
1

MCA First Year Semester – I

Paper - VI

INTRODUCTION TO WEB TECHNOLOGY

1. Introduction to the Web 5 Hrs

 History and Evolution

 Web development cycle

 Web publishing

 Web contents

 Dynamic Web contents

2. Languages and technologies for browsers 5 Hrs

 HTML, DHTML, XHTML, ASP, JavaScript

 Features and Applications

3. Introduction to HTML 10 Hrs

 HTML Fundamentals

 HTML Browswers

 HTML tags, Elements and Attributes

 Structure of HTML code
° Head
° Body

 Lists
° Ordered List
° Unordered List
° Definition List
° Nesting List

 Block Level Tags
° Block formatting, Heading, Paragraph, Comments, Text
alignment, Font size

 Text Level Tags
° Bold, Italic, Underlined, Strikethrough, Subscript,
superscript

 Inserting graphics, Scaling images

 Frameset

 Forms

 An introduction to DHTML

2

4. Cascading Style Sheets 6 Hrs

 The usefulness of style sheets

 Creating style sheets

 Common tasks with CSS

 Font Family
° Font Metrics
° Units

 Properties

 Classes and Pseudo classes

 CSS tags

5. Introduction to ASP 7 Hrs

 Working of ASP page

 Variables

 ASP forms

 Data types

 Operators

 Object hierarchies
° ASP Object model

 Request, Response Object collections

 ASP Applications
° Creating Active Server Page Application
° Session Object
° Session Collections
° Content Collection
° Response Object Model

6. JavaScript 7 Hrs

 Introduction

 Operators, Assignments and Comparisons, Reserved words

 Starting with JavaScript
° Writing first JavaScript program
° Putting Comments

 Functions

 Statements in JavaScript

 Working with objects
° Object Types and Object Instantiation
° Date object, Math Object, String object, Event object,
Frame object, Screen object

 Handling Events
° Event handling attributes

3

° Window Events, Form Events
° Event Object
° Event Simulation

7. Website Design Concepts 5 Hrs

 How the website should be
° Basic rules of Web Page design
° Types of Website

Reference Books :

1. Web Technologies Achyut S. Godbole, Atul Kahate Tata
McGraw Hill

2. Web Tech. & Design C. Xavier New Age
3. Multimedia & Web Technology – Ramesh Bangia
4. HTML : The complete reference – Thomas A. Powel
5. HTML Examples – Norman Smith, Edward
6. ASP 3.0 Programmers Reference – Richard Anderson
7. JavaScript Bible – Danny Goodman

List of Practical :

1. Create Web Page and apply some block level tags, text level
tags

2. Create Web Page and apply background color, text color,
horizontal rules and special characters.

3. Create Web Page and include Ordered list, Unordered list,
Definite list and Nested list.

4. Create Web Page and include links to
a) Local page in same folder.
b) Page in different folder
c) Page on the Web
d) Specific location within document

5. Create Web Page and include images with different alignment
and wrapped text

6. Create tables and format tables using basic table tags and
different attributes.

7. Create a frameset that divides browser window into horizontal
and vertical framesets.

8. Create Web Page and apply style rules.
9. Create Web Page including control structures using

JavaScript.
10. Programs based on Event Handling.



4

1

INTRODUCTION TO WEB

TECHNOLOGY

Unit Structure

1.1 History and Evolution

1.2 Web development cycle

1.3 Web publishing

1.4 Web contents

1.5 Dynamic Web contents

1.1 HISTORY AND EVOLUTION OF WEB

The World Wide Web allows computer users to locate and
view multimedia-based documents (i.e., documents with text,
graphics, animations, audios or videos) on almost any subject.
Even though the Internet was developed more than three decades
ago, the introduction of the World Wide Web is a relatively recent
event. In 1990, Tim Berners-Lee of CERN (the European
Laboratory for Particle Physics) developed the World Wide Web
and several communication protocols that form the backbone of the
Web.

The Internet and the World Wide Web surely will be listed
among the most important and profound creations of humankind. In
the past, most computer applications executed on “stand-alone”
computers (i.e., computers that were not connected to one
another). Today’s applications can be written to communicate with
hundreds of millions of computers. The Internet mixes computing
and communications technologies. It makes our work easier. It
makes information instantly and conveniently accessible worldwide.
Individuals and small businesses can receive worldwide exposure
on the Internet. It is changing the nature of the way business is
done. People can search for the best prices on virtually any product
or service.

5

Special-interest communities can stay in touch with one
another and researchers can learn of scientific and academic
breakthroughs worldwide.

 The Internet’s origins

In the late 1960s, one of the authors (HMD) was a graduate
student at MIT. His research at MIT’s Project Mac (now the
Laboratory for Computer Science—the home of the World Wide
Web Consortium) was funded by ARPA—the Advanced Research
Projects Agency of the Department of Defense. ARPA sponsored a
conference at which several dozen ARPA-funded graduate
students were brought together at the University of Illinois at
Urbana-Champaign to meet and share ideas. During this
conference, ARPA rolled out the blueprints for networking the main
computer systems of about a dozen ARPA-funded universitiesand
research institutions.

They were to be connected with communications lines
operating at a then-stunning 56Kbps (i.e., 56,000 bits per
second)—this at a time when most people (of the few who could)
were connecting over telephone lines to computers at a rate of 110
bits per second. HMD vividly recalls the excitement at that
conference. Researchers at Harvard talked about communicating
with the Univac 1108 “supercomputer” at the University of Utah to
handle calculations related to their computer graphics research.

Many other intriguing possibilities were raised. Academic
research was on the verge of taking a giant leap forward. Shortly
after this conference, ARPA proceeded to implement the ARPAnet,
the grandparent of today’s Internet.

Things worked out differently from what was originally
planned. Rather than the primary benefit of researchers sharing
each other’s computers, it rapidly became clear that enabling the
researchers to communicate quickly and easily among themselves
via what became known as electronic mail (e-mail, for short) was
the key benefit of the ARPAnet.

This is true even today on the Internet, as e-mail facilitates
communications of all kinds among millions of people worldwide.

One of the primary goals for ARPAnet was to allow multiple
users to send and receive information simultaneously over the
same communications paths (such as phone lines). The network
operated with a technique called packet-switching, in which digital
data was sent in small packages called packets. The packets
contained data address, error control and sequencing information.

6

The address information allowed packets to be routed to their
destinations.

The sequencing information helped reassemble the packets
(which, because of complex routing mechanisms, could actually
arrive out of order) into their original order for presentation to the
recipient. Packets from different senders were intermixed on the
same lines. This packet-switching technique greatly reduced
transmission costs compared with the cost of dedicated
communications lines.

The network was designed to operate without centralized
control. If a portion of the network should fail, the remaining working
portions would still route packets from senders to receivers over
alternate paths.

The protocols for communicating over the ARPAnet became
known as TCP—the Transmission Control Protocol. TCP ensured
that messages were properly routed from sender to receiver and
that those messages arrived intact.

As the Internet evolved, organizations worldwide were
implementing their own networks for both intra-organization (i.e.,
within the organization) and inter-organization (i.e., between
organizations) communications. A wide variety of networking
hardware and software appeared. One challenge was to get these
different networks to communicate. ARPA accomplished this with
the development of IP—the Internetworking Protocol, truly creating
a “network of networks,” the current architecture of the Internet. The
combined set of protocols is now commonly called TCP/IP.

Initially, Internet use was limited to universities and research
institutions; then the military began using the Internet. Eventually,
the government decided to allow access to the Internet for
commercial purposes. Initially, there was resentment among the
research and military communities—these groups were concerned
that response times would become poor as “the Net” became
saturated with users.

In fact, the exact opposite has occurred. Businesses rapidly
realized that they could tune their operations and offer new and
better services to their clients, so they started spending vasts
amounts of money to develop and enhance the Internet. This
generated fierce competition among the communications carriers
and hardware and software suppliers to meet this demand. The
result is that bandwidth (i.e., the information carrying capacity) on
the Internet has increased tremendously and costs have decreased
significantly.

7

It is widely believed that the Internet has played a significant
role in the economic prosperity that the United States and many
other industrialized nations have enjoyed recently and are likely to
enjoy for many years.

 The creation of World Wide Web

The World Wide Web allows computer users to locate and
view multimedia-based documents (i.e., documents with text,
graphics, animations, audios or videos) on almost any subject.
Even though the Internet was developed more than three decades
ago, the introduction of the World Wide Web is a relatively recent
event. In 1990, Tim Berners-Lee of CERN (the European
Laboratory for Particle Physics) developed the World Wide Web
and several communication protocols that form the backbone of the
Web.

The Internet and the World Wide Web surely will be listed
among the most important and profound creations of humankind. In
the past, most computer applications executed on “stand-alone”
computers (i.e., computers that were not connected to one
another). Today’s applications can be written to communicate with
hundreds of millions of computers. The Internet mixes computing
and communications technologies. It makes our work easier. It
makes information instantly and conveniently accessible worldwide.
Individuals and small businesses can receive worldwide exposure
on the Internet. It is changing the nature of the way business is
done. People can search for the best prices on virtually any product
or service.

Special-interest communities can stay in touch with one
another and researchers can learn of scientific and academic
breakthroughs worldwide

 The formation of the W3C

In October 1994, Tim Berners-Lee founded an
organization—called the World Wide Web Consortium (W3C)—
devoted to developing nonproprietary, interoperable technologies
for the World Wide Web. One of the W3C’s primary goals is to
make the Web universally accessible—regardless of disability,
language or culture.

The W3C is also a standardization organization. Web
technologies standardized by the W3C are called
Recommendations. W3C Recommendations include the Extensible
Hyper-Text Markup Language (XHTML), Cascading Style Sheets
(CSS), Hypertext Markup Language (HTML; now considered a
“legacy” technology) and the Extensible Markup Language (XML).

8

A recommendation is not an actual software product, but a
document that specifies a technology’s role, syntax, rules, etc.
Before becoming a W3C

A document passes through three phases: Working Draft—
which, as its name implies, specifies an evolving draft, Candidate
Recommendation—a stable version of the document that industry
may begin implementing and Proposed Recommendation—a
Candidate Recommendation that is considered mature (i.e., has
been implemented and tested over a period of time) and is ready to
be considered for W3C Recommendation status.

The W3C is comprised of three hosts—the Massachusetts
Institute of Technology (MIT), Institute National de Recherché en
Informatique et Automatique (INRIA) and Keio University of
Japan—and over 400 members, including Deitel & Associates, Inc.
Members provide the primary financing for the W3C and help
provide the strategic direction of the Consortium.

The W3C homepage (www.w3.org) provides extensive
resources on Internet and Web technologies. For each Internet
technology with which the W3C is involved, the site provides a
description of the technology and its benefits to Web designers, the
history of the technology and the future goals of the W3C in
developing the technology. This site also describes W3C’s goals.
The goals of the W3C are divided into the following categories:
User Interface Domain, Technology and Society Domain,
Architecture Domain and Web Accessibility Initiatives.

 The Web Standards Project

The Web Standards Project (WaSP) is a group of
professional web developers dedicated to disseminating and
encouraging the use of the web standards recommended by
the World Wide Web Consortium, along with other groups and
standards bodies.

Founded in 1998, The Web Standards Project campaigns for
standards that reduce the cost and complexity of development
while increasing the accessibility and long-term viability of any
document published on the Web. WaSP works with browser
companies, authoring tool makers, and peers to encourage them to
use these standards, since they "are carefully designed to deliver
the greatest benefits to the greatest number of web users".

 The rise of web standards
In 2000, Microsoft released Internet Explorer 5 Macintosh

Edition. This was a very important milestone, it being the default

9

browser installed with the Mac OS at the time, and having a
reasonable level of support for the W3C recommendations too.
Along with Opera's decent level of support for CSS and HTML, it
contributed to a general positive movement, where web developers
and designers felt comfortable designing sites using web standards
for the first time.

The WaSP persuaded Netscape to postpone the release of
the 5.0 version of Netscape Navigator until it was much more
compliant (this work formed the basis of what is now Firefox, a very
popular browser). The WaSP also created a Dreamweaver Task
Force to encourage Macromedia to change their popular web
authoring tool to encourage and support the creation of compliant
sites.

