFFERENCE BETWEEN CASE AND WHEN
While WHEN is concurrent the CASE is sequential. Now let’s see the code with WHEN

WITH sel SELECT
x <= aWHEN *“000”
b WHEN *“001”
¢ WHEN “010”
The same program while being implemented with case will look asfollows:-
CASEsd IS
WHEN “000”=> x<=g;

WHEN “001” => x <=b;

24

VHDL

CHAPTER-6 VARIABLES AND SIGNALS

6.1 Where can be used?

CONSTANT and SIGNAL can be global and can be used in either type of code concurrent or sequential .
A VARABLE on the other hand is local for it can be used inside a piece of sequential codei.e. ina
PROCESS, FUNCTION or PROCEDURE and its val ue can never be passed out directly.

6.2 CONSTANT
The syntax for CONSTANT isasfollows:-

CONSTANT name: type: =value;
Example:

CONSTANT set_bit: BIT :="1;
CONSTANT datamemory : memeory :=((‘0’,’0°,°0’,0),(‘0°,’0°,’0’,’1"),...);

A CONSTANT can be declared in aPACKAGE, ENTITY or ARCHITECTURE. When declared in an
entity it is global to al architectures that follow that entity. Finally when declared in an architecture it
is global to that architectures code only. Generally CONSTANT is declared in an ARCHITECTURE
orinaPACKAGE.

6.3 SIGNAL
SIGNAL serves to pass values in and out the circuit as well as between internal circuits. For example
all ports of an entity are signals by default. The syntax for signal are asfollows:-

SIGNAL name: type (range) (:=initial value);
Example:-

SIGNAL control: BIT: =’07;
SIGNAL count: INTEGER RANGE 0 TO 100;

The declaration of a SIGNAL can be made in the same place as the declaration of a CONSTANT.
However it must be noted that the value of asignal is not updated unless the PROCESS, FUNCTION
or PROCEDURE gets completed. It is not synthesizable and will only be considered during simulation.

6.4 Variable

Compared to CONSTANT and SIGNAL aVARIABLE represents only loca information. It can only
be used inside a PROCESS, FUNCTION or PROCEDURE. Its update isimmediate so the new value
can be promptly used in the next line of code.

To declare aVARABLE the following syntax should be used:
VARIABLE name: type [range][:= init_value];

Example:-

VARABLE y: STD_LOGIC_VECTOR (7 DOWNTO 0) :=10001000";
Exercise Left for the Learner:-

1. What isthe difference between SIGNAL and VARIABLE?

25

VHDL

CHAPTER-7 FUNCTION AND PROCEDURE

7.1 What are Functions and Procedures?

Functions and Procedures are collectively called subprograms. From a construction point of view they
arevery similar to aPROCESSfor they arethe only pieces of sequential VHDL code, and thus employs
the same sequential statements seen (IF,CASE,LOOP,WAIT is not alowed) . Where the PROCESS
and FUNCTION are intended for immediate use in the main code, others are intended mainly for
LIBRARY allocation.

7.2 FUNCTION

A FUNCTION is a section of sequential code. Its purpose is to create new functions to deal with
commonly encountered problems, like data type conversions, logical operations, arithmetic
computations and new operators and attributes. By writing such code asa FUNCTION , it can be shared
and reused, also propitiating the main code to be shorter and easier to understand.

The syntax for the FUNCTION are shown as below

FUNCTION function_name [<parameter list >] return data_type IS
[declarations]

BEGIN

[sequential statements]

END function_name;

An example is shown as below

Functionf1 (a, b: INTEGER; SIGNAL c: STD_LOGIC_VECTOR)
RETURN BOOLEAN IS

BEGIN

(sequential statements)

END f1;

7.2.1 Function call
A function is called as part of an expression. The expression can appear by itself or associated to a
statement.

Example:-

X<= conv_integer (a);

26

VHDL

7.3 PROCEDURE

A PROCEDURE is very similar to a FUNCTION and has the same basic purpose. However the
procedure can return more than one value. Like aFUNCTION two parts are necessary to construct and
use a PROCEDURE: the procedure itself (procedure body) and a procedure call.

