
6X513 DSD using VHDL

1
GPA

EXPERIMENT NO. 1

AIM: Introduction to Xilinx ISE Simulator

THEORY:

Getting Started with Xilinx ISE

After installing Xilinx ISE 14.7 software, double click on above desktop icon which is called ISE

Project Navigator then below window will appear.

The Project Navigator window consist of four panes:

☞A source pane that shows the organization of the source files that make up your

design. There are four tabs so you can view the functional modules, source files, different

snapshots (or versions) of your project, or the HDL libraries for your project.

☞A process pane that lists the various operations you can perform on a given object in the

source pane.

☞A transcript pane that displays the various messages from the currently running process.

☞An editor pane where you can enter HDL code, schematics, state diagrams, etc.

6X513 DSD using VHDL

2
GPA

For creating new project first go to File Menu and close previous project.

Then below window will appear

To create a new project:

6X513 DSD using VHDL

3
GPA

 Select New Project. The New Project Wizard appears

In the Name field, enter your project name and enter the location where you want to create the

project in the Location field (NOTE: don‘t use c drive or desktop). In the Top-Level Source

Type select HDL and click Next.

Click on Next then below window will appear

6X513 DSD using VHDL

4
GPA

A Device properties window given in Figure will appear. Fill in the properties in the table as

shown below:

☞Product Category: All

☞Family: Spartan6

☞Device: XC6SLX16

☞Package: CSG324

☞Speed Grade: -3

☞Top-Level Source Type: HDL

☞Synthesis Tool: XST (VHDL/Verilog)

☞Simulator: ISim (VHDL/Verilog)

☞Preferred Language: VHDL

6X513 DSD using VHDL

5
GPA

Click on Next then below window will appear which contains all the summary of our Project

Wizard.

Click on Finish then below window will appear.

After that select FPGA IC symbol and write click on that. Then click on New Source

6X513 DSD using VHDL

6
GPA

Create New Source window given in Figure- will appear. Select VHDL module, and specify the

file name in appropriate field as shown in figure- and Click Next.

In the Define Module specify I/O port name and direction. Click Next button to

display Summary and click Finish.

6X513 DSD using VHDL

7
GPA

Newly created Source will appear as gatexor.vhd

6X513 DSD using VHDL

8
GPA

Write your program in Archetecture Body after ―begin‖ then Save it & Check Syntax.

Double Click on View RTL Schematic

6X513 DSD using VHDL

9
GPA

After that below window will appear then Choose second checkbox and click on ok.

6X513 DSD using VHDL

10
GPA

RTL Schematic Window:

Double click on Block Diagram then internal diagram will appear..

We can also check Technology Schematic by choosing below option of View RTL schematic in

Process Window. Here we can see Schematic, Symbol, Equation and K-map by double clicking

on Xor Symbol.

Click the Simulation Check Box then Right Click on VHDL File Name.

6X513 DSD using VHDL

11
GPA

Create VHDL Test Bench by selecting New Source Wizard and name it

6X513 DSD using VHDL

12
GPA

Check Syntax of new file generated by Test-bench Module

Change the value which is undefined by right clicking on it. Go to Force Constant. Give value

according to truth table. Click on Run then output will appear.

6X513 DSD using VHDL

13
GPA

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

14
GPA

EXPERIMENT NO. 2

AIM: To simulate logic gates using VHDL.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal computer.

THEORY:

Logic gates are classified in three categories as follows:

1. Basic gates (AND gate, OR gate, & NOT gate)

2. Universal gates (NAND gate and NOR gate)

3. Exclusive OR (Ex-OR) and Exclusive NOR (Ex-NOR) gate.

A) AND gate:

The AND gate is a basic digital logic gate that implements logical conjunction - it

behaves according to the truth table shown below. A HIGH output (1) results only if all the

inputs to the AND gate are HIGH (1). If none or not all inputs to the AND gate are HIGH, a

LOW output results. The function can be extended to any number of inputs.

Table 2.1: Truth table of AND gate.

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 2.1: Symbol of AND gate.