The popular web development site A List Apart was
redesigned early in 2001 and in an article describing how and why,
stated: In six months, a year, or two years at most, all sites will be
designed with these standards. We can watch our skills grow
obsolete, or start learning standards-based techniques now.

That was a little optimistic—not all sites, even in 2008, are
built with web standards. But many people listened. Older browsers
decreased in market share, and two more very high profile sites
redesigned using web standards: Wired magazine in 2002, and
ESPN in 2003 became field leaders in supporting web standards
and new techniques.

Also in 2003, Dave Shea launched a site called the CSS Zen
Garden. This was to have more impact on web professionals than
anything else, by truly illustrating that the entire design can change
just by changing the style of the page; the content could remain
identical.

Since then in the professional web development community
web standards have become de rigeur. And in this series, we will
give you an excellent grounding in these techniques so that you
can develop websites just as clean, semantic, accessible and
standards-compliant as the big companies’.

1.2 WEB DEVELOPMENT CYCLE

There are numerous steps in the web site design and
development process. From gathering initial information, to the
creation of your web site, and finally to maintenance to keep your
web site up to date and current.

10

The exact process will vary slightly from designer to
designer, but the basics are generally the same.

1. Information Gathering
2. Planning
3. Design
4. Development
5. Testing and Delivery
6. MaintenancePhase

Phase One: Information Gathering

The first step in designing a successful web site is to gather
information. Many things need to be taken into consideration when
the look and feel of your site is created.

This first step is actually the most important one, as it
involves a solid understanding of the company it is created for. It
involves a good understanding of you – what your business
goals and dreams are, and how the web can be utilized to help you
achieve those goals.

It is important that your web designer start off by asking a lot
of questions to help them understand your business and your
needs in a web site.

Certain things to consider are:

 Purpose
What is the purpose of the site? Do you want to provide
information, promote a service, and sell a product… ?

 Goals
What do you hope to accomplish by building this web site? Two
of the more common goals are either to make money or share
information.

 Target Audience
Is there a specific group of people that will help you reach your
goals? It is helpful to picture the “ideal” person you want to visit
your web site. Consider their age, sex or interests – this will
later help determine the best design style for your site.

 Content
What kind of information will the target audience be looking for
on your site? Are they looking for specific information, a
particular product or service, online ordering…?

11

Phase Two: Planning

Using the information gathered from phase one, it is time to
put together a plan for your web site. This is the point where a site
map is developed.

The site map is a list of all main topic areas of the site, as
well as sub-topics, if applicable. This serves as a guide as to what
content will be on the site, and is essential to developing a
consistent, easy to understand navigational system. The end-user
of the web site – aka your customer – must be kept in mind when
designing your site. These are, after all, the people who will be
learning about your service or buying your product. A good user
interface creates an easy to navigate web site, and is the basis for
this.

During the planning phase, your web designer will also help
you decide what technologies should be implemented. Elements
such as interactive forms, ecommerce, flash, etc. are discussed
when planning your web site.

Phase Three: Design

Drawing from the information gathered up to this point, it’s
time to determine the look and feel of your site.

Target audience is one of the key factors taken into
consideration. A site aimed at teenagers, for example, will look
much different than one meant for a financial institution. As part of
the design phase, it is also important to incorporate elements such
as the company logo or colors to help strengthen the identity of
your company on the web site.

Your web designer will create one or more prototype designs
for your web site. This is typically a .jpg image of what the final
design will look like. Often times you will be sent an email with the
mock-ups for your web site, while other designers take it a step
further by giving you access to a secure area of their web site
meant for customers to view work in progress.

Either way, your designer should allow you to view your
project throughout the design and development stages. The most
important reason for this is that it gives you the opportunity to
express your likes and dislikes on the site design.

In this phase, communication between both you and your
designer is crucial to ensure that the final web site will match your
needs and taste. It is important that you work closely with your

12

designer, exchanging ideas, until you arrive at the final design for
your web site.

Then development can begin…

Phase Four: Development

The developmental stage is the point where the web site
itself is created. At this time, your web designer will take all of the
individual graphic elements from the prototype and use them to
create the actual, functional site.

This is typically done by first developing the home page, followed
by a “shell” for the interior pages. The shell serves as a template for
the content pages of your site, as it contains the main navigational
structure for the web site. Once the shell has been created, your
designer will take your content and distribute it throughout the site,
in the appropriate areas.

Elements such as interactive contact forms, flash animations
or ecommerce shopping carts are implemented and made
functional during this phase, as well.

This entire time, your designer should continue to make your
in-progress web site available to you for viewing, so that you can
suggest any additional changes or corrections you would like to
have done.

On the technical front, a successful web site requires an
understanding of front-end web development. This involves writing
valid XHTML / CSS code that complies to current web standards,
maximizing functionality, as well as accessibility for as large an
audience as possible.

This is tested in the next phase…and Deliver

At this point, your web designer will attend to the final details
and test your web site. They will test things such as the complete
functionality of forms or other scripts, as well last testing for last
minute compatibility issues (viewing differences between different
web browsers), ensuring that your web site is optimized to be
viewed properly in the most recent browser versions.

A good web designer is one who is well versed in current
standards for web site design and development. The basic
technologies currently used are XHTML and CSS (Cascading Style
Sheets). As part of testing, your designer should check to be sure
that all of the code written for your web site validates. Valid code
means that your site meets the current web development standards

13

– this is helpful when checking for issues such as cross-browser
compatibility as mentioned above.

Once you give your web designer final approval, it is time to
deliver the site. An FTP (File Transfer Protocol) program is used to
upload the web site files to your server. Most web designers offer
domain name registration and web hosting services as well. Once
these accounts have been setup, and your web site uploaded to the
server, the site should be put through one last run-through. This is
just precautionary, to confirm that all files have been uploaded
correctly, and that the site continues to be fully functional.

This marks the official launch of your site, as it is now
viewable to the public. The development of your web site is not
necessarily over, though. One way to bring repeat visitors to your
site is to offer new content or products on a regular basis. Most web
designers will be more than happy to continue working together
with you, to update the information on your web site. Many
designers offer maintenance packages at reduced rates, based on
how often you anticipate making changes or additions to your web
site.

If you prefer to be more hands on, and update your own
content, there is something called a CMS (Content Management
System) that can be implemented to your web site. This is
something that would be decided upon during the Planning stage.
With a CMS, your designer will utilize online software to develop a
database driven site for you.

A web site driven by a CMS gives you the ability to edit the
content areas of the web site yourself. You are given access to a
back-end administrative area, where you can use an online text
editor (similar to a mini version of Microsoft Word). You’ll be able to
edit existing content this way, or if you are feeling more
adventurous, you can even add new pages and content yourself.
The possibilities are endless!

It’s really up to you as far as how comfortable you feel as far
as updating your own web site. Some people prefer to have all the
control so that they can make updates to their own web site the
minute they decide to do so. Others prefer to hand off the web site
entirely, as they have enough tasks on-hand that are more
important for them to handle directly.

That’s where the help of a your web designer comes in, once
again, as they can take over the web site maintenance for you –
one less thing for you to do is always a good thing in these busy
times!

14

Other maintenance type items include SEO (Search Engine
Optimization) and SES (Search Engine Submission). This is the
optimization of you web site with elements such as title, description
and keyword tags which help your web site achieve higher rankings
in the search engines. The previously mentioned code validation is
something that plays a vital role in SEO, as well.

There are a lot of details involved in optimizing and
submitting your web site to the search engines – enough to warrant
it’s own post. This is a very important step, because even though
you now have a web site, you need to make sure that people can
find it!

1.3 THE PROCESS OF WEB PUBLISHING

Planning, organizing, and visualizing Web sites and pages
may be more important than knowing HTML. Unfortunately, these
are very difficult things to teach and tend to be learned only by
experience. The biggest mistake in Web development is not having
a clear goal for a Web site. Even if the site is launched on time and
under budget, how can you understand whether you did a good job
if you had no goal in the first place? Often goals are vague. Initially,
many corporate Web site projects were fueled by FUD—fear,
uncertainty, and doubt. With the hype surrounding the Web, it was
important to get on the Web before the competition. If the
competition was already online, having a Web site appeared even
more crucial to corporate success. This is a dangerous situation to
be in. Even if budget is not an issue, the benefit of the site will
eventually be questioned. Web professionals may find their jobs on
the line. Thus, the first step in the Web publishing process is
defining the purpose of a site.

 Determining Purpose

Finding a purpose for a Web site isn’t necessarily very hard.

The Web can be very useful, and many common reasons exist to

put up aWeb site, a few of which are listed here:

 _ Commerce

 _ Entertainment

 _ Information

 _ Marketing

 _ Personal pleasure

 _ Presence

 _ Promotion

 _ Research and education

 _ Technical support

15

One problem with Web sites is that they may have multiple

purposes. A corporate Web site may include demands for

marketing, public relations, investor relations, technical support,

commerce, and human resource services such as job recruiting.

Trying to meet all of these needs while thinking about the Web site

as one entity can be difficult. Much like a large-scale software

system with many functions, a Web site with many different goals

probably should be broken into modules, or subprojects, that

constitute parts of a larger whole. This leads to the idea of a micro

site—a very specific subsite that is part of a larger site and that may

be built separately. Microsites have the advantage of allowing the

focus, look, or technology of a portion of a site to change without

having to change the site as a whole.

No matter how the site is structured, keeping it cohesive and

logical is important. For example, establishing a consistent look and

feel for the site as a whole is still important, regardless of the

multitude of functions. People should feel comfortable moving from

your support pages to your marketing pages to your employment

pages. A consistent user interface breeds familiarity and generates

a united front. The user doesn’t need to know that the site is

constructed in modules. An inconsistent interface can lead to a user

becoming lost and confused while exploring. It helps to have one

person (or at least a small group) designated as the overall

decision maker on a Webproject.

The Webmaster, or more appropriately termed Web

manager, coordinates the work efforts and helps keep the project

on track. The Webmanager’s role is basically the same as a project

manager on a large software project. Without such careful

management, a Web site with many goals may quickly become a

mess, built to satisfy the needs and desires of its builders rather

than its viewers.

 Who Is the Audience?

Of course, just having a purpose for a site isn’t enough: you

need to consider a site’s audience. Notice how often sites reflect

the organizational structure of a company rather than the needs of

the customer. The goal is always to keep the user at the center of

the discussion. Before building a site, make sure to answer some

simple audience questions:

16

 _ Are the users coming from within your organization, or

from outside?

 _ Are they young or old?

 _ What language do they speak?

 _ When do they visit the site?

 _ What technologies do they support?

 _ What browsers do they use?

Figuring out an audience doesn’t have to be that hard, but

don’t assume that your audience is too large. People from South

America or the Sudan can visit your Web page—but do they?

Should they? It is important to be realistic about the audience of the

Web. The Web has millions of users, but they aren’t all going to

visit a particular Web site. If they did, things probably wouldn’t work

well. When the idea of a site’s audience is discussed, don’t think in

terms of a nameless, faceless John Q. Cybercitizen with a modem

and an America Online account. When thinking about users, try to

get as specific as possible, and even ask users, if possible. If you

already have a site set up, you have a wealth of information about

your users—your server logs. Logs can tell you quite a bit about

your user base. Depending on the server and its configuration, you

can learn the time of day that you get the most hits, the pages

visited the most, the browsers and versions being used, the

domains your visitors come from, and even the pages that referred

visitors to your site. From the logs, you can even infer connection

speeds, based on delivery time between pages. If you do not have

a server running yet, begin with your best estimate of the kinds of

visitors you expect. Once the site is running, check the logs against

your estimates—you may find that your audience is different than

you expected. An important point in Web design is that you must be

willing to revise your designs, even going as far as throwing away

your favorite ideas, if they do not fit with your actual audience.

 Who Will Pay for It?

