6X513 DSD using VHDL

EXPERIMENT NO. 1

AIM: Introduction to Xilinx ISE Simulator
THEORY:
Getting Started with Xilinx ISE

ISE Dresign
Suite 1457

After installing Xilinx ISE 14.7 software, double click on above desktop icon which is called ISE
Project Navigator then below window will appear.

Project Navigator

Release Version: 14.7
Application Version: P.20131013

| Copyright © 1995-2013 Xilinx, Inc.
All rights reserved.

& XILINX.

| loading libSed_Squi4...

The Project Navigator window consist of four panes:

A source pane that shows the organization of the source files that make up your
design. There are four tabs so you can view the functional modules, source files, different
snapshots (or versions) of your project, or the HDL libraries for your project.

=~ A process pane that lists the various operations you can perform on a given object in the
source pane.

A transcript pane that displays the various messages from the currently running process.

=~An editor pane where you can enter HDL code, schematics, state diagrams, etc.

GPA

6X513 DSD using VHDL

Edit View Project Source Process Tools Window Layout Help B@E

DFEFE saEX|oa| i A8 2R]
m B Dﬁlgl\ Overview
e :) e -2 Summary
IlT UZE L e E I 6 [108 Properties Project File: gates.xse Parser Errors: No Errors
] Peravior = [Module Level Utilization Module Name: gstesor Implementation State: Synthesized
Hierarchy e - [Timing Constraints -
" gt —, D Pinout Report Target Device: Xc6slx16-3cs0324 sErrors: INo Errars
f €5
ﬂﬂﬂ 5 £3 xchshd-3csg3d cm -0 C\oc.k R.ep.ort L Product Version: I5E 14.7 sWarnings: INo Warnings
| & [abc- behavior (sbcyhd) @ - Statc Timing Design Goak: Balanced +Routing Results:
& ! E Ut - gatexor - Behavioral (gat (=} Errors and Warnings - - -
@ B Parser Messages Design Strategy: Xilinx Default (unlocke: +Timing Constraints:
" [l Synthesis Messages Environment: System Setfings +Final Timing Score: g
o | [fmtonthere [oo o]
iy o] | O Tmmgbeses e _
— [Bitgen Messages Logic Utilization Used Available Utilization
P | T2 NoProcesses Running ~[B] Alimplementation Messages Number of Slice LUTs 1 9112 0%
% Processes: uut - gatexor - Behavioral = D;mgdsﬁ':::is Report Mumber of fully used LUT-FF pairs 0 1 0%
2|5 i Simulator = iond 1 | Number of bonded 1085 3 3 1% | |
= ~F) Behavioral Check Syntax |Design Properties
S0 @ Simulate Behavioral Model * [Enable Message Filtering

Show Clock Report -
Show Failing Constraints BeportRame Status Generated Errors Warnings Infos

Show Warnings Synthesis Report Current Sat Feb & 13:41:08 2020 0 0 0
[T Show Errors

o]

Translation Report

Map Report

Alame wmd Mmisbm Mk 7l
Start | B Design | [] Fles | [Lbraries| | © Design Summary ﬂJ
Cansole 08
+§) INFO: HDLCompiler: 1061 - Parsing VHDL file "G:/DSD/gates/gatexor.vhd" into library work #f
@INEO:P?a]eccHgmt - Parsing des1anh1erarchy completed succesafully. Tramscript Window

Launching Design Summary/Report Viewer...

Ll F——
] Conoe |© Eros | 1\ Wamngs | i@ Frd mFies Ress |

For creating new project first go to File Menu and close previous project.

Then below window will appear

F -. ' Sowrce Process 'lnnh_'ﬂ'ndwn Layout Help : :
DAHF L[abx|vwa| [frpa rRAEI=s o Ffeier ¢
Start 08 x|

Weelcomee bo the TSEE Design Swoite
PTopect COmmands

e f e —
riew Progect.... | Open Exampe.... |

RECEr DF OIS

Droublie chok om a project in B kst below: bo open
tejas
teja

nehs

LB AN

Firdl in Files Resuits =08 =
Fi 12O
Mo Search Results

To create a new project:

GPA

6X513 DSD using VHDL

Select New Project. The New Project Wizard appears

In the Name field, enter your project name and enter the location where you want to create the
project in the Location field (NOTE: don’t use ¢ drive or desktop). In the Top-Level Source
Type select HDL and click Next.

Create New Project

Specify project location and type.

Enter a name, locations, and comment for the project

Name: gates |
Location: G:\DSD\gates =)
Working Directory: |G:\DSD\gates ™
Description:

Select the type of topdevel source for the project

Top-evel source type:

HDL [~

Click on Next then below window will appear

GPA

6X513

Project Settings

Spedfy device and project properties.

Select the device and design flow for the project

DSD using VHDL

Property Mame

Evaluation Development Board

Value

Mone Specified

Product Categaory

All

Family Spartani -
Device HCASLX1G -
Package C5G324 -
Speed -3 -
Top-Level Source Type HDL -

Synthesiz Tool
Simulator
Preferred Langquage

X5T (WHDL Verilog)

ISirn (WVHDL Verilog)

Property Specification in Project File

Store all values

Manual Compile Order
VHDL Source Analysis Standard 'VHDL-93 [«
Frnahle bescane Filberinn [i

A Device properties window given in Figure will appear. Fill in the properties in the table as

shown below:
=~Product Category: All
=~Family: Spartan6
~Device: XC6SLX16
~Package: CSG324

=~Speed Grade: -3

=~Top-Level Source Type: HDL

=~Synthesis Tool: XST (VHDL/Verilog)

=Simulator: 1Sim (VHDL/Verilog)

=Preferred Language: VHDL

GPA

6X513 DSD using VHDL

Click on Next then below window will appear which contains all the summary of our Project
Wizard.

Project Summary

Project Mavigator will create a new project with the following specdifications.

Project:
Project HName: gates
Project Path: G:2\DSDWgates
Working Directory: G:WwWDSDWwgatces
Description:
Top Lewvel Source Type: HDL

Device:
Device Familwy: Spartané
Device: xoEslxle =
Package: oc=sg3zZ2a 1
Spead: -3

Top—Lewvel Source Type: HDL
Synthesis Tool: XST (VHDLVerilog)
Simulator: ISim (VHDL/Verilog)
Preferred Language: YVHDL

Property Specification in Project File: Store all walues
Manual Compile Order: false
WHDIL Source Analysis Standard: VHDL-—23 Click on Finish

Pl o o W A At oG orwer = P BT e e | \ i
| [Fmen | canea] |

Click on Finish then below window will appear.

After that select FPGA 1C symbol and write click on that. Then click on New Source

File Edit View Project Source Process Tools Window Layout Help
DPEH@ s Dx|wal -z
|Design 08 x|

[| View: © 18} implementation) ff] Simulation

{z] | Hierarchy e

=3

s Empty View -

i Py [] Mew Source...

= The view currently contains no fileS (=] Add Source..

&l You can add files to the project

using the toolbar at left, commands (2] Add Copy of Source...

: from the Project menu, and by

P using the Design, Files, and Manual Compile Order

= Libraries panels.

m B Implement Top Module

Use:
File/Path Display »

| b BefEm Expand All

¢ | No single design module s selected. Collapse All

& Design Utilities

3 ¥ ? By Find... Ctrl+F
% Design Properties...

jui|

= St | B8 Design |U[) Fles | [Ubraries|

Consale

GPA

6X513 DSD using VHDL

Create New Source window given in Figure- will appear. Select VHDL module, and specify the
file name in appropriate field as shown in figure- and Click Next.