The syntax for Procedure will ook as follows:-
PROCEDURE procedure_name [<parameter list>] IS
[declarations]

BEGIN

(sequential statements)

END procedure_name;

Example :-

PROCEDURE my_procedure (& IN BIT; SIGNAL b,c: IN BIT; SIGNAL x : OUT BIT_VECTOR (7
DOWNTO 0);

SIGNAL y : INOUT INTEGERRANGEOTO99) IS
BEGIN
END my_procedure;

7.3.1 PROCEDURE CALL
A PROCEDURE call is a statement on its own. It can appear by itself or associated to a statement.

Example of PROCEDURE call
compute_min_max(inl,in2,in3,out1,0ut?);
/Il statement by itself

N.B. A PROCEDURE has the same location as those of a FUNCTION and can aso be located in the
main code.

27

VHDL

GETTING STARTED WITH VHDL
CREATION OF PROJECT

The steps to create a project in Xilinx ISE are as follows:

Create a new project by clicking File menu > New Project.

Open Project...

Open Bample...

Project Browser... pesign Suite

Copy Project...
Contrpa]

[) New S

¥ Open.. -0
Close

i Sove Cul+5 - .
Save As... — '-l
(¥ SaveAll

Print Preview...
- Print... Ctrl+P

Recent Files »
Recent Projects >
Bat

Console “«0&f x

-Diﬂfo:umuet:wﬂ - Parsing VHDL file "C:/Xilinx/fulladderl/fulledderl.vhd" into 1lil »
Jp INFO:Projectgmt - Parsing design hierarchy completed successfully.
Launching Design Summary/Report Viewer...

P — 3
Conecle @) Erors | I\ Wemings | 96 FrdinFles Results

Create a new project

ki

DAHFIL XOEX|wa| i 2,0 2RI 2E T AR pQ
Start i=F.F 3

Welcome to the ISEG Design Suite

Project

commands

'ﬂlmm-, EMMI

Double chdk on 2 project in the Ist below to cpen
[t

Console w0 & X
1y INFO:HDLCempiler: 1061 - Paraing VHDL file "C:/Nilinx/fulladderl/fulladderl.vhd" inte 1lif .
J INFO: ProjectMgme - Parsing design hierarchy cempleted succesafully.

Launching Deaign Summary/Repert Viewer...

8l o [Brors' [IS Warriogs | PrdPics Resds |

28

VHDL

When the Create New Project window is displayed, choose your working directory and type your new
project name in the project name field. Select “Top-level source type” as “HDL”. Add project

description if you need.

Click Next and you will go to the " Select the device and design flow for the project” interface.

-

L

D3 Hd

Ll m

Project Settings

Specfy device and project properties.
Select the device and desgn flow for the project

—
Evaluation Development Board

Product Category

| Fornily

Devce

Package
| Speed

Top-Level Source Type
Synthesis Tool

 Samulator

| Preferred Language
Property Specification in Project File
| Manual Compile Order

VHOL Source Analysss Standard

[Value

None Specified

an

Astod

XCTA100T

CSGIM

-3

[HOL

XST (VHDL Verilog)

ISim (VDL Verilog)

[Vatog

‘St\o_u all values

'VHDL-93

LFnahle Meccans Filtecinn.]

(1] Consce | @) Erors | L. Warngs | @6 Frd i Fles Resits |

Use the following settings to specify device and project properties.
1. Evauation Development Board: - None Specified (default option)

2
3
4
5.
6.
7
8
9
1

0.

Product Category: - All (default option)
Family: - Spartan3E

Device: - XC3S250E

Package: - CP132
Speed: - -4

Top-Level Source Type: - HDL (default option)

Synthesis Tool: - XST (VHDL/Verilog)
Simulator: - ISim (VHDL/Verilog)

Preferred Language: - VHDL
Note: - For the purpose of this course you can use the default settings for the remaining

properties.