Sites cost money to produce, so they generally have to

produce some benefit to continue. While people do put up sites for

personal enjoyment, even this type of site has limits in terms of an

individual’s investment of time and money. It is very important to

understand the business model of the site. Only a year or two ago,

many corporate Web budgets were not always the first concern,

due to the novelty of the technology. Today, however, Web sites

often have to prove that they’re “worth it.” The money has to come

17

from somewhere. A site’s creator could pay for everything, but that

probably isn’t reasonable unless the Web site is for pure enjoyment

or is nonprofit. Typically, some funds have to be collected, probably

indirectly, to support the site. For example, while a promotional site

for a movie may not directly collect revenues, it can influence the

audience and have some impact on the success or failure of the

film. Interestingly, many Web sites are nearly as indirect as a movie

promotion site. Measuring the direct benefit of having such sites

can be very difficult. More directly measurable sites are those on

which leads are collected or goods are sold. Some value can be put

on these transactions, and an understanding of the benefit of the

site can be determined.

Harder to track, but no less valuable, are Web sites for

customer service and support. Placing product information or

manuals online, or posting URLs for Frequently Asked Questions

(FAQs) lists on your products, enables your customers to answer

many of their own questions. Not only can this directly reduce the

load on your customer service and support organizations, it also

fosters good will among your customer base. When a customer is

shopping around, the vendor who makes it easiest for them to

obtain the information they are looking for tends to have an

immediate advantage.

Another possible business model for a Web site is to have

viewers pay, as in a subscription model. This model’s problem is

that viewers must be given a convincing reason to pay for the

information or service available at the Web site. Making a Web site

valuable to a user is tricky, especially considering that value often is

both psychological and real. When looking at the value of the

information available in an encyclopedia, think about its form. If the

encyclopedia’s information is in book form, the cost might be as

high as Rs 50,000. Put the same information on a CD-ROM, and

see if the information can be sold for the same cost. What if the

same information is on a Web site? On a CD-ROM, the information

probably can be sold for Rs 1500 to Rs 5000. On a Web site, it

goes for even less, particularly if the user only wants to buy a

specific piece of information. Users often place more value on the

delivery of a good or service than on the good itself. Consider

software, for which the design and production of packaging often

costs more than reproducing the software itself.

18

The bottom line is that packaging does count. It is no wonder

that users often mistakenly overvalue the graphic aspect of a site.

Another business model involves getting someone other than the

owner or the intended audience of the site to pay. This model

typically comes in the form of an advertising-driven site. However,

what is interesting about advertising is that a good is actually being

sold—the audience. Advertisers are interested in reaching a

particular audience and are willing to pay for an advertisement

based on the effectiveness of that ad reaching the intended

audience. The question is, how can an audience be attracted,

measured, and then sold to the advertisers? The obvious approach

is to provide some reason for an audience to come to a Web site

and identify themselves. This is very difficult. Furthermore, the

audience must be accurately measured, so that advertisers have a

way to compare audience size from one site to the next and know

how to spend their advertising dollars. People often discuss the

number of visitors to their site as an indication of value to an

advertiser. The advertisers, however, may not care about the

number of visitors, unless those visitors are in their target audience.

Regardless of who is paying for the site, some understanding of the

costs and benefits of the site is necessary. How much does each

visitor actually cost, and what benefit does he or she produce?

Understand that the number of visitors doesn’t count, even

when using the advertising model. The value of the site transcends

this figure and addresses the effectiveness of the visitation. In other

words, many visits don’t necessarily mean success. Having many

visitors to an online store who nonetheless make few purchases

may mean huge losses, particularly if it costs more to reach each

visitor. Even the form of the Web site may affect the cost. For

example, because the amount of data delivered from a Web site is

generally related directly to the site’s variable costs, sending video

costs more than sending regular HTML text. High costs for Web

site development isn’t always bad, particularly if it produces a big

payoff. Goals must be set to measure success and understand how

to budget Web sites.

 Defining Goals

A goal for a site is not the same as its purpose. A purpose

gives a general idea of what the site is for, whereas a goal is very

specific. A goal can help define how much should be spent, but

goals must be measurable. What is a measurable goal of the site?

19

Selling x Rupees worth of product directly via the Web site is a

measurable goal, as is selling x Rupees of product or service

indirectly through leads. Reaching a certain usage level per day,

week, or month can be a goal. So is lowering the number of

incoming technical support phone calls by a certain amount. Many

ways exist to measure the success or failure of a Web project, but

measurements generally come in two categories: soft and hard.

Hard measurements are those that are easily measured, such as

the number of visitors per day. Soft measurements are a little less

clear. For example, with a promotional site for a movie, it might be

difficult to understand whether the site had any effect on the box

office sales.

 Defining Scope

After you define a site’s goals, you need to define what is

necessary to reach your goals. You might call this defining scope.

One thing to remember, though—scope equals money. Because of

the flexible nature of the Web, many developers want to add as

much as possible to the Web site. However, more isn’t always

better. The more that is added to the Web site, the more it costs.

Furthermore, having too much information makes finding essential

information difficult. To think about scope, return to one of the first

steps in the process. What is the main purpose of the site?

Shouldn’t the information of the site reflect this purpose? Looking at

the Web, this doesn’t always seem to be the case. Have you ever

gone to a site and not understood its point?

Finding the essentials of a Web site might not be easy,

particularly if it has many purposes or many parties involved in its

development. One approach is to have a brainstorming session, in

which users provide ideas. Each idea is then written down on a 3×5

card. After all the cards have been created, ask the users to sort

the cards into piles. First, sort the cards into similar piles to see how

things are related. Next, sort the piles in order of importance. What

is important can eventually be distilled out of the cards. Remember

to cut down the number of cards, to make people focus on what is

truly important. Instead of coming up with ideas of what should go

into a site to meet a particular goal or goals, you may be tempted to

take existing materials, such as marketing pieces, and convert

them to the Web. Unfortunately, creating the content of the site

based solely on text and pictures from manuals, brochures, and

other support materials rarely works.

20

Migrating text from print to the Web is troublesome, because

the media are so different. Reading onscreen has been proven to

be much slower than reading from paper. In practice, people tend

not to read information online carefully. They tend to scan it quickly

and then print what they need. In this sense, writing for paper tends

to go against screen reading. Think about newspaper or TV news

stories: the main point is stated first and then discussed. This goes

against the slow buildup of many paper documents, which carefully

spell out a point. With visitors skimming the site, key bullet points

tend to be read while detailed information is skipped. The main

thing is to keep the points obvious and simple. Even if information

is presented well, poor organization can ruin all the hard work in

preparing the information. If a viewer can’t find the information, who

cares how great it looks or how well it reads?

1.4 WEB CONTENT

Web content is the textual, visual or aural content that is
encountered as part of the user experience on websites. It may
include, among other things: text, images, sounds, videos
and animations.

Beginnings of web content
While the Internet began with a U.S. Government research

project in the late 1950s, the web in its present form did not appear
on the Internet until after Tim Berners-Lee and his colleagues at the
European laboratory (CERN) proposed the concept of linking
documents with hypertext. But it was not until Mosaic, the
forerunner of the famous Netscape Navigator, appeared that the
Internet become more than a file serving system.

The use of hypertext, hyperlinks and a page-based model of
sharing information, introduced with Mosaic and later Netscape,
helped to define web content, and the formation of websites.
Largely, today we categorize websites as being a particular type of
website according to the content a website contains.

The page concept
Web content is dominated by the "page" concept. Having its

beginnings in academic settings, and in a setting dominated by
type-written pages, the idea of the web was to link directly from one
academic paper to another academic paper. This was a completely
revolutionary idea in the late 1980s and early 1990s when the best
a link could be made was to cite a reference in the midst of a type
written paper and name that reference either at the bottom of the
page or on the last page of the academic paper.

21

When it was possible for any person to write and own a
Mosaic page, the concept of a "home page" blurred the idea of a
page. It was possible for anyone to own a "Web page" or a "home
page" which in many cases the website contained many physical
pages in spite of being called "a page". People often cited their
"home page" to provide credentials, links to anything that a person
supported, or any other individual content a person wanted to
publish.

Even though "the web" may be the resource we commonly
use to "get to" particular locations online, many different
protocols are invoked to access embedded information. When we
are given an address, such as http://www.youtube.com, we expect
to see a range of web pages, but in each page we have embedded
tools to watch "video clips".

HTML web content
Even though we may embed various protocols within web

pages, the "web page" composed of "html" (or some variation)
content is still the dominant way whereby we share content. And
while there are many web pages with localized proprietary structure
(most usually, business websites), many millions of websites
abound that are structured according to a common core idea.

A blog (a blend of the term "web log" is a type of website or
part of a website. Blogs are usually maintained by an individual with
regular entries of commentary, descriptions of events, or other
material such as graphics or video. Entries are commonly displayed
in reverse-chronological order. "Blog" can also be used as a verb,
meaning to maintain or add content to a blog.

Most blogs are interactive, allowing visitors to leave
comments and even message each other via widgets on the blogs
and it is this interactivity that distinguishes them from other static
websites.

Many blogs provide commentary or news on a particular
subject; others function as more personal online diaries. A typical
blog combines text, images, and links to other blogs, Web pages,
and other media related to its topic. The ability of readers to leave
comments in an interactive format is an important part of many
blogs. Most blogs are primarily textual, although some focus on art
(Art blog), photographs (photoblog), videos (Video blogging), music
(MP3 blog), and audio (podcasting). Microblogging is another type
of blogging, featuring very short posts.

A web search engine is designed to search for information
on the World Wide Web. The search results are generally
presented in a list of results and are often called hits. The

22

information may consist of web pages, images, information and
other types of files. Some search engines also mine data available
in databases or open directories. Unlike Web directories, which are
maintained by human editors, search engines
operate algorithmically or are a mixture of algorithmic and human
input.

An Internet forum, or message board, is an online
discussion site where people can hold conversations in the form of
posted messages. They differ from chat room sin that messages
are not shown in real-time, to see new messages the forum page
must be reloaded. Also, depending on the access level of a user
and/or the forum set-up, a posted message might need to be
approved by a moderator before it becomes visible.

Forums have their own language; e.g. A single conversation
is called a 'thread'. A forum is hierarchical or tree-like in structure:
forum - subforum - topic - thread - reply.

Depending on the forum set-up, users can be anonymous or
have to register with the forum and then subsequently login in order
to post messages. Usually you do not have to login to read existing
messages.

Electronic commerce, commonly known as
e-commerce or eCommerce, or e-business consists of the buying
and selling of products or services over electronic systems such as
the Internet and other computer networks. The amount of trade
conducted electronically has grown extraordinarily with widespread
Internet usage. The use of commerce is conducted in this way,
spurring and drawing on innovations in electronic funds
transfer, supply chain management, Internet marketing, online
transaction processing, electronic data interchange (EDI), inventory
management systems, and automated data collection systems.
Modern electronic commerce typically uses the World Wide Web at
least at some point in the transaction's lifecycle, although it can
encompass a wider range of technologies such as e-mail as well.

1.5 STATIC AND DYNAMIC WEB CONTENT

Types of Website Content - Static and Dynamic

Static Web Site

A static web page (sometimes called a flat page) is

a web page that is delivered to the user exactly as stored, in

23

contrast to dynamic web pages which are generated by a web

application.

Consequently a static web page displays the same
information for all users, from all contexts, subject to modern
capabilities of a web server to negotiate content-type or language
of the document where such versions are available and the server
is configured to do so.

Static web pages are often HTML documents stored as files
in the file system and made available by the web server over HTTP.
However, loose interpretations of the term could include web pages
stored in a database, and could even include pages formatted
using a template and served through an application server, as long
as the page served is unchanging and presented essentially as
stored.

Advantages and disadvantages

Advantages

 No programming skills are required to create a static page.

 Inherently publicly cacheable (i.e. a cached copy can be shown
to anyone).

 No particular hosting requirements are necessary.

 Can be viewed directly by a web browser without needing a web
server or application server, for example directly from a CD-
ROM or USB Drive.

Disadvantages

 Any personalization or interactivity has to run client-side (ie. in

the browser), which is restricting.

 Maintaining large numbers of static pages as files can be

impractical without automated tools.

Application areas of Static Website:

Need of Static web pages arise in the following cases.

 Changes to web content is infrequent

 List of products / services offered is limited

 Simple e-mail based ordering system should suffice

 No advanced online ordering facility is required

 Features like order tracking, verifying availability of stock,

online credit card transactions, are not needed

 Web site not required to be connected to back-end system.

24

Static Web pages are very simple in layout and informative

in context. Creation of static website content requires great level of

technical expertise and if a site owner is intended to create static

web pages, they must be very clear with their ideas of creating

such pages since they need to hire a web designer.