B) OR gate:

The OR gate is a digital logic gate that implements logical disjunction – it behaves

according to the truth table given below. A HIGH output (1) results if one or both the inputs to

the gate are HIGH (1). If neither input is high, a LOW output (0) results. In another sense, the

https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Truth_table

6X513 DSD using VHDL

15
GPA

function of OR effectively finds the maximum between two binary digits, just as the

complementary AND function finds the minimum.

Table 2.2: Truth table of OR gate.

INPUT OUTPUT

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Fig. 2.2: Symbol of OR gate.

C) NOT gate:

In digital logic, an inverter or NOT gate is a logic gate which implements logical

negation. The truth table is shown on the right.

Table 2.3: Truth table of NOT gate.

Input Output

A NOT A

0 1

1 0

Fig. 2.3: Symbol of NOT gate.

D) NAND gate:

In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an

output which is false only if all its inputs are true; thus its output is complement to that of

an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any

input is LOW (0), a HIGH (1) output results. The NAND gate is significant because any boolean

https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_negation
https://en.wikipedia.org/wiki/Logical_negation
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Boolean_function

6X513 DSD using VHDL

16
GPA

function can be implemented by using a combination of NAND gates. This property is

called functional completeness. It shares this property with the NOR gate. Thus NAND and NOR

are called as universal gates.

Table 2.4: Truth table of NAND gate.

INPUT OUTPUT

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 2.4: Symbol of NAND gate.

E) NOR gate:

The NOR gate is a digital logic gate that implements logical NOR - it behaves according

to the truth table given below. A HIGH output (1) results if both the inputs to the gate are LOW

(0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of

the negation of the OR operator. It can also in some senses be seen as the inverse of an AND

gate. NOR is a functionally complete operation—NOR gates can be combined to generate any

other logical function. It shares this property with the NAND gate. By contrast, the OR operator

is monotonic as it can only change LOW to HIGH but not vice versa.

Table 2.5: Truth table of NOR gate.

INPUT OUTPUT

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/NOR_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Functionally_complete
https://en.wikipedia.org/wiki/NAND_gate
https://en.wikipedia.org/wiki/Logical_disjunction

6X513 DSD using VHDL

17
GPA

Fig. 2.5: Symbol of NOR gate.

F) EX-OR gate:

EX-OR gate is a digital logic gate that gives a true (1 or HIGH) output when the number

of true inputs is odd. An EX-OR gate implements an exclusive or; that is, a true output results if

one, and only one, of the inputs to the gate is true. If both inputs are false (0/LOW) or both are

true, a false output results. EX-OR represents the inequality function, i.e., the output is true if the

inputs are not alike otherwise the output is false. A way to remember EX-OR is "must have one

or the other but not both".

EX-OR can also be viewed as addition modulo 2. As a result, EX-OR gates are used to

implement binary addition in computers. A half adder consists of an EX-OR gate and an AND

gate. Other uses include subtractors, comparators, and controlled inverters.

Table 2.6: Truth table of EX-OR gate.

INPUT OUTPUT

A B A EX-OR B

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 2.6: Symbol of EX-OR gate.

G) EX-NOR gate:

The EX-NOR gate is a digital logic gate whose function is the logical complement of the

exclusive OR (EX-OR) gate. The two-input version implements logical equality, behaving

according to the truth table to the right, and hence the gate is sometimes called an "equivalence

gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both

inputs are high (1), a low output (0) results.

https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Adder_(electronics)#half_adder
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/XOR_gate
https://en.wikipedia.org/wiki/Logical_equality

6X513 DSD using VHDL

18
GPA

Table 2.7: Truth table of EX-NOR gate.

INPUT OUTPUT

A B A EX-NOR B

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 2.7: Symbol of EX-NOR gate.

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity logicgates is

 Port (a,b : in STD_LOGIC;

 y : out STD_LOGIC_VECTOR(6 downto 0));

end logicgates;

architecture Behavioral of logicgates is

begin

y(0)<= a AND b;

y(1)<= a OR b;

y(2)<= NOT a;

y(3)<= a NAND b;

y(4)<= a NOR b;

y(5)<= a XOR b;

y(6)<= a XNOR b;

end Behavioral;

6X513 DSD using VHDL

19
GPA

RESULTS:

RTL Schematic of All Logic Gates

Stimulated Behavioral Model of All Logic Gates

6X513 DSD using VHDL

20
GPA

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

21
GPA

EXPERIMENT NO. 3

AIM: Simulate half adder using VHDL.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

An adder is a digital logic circuit in electronics that implements addition of numbers. The

half adder circuit has two inputs: A and B, which add two input digits and generate a carry and

sum. By using half adder, you can design simple addition with the help of logic gates.