Select Source Type

Select source type, file name and its location,

" [P [CORE Generator & Architecture Wizard)
] Schematic

¥ Systern Generator Project

=] User Document

Verilog Module Select VHDL Modyle
. File name: —
Give File Mame
|gatemr|
Locanon:
|G:‘IDSD‘|.gates‘l.ipcore_dir | [;]

Add to project

Click on Next —I-I Next I Cancel

In the Define Module specify I/O port name and direction. Click Next button to
display Summary and click Finish.

GPA

6X513 DSD using VHDL

Define Module
You can change architecture name from here.

Specify ports for module.
Entity name |gatexor f

I Architecture name |Behav1'oral|

Port Mame Direction

5

Y

Selectinput and cutput according to

(] H +
FTTETT T A =Irr=rTt

OOOO0OOOO000 e

Click on next e

Summary

Project Mavigabtor will create a new skeleton source with the following specifications.

Add to Project: Yes

Source Directory: G:\DSD'gates
Source Type: VHDL Module
Source Mame: gatexor. vhd

Entity name: gatexor
Architecture name: Behawvioral
Port Definitons:

e Pin in
B Fin in
ral Fin out

[Frsn]| cancer |

Newly created Source will appear as gatexor.vhd

GPA

6X513 DSD using VHDL

[£] File Edit Wiew Project Source Process Tools Window Layout Help

ORI o w DD x| woa| -2 a@msa ~RIR =8m=[8] F= 2%
|Design ~ 0O & x| 1= —
[|view: @ 35 Implementation) [simulation ER-)
2o
=] [ierarchy oy
gates - 22
=} £ xeosbas-3esgaza . = 53 -- Uncomment the following library declaracion if using
il [%3l% gatexor - Behavioral (gatexonvhd) 24 —— arithmetic functions with Signed or Unsigned values
=l - 2s ——use IEEE.NUMERIC STD.ALL:
— 2s
o 27 —— Uncomment the following library declaration if instantiatcting
—g 28 — any Xilinx primictives in this code.
= 2o ——library UNISIM:
= % 30 —-use UNISIM.VComponents.all:
- e s1
< 1 B 52 entity gate=or is
> a3 Pore (A :
b | T2 Mo Processes Running =3 P = :
5% | Processes: gatexor - Behawioral b 35 =
- s& end gatexox:
Elx‘i: = Design Summary/Reports .
Design Utilities ET architecture Behavioral of gatexor is
«I: User Constraints o
f— [&) Synthesize - XST .
o T2 Implerment Design T === _____» Edityour Program and then Click on Save
[&) Generate Programming File am z «— A mor B
j==Y Configure Target Device Ao
o Analyze Design Using ChipScope an P —————
45
a i
= Start | =13 Design | U4 Files | [0 Librares| | [2) gatesor.vhd B[= Design Summary
Console
i) INFO:HDLCompiler:1061 — Parsing VHDL file "G:/DSD/gates/gatexor.vhd” inte library work
i INFO: ProjectMgmt — Parsing design hierarchy completed successfully.

“ Wi
Conscle | @D Errors |t Warnings | (@4 Find in Files Results |

Write your program in Archetecture Body after “begin” then Save it & Check Syntax.

Lo I5E Project Navig '

File Edit View Project Source Process Tools Window Layout Help

DAEF [sbobxlval 2288 2RI00

«08x [18 --

EEREIPTITE YK

B) B smulation 19
R — 20 library IEEE;
&g | Hierarchy 21 use IEEE.STD LOGIC_1164.ALL;
gates o | 22
- 23 -- Uncomment the following library declaration if using
i:ti:t gatexor-Eehavioral(gataor.\rh.l 24 -—- arithmetic functions with Signed or Unsigned values

25 -—-use IEEE.NUMERIC STD.ALL;

!

N o 27 -- Uncomment the following library declaration if instantiating
Select this file

28 -- any Xilinx primitives in this code.
29 --library UNISIM:
30 --use UNISIM.VComponents.all;

| 1 | » 32 entity gatexor is

33 Port (& : im 5TD LOGIC;

@O ¥ ¥ & |5

L 2 NoProcesses Running 34 B : in STD LOGIC;
'?t Processes: gatexor - Behavioral o 35 Z ¢ out STD_LOGIC):
- 36 end gatexor;
Eft Des!gn SulrnlmaryfReports 37
el Design Ut|||t|gs 38 architecture Behavioral of gatexor is
Ert [User Constraints ag
- e ynthesize - E ;
T - . 3 40 begin
= View RTL Schematic a
View Technology Schematic _
2 42 2 <= b xor B; Double Click on Check Syntax
T3 -
""" X 44 end Behavioral;
B f2 Implement Design ag
-2 Generate Programming File . ™

r
|’ Start | B3 Design | U] Fles ||E Lforan'es| gatexor.vhd m| p Design Summary X

Console

i) INFO:HDLCompiler:1061 - Parsing VHDL file "G:/DSD/gates/gatexor.vhd" into library work
i) INFO: ProjectMgmt - Parsing design hierarchy completed successfully.

Double Click on View RTL Schematic

GPA

6X513 DSD using VHDL

File Edit View Project Source Process Tools Window Layout Help

DAEF L [4DbXxva]| 2 #2288 2Q]
|Deann '-'E!ﬁ'x| 4 18 -—-

i:l_:i:E Implementation

View Simulation & 19

D — 20 library IEEE;
dg] | Hierarchy 21 use IEEE.STD LOGIC 1164.ALL;
gates “ Za
- £ webshd6-3csg32e 23 -- Uncomment the following library declaration if using

- [iglsi%s gatexor - Behavioral (gatexorvh 24 -- arithmetic functions with Signed or Unsigned values
25 —--use IEEE.NUMERIC STD.ALL;

27 -- Uncomment the following library declaration if instantiating
28 —— any ¥ilinx primitives in this code.

29 --library UNISIM:

30 --use UNISIM.VComponents.all;

H|& 8 || g

< LI} | » 32 entity gatexor is

33 Port (& : in STD LOGIC;

CIRRER R RIIE

: €2 Mo Processes Running 34 B : in STD LOGIC:
T | Processes: gatexor - Behavioral i e Z i out STD_LOGIC):
- 36 end gatexor;
E’I: = Design Summary/Reports 37
o | B Design Utllm_e; - 38 architecture Behavioral of gatexor is
ETI: - User Constraints Double Clicl =
m &2 E 40 begin
= 41
1= iew Technology Schematic 42 7 <= & xor B:
2@ Check Syntax 23
P2 Generate qut—Synthe;is Sl 24 end Behavioral:
@ 82 Implement Design o
P2 Generate Programming File P =

o
|’ Start | B Design | U] Files ||E Ll'bran'es| gatexor,vhd m| E Design Summary D]

Console

Eirocess "Check Syntax" completed successfully I

After that below window will appear then Choose second checkbox and click on ok.