Dynamic Web Sites

A dynamic web page is a kind of web page that has been

prepared with fresh information (content and/or layout), for each

individual viewing. It is not static because it changes with the time

(ex. anews content), the user (ex. preferences in a login session),

the user interaction (ex. web page game), the context (parametric

customization), or any combination of the foregoing.

Two types of dynamic web sites

Client-side scripting and content creation

Using client-side scripting to change interface
behaviors within a specific web page, in response to mouse or
keyboard actions or at specified timing events. In this case the
dynamic behavior occurs within the presentation.

Such web pages use presentation technology called rich
interfaced pages. Client-side scripting languages like JavaScript
or ActionScript, used for Dynamic HTML (DHTML) and Flash
technologies respectively, are frequently used to orchestrate media
types (sound, animations, changing text, etc.) of the presentation.
The scripting also allows use of remote scripting, a technique by
which the DHTML page requests additional information from a
server, using a hidden Frame, XMLHttpRequests, or a Web
service.

The Client-side content is generated on the user's computer.
The web browser retrieves a page from the server, then processes
the code embedded in the page (often written in JavaScript) and
displays the retrieved page's content to the user.

The innerHTML property (or write command) can illustrate
the client-side dynamic page generation: two distinct pages, A and
B, can be regenerated as document. innerHTML =
A anddocument. innerHTML = B; or

"on load dynamic" by document.write(A) and document.write(B).

25

Server-side scripting and content creation
Using server-side scripting to change the supplied page

source between pages, adjusting the sequence or reload of
the web pages or web content supplied to the browser. Server
responses may be determined by such conditions as data in a
posted HTML form, parameters in the URL, the type of browser
being used, the passage of time, or a database or server state.

Such web pages are often created with the help of server-
side languages such as PHP, Perl, ASP, ASP.NET, JSP,
ColdFusion and other languages. These server-side languages
typically use the Common Gateway Interface (CGI) to
produce dynamic web pages. These kinds of pages can also use,
on the client-side, the first kind (DHTML, etc.).

Server-side dynamic content is more complicated:
(1) The client sends the server the request.
(2) The server receives the request and processes the server-side
script such as [PHP] based on the query string, HTTP POST data,
cookies, etc.

The dynamic page generation was made possible by
the Common Gateway Interface, stable in 1993. Then Server Side
Includes pointed a more direct way to deal with server-side scripts,
at the web servers.

Combining client and server side
Ajax is a web development technique for dynamically

interchanging content with the server-side, without reloading the
web page. Google Maps is an example of a web application that
uses Ajax techniques and database.

Application areas of Dynamic Website

Dynamic web page is required when following necessities arise:

 Need to change main pages more frequently to encourage
clients to return to site.

 Long list of products / services offered that are also subject
to up gradation

 Introducing sales promotion schemes from time to time

 Need for more sophisticated ordering system with a wide
variety of functions

 Tracking and offering personalized services to clients.

 Facility to connect Web site to the existing back-end system

26

The fundamental difference between a static Website and a
dynamic Website is a static website is no more than an information
sheet spelling out the products and services while a dynamic
website has wider functions like engaging and gradually leading the
client to online ordering.

But both static web site design and dynamic websites design
can be designed for search engine optimization. If the purpose is
only to furnish information, then a static website should suffice.
Dynamic website is absolutely necessary for e-commerce and
online ordering
.





27

2

LANGUAGE AND TECHNOLOGY FOR

BROWSERS

Unit Structure

2.1 HTML

2.2 DHTML

2.3 XHTML

2.4 ASP

2.5 JavaScript

2.6 Features and Applications

2.1 HTML

HTML, which stands for Hypertext Markup Language, is
the predominant markup language for web pages. It is written in the
form of HTML elements consisting of "tags" surrounded by angle
brackets within the web page content.

It allows images and objects to be embedded and can be
used to create interactive forms. It provides a means to
create structured documents by denoting structural semantics for
text such as headings, paragraphs, lists, links, quotes and other
items. It can embed scripts in languages such as JavaScript which
affect the behavior of HTML web pages.

HTML can also be used to include Cascading Style
Sheets (CSS) to define the appearance and layout of text and other
material. The W3C, maintainer of both HTML and CSS standards,
encourages the use of CSS over explicit presentational markup.

28

2.1.1 A brief history of HTML

 HTML and SGML

HTML stands for Hyper-Text Markup Language. It is a coding

language, which uses a method called markup, to create hyper-

text. HTML is actually a simplified subset of a more general markup

language called SGML, which stands for Standard Generalized

Markup Language, but is gradually returning to SGML as it evolves.

This evolution of HTML is worth knowing at least a little about,

since HTML is not set in stone. The changes that are occurring

have their reasons,mostly in terms of creating capabilities that

previous versions were lacking.

 In the beginning…

In 1989, Tim Berners-Lee, working at the European particle

physics institute known as CERN (Centre European pour la

Recherche Nucleaire), proposed a system to allow scientists to

share papers with other using electronic network in methods. His

idea became what is called the World-Wide Web. Since these

documents were to be shared, some common method coding them

needed to be developed. Tim Berners-Lee suggested that it be

based on the already existing SGML. Here are a few quotes from a

1990 CERN memo that Berners-Lee wrote:

Hypertext is a way to link and access information of various

kinds as a web of nodes in which the user can browse at will. It

provides a single user-interface to large classes of information

(reports, notes, data-bases, computer documentation and on-line

help).

We propose a simple scheme incorporating servers already

available at CERN…

A program which provides access to the hypertext world we

call a browser…

It would be inappropriate for us (rather than those

responsible) to suggest specific areas, but experiment online help,

accelerator online help, assistance for computer center operators,

and the dissemination of information by central services such as

the user office and CN [Computing & Networks] and ECP

[Electronics & Computing for Physics] divisions are obvious

candidates.

29

WorldWideWeb (or W3) intends to cater for these services

across the HEP [High Energy Physics] community.

As you can see, Tim Berners-Lee put all of the basic pieces

into place.

In 1992, when there were all of 50 web servers in the world,

CERN released the portable Web browser as freeware. Marc

Andreessen, who was working at the National Center for

Supercomputing Applications, created a browser called Mosaic

which was released in 1993. Shortly after that, he left NCSA to

found Netscape.

The first version of the Netscape browser implemented HTML 1.0.

 HTML 1.0 and 2.0

In 1992, Berners-Lee and the CERN team released the first

draft HTML 1.0, which was finalized in 1993. This specification was

so simple it could be printed on one side of a piece of paper, but

even then it contained the basic idea that has become central in the

recent evolution of HMTL, which is the separation between logical

structures and presentational elements. This is the most important

single idea to grasp in learning HTML, IMHO. In 1994, HTML 2.0

was developed by the Internet Engineering Task Force’s HTML

Working Group. This group later was disbanded in favor of the

World Wide Web Consortium (http://www.w3.org), which continues

to develop HTML.

 Browsers and HTML

Netscape was just one of a number of browsers available.

Mosaic was still offered by NCSA, Lynx was available on Unix

machines, and few other companies were creating browsers. One

of them, Spyglass, was purchased by Microsoft, and became the

basis for Internet Explorer. Each browser contains, in its heart,

a rendering engine, which is the code that tells it how to take your

HTML and turn it into something you can see on the screen. What

happened at this point is that each company, most particularly

Netscape and Microsoft, started to develop their own "extensions"

to HTML, often going in different directions. This problem bedevils

us to this day, though the upcoming Netscape 6 browser may

resolve this by being 100% compliant with the published HMTL

standards. We are still waiting to see what this will look like.

30

 W3C takes over: HTML 3.0 and HTML 3.2

The World Wide Web Consortium (W3C), which had taken

over HTML development, attempted to create some standardization

in HTML 3.0. But there was so much argument over what should be

included that it never got beyond the draft discussion stage. Finally,

in 1996 a consensus version, HTML 3.2, was issued. This added

features like tables, and text flowing around images, to the official

specification, while maintaining backwards compatibility with HTML

2.0. This also is a convenient place for marking the divergence in

practice from the separation that Berners-Lee first made between

logical structures and presentational elements. And as the Web

took off in popularity, this breakdown became widespread and

serious. The main focus of the W3C since then has been to rectify

the situation. An example of this is the widespread use of tables

and transparent "shim" GIFs to create page layout. While this

creates pages that are visually correct, the logical structure of the

page is pretty much destroyed, and such pages are frequently

useless to anyone using a text browser, or a text-to-speech parser.

 HTML 4.0x

The W3C released the HTML 4.0 specification at the end of

1997, and followed with HTML 4.01 in 1999, which mostly corrected

a few errors in the 4.0 specification. This release attempted to

correct some of the more egregious errors that 3.2 had allowed

(encouraged?) designers to commit, particularly in introducing

Cascading Style Sheets. But in fact the W3C has abandoned HTML

as the default standard in favor of a move back towards the root of

SGML, a larger and more complex language. There will probably

never be another HTML specification.

 XHTML 1.0

This is the successor to HTML. The "X" stands for

Extensible. This is a reformulation of HTML 4.01 within XML

(Extensible Markup Language), which is far more rigorous, and is

intended to start moving the creation of Web pages away from

HTML. This was released earlier this year, and is the most current

standard for creating Web pages. This introduces some interesting

changes in coding. For example, virtually all tags now have to be

closed, including paragraph tags. Other tags, like the FONT tag,

have been banished in favor of using Cascading Style Sheets to

control all presentational elements.

31

 HTML5

By mid-2004, people started to sense lethargy in W3C's

development of web standards. Therefore, a group

called WHATWG (Web Hypertext Application Technology Working

Group) was formed in June 2004. WHATWG is a small, invitation-

only group that was founded by individuals from Apple, Mozilla

Foundation and Opera Software. They started working on the

specifications in July 2004 under the name Web Applications 1.0.

The specifications were submitted to W3C and readily accepted. By

2007, W3C adopted the specifications as a starting point of the new

HTML called HTML 5.

By the time the first public draft of HTML 5 was published,

the word around was that HTML 5 would redefine the web,

obsolescing the likes of Adobe Flash, MS Silverlight and Java FX.

The promise was that all browsers would use a standard video

codec, which would be based on a more open standard. However,

reality could not compete with this common dream. Because of

strong opposition from the corporates, like Apple and Nokia, HTML

5 cannot specify a standard video codec for all web development.

The First Public Working Draft of the specification was

published January 22, 2008. The specifications will be an ongoing

work for many years but there is good news for us. The WHATWG

has said that parts of HTML 5 will be incorporated into browsers as

and when they are finalized. We won't need to wait until the whole

specification is completed and approved to start using some of the

features of HTML 5.

 New Features in HTML 5

Other than elements, HTML 5 also introduces additional

capabilities to the browser like working in offline mode, multi-

threaded JavaScript, etc. Let's go though some of the features.

OfflineMode

With HTML 5, you can specify what resources your page will

require and the browser will cache them so that the user can

continue to use the page even if she gets disconnected from the

internet. This wasn't a problem before AJAX came into existence as

the page could not request for resources after it was loaded.

However, today's webpages are designed to be sleek so that they

load fast and then the additional resources are fetched

asynchronously.

32

LocalDatabase

HTML 5 has included a local database that will be persistent

through your session. The advantage of this is that you can fetch

the required data and dump it into the local database. The page

there after won't need to query the server to get and update data. It

will use the local database. Every now and then, the data from the

local database is synced with the server. This reduces the load on

the server and speeds up responsiveness of the application.

NativeJSON

JSON, or JavaScript Simple Object Notation is a popular

alternative to XML, which was almost the de-facto standard before

the existence of JSON. Until HTML 5, you needed to include

libraries to encode and decode JSON objects. Now, the JavaScript

engine that ships with HTML 5 has built-in support for

encoding/decoding JSON objects.

CrossDocumentMessaging

Another interesting addition to HTML 5 is the ability to

perform messaging between documents of the same site. A good

use of this would be in a blogging tool. In one window, you create

your post and in another window, you can see what the post would

look like without having to refresh the page. When you save the

draft of your post, it immediately updates the view window.