Half Adder Truth Table

Table 3.1: Truth Table of Half Adder

Inputs Outputs

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The reduced equation is given by

Sum= A ⊕ B

Carry= A.B

The half-adder is useful when you want to add one binary digit quantities. A way to

develop two-binary digit adders would be to make a truth table and reduce it. When you want to

make three binary digit adder, do it again. When you decide to make a four digit adder, do it

again. The circuits would be fast, but development time is slow. Logic realization of half adder

using gates is shown below.

Fig 3.1: Half adder using logic gates.

https://www.elprocus.com/different-types-of-digital-logic-circuits/

6X513 DSD using VHDL

22
GPA

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ha is

port (a,b : in std_logic;

sum ,carry : out std_logic);

end ha;

architecture hha of ha is

begin

sum <= a XOR b;

carry<= a AND b;

end hha;

RESULT:

RTL Schematic of Half Adder.

6X513 DSD using VHDL

23
GPA

Stimulated Behavioral Model of Half Adder.

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

24
GPA

EXPERIMENT NO. 4

AIM: Simulate Full Adder using Following Modelling Styles of VHDL.

1. Dataflow modelling.

2. Behavioral modelling.

3. Structural modelling.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

This adder is difficult to implement than a half-adder. The difference between a half-

adder and a full-adder is that the full-adder has three inputs and two outputs, whereas half adder

has only two inputs and two outputs. The first two inputs are A and B and the third input is an

input carry as C-IN. When full-adder logic is designed, you string eight of them together to

create a byte-wide adder and cascade the carry bit from one adder to the next. The output carry is

designated as C-OUT and the normal output is designated as S.

Table 4.1 Truth Table of Full Adder.

Inputs Outputs

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Reduced logical expression is given by

Sum= A⊕B⊕Cin

Cout= A.B+B.Cin+A.Cin

6X513 DSD using VHDL

25
GPA

Logic realisation using gates is shown below

Fig 4.1: Full adder using logic gates.

Fig 4. 2: Full adder using half adder.

PROGRAM:

1. Using Dataflow modelling:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fulladder is

 Port (a,b,c : in STD_LOGIC;

 s,cy : out STD_LOGIC);

end fulladder;

architecture Behavioral of fulladder is

begin

s<= a XOR b XOR c;

cy<= (a AND b) OR (b AND c) OR (a AND c);

6X513 DSD using VHDL

26
GPA

end Behavioral;

2. Using Behavioral modelling:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fulladd is

 Port (a : in STD_LOGIC_VECTOR(2 downto 0);

 s : out STD_LOGIC_VECTOR(1 downto 0));

end fulladd;

architecture Behavioral of fulladd is

begin

process(a)

begin

if (a="000") then s<="00";

elsif (a="001") then s<="10";

elsif (a="010") then s<="10";

elsif (a="011") then s<="01";

elsif (a="100") then s<="10";

elsif (a="101") then s<="01";

elsif (a="110") then s<="01";

else s<="11";

end if;

end process;

end Behavioral;

3. Using Structural modelling:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

6X513 DSD using VHDL

27
GPA

entity ha is

port (a,b : in std_logic;

sum ,carry : out std_logic);

end ha;

architecture hha of ha is

begin

sum <= a XOR b;

carry<= a AND b;

end hha;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity orgate is

port (a,b : in std_logic;

y : out std_logic);

end orgate;

architecture gate of orgate is

begin

y <= a OR b;

end gate;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fulladderstru is

 Port (a,b,c : in STD_LOGIC;

 sum,carry : out STD_LOGIC);

6X513 DSD using VHDL

28
GPA

end fulladderstru;

architecture Behavioral of fulladderstru is

component ha

Port (a,b : in STD_LOGIC;

 sum,carry : out STD_LOGIC);

end component;

component orgate

Port (a,b : in STD_LOGIC;

 y : out STD_LOGIC);

end component;

signal s1,s2,s3: std_logic;

begin

ha1: ha port map(a=>a,b=>b,sum=>s1,carry=>s2);

ha2: ha port map(a=>s1,b=>c,sum=>sum,carry=>s3);

org: orgate port map(a=>s3,b=>s2,y=>carry);

end Behavioral;