Lo ISE Project Navig 5. XISE =

File FEdit View Project Source Pro Tools Window Layout Help
DAEP [4nEXx|vwal 2 2,20 2RIF RS0, PCLQ
|De5iqn +04a Xl 4 18 -
T View: ﬁl} Implementation (0 Simulation & 19
Ej Lerarchig _— 20 library E:;
s - T ——
\[.ié| : gates = 22 a Set RTL/Tech Viewer Startup Mode
—— | = £ xcBshd6-3csg3zd 23 -— Uncom
= % gatexor - Behavioral (gatexorvh, 24 -— arithi N)
= a 25 ——use TE Select how the RTL/Tech Viewer behaves when it is initially invoked
i‘J - 26 Startup mode
A 27 -- Uncom
B % 28 —- any X Start with the Explorer Wizard
29 --lib
— % 30 ___J:EI;; In this mode, the Explorer Wizard is the initial screen, and allows
—
4 xg 31 you to select the elements that you want to see on the initial
o< (T » 6 32 entity gd schematic
33 Port
R : View RTL Schemati ;
: (* oo emane @ 34 Start with a schematic of the top-level block
. - A= 35
o P_'ME“E;‘ Saloopibchavion) 36 =end gated In this mode, the Explorer Wizard is bypassed and an initial
e i, Design Summary/Reports 37 schematic is created with only the top-level block displayed. You can
% Design Utilities 38 architec then use the logic expansion capabilities of the Viewer to start
el User Constraints 39 expanding from the top-level block
- | B 22D Synthesize - XST =] 20 begin
= View RTL Schematic a1
gl:w:eschnology Schematic 42 Z <= & =
Ega pu ec tyr';ta;ct Sunthesic § 43 You can also change the startup mode by selecting Edit->Preferences under
e Impl:mn:;\at E}a:gn yrne S 42 end Behap sk acbieviegnage
45
.- #2 Generate Programming File
& Conf Tarast N, ok J Ul
|’ Start | B Design ‘ I Files | I Lﬂxanes‘ i Show this dialog on startup
Console |

Process "Synthesize - XS5T" completed successfully

Started : "Launching RTL Schematic Viewer for gatexor.ngr™.

GPA

6X513 DSD using VHDL

RTL Schematic Window:

b ISE Project Navig 5 X
) File Edit View Project Source Process Tools Window Layout Help HEE
RS IR xwa| JroRB 2~ mExzselrcele
Design ©D & x| Iy o Clickl R to 2l
el . Click T Z full view
[| view: @ {8} mplementation ©) [smulaton (7] fekhere for zoom to Tullvi=
(2] | Hierarchy =
& & gates ==
| & £ xcbshdf-3csg32
2|7 R sntocr- Behavior! gsteromh g ate XOr
] 0 ' ‘
A z
[i] »
) 1A B 1.Double Click here for
:) B T Signal/ Internal Diagram
T{; | Processes: gatexor - Behavioral Sl
F| ~E Design Summary/Reports . ‘
= Design Utilities ®
2 User Constraints
== E

P
TED synthesize - XST .
e gatexor
View Technology Schematic
2@ Check Syntax 8
) Generate Post-Synthesis Si.. ||
T2 Implement Design
¥) Generate Programming File

7Y £i Tarnat D
‘, Start | Ei$ Design |Lu'j Files |® Libraries gatexor.vhd [z Design Summary (Synthesized) B gatexor (RTLZ) [x] ‘
View by Category w08 x
Design Objects of Top Level Block Properties: (Ho Selection)
Instances Pins Signals Name Value
& gateor

Console |0 Errors |‘_l_\, Warnings |z§i Find in Files Results ‘ [view by Category ‘

Double click on Block Diagram then internal diagram will appear..

We can also check Technology Schematic by choosing below option of View RTL schematic in
Process Window. Here we can see Schematic, Symbol, Equation and K-map by double clicking
on Xor Symbol.

]

r
v LUT Dialog

- - - - -
LUT2_6
INIT = 6

Schematic |[[Egquatien]| Frothmabi=] | Isarnaugh Map § |

| o [_me]

he

Click the Simulation Check Box then Right Click on VHDL File Name.

10
GPA

6X513 DSD using VHDL

;; File Edit Wiews Project Source Process Tools Windoww Layowt Helg

D2EHP] [xDbx|woe| »[» o ~RIF =
IDesign A [A1 o=
Wieww: (0 I!:&:E Implemen‘lz:tiq'! [«

Behawioral -

Simulation

Hierarchy
gates
= ETH xcBshdl6-3csg324
l i gatexor - |iehawvioral (gatexorwvk

4
I

Bf Mew Sowrce... |
Add Source... .
Click on

Add Copy of Source... Mleaws Sou

i

Right Cliclk *

i

158 || RhE

O pen

Remowe

0

Simulate Behawvioral Model

Expand All
Collapse All

" T2 Mo Processes Running Manual Compile Order
=
I?!t: Processes: gatexor - Behawioral g SeiES LER L EELLE
E;t: E}ﬁ' ISim Simulator SmartGuide...
——— o2 Behawioral Check Syntax File/Path Display o
= |
M

Find... Ctrl+F

i)
Dresign Properties...
[

Source Properties...

& Start | B2 Design | I Files | [Librares|TT=] gatexervha

Q File Help EE'E

Edit View Project € C s Window Layout

DBHFILdnExlve [228B B menzlselrze)g
| Design ~08 x| L
[H | View: © {8} Implementation r _
& Behavioral (0 u
Hierarchy .
" & # New Source Wizard
o | 8 ot matawAnr
#i (= £ xcbshd6-3csgI24 QD
g E gatexor - Behavioral (gatexorvhd) E Select Source T)‘PE
2] DH Select source type, file name and its location.
B a [l BMM File
= @ ChipScope Definition and Connection File
m i [] Implementation Canstraints File 1
ot [IP (CORE Generator & Architecture Wizard)
A MEM File
| B2 Mo Processes Running E [2] Schematic File names
= N # System Generator Praject
4! | Processes: gatexor - Behavioral e [£] User Document ‘abd
S| =% Tim Simulator (€] Verilog Module ocaton:
— ~P) Behavioral Check Syntax (5] i Verilog Test Fixture
| B8 SimulsteBehavioral Model | [VHDL Module |G \psDigates | ()
— _ [VHDL Library
m ~ [e] VNI Package
- [L] VHDL Test Bench
2 2% Embedded Processor
Add to project
"swt‘ﬂmnss@n|® Hesl'h\.ixaﬂes“% | [W] IT”—]I m
‘mew by Category d +04g x
Design Objects of Top Level BIOCK (o
Instances “ | |Pins || Signals - Mame T Value
& gatesor

Console |° Ermrsl_ﬁ Warnings |E'ﬁ Findin Files Results | [View by Category

11
GPA

6X513 DSD using VHDL

Check Syntax of new file generated by Test-bench Module

ISE Pro)

Sz [

File Edit View Project Source Process Tools Window Layout Help
o2 | | @
Design 08 X

view: () JF mplementation @[] Simuiation
5| Behavioral -

H‘EJ Hierarchy
—| - gates
= EF xchshd6-3csgI2d
=[] abc - behavior (abc.vhd)
I uut - gatexor - Behavioral (gate|

m

ect this File

&
]

gatexor

< . 5

€2 No Processes Running

Processes: uut - gatexor - Behavioral

5 % ISimSimulator
Behavioral Check Syntax

Simulate Behavioral Model

Double Clig

TR

mplementation

« T »

& Stert | B8 Desgn | U] Files | (Y Libraries gatexor.vhd %, Design Summary (Synthesized) & gateser RTL2) abe.bmm abc.vhd B

View by Category 08 x
Design Objects of Top Level Block Properties: (No Selection)

Instances Pins Signals Name Value

& gatexor

console | @ Errors | Y Warnings | (4 Findin Files Results

View by Category

Change the value which is undefined by right clicking on it. Go to Force Constant. Give value
according to truth table. Click on Run then output will appear.

£l ISim (P.20131013) - [Defaultwcfg]

7 File Edit View Simulsion Window Lsyout Help
DAL ¥DEX®|w oM@ O BAT IR ALELA|IRwax|t =@ »)X Los]r]b || |[@retann

Instances and Processes + 08 x| Objects 08 x
Simulation Objects for gatexor

()

Instance and Process Name D
B gatexor g/ Object Name Value . CtrleX
9 std_logic 1164 st La T , AR CirleC
mb U - i)
L2 T Paste Ctrl+V
Delete Del
Find... Ctrl+F
Radix
Signal Color
Divider Color
#| Go To Source Code
4 I » dl
£ mnstanc. Memory | =] Source .| | « = =] Default. wfg [x]
Console +08 X

15im P.20131013 (signature OxBef4fb42)
This is & Full version of ISim.