CrossSiteXHR

One of the amazing implications of AJAX was to be able to

not only fetch data from the server asynchronously, but to be able

to get resources from other websites using the XMLHTTP Request.

As this wasn't part of HTML4, you needed to include a library to

perform such an action. HTML 5 will have XMLHTTP Request

support built-in, so you won't need any library.

Multi-threadedJavaScript

A large portion of most web apps is written in JavaScript as it

is the only client-side programming language available. One of the

HTML 5 promises is that JavaScript will become a multi-threaded

language so that it executes more efficiently. However, that only

solves one part of the problem. Multithreading will speed up the

processing time of JavaScript once it has loaded, but as you

increase the number of lines of JavaScript, the pages take longer to

load. To solve that problem, they have introduced an attribute

called async to the<script> element. It tells the browser that this

33

script is not required when the page loads, so it can be fetched

asynchronously even after the page has loaded. The syntax for

this is:

<script async src="jquery.js"></script>

Some Features

Internationalization

This version of HTML has been designed with the help of

experts in the field of internationalization, so that documents may

be written in every language and be transported easily around the

world.

One important step has been the adoption of the

ISO/IEC:10646 standard as the document character set for HTML.

This is the world's most inclusive standard dealing with issues of

the representation of international characters, text direction,

punctuation, and other world language issues.

HTML now offers greater support for diverse human

languages within a document. This allows for more effective

indexing of documents for search engines, higher-quality

typography, better text-to-speech conversion, better hyphenation,

etc.

Accessibility

As the Web community grows and its members diversify in

their abilities and skills, it is crucial that the underlying technologies

be appropriate to their specific needs. HTML has been designed to

make Web pages more accessible to those with physical

limitations. HTML 4 developments inspired by concerns for

accessibility include:

 Better distinction between document structure and

presentation, thus encouraging the use of style sheets

instead of HTML presentation elements and attributes.

 Better forms, including the addition of access keys, the

ability to group form controls semantically, the ability to

group SELECT options semantically, and active labels.

 The ability to markup a text description of an included object

(with the OBJECT element).

34

 A new client-side image map mechanism (the MAP element)

that allows authors to integrate image and text links.

 The requirement that alternate text accompany images

included with the IMG element and image maps included

with the AREA element.

 Support for the title and lang attributes on all elements.

 Support for the ABBR and ACRONYM elements.

 A wider range of target media (tty, Braille, etc.) for use with

style sheets.

 Better tables, including captions, column groups, and

mechanisms to facilitate non-visual rendering.

 Long descriptions of tables, images, frames, etc.

Authors who design pages with accessibility issues in mind

will not only receive the blessings of the accessibility community,

but will benefit in other ways as well: well-designed HTML

documents that distinguish structure and presentation will adapt

more easily to new technologies.

Tables

The new table model in HTML is based on [RFC1942].

Authors now have greater control over structure and layout (e.g.,

column groups). The ability of designers to recommend column

widths allows user agents to display table data incrementally (as it

arrives) rather than waiting for the entire table before rendering.

Style sheets

Style sheets simplify HTML markup and largely relieve

HTML of the responsibilities of presentation. They give both authors

and users control over the presentation of documents -- font

information, alignment, colors, etc.

Style information can be specified for individual elements or

groups of elements. Style information may be specified in an HTML

document or in external style sheets.

The mechanisms for associating a style sheet with a

document are independent of the style sheet language.

35

Before the advent of style sheets, authors had limited control

over rendering. HTML 3.2 included a number of attributes and

elements offering control over alignment, font size, and text color.

Authors also exploited tables and images as a means for laying out

pages. The relatively long time it takes for users to upgrade their

browsers means that these features will continue to be used for

some time. However, since style sheets offer more powerful

presentation mechanisms, the World Wide Web Consortium will

eventually phase out many of HTML's presentation elements and

attributes. Throughout the specification elements and attributes at

risk are marked as "deprecated". They are accompanied by

examples of how to achieve the same effects with other elements

or style sheets.

Scripting

Through scripts, authors may create dynamic Web pages

(e.g., "smart forms" that react as users fill them out) and use HTML

as a means to build networked applications.

The mechanisms provided to include scripts in an HTML

document are independent of the scripting language.

2.2 DHTML

 Dynamic HTML, or DHTML, is an umbrella term for a collection

of technologies used together to create interactive and

animated web sites by using a combination of a static markup

language(such as HTML), a client-side scripting language (such

as JavaScript), a presentation definition language (such

as CSS), and the Document Object Model.

DHTML allows scripting languages to change variables in a

web page's definition language, which in turn affects the look and

function of otherwise "static" HTML page content, after the page

has been fully loaded and during the viewing process. Thus the

dynamic characteristic of DHTML is the way it functions while a

page is viewed, not in its ability to generate a unique page with

each page load.

By contrast, a dynamic web page is a broader concept —

any web page generated differently for each user, load occurrence,

or specific variable values. This includes pages created by client-

side scripting, and ones created by server-side scripting (such

36

as PHP, Perl, JSP or ASP.NET) where the web server generates

content before sending it to the client.

There are four parts to DHTML

 Document Object Model (DOM)

 Scripts

 Cascading Style Sheets (CSS)

 XHTML

 DOM

Definition: Document Object Model; The DOM or Document

Object Model is the API that binds JavaScript and other scripting

languages together with HTML and other markup languages. It is

what allows Dynamic HTML to be dynamic.

The DOM is what allows you to access any part of your Web

page to change it with DHTML. Every part of a Web page is

specified by the DOM and using its consistent naming conventions

you can access them and change their properties.

Scripts

Scripts written in either JavaScript or ActiveX are the two

most common scripting languages used to activate DHTML. You

use a scripting language to control the objects specified in the

DOM.

CascadingStyleSheets

CSS is used in DHTML to control the look and feel of the

Web page. Style sheets define the colors and fonts of text, the

background colors and images, and the placement of objects on

the page. Using scripting and the DOM, you can change the style of

various elements

XHTML

XHTML or HTML 4.x is used to create the page itself and

build the elements for the CSS and the DOM to work on. There is

nothing special about XHTML for DHTML - but having valid XHTML

is even more important, as there are more things working from it

than just the browser.

37

Features of DHTML

There are four primary features of DHTML:

1. Changing the tags and properties

2. Real-time positioning

3. Dynamic fonts (Netscape Communicator)

4. Data binding (Internet Explorer)

Changing the tags and Properties

This is one of the most common uses of DHTML. It allows

you to change the qualities of an HTML tag depending on an event

outside of the browser (such as a mouse click, time, or date, and so

on). You can use this to preload information onto a page, and not

display it unless the reader clicks on a specific link.

Real-time postioning

When most people think of DHTML this is what they expect.

Objects, images, and text moving around the Web page. This can

allow you to play interactive games with your readers or animate

portions of your screen.

Dynamic Fonts

This is a Netscape only feature. Netscape developed this to

get around the problem designers had with not knowing what fonts

would be on a reader's system. With dynamic fonts, the fonts are

encoded and downloaded with the page, so that the page always

looks how the designer intended it to.

Data binding

This is an IE only feature. Microsoft developed this to allow

easier access to databases from Web sites. It is very similar to

using a CGI to access a database, but uses an ActiveX control to

function. This feature is very advanced and difficult to use for the

beginning DHTML writer.

2.3 XHTML

XHTML (Extensible Hypertext Markup Language) is a family

of XML markup languages that mirror or extend versions of the

widely used Hypertext Markup Language (HTML), the language in

which web pages are written.

38

While HTML (prior to HTML5) was defined as an application

of Standard Generalized Markup Language (SGML), a very flexible

markup language framework, XHTML is an application of XML, a

more restrictive subset of SGML. Because XHTML documents

need to be well-formed, they can be parsed using standard XML

parsers—unlike HTML, which requires a lenient HTML-specific

parser.

XHTML 1.0 became a World Wide Web

Consortium (W3C) Recommendation on January 26, 2000. XHTML

1.1 became a W3C Recommendation on May 31, 2001. XHTML5 is

undergoing development as of September 2009, as part of

the HTML5 specification.

XHTML is a family of current and future document types and

modules that reproduce, subset, and extend HTML 4. XHTML

family document types are XML based, and ultimately are designed

to work in conjunction with XML-based user agents. The details of

this family and its evolution are discussed in more detail in

[XHTMLMOD].

XHTML 1.0 (this specification) is the first document type in

the XHTML family. It is a reformulation of the three HTML 4

document types as applications of XML 1.0. It is intended to be

used as a language for content that is both XML-conforming and, if

some simple guidelines are followed, operates in HTML 4

conforming user agents. Developers who migrate their content to

XHTML 1.0 will realize the following benefits:

 XHTML documents are XML conforming. As such, they are

readily viewed, edited, and validated with standard XML

tools.

 XHTML documents can be written to operate as well or

better than they did before in existing HTML 4-conforming

user agents as well as in new, XHTML 1.0 conforming user

agents.

 XHTML documents can utilize applications (e.g. scripts and

applets) that rely upon either the HTML Document Object

Model or the XML Document Object Model.

 As the XHTML family evolves, documents conforming to

XHTML 1.0 will be more likely to interoperate within and

among various XHTML environments. Why the need for

XHTML?

39

The benefits of migrating to XHTML 1.0 are described

above. Some of the benefits of migrating to XHTML in general are:

 Document developers and user agent designers are

constantly discovering new ways to express their ideas

through new markup. In XML, it is relatively easy to

introduce new elements or additional element attributes. The

XHTML family is designed to accommodate these

extensions through XHTML modules and techniques for

developing new XHTML-conforming modules (described in

the XHTML Modularization specification). These modules

will permit the combination of existing and new feature sets

when developing content and when designing new user

agents.

 Alternate ways of accessing the Internet are constantly being

introduced. The XHTML family is designed with general user

agent interoperability in mind. Through a new user agent and

document profiling mechanism, servers, proxies, and user

agents will be able to perform best effort content

transformation. Ultimately, it will be possible to develop

XHTML-conforming content that is usable by any XHTML-

conforming user agent.

The Main Changes

There are several main changes in XHTML from HTML:

 All tags must be in lower case

 All documents must have a doctype

 All documents must be properly formed

 All tags must be closed

 All attributes must be added properly

 The name attribute has changed

 Attributes cannot be shortened

 All tags must be properly nested

At a glance, this seems like a huge amount of changes but

once you start checking though the list you will find that very little

on your site actually needs to be changed. In this tutorial I will go

though each of these changes explaining exactly what is different.

40

2.3.1 The Doctype

The first change which will appear on your page is the

Doctype. When using HTML it is considered good practice to add a

Doctype to the beginning of the page like this.

Although this was optional in HTML, XHTML requires you to

add a Doctype. There are three available for use.

Strict - This is used mainly when the markup is very clean and there

is no 'extra' markup to aid the presentation of the document. This is

best used if you are using Cascading Style Sheets for presentation.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional - This should be used if you want to use presentational

features of HTML in your page.<!DOCTYPE html PUBLIC "-

//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w 3.org/ TR/

xhtml1/ DTD/ xhtml1- transitional.dtd">

Frameset - This should be used if you want to have frames on your

page. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-

frameset.dtd">

The doctype should be the very first line of your document

and should be the only thing on that line. You don't need to worry

about this confusing older browsers because the Doctype is

actually a comment tag. It is used to find out the code which the

page is written in, but only by browsers/validators which support it,

so this will cause no problems.

2.3.2 Document Formation

After the Doctype line, the actual XHTML content can be

placed. As with HTML, XHTML has <html> <head> <title> and

<body> tags but, unlike with HTML, they must all be included in a

valid XHTML document. The correct setup of your file is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

<html>

<head>

41

<title>PageTitle</title>

OTHER HEADDATA

</head>

<body>

CONTENT

</body>

</html>

It is important that your document follows this basic pattern.

This example uses the transitional Doctype but you can use either

of the others (although frames pages are not structured in the same

way).

2.3.3 XHTML Tags

Introduction

One of the major changes to HTML which was introduced to

XHTML is that tags must always be properly formed. With the old

HTML specification you could be very sloppy in your coding, with

missing tags and incorrect formation without many problems but in

XHTML this is very important.

2.3.3.1 Lower Case

Probably the biggest changes in XHTML are that now not

only the tags you use but, the way in which you write them must be

correct. Luckily the major change can be easily implemented into a

normal HTML document without much problem.