29

VHDL

proctd| 5900ty device and project ropertes.
Select the device and design fow for the project
tvew Pr Evaluation Development Board |None Specified =)
| | Product Cateqory A .l
" Famidy Spartan3E -]
Oobledl | Device XC35250€ -
Package P13 =
‘i k. -] '
Top-Level Source Type [HOL = |
| | Synthesis Tool XST (VHDL/Verilog) -
: | S e -
Descn § Property Specification in Project File Store all values -l
Manusl Compile Order B
VHOL Source Analysis Standard |VHOL-93 o
- E = |
[Erahla b . 7
4} m
[l Consce Ib Erors | I\ Wamings | g4 Findin Fles Results |

Click “Next” button and this will lead you to the “Project Summary” page of the “New Project Wizard”.

Click “Finish” to complete new project setup and go to the Project Navigator window.

30

VHDL

Create New Source Y ou have three options in creating a new source file.
Option 1: Usethetoolbar on the left-hand side of the project navigator window to create a new source.
Click on the new source icon (the topmost) to create anew source.

File Edit View Pﬂqm Source Process Tools W'udm I.lywt Help

D2HP L XD X9 o
~0O&x

: @ Y6} implementation (0 E@ smuaticn

NwwSourte F
B £ x7a100t-3csg324 H
Empty View
The view curently contans ro fles.
You can add files %o the project using
the toobar sl kefl, commands from

the Project meru, and by using the
Design, Files, and Libraries pansls.

Use:

El_

NENDEE

€2 Mo Processes Running

No single design module is selected.
E)’ Desion Utiliti

Errors

IB2|v |

< J
(&l conse | @ erors [Weminss [log Fndin Fles Resits |

dddauwwmelnﬂ!pwyct

DAHG L[X abX|va| LA R AR 2T, pal ¢
oo
View: @ {GF imolementaton 0 [l sdation

Dumm&@m
Empty View

The view currenty cantaing no file

fou can add Ffes to the project us Manusi Compile Order
the tooibar at ieft, commands fron =

the Project menu, and by using £
c . Piae, gl Lib ie » Implement Top Module

i | Fie/Path Display

| &3] Add Source...
| da Add Copy of Source...

HEB| &

B2 MNoFrocesses Running

RE

| Add a new tource to the project 3

31

VHDL

Option 3: Use the project in the “Hierarchy” section of the “Design” tab. Select the project (lab2 here),
right-click and select “New Source” to create a new source.

1n [fz] Add Copy of Source...

New VHDL Library...
Manual Compile Order
Import Custom Compile File List..

Disable Hierarchy Repersing
Force Hierarchy Reparse
Cleanup Project Files...
Archive...

Generate Tol Script..

Design Goals & Strategies...

Mo single desi{ = Design Summary/Reports
W 3 Deosi (A Design Properties...

Start | 9% Dosgn | () Fles | L) Ubrades |

m

© =voes | 1), Warings | 4 Findin FlecReait
Add a new source 1o the project

o New Source Wizard

Select Source Type

Select source type, file name and its location.

4 IP (CORE Generator & Architecture Wizard)
') Schematic
| User Document
Verilog Module
Verilog Test Fixture
VHDL Module o p—
VHDL Library '
VHDL Package halfadder 11|
y) VHDL Test Bench
Embedded Processor O
|C:\iinx \halfadder 11 ™ |
Add to project

[text][concel]

In the "New Source Wizard" interface choose VHDL Module from “Select Source Type’ and enter a
name, “halfadder11”, for the new source file in the File Namefield.

32

VHDL

Make sure that “Add to project” option is selected. Click Next to continue. Y ou will be asked to input
the ports information, you can use the wizard or you just click Next. Note:-This information will be
used by the tool, Xilinx ISE, to create a skeleton code to help you. You can edit the VHDL code
generated if needed, for e.g., You can delete, add or modify port signals that might have specified.

New Scurce Wizard

Define Module

Specfy ports for module,
Entity name | halfadder11

Architecture name [Behavioral

Port Name

00000030060

In this, wejust click Next and then get the following summarized information for this sourcefile.

& New Source Wizard

T e 3

Summary

Project Navigator will create a new skeleton source with the following specifications.