Time resolution is 1 ps

Simulator is doing circuit initialization process.
Finished circuit initialization process.

1Sim>

& console || Compiationlog | @ Breakpoints | (3§ Findin FlesResults | fy SearchResults

12
GPA

6X513 DSD using VHDL

PR

ISim (P.20131013) - [Default.weig]

DR ¥DOX® 0 oW
Instances and Processes + O & x| [Objects
Simulation Objects for gatexor

- GEEEDED @

Instance and Process Name

B oatexor gi| Object Name Value
@ std_logic 1164 st ga u
bb u
@z u
Enter parameters below to force the signal to a constant
value. Assignments made from within HDL code or any
previously applied constant or clock force will be
overridden.
Signal Name: Jgatexarfa
Value Radix Binary
Force to Value: 1
Starting at Time Offset: 0
Cancel after Time Offset:
P i v o
£ Instanc Memory | 2] Source .| | « m N= Default.wcfg [x]
Console ~+0& x

1Sim P.20131013 (signature 0x8ef4fb42)
This is a Full version of ISim.

Time resolutionis 1ps

Simulator is doing dircuit initialization process.
Finished dircuit initialization process.

1Sim>

B Console ||| Compiationlog | @ Breakpoints | @4 Findin FiesResults | gy SearchResults

ISim (P.20121013) - [Defaultwerg]
File Edit View Simulation Window Layout Help n

O2HE| % g B ® o o |) T 7 ! [9 Redaunch |
Instances and Processes 0 & x|[objecs
Simulation Objects for gatexor

- EEERED @

Instance and Process Name

1} oatexor gi|| Object Name Value
@ std_logic 1164 st La o
@b [
@ z o
§17772us
« i v i
£ Instanc... Memory T = = —— o

CONCLUSION:

Signature of Teacher

13
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 2
AIM: To simulate logic gates using VHDL.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal computer.
THEORY:
Logic gates are classified in three categories as follows:
1. Basic gates (AND gate, OR gate, & NOT gate)
2. Universal gates (NAND gate and NOR gate)
3. Exclusive OR (Ex-OR) and Exclusive NOR (Ex-NOR) gate.
A) AND gate:

The AND gateis a basic digital logic gate that implements logical conjunction - it
behaves according to the truth table shown below. A HIGH output (1) results only if all the
inputs to the AND gate are HIGH (1). If none or not all inputs to the AND gate are HIGH, a
LOW output results. The function can be extended to any number of inputs.

Table 2.1: Truth table of AND gate.
INPUT | OUTPUT

A | B |AANDB
010 0
0|1 0
1|0 0
1)1 1

-

Fig. 2.1: Symbol of AND gate.

B) OR gate:

The OR gateis a digital logic gate that implements logical disjunction — it behaves
according to the truth table given below. A HIGH output (1) results if one or both the inputs to
the gate are HIGH (1). If neither input is high, a LOW output (0) results. In another sense, the

14
GPA

https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Truth_table

6X513 DSD using VHDL

function of OR effectively finds the maximum between two binary digits, just as the
complementary AND function finds the minimum.

Table 2.2: Truth table of OR gate.

INPUT | OUTPUT
A| B | AORB
00 0
0|1 1
1|0 1
1)1 1

A

B Q

Fig. 2.2: Symbol of OR gate.

C) NOT gate:

In digital logic, aninverter or NOT gateis alogic gate which implements logical
negation. The truth table is shown on the right.

Table 2.3: Truth table of NOT gate.

Input | Output

A | NOTA
0 1
1 0

A—[>O— out

Fig. 2.3: Symbol of NOT gate.

D) NAND gate:

In digital electronics, a NAND gate (NOT-AND) is alogic gate which produces an
output which is false only if all its inputs are true; thus its output is complement to that of
an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any
input is LOW (0), a HIGH (1) output results. The NAND gate is significant because any boolean

15
GPA

https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_negation
https://en.wikipedia.org/wiki/Logical_negation
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Boolean_function

6X513 DSD using VHDL

function can be implemented by using a combination of NAND gates. This property is
called functional completeness. It shares this property with the NOR gate. Thus NAND and NOR
are called as universal gates.

Table 2.4: Truth table of NAND gate.

INPUT | OUTPUT
A | B |ANANDB

I =1=)
R o »r| ©
o | K| K~

.lﬂi._
e

Fig. 2.4: Symbol of NAND gate.

E) NOR gate:

The NOR gate is a digital logic gate that implements logical NOR - it behaves according
to the truth table given below. A HIGH output (1) results if both the inputs to the gate are LOW
(0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of
the negation of the OR operator. It can also in some senses be seen as the inverse of an AND
gate. NOR is a functionally complete operation—NOR gates can be combined to generate any
other logical function. It shares this property with the NAND gate. By contrast, the OR operator
is monotonic as it can only change LOW to HIGH but not vice versa.

Table 2.5: Truth table of NOR gate.

INPUT | OUTPUT
A | B |ANORB
00 1
01 0
1|0 0
1)1 0

16

GPA

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/NOR_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Functionally_complete
https://en.wikipedia.org/wiki/NAND_gate
https://en.wikipedia.org/wiki/Logical_disjunction

6X513 DSD using VHDL

A

Fig. 2.5: Symbol of NOR gate.

F) EX-OR gate:

EX-OR gate is a digital logic gate that gives a true (1 or HIGH) output when the number
of true inputs is odd. An EX-OR gate implements an exclusive or; that is, a true output results if
one, and only one, of the inputs to the gate is true. If both inputs are false (0/LOW) or both are
true, a false output results. EX-OR represents the inequality function, i.e., the output is true if the
inputs are not alike otherwise the output is false. A way to remember EX-OR is "must have one
or the other but not both".

EX-OR can also be viewed as addition modulo 2. As a result, EX-OR gates are used to
implement binary addition in computers. A half adder consists of an EX-OR gate and an AND
gate. Other uses include subtractors, comparators, and controlled inverters.

Table 2.6: Truth table of EX-OR gate.
INPUT | OUTPUT
A | B | AEX-ORB
0

00
0|1 1
110 1
111 0

Fig. 2.6: Symbol of EX-OR gate.
G) EX-NOR gate:

The EX-NOR gate is a digital logic gate whose function is the logical complement of the
exclusive OR (EX-OR) gate. The two-input version implements logical equality, behaving
according to the truth table to the right, and hence the gate is sometimes called an "equivalence
gate”. A high output (1) results if both of the inputs to the gate are the same. If one but not both
inputs are high (1), a low output (0) results.

17
GPA

https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Adder_(electronics)#half_adder
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/XOR_gate
https://en.wikipedia.org/wiki/Logical_equality

6X513

Table 2.7: Truth table of EX-NOR gate.
INPUT OUTPUT

A | B |AEX-NORB
0O 0
0|1 1
110 1
11 0

Fig. 2.7: Symbol of EX-NOR gate.
PROGRAM:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity logicgates 1is

Port (a,b : in STD LOGIC;

y : out STD LOGIC VECTOR (6 downto 0));

end logicgates;

architecture Behavioral of logicgates is
begin

y(0)<= a AND b;

y(l)<= a OR b;

y(2)<= NOT a;

y(3)<= a NAND b;

vy (4)<= a NOR b;

y(5)<= a XOR b;

y(6)<= a XNOR b;

end Behavioral;

18
GPA

DSD using VHDL

6X513 DSD using VHDL

RESULTS:

RTL Schematic of All Logic Gates

1%&5 lons L 2z|so _a 480ns L 720 L 960 ns o 1200

Wa 1 | [|
T e I S—

B @y 2 {w ¥ o { s ¥ # Y ®» ¥ o ¥ & X # { 2 ¥ © ¥ o { @
o) o | L T] — —
we o+ T 1]

M R — lﬁl—] [_]l_

3 v

2 o |] [I]

o Wi 1

[IR — — —
19

GPA

6X513 DSD using VHDL

CONCLUSION:

Signature of Teacher

20
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 3
AIM: Simulate half adder using VHDL.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:

An adder is a digital logic circuit in electronics that implements addition of numbers. The
half adder circuit has two inputs: A and B, which add two input digits and generate a carry and
sum. By using half adder, you can design simple addition with the help of logic gates.