In XHTML, tags must always be lower case. This means that:

are all incorrect tags and must not be used. The font tag must now

be used as follows:

If you are not writing your code, but instead use a

WYSIWYG editor, you can still begin to migrate your documents to

XHTML by setting the editor to output all code in lower case. For

example, in Dreamweaver 4 you can do this by going to:

42

Edit -> Preferences -> Code Format and making sure that Case

For Tags is set to:

<lowercase> and also that Case For Attributes is set to:

lowercase="value"

2.3.3.2 Nesting

The second change to the HTML tags in XHTML is that they

must all be properly nested. This means that if you have multiple

tags applying to something on your page you must make sure you

open and close them in the correct order. For example if you have

some bold red text in a paragraph, the correct nesting would be one

of the following:

<p>Your Text</p>

<p>Your Text</p>

<p>Your Text</p>

These are only examples, though, and there are other possibilities

for these tags. What you must not do, though, is to close tags in the

wrong order, for example:

<p>Your Text</p>

Although code in this form would be shown correctly using HTML,

this is incorrect in the XHTML specification and you must be very

careful to nest your tags correctly.

2.3.3.4 Closing Tags

The previous two changes to HTML should not be a particular

problem to you if your HTML code is already well formed. The final

change to HTML tags probably will require quite a lot of changes to

your HTML documents to make them XHTML compliant.

All tags in XHTML must be closed. Most tags in HTML are already

closed (for example <p></p>, ,) but there are

several which are standalone tags which do not get closed.

The main three are:

<hr>

43

There are two ways in which you can deal with the change in

specification. The first way is quite obvious if you know HTML. You

can just add a closing tag to each one, e.g.

</br>

<hr></hr>

Although you must be careful that you do not accidentally

place anything between the opening and closing tags as this would

be incorrect coding. The second way is slightly different but will be

familiar to anyone who has written WML. You can include the

closing in the actual tag:

<hr/>

This is probably the best way to close your tags, as it is the

recommended way by the W3C who set the XHTML standard. You

should notice that, in these examples, there is a space before the

/>. This is not actually necessary in the XHTML specification (you

could have
) but the reason why I have included it is that, as

well as being correct XHTML, it will also make the tag compatible

with past browsers. As every other XHTML change is backwards

compatible, it would not be very good to have a simple missed out

space causing problems with site compatibility.

In case you are wondering how the tag works if it has

all the normal attributes included, here is an example:

<img src="myimage.gif" alt="My Image" width="400" height="300"

/>

Again, notice the space before the />

2.3.3.5 Attributes

In this part of the XHTML tutorial, I will show you the

changes to HTML attributes in XHTML. HTML attributes are the

extra parts you can add onto tags (such as src in the img tag) to

change the way in which they are shown. There are four changes

to the way in which attributes are changed.

44

Lowercase

As with XHTML tags, the attributes for them must be in

lowercase. This means that, although in the past, code like:

<table Width="100%">

would have worked, this must now be given as:

<table width="100%">

Although this is quite a minor issue, it is important to check your

code for this mistake as it is quite a common one.

Correct Quotation

Another change in the HTML syntax is that all attributes in XHTML

must be quoted. In HTML you could have used the following:

<table width=100%>

with absolutely no compatibility problems. This all changes in

XHTML. If you use code in this format with XHTML it will be

incorrect and must be changed. In future, all attributes must be

surrounded by quotes (") so the correct format of this code would

be:

<table width="100%">

2.3.3.6 Attribute Shortening

It has become common practice in HTML to shorten a few of

the attributes to save on typing and on transfer times. This method

has become almost a standard. As with other common practices in

HTML, this has been removed from the XHTML specification as it

causes incompatibilities between browsers and other devices.

An example of a commonly shortened tag is:

<input type="checkbox" value="yes" name="agree" checked>

In this, it is the:

checked part which is incorrect. In XHTML all shortened attributes

must be given in their 'long' format. For example:

checked="checked"

45

so the checkbox code earlier would now need to be written as:

<input type="checkbox" value="yes" name="agree"

checked="checked">

There are other attributes (such as noresize) which also must be

given in full.

The ID Attribute

Probably the biggest change from HTML to XHTML is the

one tag attribute change. All other differences have been just

making tags more compatible. This is the only full change.

In HTML, the tag has an attribute 'name'. This is

usually used to refer to the image in javascript for doing actions like

image rollovers. This attribute has now been changed to the 'id'

attribute. So, the HTML code:

would need to be written in XHTML as:

Of course, this would not be backward compatible with older

browsers, so if you still want your site to work fully in all old

browsers (as XHTML is intended to do), you will need to include

both id and name attributes (this would also be correct XHTML):

General Rules for converting HTML to XHTML

The first line in the HTML document may be the XML

processing instruction:

<? xml version="1.0" encoding="iso-8859-1"?>

W3C recommends that this declaration be included in all

XHTML documents, although it is absolutely required only when the

character encoding of the document is other than the default

Unicode UTF-8 or UTF-16. I said necessary because there can be

problems with older browsers which cannot identify this as a valid

HTML tag.

46

 The second line in the XHTML document should be the

specification of the document type declaration (DTD) used.

The document type declaration for transitional XHTML

documents is:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The declarations for the strict XHTML DTD is:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The declarations for the frameset XHTML DTD is:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XML requires that there must be one and only one root

element for a document. Hence, in XHTML, all tags should be

enclosed within the <html> tag, ie., <html> should be the root

element for the document.

The starting tag <html> should be modified to include

namespace information. The modification is:

<html xmlns="http://www.w3.org/1999/xhtml" lang="EN">

Attribute xmlns is the XML namespace with which we

associate the XHTML document. The value of the attribute lang is

the code for the language of the document as specified in

RFC1766.

XHTML tag elements should be in lower case. That

means <HTML> and <Body> are wrong. They should be rewritten

as <html> and <body> respectively.

All XHTML tags should have their end tags. In HTML it is

common for paragraphs to have only the starting <p> tag. In

XHTML this is not allowed. You need to end a paragraph with

47

the </p> tag. Example: <p>Hello is wrong; it should be written

as<p>Hello</p>.

Empty XHTML tags should be ended with /> instead of >.

The commonly used empty tags in XHTML are:

1. <meta />: for meta information (contained in the head section).

2. <base />: used to specify the base URI and also the target

frame for hyperlinks (contained in the head section).

3. <basefont />: used to specify a base font for the document. Note

that attribute 'size' is mandatory.

4. <param />: parameters for applets and objects.

5. <link />: to specify external stylesheets and other references.

6. : to include images. Attributes 'src' for the source URI

and 'alt' for alternate text are mandatory.

7.
: used for forced line break.

8. <hr />: for horizontal rules.

9. <area />: used inside image maps. Attribute 'alt' is mandatory.

10.<input />: used inside forms for input form elements like buttons,

textboxes, textareas, checkboxes and radio buttons.

Example: <br clear="all"> is wrong; it should be rewritten as <br

clear="all" />. is wrong; it should

be

Proper nesting of tags is compulsory in XHTML.

Example:<i>This is bold italics<i> is wrong. It should be

rewritten as<i>This is bold italics</i>.

Rules for XHTML Attributes

 All XHTML attribute names should be in lower case.

Example: Width="100" and WIDTH="100" are wrong;

only width="100" is correct.

Similarly onMouseOut="javascript:myFunction();" is wrong; it

should be rewritten as onmouseout="javascript:myFunction();".

 All attribute-value pairs should be quoted.

Example: width=100 is wrong; it should be

width="100" or width='100'.

48

 HTML supports certain attributes which have no values.

Examples are noshade which appears in the <hr noshade

/> tag. XHTML does not allow such empty or compact attributes.

The compact attributes generally found in HTML

are compact, nowrap,ismap, declare, noshade, checked, disabl

ed, readonly, multiple, selected,noresize and defer. They should

always have a value. In XHTML this is done by giving the

attribute name itself as the value!

Example: noshade becomes noshade="noshade"

checked becomes checked="checked".

 The name attribute is deprecated and will be removed in a

future version of XHTML and the id attribute will take its place.

So, for HTML tags that need the name attribute, an idattribute

should also be specified with the same value as that for name.

Example: <frame name="myFrame" > becomes<frame

name="myFrame" id="myFrame" >

 All & (ampersand) characters in the source code have to be

replaced with &, which is the equivalent character entity

code. This change should be done in all attribute values and

URIs.

Example: Bee&Nee will result in an error if you try to validate it;

It should be written asBee&Nee.

Go is wrong; it should

be coded as<a href="my. asp? Action =read

&value=1">Go.

XHTML Tables

 For <table> tag, attribute height is not supported in XHTML

1.0. Only the width is supported. The <td> tag does support

the height attribute.

 The <table>, <tr> and the <td> tag does not support the

attribute background which is used to specify a background

image for the table or the cell. Background images will have to

be specified either using the style attribute or using external

stylesheet. The attribute bgcolor for background color is

however supported by these tags.

XHTML Images

 The alt attribute is mandatory. This value of this attribute will

be the text that has to be shown in older browsers, text-only

49

browsers (like lynx), and in place of the image when it is not

available. Note that is an empty tag.

Example:

XHTML and Javascript

 The type attribute is mandatory for all <script> tags. This

value of type istext/javascript for Javascript.

 The use of external scripts is recommended.

Example:

<script type="text/javascript"

language="javascript" src="functions.js"></script>

 If you are using internal scripts, enclose it within the starting

tag <![CDATA[and the ending tag]]>. This will mark it as

unparsed character data. Otherwise characters like & and <

will be treated as start of character entities (like) and

tags (like) respectively.

Example for XHTML Javascript:

<script type="text/javascript" language="Javascript">

<!--

<![CDATA[

document.write('Hello World!');

]]>

//-->

</script>

XHTML and Stylesheets

 The type attribute is mandatory for <style> tag. The value

of type is text/css for stylesheets.

 The use of external stylesheets is recommended.

Example: <link rel="stylesheet" type="text/css" href="screen.css"

/>

50

Enclose internal style definitions within the starting

tag <![CDATA[and the ending tag]]> to mark it as unparsed

character data.

Example:

<style type="text/stylesheet">

<![CDATA[

.MyClass { color: #000000; }

]]>

</style>

Otherwise the & and < characters will be treated as start of

character entities (like) and tags (like) respectively.

Element Prohibitions in XHTML

The W3C recommendation also prohibits certain XHTML elements

from containing

some elements. Those are given below:

 <a> cannot contain other <a> elements.

 <pre> cannotcontain

the , <object>, <big>, <small>, <sub>,

or <sup>elements.

 <button> cannot contain

the <input>, <select>, <textarea>, <label>, <button>,<form>, <field

set>, <iframe>, or <isindex> elements.

 <label> cannot contain other <label> elements.

 <form> cannot contain other <form> elements.

2.4 ACTIVE SEVER PAGE

Microsoft® Active Server Pages (ASP) is a server-side

scripting technology that can be used to create dynamic and

interactive Web applications. An ASP page is an HTML page that

contains server-side scripts that are processed by the Web server

before being sent to the user's browser. You can combine ASP with

Extensible Markup Language (XML), Component Object Model

(COM), and Hypertext Markup Language (HTML) to create

powerful interactive Web sites.

51

Server-side scripts run when a browser requests an .asp file

from the Web server. ASP is called by the Web server, which

processes the requested file from top to bottom and executes any

script commands. It then formats a standard Web page and sends

it to the browser.

It is possible to extend your ASP scripts using COM

components and XML. COM extends your scripting capabilities by

providing a compact, reusable, and secure means of gaining

access to information. You can call components from any script or

programming language that supports Automation. XML is a meta-

markup language that provides a format to describe structured data

by using a set of tags.

ASP files have a file extension of .asp, much like HTML files

have file extensions of either .htm or .html. The HTML files that

contain the ASP instructions enclose those instructions within tags

that look like this: <% and %>. Notice that unlike HTML, the ASP

ending tag does not include a slash. To send the results of an ASP

instruction directly to a browser, you add an equals sign: <%=.