RESULT:

RTL Schematic of Full Adder in Dataflow Modelling

6X513 DSD using VHDL

29
GPA

Stimulated Behavioral Model of Full Adder in Dataflow Modelling

RTL Schematic of Full Adder in Behavioral Modelling

Stimulated Behavioral Model of Full Adder in Behavioral Modelling

6X513 DSD using VHDL

30
GPA

RTL Schematic of Full Adder in Structural Modelling

Stimulated Behavioral Model of Full Adder in Structural Modelling

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

31
GPA

EXPERIMENT NO. 5

AIM: A] Simulate 8:1 multiplexer using VHDL.

 B] Simulate 1:8 de-multiplexer using VHDL.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

Multiplexer:

In electronics, a Multiplexer (or Mux), also known as a data selector, is a device that

selects between several analog or digital input signals and forwards it to a single output line. A

multiplexer of 2
n
 inputs has n select lines, which are used to select which input line to send to the

output. Multiplexers are mainly used to increase the amount of data that can be sent over

the network within a certain amount of time and bandwidth. Multiplexers can also be used to

implement Boolean functions of multiple variables.

An electronic multiplexer makes it possible for several signals to share one device or

resource, for example, one A/D converter or one communication line, instead of having one

device per input signal.

8:1 multiplexer has 8 inputs, 3 select inputs and one output. Mux will select the input to

be connected to output according to selection of select lines. Figure below shows the block

diagram of 8:1 mux with truth table.

Fig 5.1: Block Diagram of 8:1 mux.

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Digital_signal_(electronics)
https://en.wikipedia.org/wiki/Computer_networks
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/A/D_converter

6X513 DSD using VHDL

32
GPA

Table 5.1: Truth Table of 8:1 Mux

Select Inputs Output

A2 A1 A0 Z

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

De-multiplexer:

A De-multiplexer (or De-mux) is a device taking a single input and selecting signals of

the output of the compatible mux, which is connected to the single input, and a shared selection

line. A multiplexer is often used with a complementary de-multiplexer on the receiving end.

 1:8 De-mux has one input, 3 select inputs and 8 outputs. De-mux will connect input to

selected output where output selection is done using select lines. Figure below shows the block

diagram of 1:8 de-mux with truth table.

Fig 5.2: Block diagram of 1:8 De-mux.

6X513 DSD using VHDL

33
GPA

Table 5.2: Truth Table of 1:8 De-mux.

Input Select Inputs Outputs

S2 S1 S0 I7 I6 I5 I4 I3 I2 I1 I0

D 0 0 0 0 0 0 0 0 0 0 D

D 0 0 1 0 0 0 0 0 0 D 0

D 0 1 0 0 0 0 0 0 D 0 0

D 0 1 1 0 0 0 0 D 0 0 0

D 1 0 0 0 0 0 D 0 0 0 0

D 1 0 1 0 0 D 0 0 0 0 0

D 1 1 0 0 D 0 0 0 0 0 0

D 1 1 1 D 0 0 0 0 0 0 0

PROGRAM:

Multiplexer:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux8isto1 is

 Port (a : in STD_LOGIC_VECTOR(7 downto 0);

 s : in STD_LOGIC_VECTOR(2 downto 0);

 y : out STD_LOGIC);

end mux8isto1;

architecture Behavioral of mux8isto1 is

begin

with s select

y<= a(0) when "000",

a(1) when "001",

a(2) when "010",

a(3) when "011",

a(4) when "100",

a(5) when "101",

a(6) when "110",

a(7) when "111",

'0' when others;

end Behavioral;

6X513 DSD using VHDL

34
GPA

De-multiplexer:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity demux1to8 is