Half Adder Truth Table
Table 3.1: Truth Table of Half Adder

Inputs Outputs
A B Sum | Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
The reduced equation is given by
Sum=A@B
Carry= A.B

The half-adder is useful when you want to add one binary digit quantities. A way to
develop two-binary digit adders would be to make a truth table and reduce it. When you want to
make three binary digit adder, do it again. When you decide to make a four digit adder, do it
again. The circuits would be fast, but development time is slow. Logic realization of half adder
using gates is shown below.

Ao
Beo

S

C

Fig 3.1: Half adder using logic gates.

21
GPA

https://www.elprocus.com/different-types-of-digital-logic-circuits/

6X513

PROGRAM:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity ha is
port (a,b : in std logic;
sum ,carry : out std logic);
end ha;
architecture hha of ha is
begin
sum <= a XOR b;
carry<= a AND b;
end hha;
RESULT:
RTL Schematic of Half Adder.

ha

N

'P’
A CARRY
B SUM
h

A

22
GPA

DSD using VHDL

6X513 DSD using VHDL

Stimulated Behavioral Model of Half Adder.

3.684387 us

CONCLUSION:

Signature of Teacher

23
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 4
AIM: Simulate Full Adder using Following Modelling Styles of VHDL.
1. Dataflow modelling.
2. Behavioral modelling.
3. Structural modelling.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:

This adder is difficult to implement than a half-adder. The difference between a half-
adder and a full-adder is that the full-adder has three inputs and two outputs, whereas half adder
has only two inputs and two outputs. The first two inputs are A and B and the third input is an
input carry as C-IN. When full-adder logic is designed, you string eight of them together to
create a byte-wide adder and cascade the carry bit from one adder to the next. The output carry is
designated as C-OUT and the normal output is designated as S.

Table 4.1 Truth Table of Full Adder.

Inputs Outputs
A B Cin | Sum | Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Reduced logical expression is given by
Sum= APBHCin
Cout= A.B+B.Cin+A.Cin

24
GPA

6X513 DSD using VHDL

Logic realisation using gates is shown below

R B —

N C
'7’_._../’ out

uioe

Fig 4.1: Full adder using logic gates.

CARRY IN UM
o P Half 5 oS
Adder
Po— w1 70 CARRY OUT
Adder OR
Q o——0 co
Fig 4. 2: Full adder using half adder.
PROGRAM:

1. Using Dataflow modelling:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity fulladder is

Port (a,b,c : in STD LOGIC;

s,cy : out STD LOGIC);

end fulladder;
architecture Behavioral of fulladder is
begin
s<= a XOR b XOR c;
cy<= (a AND b) OR (b AND c) OR (a AND c);

25
GPA

6X513

end Behavioral;

2.

GPA

Using Behavioral modelling:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity fulladd is
Port (a : in STD LOGIC VECTOR(2 downto 0);

s : out STD LOGIC VECTOR(1 downto 0));

end fulladd;

architecture Behavioral of fulladd is
begin

process (a)

begin

if (a="000") then s<="00";
elsif (a="001") then s<="10";
elsif (a="010") then s<="10";
elsif (a="011") then s<="01";
elsif (a="100") then s<="10";
elsif (a="101") then s<="01";
elsif (a="110") then s<="01";
else s<="11";

end if;

end process;

end Behavioral;

Using Structural modelling:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL;

26

DSD using VHDL

6X513

GPA

entity ha is

port (a,b : in std logic;

sum ,carry : out std logic);
end ha;

architecture hha of ha is
begin

sum <= a XOR b;

carry<= a AND b;

end hha;

library IEEE;

use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity orgate is

port (a,b : in std logic;

y : out std logic);

end orgate;

architecture gate of orgate is
begin

y <= a OR Db;

end gate;

library IEEE;

use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity fulladderstru is

Port (a,b,c : in STD LOGIC;

sum, carry : out STD LOGIC) ;

27

DSD using VHDL

6X513 DSD using VHDL

end fulladderstru;
architecture Behavioral of fulladderstru is
component ha
Port (a,b : in STD LOGIC;
sum, carry : out STD LOGIC) ;
end component;
component orgate
Port (a,b : in STD LOGIC;
y : out STD LOGIC);
end component;
signal sl,s2,s3: std logic;
begin
hal: ha port map(a=>a,b=>b, sum=>sl,carry=>s2);
ha2: ha port map(a=>sl,b=>c, sum=>sum, carry=>s3) ;
org: orgate port map(a=>s3,b=>s2,y=>carry);
end Behavioral;

RESULT:

RTL Schematic of Full Adder in Dataflow Modelling

28
GPA

6X513 DSD using VHDL

Stimulated Behavioral Model of Full Adder in Dataflow Modelling

Now:

1100 ns |Dns | | | ZTO | | | 440|ns | | | GE‘SG | | | 880|ns | | | 100
@ [1 1 1]
LI e R B

Me 0 l I

s (i L I

Yoo oo [| [| | |

RTL Schematic of Full Adder in Behavioral Modelling

Stimulated Behavioral Model of Full Adder in Behavioral Modelling

Now. 0 u

s T T T T T O OO A I
oy 7 0 W
) LR |

 EUE | | |
T I B A
oty 3 0 | 2 O {

g | I

o [

29
GPA

6X513 DSD using VHDL

RTL Schematic of Full Adder in Structural Modelling

@73 carry —a carmy
@—b sum b sum sum
[
2 y
b

Now:
0ns 20 0ns 60 880 ns 1100
M T T L T
biE 1
e 0
R | |
Yam 1
ey 0

CONCLUSION:

Signature of Teacher

30
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 5

AIM: A] Simulate 8:1 multiplexer using VHDL.

B] Simulate 1:8 de-multiplexer using VHDL.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:
Multiplexer:

In electronics, a Multiplexer (or Mux), also known as a data selector, is a device that
selects between several analog or digital input signals and forwards it to a single output line. A
multiplexer of 2" inputs has n select lines, which are used to select which input line to send to the
output. Multiplexers are mainly used to increase the amount of data that can be sent over
the network within a certain amount of time and bandwidth. Multiplexers can also be used to
implement Boolean functions of multiple variables.

An electronic multiplexer makes it possible for several signals to share one device or
resource, for example, one A/D converter or one communication line, instead of having one
device per input signal.

8:1 multiplexer has 8 inputs, 3 select inputs and one output. Mux will select the input to
be connected to output according to selection of select lines. Figure below shows the block
diagram of 8:1 mux with truth table.

lo —»
I —»
Iz —»
I —» : 7
ls —» MUX
Is —»
le —»
Iz —p]

111

Ao AW Az

Fig 5.1: Block Diagram of 8:1 mux.

31
GPA

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Digital_signal_(electronics)
https://en.wikipedia.org/wiki/Computer_networks
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/A/D_converter

6X513 DSD using VHDL

Table 5.1: Truth Table of 8:1 Mux

Select Inputs Output
A | A1 | Ao Z

| P P P O O ol o

| P O o k| | ol o

| Ol k| O k| O k|l o
=n

De-multiplexer:

A De-multiplexer (or De-mux) is a device taking a single input and selecting signals of
the output of the compatible mux, which is connected to the single input, and a shared selection
line. A multiplexer is often used with a complementary de-multiplexer on the receiving end.