ASP programming involves scripting in Visual Basic Script,

Jscript,Perl, Python, or other languages. Certain modifications are

necessary, but the programmer who has written code in these other

languages will find ASP programming to be familiar indeed. The

two languages that work the best for ASP programming are

VBScript and Jscript

One common use of ASP programming is to gather data

from the user and display it at another time. For example, you can

use ASP programming to query the user to type in his or her name

and then display that name on subsequent pages during the user's

visit. Once the name is input, the ASP programming protocols

transfer that data to the requisite database, from which it can be

accessed by other HTML pages that contain the coding guiding

such requests. Such data requests and displays can be as complex

as you want to make them.

Written data isn’t the only thing that can be uploaded to your

website using ASP programming. You can design forms that allow

users to upload image files to your site as well. Real estate

52

websites are perfect examples of sites that can take advantage of

this functionality.

ASP programming also comes in handy when your HTML

pages and what they display involve accessing large databases

containing tons of data. In this case, you will really appreciate the

benefits of not having to change HTML files when you update the

parameters of your databases. ASP programming makes this

process simple.

2.5 JAVASCRIPT

A scripting language developed by Netscape to enable

Web authors to design interactive sites. Although it shares many

of the features and structures of the full Java language, it was

developed independently. JavaScript can interact with

HTML source code, enabling Web authors to spice up their sites

with dynamic content. JavaScript is endorsed by a number of

software companies and is an open language that anyone can use

without purchasing a license. It is supported by recent browsers

from Netscape and Microsoft, though Internet Explorer supports

only a subset, which Microsoft calls Jscript.

What can a JavaScript do?

 JavaScript gives HTML designers a programming tool -

HTML authors are normally not programmers, but JavaScript is

a scripting language with a very simple syntax! Almost anyone

can put small "snippets" of code into their HTML pages

 JavaScript can put dynamic text into an HTML page - A

JavaScript statement like this: document.write("<h1>" + name +

"</h1>") can write a variable text into an HTML page

 JavaScript can react to events - A JavaScript can be set to

execute when something happens, like when a page has

finished loading or when a user clicks on an HTML element

 JavaScript can read and write HTML elements - A JavaScript

can read and change the content of an HTML element

 JavaScript can be used to validate data - A JavaScript can be

used to validate form data before it is submitted to a server. This

saves the server from extra processing

53

 JavaScript can be used to detect the visitor's browser - A

JavaScript can be used to detect the visitor's browser, and -

depending on the browser - load another page specifically

designed for that browser

 JavaScript can be used to create cookies - A JavaScript can

be used to store and retrieve information on the visitor's

computer

2.6 FEATURES AND APPLICATION

There are literally hundreds of difficult technologies

available to the webmaster. Making proper use of these

technologies allows the creation of maintainable, efficient and

useful web sites. For example, using SSI (server side includes) or

CSS (cascading style sheets) a webmaster can change every

page on his web site by editing one file.

A few of the more common technologies are listed below.

 ASP

Active Server Pages are used to perform server-side

scripting. This is a way to get things done on the web server, as

opposed to, say, JavaScript, which lets you get things one on the

client (browser). Although there is a Unix and Linux version of

ASP, it is primarily intended for use on Microsoft web server based

systems.

ASP is useful for tasks such as maintaining a database,

creating dynamic pages and respond to user queries (and many

other things as well).

 CGI

Common Gateway Interface is one of the older standards on

the internet for moving data between a web page and a web

server. CGI is by far and away the most commonly used method of

handling things like guestbooks, email forms, message boards and

so on. CGI is actually a standard for passing data back and forth

and not a scripting language at all. In fact, CGI routines are

commonly written in interpreted languages such as PERL or

compiled languages like C.

54

 CSS

You use Cascading Style Sheets to format your web pages

anyway that you want. CSS is complicated, but the complication

pays off by being able to create web pages that look much better

than otherwise. One very nice feature is the ability to define

formatting commands in a single file, which is then included in all

of your web pages. This let's you make one change to modify the

look of your entire site.

 HTACCESS

The .htaccess file allows you to set parameters for your web

site and folders (directories). The most common use is to protect

directories by defining usernames and passwords. Htaccess can

be used for many other things as well, including denying access to

specific addresses, keeping out hostile spiders and redirecting

traffic transparently to the user. The downside of htaccess is the

language used is often extremely obscure, difficult to understand

and extraordinarily precise. A small error in your htaccess file can

disable your entire web site until the error is fixed.

 Java

Java is a client-side (meaning it's executed by the browser

not the server) language. It is efficient and very powerful. The

primary advantage of Java over ActiveX is Java has a sane

security model (called the Sandbox Model), while the ActiveX

model is so imbecilic as to defy imagination. Java is also much

less likely to crash systems. On the other hand, Java is

substantially slower than ActiveX, and there are many tasks that

simply cannot be performed in Java because it is denied access to

the operating system and disk itself.

 JavaScript

This is a scripting language which is interpreted and

executed by the browser. It is very useful for getting tasks done on

the client, such as moving pictures around the screen, creating

very dynamic navigation systems and even games. JavaScript is

generally preferable on internet sites because it is supported on

more browsers than VBScript, which is the chief competitor.

55

 Office

The Microsoft Office suite includes a number of

tools, including Word, Excel, Access and Powerpoint. Each of

these tools has the ability to save in HTML format and has special

commands for the internet. This is especially useful, for example, if

you work in an office where people are trained in Excel and you

don't want to retrain them to create web pages. On the other hand,

if you are creating internet web sites (as opposed to intranet sites)

you probably would be better off using web specific products to

edit your web pages.

 Perl

A great scripting language which makes use of the CGI

standard to allow work to be done on the web server. PERL is very

easy to learn (as programming languages go) and straightforward

to use. It is most useful for guestbooks, email forms and other

similar, simply tasks. PERL's primary disadvantage is the

overhead on the server is very high, as one process is created

each time a routine is called, and the language is interpreted,

which means the code is recompiled each time it is run. For

complex tasks, a server-side scripting language such as PHP or

ASP is much preferred.

 PHP

This language is, like ASP, used to get work done on the

server. PHP is similar in concept to ASP and can be used in

similar circumstances. PHP is very efficient, allows access to

databases using products such as MySQL, and can be used to

create very dynamic web pages.

 SSI

If your site is hosted on a typical Apache server, then you

probably can use something called Server Side Includes. This is a

way to get the web server to perform tasks before displaying a

web page. One of the most common uses us to, well, include

common text. This is great when you have, for example, a

navigation system which is common to all of your pages. You can

make one change in an SSI file and thus change your entire web

site.

56

SSI is very common but has really been superceded by

languages such as PHP. The overhead of SSI on the server is

high as each page is scanned for SSI directives before passing it

to the browser.

 VBScript

Visual Basic Scripting was Microsoft's answer to JavaScript.

VBScript is a good tool for any site which is intended to be only

displayed by the Internet Explorer browser. In my opinion,

VBScript should never be used on a web site - JavaScript is

preferable due to a wider acceptance among browsers.



57

3

INTRODUCTION TO HTML

Unit Structure

3.0 Objectives

3.1 HTML Fundamentals

3.2 HTML Browsers

3.3 HTML tags, Elements and Attributes

3.4 Structure of HTML code

o Head

o Body

3.5 Lists

• Ordered List

• Unordered List

• Definition List

• Nesting List

3.0 OBJECTIVES

To learn and understand how to make web pages .

INTRODUCTION (3.1 FUNDAMENTALS AND

3.2 BROWSERS)

 HTML (Hypertext Markup Language) is used to create

document on the World Wide Web.

 Its collection of “TAGS”, that are used to make web documents

that are displayed using browsers on internet.

 HTML is platform independent language

 To display a document in web it is essential to mark-up the

different elements (headings, paragraphs, tables, and so on) of

the document with the HTML tags.

58

 To view a mark-up document, user has to open the document in

a browser.

 A browser understands and interpret the HTML tags, identifies

the structure of the document (which part are which) and makes

decision about presentation (how the parts look) of the

document.

 We can also make documents look attractive using graphics ,

fonts size and color using HTML

 User can make a link to the other document or the different

section of the same document by creating Hypertext Links also

known as Hyperlinks.

3.1.1 How to make HTML pages????

What You Need

You don't need any tools to learn HTML.

 You don't need any HTML editor

 You don't need a web server

 You don't need a web site

Editing HTML

We can use a plain text editor (like Notepad) to edit HTML.

We can also use dreamviewer or frontpage

When you save an HTML file, you can use either the .htm or the

.html file extension.

HTML gives authors the means to:

 Publish online documents with headings, text, tables,

lists, photos, etc.

 Retrieve online information via hypertext links, at the click

of a button.

 Design forms for conducting transactions with remote

services, for use in searching for information, making

reservations, ordering products, etc.

 Include spread-sheets, video clips, sound clips, and other

applications directly in their documents.

3.3 TAGS, ELEMENTS, ATTRIBUTE

 HTML is set of instruction.

 These instruction, along with the text to which the instruction

apply are called HTML elements.

59

 The HTML instructions are themselves called as tags, and look

like <element_name> -- that is, element name surrounded by

left and right angle brackets(< >).

HTML Tags

HTML markup tags are usually called HTML tags:

 HTML tags are keywords surrounded by angle brackets

like <html>

 HTML tags normally come in pairs like and

 The first tag in a pair is the start tag, the second tag is

the end tag

 Start and end tags are also called opening tags and

closing tags

Tags are used to represent various elements of web page

like Header, Footer, Title, Images etc. Tags are of two types:

Container Tags, Empty Tags.

 Container Tags:

o These tags are always paired with closures tags are

called container tags.

o These tags activate an effect and have a companion tag

to close/discontinue the effect.

o Tags which have both the opening and closing i.e.

<TAG> and </TAG>

o For example tag starts bold effect for text and its

companion tag ends the bold effect.

o Statement like:

 How

o Will have word How in bold.

o The <HTML>, <HEAD>, <TITLE> and <BODY> <SCRIPT>

 <A> etc. tags are all container tags.

 Empty Tags:

o Tags, which have only opening and no ending, are called

empty tags/ standalone tag. The

o <HR>, which is used to draw horizontal, rule across the

width of the document, and line break
 tags are

empty tags.

• When client request for a page from web server browser

fetches. .

• All web pages contain instructions for display called ‘tags’.

60

• Browsers read tags and display page according to tags on

client computer

HTML Attributes

 HTML elements can have attributes.

 Attributes provide additional information about an element

about how the tag should appear or behave.

 Attributes are always specified in the start tag .

 An element’s start tag may contain any number of space

separated attribute/value pairs.

 Attributes consist of a name and a value separated by an equals

(=) sign (name/value pairs like: name = "value").

 For example, consider the tag BODY, which marks as the

beginning (or end) of HTML body.

 This tag can have several attributes, one of them is BGCOLOR,

specific the background color of the document.

<BODY bgcolor = ”background_color” background =

“background_image”>.

 Attribute values should always be enclosed in quotes.

 Double style quotes are the most common, but single style

quotes are also allowed.

Many attributes are available to HTML elements, some are

common across most tags, and others can only be used on certain

tags. Some of the more common attributes are:

Attribute Description Possible Values

Class Used with Cascading

Style Sheets (CSS)

(the name of a predefined

class)

Style Used with Cascading

Style Sheets (CSS)

(You enter CSS code to

specify how the way the

HTML element is presented)

Title Can be used to display

a "tooltip" for your

elements.

(You supply the text)

61

3.4 STRUCTURE OF HTML CODE

 HTML documents are structured into two parts, the HEAD, and

the BODY.

 Both of these are contained within the HTML element – it simply

denotes its HTML document

 The head contains information about the document that is not

generally displayed with the document, such as its TITLE.

 The BODY contains the body of the text

 Elements allowed inside the HEAD, such as TITLE, are not

allowed inside the BODY, and vice versa.

Example of Document Structure page1.html

<HTML>

<HEAD>

<TITLE> This is my FRIST HTML Page </TITLE>

</HEAD>

<BODY>

<h1> Global Warming </h1>

Global warming is when the earth heats up (the temperature

rises). It happens when greenhouse gases (carbon dioxide,

water vapor, nitrous oxide, and methane) trap heat and light

from the sun in the earth’s atmosphere, which increases the

temperature. This hurts many people, animals, and plants.

Many cannot take the change, so they die.

<p> What causes global warming?