 Port (a : in STD_LOGIC;

 s : in STD_LOGIC_VECTOR(2 downto 0);

 y : out STD_LOGIC_VECTOR(7 downto 0));

end demux1to8;

architecture Behavioral of demux1to8 is

begin

process(a,s)

variable temp: std_logic_vector(7 downto 0);

begin

case s is

when "000" => temp := (a&'0'&'0'&'0'&'0'&'0'&'0'&'0');

when "001" => temp := ('0'&a&'0'&'0'&'0'&'0'&'0'&'0');

when "010" => temp := ('0'&'0'&a&'0'&'0'&'0'&'0'&'0');

when "011" => temp := ('0'&'0'&'0'&a&'0'&'0'&'0'&'0');

when "100" => temp := ('0'&'0'&'0'&'0'&a&'0'&'0'&'0');

when "101" => temp := ('0'&'0'&'0'&'0'&'0'&a&'0'&'0');

when "110" => temp := ('0'&'0'&'0'&'0'&'0'&'0'&a&'0');

when "111" => temp := ('0'&'0'&'0'&'0'&'0'&'0'&'0'&a);

when others => temp := "00000000";

end case;

y<=temp;

end process;

end Behavioral;

RESULT:

RTL Schematic of 8:1 Multiplexer

6X513 DSD using VHDL

35
GPA

Stimulated Behavioral Model of 8:1 Multiplexer

RTL Schematic of 1:8 De-Multiplexer

Stimulated Behavioral Model of 1:8 De-Multiplexer

6X513 DSD using VHDL

36
GPA

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

37
GPA

EXPERIMENT NO. 6

AIM: Simulate Flip Flops using VHDL.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

A flip flop is an electronic circuit with two stable states that can be used to store binary

data. The stored data can be changed by applying varying inputs. Flip-flops and latches are

fundamental building blocks of digital electronics systems used in computers, communications,

and many other types of systems. Flip-flops and latches are used as data storage elements. It is

the basic storage element in sequential logic.

Types of flip-flops:

1. RS Flip Flop

2. JK Flip Flop

3. D Flip Flop

4. T Flip Flop

Logic diagrams and truth tables of the different types of flip-flops are as follows:

1. S-R Flip Flop:

Fig 6.1: Circuit Diagram of SR Flip-Flop

https://electronicsforu.com/technology-trends/latest-storage-products

6X513 DSD using VHDL

38
GPA

Table 6.1: Truth Table of SR Flip-Flop

Clock
Inputs Outputs

Action
S R Qn+1 Qn+1‘

0 x x Qn Qn‘
No Change

1 0 0 Qn Qn‘

1 0 1 0 1 Reset

1 1 0 1 0 Set

1 1 1 - - Undefined

2. J-K Flip Flop:

Fig 6.2: Circuit Diagram of JK Flip Flop

Table 6.2: Truth Table of JK Flip Flop

Clock
Inputs Outputs

Action
J K Qn+1 Qn+1‘

0 x x Qn Qn‘
No Change

1 0 0 Qn Qn‘

1 0 1 0 1 Reset

1 1 0 1 0 Set

1 1 1 Qn‘ Qn Toggle

6X513 DSD using VHDL

39
GPA

3. D Flip Flop:

Fig 6.3: D Flip Flop Using JK Flip Flop

Table 6.3: Truth Table of D Flip Flop

Clock
Input Outputs

Action
D Qn+1 Qn+1‘

0 x Qn Qn‘ No Change

1 0 0 1 Reset

1 1 1 0 Set

4. T Flip Flop:

Fig 6.4: T Flip Flop Using JK Flip Flop

Table 6.4: Truth Table of T Flip Flop

Clock
Input Outputs

Action
T Qn+1 Qn+1‘

0 x Qn Qn‘ No Change

1 0 Qn Qn‘ No Change

1 1 Qn‘ Qn Toggle

6X513 DSD using VHDL

40
GPA

PROGRAM:

//S-R FLIP FLOP//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity srflipflop is

 Port (s,r,clk,rst : in STD_LOGIC;

 q,qb : out STD_LOGIC);

end srflipflop;

architecture Behavioral of srflipflop is

signal y: std_logic;

begin

process(clk,rst)

variable sr: std_logic_vector(1 downto 0);

begin

if (rst='1') then y<='0';

elsif (clk' event and clk ='1') then sr :=s & r;

case sr is

when "01" => y <= '0';

when "10" => y <= '1';

when "11" => y <= '0';

when others => y <= y;

end case;

end if;

q<=y;

qb<= not y;

end process;

end Behavioral;