Add to Project: Yes
Source Directory: C:\ilinx‘halfadder11

333%

33

VHDL

Click the "Finish" button to continue. Y ou will return to Xilinx | SE interface and see that the new
source file, halfadder11.vhd, has been added to the project.

i 5 rjc gt 2

|2 File Edit WView Project Source Process Tools

e =
Window Layout Help

C2HP| S % X|oo| » #; R AR =T 2R PSP
Design «O8x &| 1 ==
view: @ {5 Implementa ™ [l Smua 5=
2| | Hiesarchy |
& halfadderil
S [xcTald0n3esg34
[Siefly halfadderl1 - Behavior|
a A
@ A
- E
+
| v
¥ | B3 Mo Processes Rumning
U{. | Processes: halfadderl] - Behavioe =
-1} L Design Summary/Re... |
o L Design Lnikties 1
A | @ User Constraints e
= | E) Synthesize - XST ar
“ | = 83 [Implement Design | |
LB} Ganscsts Brpncamenl. | 1* = ’
Z st | B3 oeson |0 Fes ()| B hifadder 11, vhed ale Desigr Summary
Errors.

»08x

5] conscle | @ Erors | £\ Wamngs |86 Findin Fles Resuts |

Ln1Coll WVHDL

8 ¢ =PE PRI & ucconizoca

Y ou can see in the right-hand window that a template of the VHDL source file, based on information

you provided while creating the new source, is aready generated for you by Xilinx ISE. Y ou need to
compl ete the source code based on your own design project.

o I5E Project Navigator (P.20131013) - C:\ile

Fl
DEd L] & X|w o
Desgn «08x &|

i [ew: 8 {3 inplenentn®) [Sicte 55

‘.;gJ' | Hierarchy
7] ' halfadderil
|5 O scTal00n3esg3d
[Rl halfaddert1 - Behavior|

&l

A
@ »
e
"

7 end halfadderl

[38 architecture Behavicral of halfadderll ia
B | B3 Mo Processes Runing
U, | Processes: halfaddert1 - Behavior * 41 ‘begin
- Design Surmmary/Re... |
Design Utilties y
User Constraints.
Synthesize - XST
Irnplernent Design

Lo B) Ganscts Broamsemi... | E
& Start | ™3 Desgn | W) Fles 'F.' B halfadder 11.vhd™ B E Desgn Summary
Errors.

43 sum<=a xor b:
44 carry<=a and b:

46 end Behavioral:
|« m

|8 Console _0 Errors | i Wamings | (g4 FindinFles Resuts

Note:-If you have an existing sourcefile that you would like to add to the project you can either use the
“Add Source” or “Add Copy of Source” option. “Add Source” can be used when the source file is either
in the project directory or in a remote directory whereas “Add Copy of Source” is used when the source
file is in a remote directory. “Add Copy of Source” copies the source file to the project directory.

34

VHDL

Note: Y ou should clearly understand what statements are automatically generated and what are needed

to be coded by yourself.

To open an existing project the following steps should be followed:-

D& X

B INFO:HDILCempiler: 1061 - Parsing VHDL file "C:/Xilinx/fulladderl/fulladderi.vhd® inte 1lil -

i INFO:PrejectMgmts - Paraing design hierarchy cempleted succeasfully.
Launching Design Summary/Report Viewer...

Double cick on & project in the kst below 1o open
fulladderl

0& x

Jy INFO:HDLCompiler:1061 — Parsing VHDL file "C:/Xilinx/fulladderl/fulladderl.vhd® into 1it -

)7 INFO: ProjectNget — Paraing design hierarchy compleced succeasfully.

Launching Design Summary/Report Viewer...

:

Erors | I\ Wemings | @8 Findin Fies Resuts

35

VHDL

Option 1

Option 2

ADDING EXISTING SOURCE

Import Custom Compile File List...

Disable Hierarchy Reparsing
Force Hierarchy Reparse
Cleanup Project Files...
Archnoe...
Generate Tol Scnpt...
| 22 NoProcess Design Goals & Strategies...
| Mo single desis i Design Summary/Repons

Add an easting source file to the project

File Edt View Project Source Process Tools Window Layout Help

DAHP L[S BEX|va| » 2 2,BR AR =S T LR 9]
Design _ =S ‘
| 1o vew: @ {iF imph © B smuan
Hierarchy

W halfadderll
& £ »7a100t-3c59326 [New Source--

Add Copy of Source...
Manual Compile Order

B Implement Top Module
File/Path Display

Expand All
Collapse All

B Find...