1:8 De-mux has one input, 3 select inputs and 8 outputs. De-mux will connect input to
selected output where output selection is done using select lines. Figure below shows the block
diagram of 1:8 de-mux with truth table.

_-.lo
_...l.‘

—-.Iz

DEMUX > s

—als
— s

_-IT

Fig 5.2: Block diagram of 1:8 De-mux.

32
GPA

6X513 DSD using VHDL

Table 5.2: Truth Table of 1:8 De-mux.

Input Select Inputs Outputs

S S; So 17 ls Is l4 I3 I, I lo
D 0 0 0 0 0 0 0 0 0 0 D
D 0 0 1 0 0 0 0 0 0 D 0
D 0 1 0 0 0 0 0 0 D 0 0
D 0 1 1 0 0 0 0 D 0 0 0
D 1 0 0 0 0 0 D 0 0 0 0
D 1 0 1 0 0 D 0 0 0 0 0
D 1 1 0 0 D 0 0 0 0 0 0
D 1 1 1 D 0 0 0 0 0 0 0

PROGRAM:
Multiplexer:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

entity mux8istol is

Port (a : in STD LOGIC VECTOR(7 downto 0);

s : in STD LOGIC VECTOR (2 downto 0);
y : out STD LOGIC);

end mux8istol;

architecture Behavioral of mux8istol is

begin

with s select

y<= a(0) when "000",

a(l) when "001",
a(2) when "010",
a(3) when "011",
a(4) when "100",
a(5) when "101",
a(o6) when "110",
a(7) when "111",

'0'" when others;
end Behavioral;

33
GPA

6X513

De-multiplexer:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

entity demuxlto8 is

Port (a : in STD LOGIC;

s : in STD LOGIC VECTOR (2 downto 0);
y : out STD LOGIC VECTOR (7 downto 0));

end demuxlto8;

architecture Behavioral of demuxlto8 is

begin

process(a, s)

variable temp: std logic vector (7 downto 0);

begin

case s is

when "000" => temp := (a&'0'6'0'&'0'&'0'6'0'&'0"'&"
when "001" => temp := ('0'6a&'0'&'0'&'0'6'0'&'0"'&"
when "010" => temp := ('0'&'0'6a&'0'6'0'&'0'&'0'&"
when "011"™ => temp := ('0'&'0'&'0'&a&'0'&'0'&'0'&"
when "100" => temp := ('0'&'0'&'0'&'0'6a&'0'&'0'&"
when "101" => temp := ('0'&'0'&'0'&'0'6'0'&a&'0'&"
when "110" => temp := ('0'&'0'&'0'&'0'6'0'&'0"'&a&"
when "111" => temp := ('0'6&'0'&'0'&'0'&'0'6'0'&'0"
when others => temp := "00000000";

end case;
y<=temp;

end process;
end Behavioral;

RESULT:

RTL Schematic of 8:1 Multiplexer

2 O O O O O O O

Q

—_— — — ~— — ~— ~— ~—

Ne Ne Ne Ne Ne Neo N

~e

34
GPA

DSD using VHDL

6X513 DSD using VHDL

Stimulated Behavioral Model of 8:1 Multiplexer

1000 ns 0ns 2[|J0 400 ns 600 800 ns 1000

= X alro] 8 (95 X 200 X 15 X 29 X 23 X 15 X 16 X 168

= @ sl20]

sz

M sl]

Hsio]
My

Stimulated Behavioral Model of 1:8 De-Multiplexer

Now:
1200 ns 0ns 240 480ns 770 960 ns 1200

Ha

= & s[2:0]
A sz
M sl
& so)

= 0]
Ay
Myl
o ¥/
Myl
o LFE)
o B¥i!
o Ll
Ao

oic|a|lololo|a|lal el =gl

35
GPA

6X513 DSD using VHDL

CONCLUSION:

Signature of Teacher

36
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 6
AIM: Simulate Flip Flops using VHDL.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:

A flip flop is an electronic circuit with two stable states that can be used to store binary
data. The stored data can be changed by applying varying inputs. Flip-flops and latches are
fundamental building blocks of digital electronics systems used in computers, communications,
and many other types of systems. Flip-flops and latches are used as data storage elements. It is
the basic storage element in sequential logic.

Types of flip-flops:
1. RS Flip Flop
2. JK Flip Flop
3. D Flip Flop
4. T Flip Flop

Logic diagrams and truth tables of the different types of flip-flops are as follows:

1. S-RFlip Flop:
g — |
e o

CLK

(=]

B

R—

Fig 6.1: Circuit Diagram of SR Flip-Flop

37
GPA

https://electronicsforu.com/technology-trends/latest-storage-products

6X513

Table 6.1: Truth Table of SR Flip-Flop

Inputs Outputs
Clock Action
S R Qn+1 Qn+l’
0 X | X Qn Qv
No Change
1 01| O Qn Qv
1 0 1 0 1 Reset
1 110 1 0 Set
1 1|1 - - Undefined
2. J-K Flip Flop:
) o
CLK —
K — "0

Fig 6.2: Circuit Diagram of JK Flip Flop
Table 6.2: Truth Table of JK Flip Flop

GPA

Inputs Outputs
Clock Action

\] K Qn+1 Qn+l’

0 X X Qn Qn
No Change
1 0 0 Qn Qv
1 0 1 0 1 Reset
1 1 0 1 0 Set
1 1 1 Qn Qn Toggle
38

DSD using VHDL

6X513

3. D Flip Flop:
=\
D % J QrrQ
CLK > CLK
K QH-Q
& g
Fig 6.3: D Flip Flop Using JK Flip Flop
Table 6.3: Truth Table of D Flip Flop
Input Outputs
Clock Action
D Qn+1 Qn+1’
0 X Qn Qn’ | No Change
1 0 0 1 Reset
1 1 1 0 Set
4. T Flip Flop:
T [J Q\ Q
CLK > CLK
L

Fig 6.4: T Flip Flop Using JK Flip Flop
Table 6.4: Truth Table of T Flip Flop

GPA

Input Outputs
Clock Action
T Qn+1 Qn+1’
0 X Qn Qn” | No Change
1 0 Qn Qn’ | No Change
1 1 Qv Qn Toggle
39

DSD using VHDL

6X513 DSD using VHDL

PROGRAM:
//S-R FLIP FLOP//

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity srflipflop is
Port (s,r,clk,rst : in STD LOGIC;
g,gb : out STD LOGIC);
end srflipflop;
architecture Behavioral of srflipflop is
signal y: std logic;
begin
process (clk, rst)
variable sr: std logic vector(l downto 0);

begin
if (rst='1l') then y<='0"';
elsif (clk' event and clk ='1") then sr :=s & r;

case sr is

when "01" => y <= '0"';
when "10" => y <= '1"';
when "11" => y <= '0"';
when others => y <= y;
end case;

end if;

g<=y;

gb<= not vy;

end process;

end Behavioral;

// J-K FLIP FLOP//

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity jkflipflop is
Port (j,k,rst,clk : in STD LOGIC;
g,gb : out STD LOGIC);
end jkflipflop;
architecture Behavioral of jkflipflop is
signal y: std logic;
begin

40
GPA

6X513

process (clk, rst)

variable jk: std logic vector (1l
begin

if (rst='1l') then y<='0";

elsif (clk' event and clk ="'1")
case Jjk is

when "01" => y <= '0"';

when "10" => y <= '1"';

when "11" => y <= not vy;

when others => y <= y;

end case;

end 1f;
g<=y;
gb<= not vy;

end process;
end Behavioral;

// D FLIP FLOP//

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity dflip is

Port (d,clk,rst : in STD

g,gb : out
end dflip;

STD LOGI

downto 0);

then jk:=7 & k;