// J-K FLIP FLOP//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity jkflipflop is

 Port (j,k,rst,clk : in STD_LOGIC;

 q,qb : out STD_LOGIC);

end jkflipflop;

architecture Behavioral of jkflipflop is

signal y: std_logic;

begin

6X513 DSD using VHDL

41
GPA

process(clk,rst)

variable jk: std_logic_vector(1 downto 0);

begin

if (rst='1') then y<='0';

elsif (clk' event and clk ='1') then jk:=j & k;

case jk is

when "01" => y <= '0';

when "10" => y <= '1';

when "11" => y <= not y;

when others => y <= y;

end case;

end if;

q<=y;

qb<= not y;

end process;

end Behavioral;

// D FLIP FLOP//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity dflip is

 Port (d,clk,rst : in STD_LOGIC;

 q,qb : out STD_LOGIC);

end dflip;

architecture Behavioral of dflip is

begin

process(clk,rst)

variable y: std_logic;

begin

if (rst='1') then y:='0';

elsif (clk' event and clk='1') then y:=d;

end if;

q<=y;

qb<= not y;

end process;

end Behavioral;

6X513 DSD using VHDL

42
GPA

//T FLIP FLOP//

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity tflip is

 Port (clk,rst,t : in STD_LOGIC;

 q,qb : out STD_LOGIC);

end tflip;

architecture Behavioral of tflip is

begin

process(clk,rst)

begin

if(rst='1') then q<='1';

qb<='0';

elsif(clk' event and clk='1') then qb<=t;

q<= not t;

end if;

end process;

end Behavioral;

RESULT:

RTL Schematic of SR Flip Flop

6X513 DSD using VHDL

43
GPA

Simulated Behavioral Model of S-R Flip Flop

RTL Schematic of J-K Flip Flop

Simulated Behavioral Model of J-K Flip Flop

6X513 DSD using VHDL

44
GPA

RTL Schematic of D Flip Flop

Simulated Behavioral Model of D Flip Flop

RTL Schematic of T Flip Flop

6X513 DSD using VHDL

45
GPA

Simulated Behavioral Model of T Flip Flop

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

46
GPA

EXPERIMENT NO. 7

AIM: Simulate 3 bit Binary Counter using VHDL.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

3-Bit Binary Up-Down Counter:

The circuit below is of a simple 3-bit Up/Down synchronous counter using JK flip-flops

configured to operate as toggle or T-type flip-flops giving a maximum count of zero (000) to

seven (111) and back to zero again. Then the 3-Bit counter advances upward in sequence

(0,1,2,3,4,5,6,7) or downwards in reverse sequence (7,6,5,4,3,2,1,0).

Generally most bidirectional counter chips can be made to change their count direction

either up or down at any point within their counting sequence. This is achieved by using an

additional input pin which determines the direction of the count, either Up or Down and the

timing diagram gives an example of the counters operation as this Up/Down input changes state.

Nowadays, both up and down counters are incorporated into single IC that is fully

programmable to count in both an ―Up‖ and a ―Down‖ direction from any preset value producing

a complete Bidirectional Counter chip. Common chips available are the 74HC190 4-bit BCD

decade Up/Down counter; the 74F569 is a fully synchronous Up/Down binary counter and the

CMOS 4029 4-bit Synchronous Up/Down counter.

Fig. 7.1: 3-bit Binary Up-Down Counter

6X513 DSD using VHDL

47
GPA

Table 7.1: Truth Table of 3-Bit Binary Up/Down Counter

UP/!DOWN CLK QA QB QC

1 0
th

 0 0 0

1 1
st
 0 0 1

1 2
nd

 0 1 0

1 3
rd

 0 1 1

1 4
th

 1 0 0

1 5
th

 1 0 1

1 6
th

 1 1 0

1 7
th

 1 1 1

0 8
th

 1 1 1

0 9
th

 1 1 0

0 10
th

 1 0 1

0 11
th

 1 0 0

0 12
th

 0 1 1

0 13
th

 0 1 0

0 14
th

 0 0 1

0 15
th

 0 0 0

6X513 DSD using VHDL

48
GPA

Fig 7.2: Timing Diagram for Up/Down Counter

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE. STD_LOGIC_UNSIGNED.ALL;