Add an existing source file to the project

36

VHDL

Option 3

[— Bt ——
& ISE Project Navigator (P.20131013) - C:\Xilinx\halfadder11\halfadder]1 xise = B R
File Edit View Project Source Process Tools Window Layout Help
DPEP|LXobXx|(wa| LR AR = iewip]@
n +08& x
view: © {5} mph ©) [oot

 Hierarchy =

@] halfadderi1 |4
= [%c7al00t-3csg324 IE
Empty View

The view currently contains no files.
You can add files to the project using
the toolbar at left, commands from
the Project menu, and by using the
Design, Files, and Libraries panels.

BREC

H|E B

Use:

T2 Mo Processes Running

No single design module is selected.
@ §F Design Utilities

« |HA|V

Stat | O Desgn) Fles | () Lbranes
|| Errors “+08x

[5] console | @ rors | 1\ Wamings | @8 Findin Fies Resuits

SYNTHESIZE DESIGN

Save the file by click Save All under file menu.

Select top-level entity. Here, halfadder1l is already on the top-level.

Double click Synthesize - XST to start the synthesizing process. When this processiis finished,
"Process" Synthesize - XST" completed successfully” is displayed in the console window

wpn e

DAH@ L XA EX|[va| » o8 ~QRIE2E02 LR P9
| Peson »~0&x%| & 19 - .
|view: @ {5 implementa fflsmuw 5= | 20 librazy IEEE:
P | TEEE.STD LOGIC 1184.ALL
Hierarchy - el —FOSTEL y
haifadderll “ 23 ~-- Uncomment the following library declaration if
& (1 x7a100t-3csg324 24 -- arichmetic functicns wich Signed or Unsigned val
4 haifadderll - Behavior| 25 --use IEEE.NUMERIC_SID.ALL:

26
27 == Unccement the following library declaration if :
28 ~-- any Xalinx primitives 1in this code.
29 --library UNISIM:
30 —-use UNISIM.VComponente.alls
31
32 entity halfadderll is
33 Port [& z in STD_LOGIC;
34 b : in S5ID LOGIC:
3is sum : out STOD_LOGIC?

H L 36 carry : out SID _LOGIC);
‘| =€) Implement Design 37 end halfadderil:

T2 Generate Programmi... — e
2] Conhigure Target De... T T e AT Ty e]

Anal = [
L

Emors

€2 NoProcesscs Running
Procesces: halfadderdl - Behavior =

-~ E Design Summary/Re...
D Design Utiities
User Constraints I} -

PR R

Ln42Coll VHDL

37

VHDL

D2 X[oa| W
Desgn “08% & 13 - P r—
view: @ i} inplenentation) B Smulation §=| 20 1yl
—| &1 wse TEEE <ALL:
5] | Hoesarchy 22
el] hatfadderl1 | & ¢ declnra
— | B €] xelalont Zesgiid 28 -- arithmarie fome ith ‘1¢1eﬁ or Uns
i [hefeddeddt - Behaviaral (hatfadder 25 --ume IEEE,NUMERIC STOLALL;
it - 26
l‘rl oz 27 == Unccoment the following library deciazal i
T e v A 28 - ¥ Xilinx primitivea in thia code. |
| . AAALT % 29 --livrary NI
B3 toProcesss Ruming :‘ 30 --ume UMIST E
Wop : . n
| Proemaes helliger| - Beluavion! M| 22 ensity nalfaddezll is
S| E Design Summary/Reports 2
—\@ Design Unilities O
26 = \sar Constrainte 5]
2 sie - K5T =
[ement Dengn
3 Generate Programming File
(] Cnd-guumgn!}m«
o hnalvze
| Start | g Desgn Fies
5 =
i .
_|— © Eros | Ay Wamings | g FndinFlesRasus
Lnd2 Coll WHDL

If synthesizereport is OK

Note:

2 ISE Project Navgatar (P20131013) - € - [hatadderiL] [ESRCIRE
% az Teok Window ' La Help < x
S APPErAAP RO AN r 7
| €[13 -
20
= [Hieareny B
¥ 7
il | 8 haaddert] a| 2 ing 1ibragy desiara
—| & 3 xchaloitesgiie . 24 ticns with Signed ot Uns
4 [l batiaderd] - Dehavioral ihafaddes 25 —use 1EX. NU?‘LL.!C_S','D.ALL:
= = 6
= =1 the fallowing Libracy deslazaf]
s |0 —— | v A 13 ieives in thia code.
[: - n| »
| B Ho Processes urring ul ® vea, alls &
7L | Processes: ha¥addes]1 - Benavicesl * " :;
Bl E DeignSemmaryRepeds 33
—|@ Design Unilities S| s J
Hla Llse: Conshopints 3o =
m] mihesize - 157 35
4 e 37 end halfadderil;
£ Gonerate Programming Fix L i
1] E tmltgmlargsoeme e e R g O S TP AFoY 0, "0, [TP R £ gl
porriciy ; & < [
|:s|a=w:n=s;n' s |5 trwes | |[D) rascderinatd (3] & Deson Summary Gothescd) L) |
nOfX

cx\halfagiaziiibalfacd

240" Line

Zhgd™ Line 44: <caTry> is not ¢

381 Onit <behavior:

If synthesizefails

any HDL) code, into a hardware implementation in terms of logic gates.

on the + sign).

Sour ce Code Simulation

For Source Code simulation the following steps should be followed:

Synthesis is the process of converting the abstract circuit behavior, described by a VHDL (or

To observetheresults of the synthesis, expand Synthesize - XST in"Process: halfadder11 (click

b oje \Xilinx\ hatfadder 1 1\halfadderl Lxise - [halfa
|| view: @ ® [E# smulas 5 20 1library IEEE:;
&] Sehavioral =] — g; use IEEE.STD_LOGIC_1164.ALL:
Il Hierarchy w 23 —- Uncomment the following library dec
7= = hatfadderdl 24 =-- arithmetic functions with Signed or
oo | = £3 xc7al00t-3csg3i2d 25 --use IEEE.NUMERIC_STD.ALL:
‘_.]‘ I® haMadderll - Behavioral (halfadderll.vhd) 2 26
& 27 Uncoemment the fellowing library dec)
£ A e -= any Xi1linx primitives in thia C‘.‘.ﬂﬂ"l
% 29 --library UNISIM:
P | B2 Mo Processes Running o 30 --use UNISIM.VComponencs.all;
e . 31
L | Processes: halfadderl1 - Behavioral xg S5 Blcnraity BaLEsAASTEY 4
=l ﬁ‘ 1Sim Simulator = a3 Port (a : in STD,
P Behavioral Check Syntax (%) as B & S0
4 Simulate Behavioral Model) 35 sum i ¥
- = 36 carr¥: cut S3TID GIC) :
' 37 e=nd halfadderxll;
38
S P e S o e b ey P T ST o e P g
-

© Enos | 1) Wamngs | g Findin Fies Resits

o

Ln36Coll7 VHDL

38

VHDL

o ISE Project Navigator (P20131013) - C:Xilinx\haffadgeril\hatfaddegl xise _[haffadder11. vhd] - [F=NS I-L-F
=) File Edit View Project Source Process Tools Window Layout Help
Y & ¥ 4 ? o »
| Design »0O& X) =
view:) {8 implementaton © £ Smulation 20
=) |Eehavioral - 21
1 el - 22
“ Hierarchy 23
5] halfadderll 24
25
- 26
o an
¥ 4+ 28
n 29
P | T2 NoProcesses Running - 30 -
= i » 31
. | Processes: halfadderll - Behavioral 2 a2
~ 4 £
i ¥ I5im Simulator 33
= l‘! Eehavioral Check Syntax 34
- '2, Simulate Echaviorzl Mode 35
— 36
37
38
- - - .. . L e - * 'S L L] =
« »
L . = = - 1
& Stat | B2 Design | L] Fles | [} Lireries [2) hafadder11.vhd EJ | 5 Design Summary (Implemented)
Errors «+0& x
| « T . ;
|= Console @ Errors ! Warmings o8 Find in Files Results
Ln36 Col17 VHDL
ISIM Behavioral Mode
15im (P.20131013) - [Defaultweig] L& N S