LOGIC;
C);

architecture Behavioral of dflip is

begin

process (clk, rst)

variable y: std logic;
begin

if (rst='1l') then y:='0";
elsif (clk' event and clk='1l")
end if;

a<=y;

gb<= not vy;

end process;

end Behavioral;

GPA

then y:=d;

41

DSD using VHDL

6X513 DSD using VHDL

//T FLIP FLOP//

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity tflip is
Port (clk,rst,t : in STD LOGIC;
g,gb : out STD LOGIC);
end tflip;
architecture Behavioral of tflip 1is
begin
process (clk, rst)
begin
if(rst='1") then g<='1l"';
gb<='0";
elsif (clk' event and clk='1l') then gb<=t;
g<= not t;
end 1f;
end process;
end Behavioral;

RESULT:
RTL Schematic of SR Flip Flop

— lclk q——

—r

—rst

— 18 qb—
42

GPA

6X513 DSD using VHDL
Simulated Behavioral Model of S-R Flip Flop
Now:
100ns ’0 ns 2210 440l ns 6?0 880’ ns 100
| | | [.
Ms 0
eI 0 |
M clk 1
st 0
P 00— []
Mad 1 —e—J—\—]
RTL Schematic of J-K Flip Flop
—clk qr——
—
—k
— rst qb ——
Simulated Behavioral Model of J-K Flip Flop
Now:
1100 ns |0 s ZTO M[ins thiﬁ 880|ns 10
| | I [
A 0
Mk 0 | |
Mrst 0
M ek 1
M | —— T
Mao | p——
43

GPA

6X513

RTL Schematic of D Flip Flop

— clk

— rst

Simulated Behavioral Model of D Flip Flop

DSD using VHDL

Now:
1100 ns

M
ek
Mt
b/l
b

| I - T
A
_ T T T
]
—
L]

GPA

RTL Schematic of T Flip Flop

— clk

— rst

gb

44

6X513 DSD using VHDL

Simulated Behavioral Model of T Flip Flop

Now:
1200 ns |0ns | 24|10 480ns] 720 | | 960 ns | 1 120
| | | | | |

Mok 1 4,—_ _J Q | |]
st 0

TR S B N —

I R e B

do 0 |]
CONCLUSION:

Signature of Teacher

45
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 7
AIM: Simulate 3 bit Binary Counter using VHDL.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:

3-Bit Binary Up-Down Counter:

The circuit below is of a simple 3-bit Up/Down synchronous counter using JK flip-flops
configured to operate as toggle or T-type flip-flops giving a maximum count of zero (000) to
seven (111) and back to zero again. Then the 3-Bit counter advances upward in sequence
(0,1,2,3,4,5,6,7) or downwards in reverse sequence (7,6,5,4,3,2,1,0).

Generally most bidirectional counter chips can be made to change their count direction
either up or down at any point within their counting sequence. This is achieved by using an
additional input pin which determines the direction of the count, either Up or Down and the
timing diagram gives an example of the counters operation as this Up/Down input changes state.

Nowadays, both up and down counters are incorporated into single IC that is fully
programmable to count in both an “Up” and a “Down” direction from any preset value producing
a complete Bidirectional Counter chip. Common chips available are the 74HC190 4-bit BCD
decade Up/Down counter; the 74F569 is a fully synchronous Up/Down binary counter and the
CMOS 4029 4-bit Synchronous Up/Down counter.

gy QA QB Qc
N ‘ —:
1 oA ﬁ_/ J QB —r J ac
UP.DOWN FFA FFB :I>{ FFC
—1 CLK CLK CLK
LK QA K QOB 1 L{ Qc |
P L:' —
ClockPulse

Fig. 7.1: 3-bit Binary Up-Down Counter

46
GPA

6X513

GPA

Table 7.1: Truth Table of 3-Bit Binary Up/Down Counter

UP/'DOWN

CLK

Qa

Qs

Qc

Oth

1St

2nd

3rd

o o o ol o o o o r| F Rl Pl PP P e

o O o o | | | | | P k| = O o o o

ol o r| R o o r| R R R, o o r R o o

ol r| o kR o R o r| R o KR o rl o R o

47

DSD using VHDL

6X513
T2 3 4 5 6 7 & 9 10 11 12
Clock
Pulzes
| | | | | | |
R/ | | : | | |
i INEEE I
' [| [[[[
!
gfj ﬁ;b}
|
| | | [|
QB
I | |
I | |
Qc : {msb)
1007 010 ©O11 100 011 010 001 000 111 000 001 010 O11
Cot 1 2 3 4 3 2 1 0 7 0 1 2 3
Fig 7.2: Timing Diagram for Up/Down Counter
PROGRAM:

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;
use IEEE. STD LOGIC UNSIGNED.ALL;
entity up counter is
Port (reset ,m: in STD LOGIC;
clk : in STD LOGIC;
g : out STD LOGIC VECTOR (2downto 0));
end up_ counter;
architecture Behavioral of up counter is
signal cout :std logic vector (2 downto 0);
begin
process (clk, reset,m)
begin
if reset='0"' then cout<="000";

else

48
GPA

DSD using VHDL

6X513

if (clk' event and clk='0"') then
if(m='1") then

if cout< 7 then cout<= cout+l;
else cout<="000";

end 1f;

else

if cout<= 7 then cout<= cout-1;
else cout<="111";

end 1f;

end 1f;

end 1f;

end 1f;

g<=cout;

end process;

end Behavioral;

RESULTS:
RTL Schematic of 3-Bit Binary Counter

binarycounter

Vv N
ck | q(2:0)

en

rst

A 4
binarycounter

49
GPA

DSD using VHDL

6X513

DSD using VHDL

Simulated Behavioral Model of 3-Bit Binary Counter

7337331
|ml 200 ns | 220 ns | 240 ns | 260 ns \ 280 ns \
1 reset 1
Wm 0
% 0 n L
p M q20) 000 000 00 0o ¥ oor i 0oo | 1L (1o i t0f) 100 f oft
18 ck period | 10000 ps 10000 p
CONCLUSION:
Signature of Teacher
50

GPA

6X513 DSD using VHDL

EXPERIMENT NO. 8
AIM: Implementation of 4 — Bit Left / Right Shift Register.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:

Flip flops can be used to store a single bit of binary data (1or 0). However, in order to
store multiple bits of data, we need multiple flip flops. N flip flops are to be connected in an
order to store n bits of data. A Register is a device which is used to store such information. It is a
group of flip flops connected in series used to store multiple bits of data.

The information stored within these registers can be transferred with the help of shift
registers. Shift Register is a group of flip flops used to store multiple bits of data. The bits stored
in such registers can be made to move within the registers and in/out of the registers by applying
clock pulses. An n-bit shift register can be formed by connecting n flip-flops where each flip flop
stores a single bit of data. The registers which will shift the bits to left are called “Shift left
registers”. The registers which will shift the bits to right are called “Shift right registers”. Shift
registers are basically of 4 types. These are:

Modes of operation:

1) Serial in parallel out (SIPO).
2) Serial in serial out (SISO).

3) Parallel in parallel out (PIPO).
4) Parallel in serial out (PISO).
Bidirectional Shift Register:

If we shift a binary number to the left by one position, it is equivalent to multiplying the
number by 2 and if we shift a binary number to the right by one position, it is equivalent to
dividing the number by 2.To perform these operations we need a register which can shift the data
in either direction.

Bidirectional shift registers are the registers which are capable of shifting the data either
right or left depending on the mode selected. If the mode selected is 1(high), the data will be
shifted towards the right direction and if the mode selected is O(low), the data will be shifted
towards the left direction.

The logic circuit given below shows a Bidirectional shift register. The circuit consists of
four D flip-flops which are connected. The input data is connected at two ends of the circuit and
depending on the mode selected only one and gate is in the active state.