entity up_counter is

 Port (reset ,m: in STD_LOGIC;

 clk : in STD_LOGIC;

 q : out STD_LOGIC_VECTOR (2downto 0));

end up_counter;

architecture Behavioral of up_counter is

signal cout :std_logic_vector (2 downto 0);

begin

process(clk,reset,m)

begin

if reset='0' then cout<="000";

else

6X513 DSD using VHDL

49
GPA

if(clk' event and clk='0') then

if(m='1') then

if cout< 7 then cout<= cout+1;

else cout<="000";

end if;

else

if cout<= 7 then cout<= cout-1;

else cout<="111";

end if;

end if;

end if;

end if;

q<=cout;

end process;

end Behavioral;

RESULTS:

RTL Schematic of 3-Bit Binary Counter

6X513 DSD using VHDL

50
GPA

Simulated Behavioral Model of 3-Bit Binary Counter

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

51
GPA

EXPERIMENT NO. 8

AIM: Implementation of 4 – Bit Left / Right Shift Register.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

Flip flops can be used to store a single bit of binary data (1or 0). However, in order to

store multiple bits of data, we need multiple flip flops. N flip flops are to be connected in an

order to store n bits of data. A Register is a device which is used to store such information. It is a

group of flip flops connected in series used to store multiple bits of data.

The information stored within these registers can be transferred with the help of shift

registers. Shift Register is a group of flip flops used to store multiple bits of data. The bits stored

in such registers can be made to move within the registers and in/out of the registers by applying

clock pulses. An n-bit shift register can be formed by connecting n flip-flops where each flip flop

stores a single bit of data. The registers which will shift the bits to left are called ―Shift left

registers‖. The registers which will shift the bits to right are called ―Shift right registers‖. Shift

registers are basically of 4 types. These are:

Modes of operation:

1) Serial in parallel out (SIPO).

2) Serial in serial out (SISO).

3) Parallel in parallel out (PIPO).

4) Parallel in serial out (PISO).

Bidirectional Shift Register:

If we shift a binary number to the left by one position, it is equivalent to multiplying the

number by 2 and if we shift a binary number to the right by one position, it is equivalent to

dividing the number by 2.To perform these operations we need a register which can shift the data

in either direction.

Bidirectional shift registers are the registers which are capable of shifting the data either

right or left depending on the mode selected. If the mode selected is 1(high), the data will be

shifted towards the right direction and if the mode selected is 0(low), the data will be shifted

towards the left direction.

The logic circuit given below shows a Bidirectional shift register. The circuit consists of

four D flip-flops which are connected. The input data is connected at two ends of the circuit and

depending on the mode selected only one and gate is in the active state.

6X513 DSD using VHDL

52
GPA

Fig 7.1 Bidirectional Shift Register with Mode Control

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shiftreg is

 Port (d : in STD_LOGIC_vector(3 downto 0);

 clk,dir,clr,lin,rin : in STD_LOGIC;

 y : out STD_LOGIC_vector(3 downto 0));

end shiftreg;

architecture Behavioral of shiftreg is

begin

process(clk,clr,dir,d)

variable temp: STD_LOGIC_vector(3 downto 0);

begin

if(clr='1') then temp:="0000";

elsif(clk' event and clk='1') then temp:=d;

if(dir='1')then temp:=temp(2 downto 0)&lin;

else temp:=rin&temp(3 downto 1);

end if;

end if;

y<=temp;

6X513 DSD using VHDL

53
GPA

end process;

end Behavioral;

RESULT:

RTL Schematic of 4-Bit Shift Register

Simulated Behavioral Model of 4-Bit Shift Register

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

54
GPA

EXPERIMENT NO. 9

AIM: Implement 32 bit ALU for any (Arithmetic / Logical) Function.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

A very popular and widely used combinational circuit is ALU which is capable of

performing arithmetic as well as logical operations. This is the heart of any circuit. The block

diagram is shown in figure 9.1. The functions of various input, output and control lines are given

below.

A: 32-bit data input. B: 32-bit data input.