- | B R

Console

Frishad

“0F x

crowt inbakzaton process,

1Sim> put a0
ISim> put b0

1Sim>

un

| 15im> put a0
| TSim> putb1

ISim> n
| 1Sim>
@ cor

un

wsoie ||| Compdstionlog | @ Bresiponts | (9§ FndinFlesResits | Dy SearchRests

Sam Tirne: 1,200,000 ps

39

VHDL

EXAMPLE CODES

Some Examples of Basic L ogic gates

VHDL introduction

AND Gate

entity andlis
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
y:out STD_LOGIC);
end and1;

architecture Behavioral of andlis
begin

y<=aand b;

end Behaviordl;

OR Gate

entity orlis
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
y:out STD_LOGIC);
end orl;

architecture Behavioral of orlis
begin

y<=aorb;

end Behaviordl;

XOR Gate

entity xorlis
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
y:out STD_LOGIC);
end xorl;

architecture Behavioral of xorlis
begin

y<=axor b;

end Behaviord;

40

VHDL

Some Examples of Digital Loqgic Circuits

Half Adder using XOR and AND Gate as Component

entity hanew is
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
sum:out STD_LOGIC;
carry : out STD_LOGIC);
end hanew;

architecture Behavioral of hanew is

component Xornew is
Port (x:in STD_LOGIC;
y:in STD_LOGIC;
z:out STD_LOGIC);
end component;

component andnew is
Port (I :in STD_LOGIC;
m:in STD_LOGIC;
n:out STD_LOGIC);
end component;

begin

X1: entity xornew port map(a,b,sumy;
A1l: entity andnew port map(a,b,carry);
end Behaviord;

entity xornew is
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
c:out STD_LOGIC);
end xornew;

architecture Behavioral of xornew is
begin

c<=axor b;

end Behavioral;

entity andnew is
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
c:out STD_LOGIC);
end andnew;

architecture Behavioral of andnew is
begin

c<=aandb;

end Behavioral

Design of 2 to 4 Decoder

entity decoder2x4 is
Port (a:in STD_LOGIC;

41

VHDL

b:in STD_LOGIC;
enable:in STD_LOGIC;

z:out STD_LOGIC_VECTOR (3 downto 0));

end decoder2x4;
architecture Behaviora of decoder2x4 is

component inv is
Port (pin:in STD_LOGIC;
pout : out STD_LOGIC);
end component;

component nand3 is
Port (dO:in STD_LOGIC;
dl:in STD_LOGIC;
d2:in STD_LOGIC;
dz:out STD_LOGIC);
end component;

signal abar,bbar:STD_LOGIC;

begin

vO: entity inv port map(a,abar);

v1: entity inv port map(b,bbar);

nO:entity nand3 port map(enable,abar,bbar,z(0));
nl:entity nand3 port map(enable,abar,b,z(1));
n2:entity nand3 port map(enable,a bbar,z(2));
n3:entity nand3 port map(enable,a,b,z(3));

end Behavioral;

Design of Full Adder

entity fais
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
c:in STD_LOGIC;
sum:out STD_LOGIC;
carry :out STD_LOGIC);
end fa;

architecture Behavioral of fais

begin

sum<= axor b xor c;

carry<= (aand b) or (bandc) or (c and a);
end Behavioral;

42

VHDL

Design of J-K Flip-Flop

entity jkflipflopis
Port (J:in STD_LOGIC;
K:in STD_LOGIC;
CLK:in STD_LOGIC;
Q:inout STD_LOGIC;
QN :inout STD_LOGIC);
end jkflipflop;

architecture Behavioral of jkflipflopis
begin
process(CLK,J,K)
begin
if (CLK="1"and CLK'event) then
if(J='0" and K='0") then
Q<=Q;
QN <=QN;
elsif(J='0"' and K="1") then
Q<='0;
QN <="17
elsif(J="1" and K='0") then
Q<="1;
QN <='0;
elsif(J="1" and K="1") then
Q<=NOT Q;
QN <=NOT QN;
end if;
end if;
end process;
end Behaviord;