51
GPA

6X513 DSD using VHDL

Mode control (M)

> \ - y
.M Input
Ve | | | ™o
oo L | [fri’ ”_Llff PR R “1
o @)@ 3)¢) 5)¢,)&
L‘l I'J | [‘J) ') 4
\ J \ /| \ J
] 1
>
&
D: Q: D: Q: LD; Q. D: Q:
FF-3 FF-2 . FF1 FF0

CLK |,

CLR

Fig 7.1 Bidirectional Shift Register with Mode Control
PROGRAM:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL;

entity shiftreg is

Port (d : in STD LOGIC vector (3 downto 0);

clk,dir,clr,lin,rin : in STD LOGIC;
y : out STD LOGIC vector (3 downto 0));

end shiftreg;

architecture Behavioral of shiftreg is

begin

process (clk,clr,dir,d)

variable temp: STD LOGIC vector (3 downto 0);

begin

if(clr="1"') then temp:="0000";

elsif (clk' event and clk='1l') then temp:=d;

if(dir="'1")then temp:=temp (2 downto 0)&lin;

else temp:=riné&temp (3 downto 1);

end 1f;

end 1f;

y<=temp;

52
GPA

6X513 DSD using VHDL

end process;
end Behavioral;

RESULT:
RTL Schematic of 4-Bit Shift Register

shiftreg
P N
da | — | vz

ck |
cr |
dir |
lin

| A

Simulated Behavioral Model of 4-Bit Shift Register

v B a0l

1§ =

1§ @

16 w

15 o
1 ak
1§ dir
-|!;] lr

1 tin

-|!;] rin
¥ B 50
s &
1% @
15 o

:

CONCLUSION:

Signature of Teacher

53
GPA

6X513 DSD using VHDL

EXPERIMENT NO. 9
AIM: Implement 32 bit ALU for any (Arithmetic / Logical) Function.
REQUIREMENTS AND APPRATUS:
1) Xilinx Software
2) Personal Computer.
THEORY:

A very popular and widely used combinational circuit is ALU which is capable of
performing arithmetic as well as logical operations. This is the heart of any circuit. The block
diagram is shown in figure 9.1. The functions of various input, output and control lines are given
below.

A: 32-bit data input. B: 32-bit data input.
Y: 32-bit data output. Op-code: 4-bit operation selects input.
En: Enable pin input

A (31:0) l l B (31:0)

—® Opcode (3:0)

—— | Enable

i Out

Table 9.1: Op-code Table for ALU Operations.

Op-code ALU Operation
0000 A+B
0001 A-B
0010 NOT A
0011 A*B
0100 A AND B
0101 AORB
0110 A NAND B
0111 A XORB

54

GPA

6X513

PROGRAM:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity alu is

Port (en : in STD LOGIC;

opcode : in STD LOGIC vector (3 downto 0);

a,b : in STD LOGIC vector (31 downto 0);
y : out STD LOGIC vector (31 downto 0));

end alu;

architecture Behavioral of alu is

signal result: std logic vector (31 downto 0);

begin

with en select

y<=result when'l',

(others=>'0"') when others;

with opcode select

result<=(a+b) when "0000",

(a=b) when "0001",

(not a) when "0010",

(a*b) when "0011",

(a and b) when "0100",

(a or b) when "0101",

(a nand b) when "0110",

(a xor b) when "0111",

(others=>'0"') when others;

end Behavioral;

55
GPA

DSD using VHDL

6X513 DSD using VHDL
RESULT:
RTL Schematic of Arithmetic and Logical Unit
— a(31:0) y(31:0) —
— 1 b(31:0)
—— 4 opcode(3:0)
en
Simulated Behavioral Model of Arithmetic and Logical Unit
Now.
500 ns 0ns 100 20008 30 400ns 500
I - [| || R
Yen 1
Aomnce) 3 0 i 1 \ L
Bty . fomdEe) RHEDN0 i DH4Q44DD
a3 () | i)
BBy 0 ¢ 0 T] L e) 0
CONCLUSION:

56
GPA

Signature of Teacher

6X513 DSD using VHDL

EXPERIMENT NO. 10

AIM: Simulate RAM using VHDL.

REQUIREMENTS AND APPRATUS:
1) Xilinx Software

2) Personal Computer.

THEORY:

Random-access memory (RAM) is a form of computer memory that can be read and
changed in any order, typically used to store working data and machine code.™™? A random-
access memory device allows data items to be read or written in almost the same amount of time
irrespective of the physical location of data inside the memory. In contrast, with other direct-
access data storage media such as hard disks, CD-RWs, DVD-RWs and the older magnetic
tapes and drum memory, the time required to read and write data items varies significantly
depending on their physical locations on the recording medium, due to mechanical limitations
such as media rotation speeds and arm movement.

Inputs and outputs required for the RAM designs are defined below:

1. CS: This is the chip select which is active high input.

N

RW: This is the read/write signal for RAM. RW=*1" for write cycle and RW= ‘0’ for read
cycle.

ADDR: This is the address bus. For 256 byte RAM, 8 bit address bus is needed.
DIN: This is Data bus of 8 bits used in write cycle as an input.

CLOCK: This input is meant to give the clock signal to RAM.

o g ~ w

DOUT: This is data bus of 8 bits used in read cycle as an output.

255 byte RAI

Fig. 10.1: Block Diagram of RAM

57
GPA

https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Random-access_memory#cite_note-1
https://en.wikipedia.org/wiki/Random-access_memory#cite_note-1
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Read_(computer)
https://en.wikipedia.org/wiki/Hard_disk
https://en.wikipedia.org/wiki/CD-RW
https://en.wikipedia.org/wiki/DVD-RW
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Drum_memory
https://3.bp.blogspot.com/_uaqUOnpGUWY/S4ZVBaRpKvI/AAAAAAAAACA/Rk7fQuDIaV0/s1600-h/ram.JPG

6X513 DSD using VHDL

PROGRAM:

library ieee;

use leee.std logic 1164.all;

entity ram is

generic (bits:integer:=8;words:integer:=16);
port (wr ena : in std logic;

clk : in std logic;

addr : in integer range 0 to words-1;
data in : in std logic vector (bits-1 downto 0);
data out : out std logic vector (bits-1 downto 0));

end ram;

architecture behavioral of ram is
type vector array is array (0 to words-1)of
std logic vector (bits-1 downto 0);
signal memory:vector array;

begin

process (clk,wr ena)

begin

if(wr ena='1l") then

if(clk'event and clk='1l") then
memory (addr) <=data in;

end if;

end if;

end process;

data out<=memory (addr) ;

end behavioral;

58
GPA

6X513 DSD using VHDL

RESULT:
RTL Schematic of RAM

Mram MEMORY"

Mram MEMORY1

Simulated Behavioral Model of RAM

-lEl wr_gena
1 ok
1';. addr
w B data_in[7:0]
1y 171
1 =
g 151
Ty 141
1 =1
g @
Ty 11
1 [
¥ B data_out[7:0]
g m
"G
1 5

59
GPA

6X513 DSD using VHDL

Objects <08 x| *
Simulation Objects for ram 2
#
1 1
1ol ol | Y| B 18] &
o 1 wr_ena
ObjecFName Value Al 1 dk

1y

X I—— o e

1 -
Iy adar 1000 5} » i data in]
29 data_in[7:0] 00001111 Pt » B data_ou
& data_outl:0] 00001111 -

2§ memoryl0:15] wUUUUUTO, UUC =
= H
% U
3 . U I
25 3 o] I
2 14 U
25 51 U
25 16l U Hl
B o] -
25 18 00001111
25 8 U
@ nal U
25 011 LI
&5 2 U
25 13 LI
@ 04

v
2L 11m1 T =
< > | Default.wcfg [x]

CONCLUSION:

Signature of Teacher

60
GPA