Y: 32-bit data output. Op-code: 4-bit operation selects input.

En: Enable pin input

Table 9.1: Op-code Table for ALU Operations.

Op-code ALU Operation

0000 A+B

0001 A-B

0010 NOT A

0011 A*B

0100 A AND B

0101 A OR B

0110 A NAND B

0111 A XOR B

6X513 DSD using VHDL

55
GPA

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity alu is

 Port (en : in STD_LOGIC;

 opcode : in STD_LOGIC_vector(3 downto 0);

 a,b : in STD_LOGIC_vector(31 downto 0);

 y : out STD_LOGIC_vector(31 downto 0));

end alu;

architecture Behavioral of alu is

signal result: std_logic_vector(31 downto 0);

begin

with en select

y<=result when'1',

(others=>'0') when others;

with opcode select

result<=(a+b) when "0000",

(a-b) when "0001",

(not a) when "0010",

(a*b) when "0011",

(a and b) when "0100",

(a or b) when "0101",

(a nand b) when "0110",

(a xor b) when "0111",

(others=>'0') when others;

end Behavioral;

6X513 DSD using VHDL

56
GPA

RESULT:

RTL Schematic of Arithmetic and Logical Unit

Simulated Behavioral Model of Arithmetic and Logical Unit

CONCLUSION:

Signature of Teacher

6X513 DSD using VHDL

57
GPA

EXPERIMENT NO. 10

AIM: Simulate RAM using VHDL.

REQUIREMENTS AND APPRATUS:

1) Xilinx Software

2) Personal Computer.

THEORY:

Random-access memory (RAM) is a form of computer memory that can be read and

changed in any order, typically used to store working data and machine code.
[1][2]

 A random-

access memory device allows data items to be read or written in almost the same amount of time

irrespective of the physical location of data inside the memory. In contrast, with other direct-

access data storage media such as hard disks, CD-RWs, DVD-RWs and the older magnetic

tapes and drum memory, the time required to read and write data items varies significantly

depending on their physical locations on the recording medium, due to mechanical limitations

such as media rotation speeds and arm movement.

 Inputs and outputs required for the RAM designs are defined below:

1. CS: This is the chip select which is active high input.

2. RW: This is the read/write signal for RAM. RW=‗1‘ for write cycle and RW= ‗0‘ for read

cycle.

3. ADDR: This is the address bus. For 256 byte RAM, 8 bit address bus is needed.

4. DIN: This is Data bus of 8 bits used in write cycle as an input.

5. CLOCK: This input is meant to give the clock signal to RAM.

6. DOUT: This is data bus of 8 bits used in read cycle as an output.

Fig. 10.1: Block Diagram of RAM

https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Random-access_memory#cite_note-1
https://en.wikipedia.org/wiki/Random-access_memory#cite_note-1
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Read_(computer)
https://en.wikipedia.org/wiki/Hard_disk
https://en.wikipedia.org/wiki/CD-RW
https://en.wikipedia.org/wiki/DVD-RW
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Drum_memory
https://3.bp.blogspot.com/_uaqUOnpGUWY/S4ZVBaRpKvI/AAAAAAAAACA/Rk7fQuDIaV0/s1600-h/ram.JPG

6X513 DSD using VHDL

58
GPA

PROGRAM:

library ieee;

use ieee.std_logic_1164.all;

entity ram is

generic(bits:integer:=8;words:integer:=16);

 port (wr_ena : in std_logic;

 clk : in std_logic;

 addr : in integer range 0 to words-1;

 data_in : in std_logic_vector(bits-1 downto 0);

 data_out : out std_logic_vector(bits-1 downto 0));

end ram;

architecture behavioral of ram is

type vector_array is array (0 to words-1)of

std_logic_vector(bits-1 downto 0);

signal memory:vector_array;

begin

process(clk,wr_ena)

begin

if(wr_ena='1') then

if(clk'event and clk='1') then

memory(addr)<=data_in;

end if;

end if;

end process;

data_out<=memory(addr);

end behavioral;

6X513 DSD using VHDL

59
GPA

RESULT:

RTL Schematic of RAM

Simulated Behavioral Model of RAM

6X513 DSD using VHDL

60
GPA

CONCLUSION:

 Signature of Teacher