43

VHDL

Implementation of Multiplier using Booth’s Algorithm

use [IEEE.STD_LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.V Components.all;

library IEEE;

entity multiplier2is

Port (mplr:in STD_LOGIC VECTOR (1 downto 0);

mpcd : in STD_LOGIC_VECTOR (1 downto 0);
gtart:in STD_LOGIC;
result : out STD_LOGIC_VECTOR (3 downto 0));

end multiplier2;

architecture Behavioral of multiplier2is

begin
process(start,mpcd,mplr)
variable br,nbr:std_logic_vector(1 downto 0);
variable acqr:std_logic_vector(3 downto 0);
variable gnl:std_logic;
begin
if(start="1") then
acqr(3 downto 2):=(others=>'0’);
acgr(1 downto 0):=mplr;
br:=mpcd,;
nbr:=(not mpcd)+'1’;
gnl:='0';

loopl:for i in 1 downto O loop
if(acgr(0)="0"' and gn1="0") then
gnl:=acqr(0);
acgr(2 downto 0):=acqr(3 downto 1);
end if;
if(acgr(0)="0"' and gn1="1") then
acgr(3 downto 2):=acqr(3 downto 2)+br;
gnl:=acqr(0);
acgr(2 downto 0):=acqr(3 downto 1);
end if;
if(acgr(0)="1" and gn1="0") then

acqr(3 downto 2):=acqr(3 downto 2)+nbr;

gnl:=acqr(0);

acgr(2 downto 0):=acqr(3 downto 1);

end if;
if(acgr(0)="1" and gn1="1") then
gnl:=acqr(0);

acgr(2 downto 0):=acqr(3 downto 1);

end if;

end loop loopl,

44

VHDL

result<=acqr;
end if;
end process,

end Behaviordl;

| mplementation of Divisor

library 1EEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC ARITH.ALL;

use IEEE.STD_LOGIC UNSIGNED.ALL;

entity divisor is
Port ('ab: ininteger range O to 15;
y:out STD_LOGIC VECTOR (3 downto 0);
rest : out integer range O to 15;
er:out STD_LOGIC);
end divisor;

architecture Behavioral of divisor is

begin
process(a,b)

variable templ : integer range O to 15;
variable temp2 : integer range O to 15;

begin

templ =&

temp2 :=b;

if(b=0)then err <="1;
else err <='0';

end if;

if (templ>=temp2* 8) then
y(3)<='1;
templ.=templ-temp2*8;
elsey(3)<='0;

end if;

if(templ>=temp2*4) then
y(2)<=1;
templ.=templ-temp2* 4;
esey(2)<='0;

end if;

if(templ>=temp2*2) then
y(D)<=1;
templ:=templ-temp2* 2;
esey(1)<='0;

end if;

45

VHDL

if(templ>=temp2) then
y(0)<="1;
templ:=templ-temp2;
esey(0)<='0;

end if;

rest<=templ;

end process,

end Behavioral;

46

VHDL

Design of different Computer System

I mplementation of Shift Register

entity shiftregister is

Port (CLK :in STD_LOGIC;
Sl:in STD_LOGIC;
SO:out STD_LOGIC);

end shiftregister;

architecture Behavioral of shiftregister is

signal tmp: std_logic_vector(7 downto 0);
begin

process (CLK)

begin

if (CLK'event and CLK="1") then
foriin0Oto6loop

tmp(i+1) <= tmp(i);

end loop;

tmp(0) <= SI;

end if;

end process;,

SO <=tmp(7);

end Behaviordl;

47

VHDL

Design of RAM

entity rams 01 is

port (clk : in std_logic;

we:insd logic;

en:instd_logic;

addr : in std_logic_vector(5 downto 0);
di :instd_logic_vector(15 downto 0);
do: out std _logic vector(15 downto 0));
end rams _01;

architecture syn of rams Ol is
type ram_typeis array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin

process (clk)

begin

if clk'event and clk ='1' then

if en="1"then

if we="1"then

RAM (conv_integer(addr)) <= di;
end if;

do <= RAM(conv_integer(addr)) ;
end if;

end if;

end process,

end syn;

48