Turning on a light

Riding in a car

Watching T.V.

Listening to a stereo

</BODY>

</HTML>

62

Document Structure Tags

Sr

No

Tags Tag Type Functions and Example

1. HTML Tag

<HTML>:

Container  The <HTML> tag encloses all

other HTML tags and associated

text within your document

 But it is always a good form to

include the start and stop tags.

 Your Title and Document

(contains text with HTML tags)

goes here </HTML>

 The format is:

<HTML>

2. <BODY> Container  The BODY tag contains all the

text and graphics of the

document with all the HTML tags

that are used for control and

formatting of the page.

 The Format is:

<BODY>

‘Statements

</BODY>

 Attribute:

 ONLOAD - specify the name of a script to run when the

document is loaded.

 ONUNLOAD - specify the name of a script to run when

the document exits.

 BACKGROUND = "sunset.gif" - (Depreciated) Defines

the name of a file to use for the background for the page.

The background can be specified as in the following line.

 BGCOLOR = "white" - (Depreciated background color

of the page

 TEXT = “black" - (Depreciated) the color of the page's

text.

 LINK = "blue" - (Depreciated) the color of links that have

not been visited.

63

 ALINK = “red" - (Depreciated) the color of the link

currently being visited.

 VLINK = “green" - (Depreciated) the color of visited

links.

 BGPROPERTIES = FIXED -

if the background image should not scroll

 TOPMARGIN: size of top and bottom margins

 LEFTMARGIN: size of left and right margins

 MARGINHEIGHT: size of top and bottom margins

 MARGINWIDTH: size of left and right margins

 SCROLL = YES | NO -

If the document should have a scroll bar

<body text = "#000000" bgcolor="#FFFFFF"

link="#0000EF" vlink="#51188E" alink="#FF0000"

background="sunset.gif">

Note:

• For the depreciated attributes noted above, see the

"Setting document style" section for an example of how

to set the same attributes using a style sheet.

• The values of color may be a hexadecimal value from 0

through FF which in decimal is 0 through 255. The highest

value being the highest strength of the respective color.

• This format is "RRGGBB".

3. <HEAD> Container  HEAD tag comes after the

HTML start tag.

 It contains TITLE tag to give the

document a title that displays on

the browsers title bar at the top.

 The Format is:

<HEAD>

<TITLE>

Your title goes

here

</TITLE>

</HEAD>

 Elements allowed in the HTML 4.0 strict HEAD element are:

o BASE - Defines the base location for resources in the

current HTML document. Supports the TARGET attribute

in frame and transitional document type definitions.

64

o LINK - Used to set relationships of other documents with

this document.

o META - Used to set specific characteristics of the web

page and provide information to readers and search

engines.

o SCRIPT - Used to embed script in the header of an

HTML document.

o STYLE - Used to embed a style sheet in the HTML

document.

o TITLE - Sets the document title.

3.5 LISTS

 HTML defines three different types of lists:

i. ordered (commonly known as numbered) lists,

ii. unordered (commonly known as bulleted) lists,

iii. and definition lists (for term and definition pairs).

 Each HTML list has the following structure:

<list_tag>

<item_tag> Item text </item_tag>

<item_tag> Item text </item_tag>

...

</list_tag>

Note Definition lists are slightly different in syntax because they

have an item tag (<dt> or “definition term”) and a definition

description tag (<dd>).

The ordered and unordered lists have many different display

options available:

✦ Ordered lists can have their items preceded by the following:

• Arabic numbers

• Roman numerals (upper- or lowercase)

• Letters (upper- or lowercase)

• Numerous other language-specific numbers/letters

✦ Unordered lists can have their items preceded by the following:

• Several styles of bullets (filled circle, open circle, square,

and so on)

• Images

65

Ordered (Numbered) Lists

 Ordered lists have elements that are preceded by numbers

or letters and are meant to provide a sequence of ordered

steps for an activity.

 Ordered lists use the ordered list tag () to delimit the

entire list and the list item tag () to delimit each individual

list item.

Example 1:

<html>

<head>

<title> Example

Ordered

List</title>

</head>

<body>

<ol type = ”1”>

<lh> Fruits

 Mango.

 Apple

Banana

</body>

</html>

Example 2:

<html>

<head>

<title> Example

Ordered List </title>

</head>

<body>

<ol type = "I">

<lh> Programming

Languages

 C.

 C ++

 JAVA

 DOTNET

</body>

</html>

66

Unordered (Bulleted) Lists

 Unordered lists are similar to numbered lists except that they

use bullets instead of numbers or letters before each list item.

 Bulleted lists are generally used when providing a list of

nonsequential items.

 For example, consider the following list of ice cream flavors:

✦ Vanilla

✦ Chocolate

✦ Strawberry

 Unordered lists use the unordered list tag () to delimit the

entire list and the list item tag () to delimit each individual list

item.

 In the preceding example, the list has three elements each

preceded with a small, round, filled bullet.

 Unordered lists also support the list-style-type property, but with

slightly different values:

 ✦ disc

 ✦ circle

 ✦ square

 ✦ none

67

<html>

<head>

<title>Example

Ordered List</title>

</head>

<body>

Example 1:

<ul type = "square">

<lh> SQUARE

 C.

 C ++

 JAVA

 DOTNET

<ul type = "circle">

<lh> CIRCLE

 C.

 C ++

 JAVA

 DOTNET

<ul type = "disc">

<lh> DISC

 C.

 C ++

 JAVA

 DOTNET

<ul type = "none">

<lh> DISC

 C.

 C ++

 JAVA

 DOTNET

</body>

</html>

68

Definition Lists

 Definition lists are slightly more complex than the other two

types of lists because they have two elements for each item, a

term and a definition.

 However, there aren’t many formatting options for definition

lists, so their implementation tends to be simpler than that of the

other two lists.

 Consider this list of definitions, highlighting popular Web

browsers:

 Internet Explorer

o Developed by Microsoft, an integral piece of

Windows products.

 Mozilla

o Developed by the Mozilla Project, an open source

browser for multiple platforms.

 Netscape

o Developed by Netscape Communications

Corporation, one of the first graphical browsers.

 Safari

o Developed by Apple Computer, Inc., for Apple’s

OSX operating system.

• The bulleted items can be coded as list terms and their

definitions as list definitions, as shown in the following code.

69

<html>

<head>

<title>Example Definition List</title>

</head>

<body>

<dl>

<dt> Internet Explorer</dt>

<dd> Developed by Microsoft, an integral piece of Windows

products < /dd>

<dt> Mozilla </dt>

<dd> Developed by the Mozilla Project, an open source browser for

multiple platforms. </dd>

<dt> Netscape </dt>

<dd> Developed by Netscape Communications Corporation, one of

the first graphical browsers. </dd>

<dt> Safari </dt>

<dd> Developed by Apple Computer, Inc, for Apple’s OSX

operating system. </dd>

</dl>

</body>

</html>

• You can nest lists of the same or different types.

• For example, suppose you have a bulleted list and need a

numbered list beneath one of the items.

70

Some few information about tags:

Tags Attributes

<dd> Class = "class name"

dir = "direction for weak/neutral text"

id = "document-wide unique id"

lang = "language code"

onclick = "script"

ondblclick = "script"

onkeydown = "script"

onkeypress = "script"

onkeyup = "script"

onmousedown = "script"

onmousemove = "script"

onmouseout = "script"

onmouseover = "script"

onmouseup = "script"

style = "associated style info"

title = "advisory title"

<dl> lass = "class name"

compact

dir = "direction for weak/neutral text"

id = "document-wide unique id"

lang = "language code"

onclick = "script"

ondblclick = "script"

onkeydown = "script"

onkeypress = "script"

onkeyup = "script"

onmousedown = "script"

onmousemove = "script"

onmouseout = "script"

onmouseover = "script"

onmouseup = "script"

style = "associated style info"

title = "advisory title"

71

 class = "class name"

dir = "direction for weak/neutral text"

id = "document-wide unique id"

lang = "language code"

onclick = "script"

ondblclick = "script"

onkeydown = "script"

onkeypress = "script"

onkeyup = "script"

onmousedown = "script"

onmousemove = "script"

onmouseout = "script"

onmouseover = "script"

onmouseup = "script"

style = "associated style info"

title = "advisory title"

type = "content type"

value = "value"

 lass = "class name"

compact

dir = "direction for weak/neutral text"

id = "document-wide unique id"

lang = "language code"

onclick = "script"

ondblclick = "script"

onkeydown = "script"

onkeypress = "script"

onkeyup = "script"

onmousedown = "script"

onmousemove = "script"

onmouseout = "script"

onmouseover = "script"

onmouseup = "script"

start = "starting sequence number"

style = "associated style info"

title = "advisory title"

type = "content type"

72

Examples of List:

DEFINITION

Coding results

Preceeding Text
<DL>
<LH> List Header </LH>
<DT> List item 1
<DD> Description of List item 1.
<DT> List item 2
<DD> Description of List item 2.
</DL>

Preceeding TextList Header
List item 1

Description of List item
1.

List item 2
Description of List item
2.

WITH IMAGE BULLETS

Coding results

Preceeding Text
<DL>
<LH> List Header</LH>
<DD>
List item 1.
<DD> List
item 2.
</DL>

Preceedin
g TextList
Header

Li
st
item
1.

Li
st
item
2.

NESTED LISTS

Coding Results

Preceeding Text
<OL TYPE = "1">
 List Item 1
<OL TYPE = "a">
 Nested List Item 1
 Nested List Item 2

 List Item 2

 Nested List Item 1

Preceeding Text

I. List Item 1
a. Nested List Item 1
b. Nested List Item 2

II. List Item 2
o Nested List Item 1

73

ORDERED

Coding Results

Preceeding Text

<:LH> List Header </LH>
 List item 1
 List item 2

Preceeding Text
List Header

1. List item 1
2. List item 2

ORDERED : TYPES

Coding results

<LI TYPE = "A"> List item
<LI TYPE = "a"> List item
<LI TYPE = "I"> List item
<LI TYPE = "i"> List item
<LI TYPE = "1"> List item

A. List item
b. List item

III. List item
iv. List item

5. List item

ORDERED : TYPES
Example: <OL TYPE = "A">

Coding Results

<OL TYPE = "A">
 List item 1
 List item 2

A. List item 1
B. List item 2

ORDERED : <OL START = "8">

Coding Results

<OL START = "8">
 List item 1
 List item 2

8. List item 8
9. List item 9

UNORDERED

Coding Results

Preceeding Text

<LH> List Header</LH>
 List item 1
 List item 2

Preceeding Text
List Header

 List item 1
 List item 2

74

UNORDERED TYPES
IMAGE

Coding results

<UL SRC = "redball.gif">
 List item 1
 List item 2
 o List item 1

o List item 2

PLAIN

Coding Results

<UL PLAIN>
 List item 1
 List item 2
 o List item 1

o List item 2

TYPE

Coding results

<LI TYPE = "CIRCLE"> List item
<LI TYPE = "DISC"> List item
<LI TYPE = "SQUARE"> List item

o List item
o List item
o List item

Summary:

• We have seen what is HTML

o HTML is a script language.

o The basic formatting controls are included between
the brackets < and >.

• When you save an HTML file, you can use either the .htm or
the .html file extension.

• In this chapter we have also seen 2 type of tag:

o Container tag

o Empty tag

• Further we have seen HTML elements has an attributes
which is always written in name : value format, gives
additional information about elements.

• Structure of HTML, always contains <HTLM>, <BODY>.

75

• List items can contain block and text level items, although
headings and address elements are excluded

• A basic bulleted list can be produced as follows:

o Start with an opening tag.

o Give the items one at a time, each preceded by
a tag. (There is no closing tag for list items.)

o End with a closing tag.

o So, here's an example two-item list:

 First item goes here.

 Second item goes here.

o For a numbered list, do the same thing except use
the ol directive rather than the ul directive. For
example:

 First item goes here.

 Second item goes here.

• Lists can be arbitrarily nested: any list item can itself contain
lists.

• Also note that no paragraph separator (or anything else) is
necessary at the end of a list item; the subsequent tag
(or list end tag) serves that role. (One can also have a
number of paragraphs, each themselves containing nested
lists, in a single list item, and so on.)

• A description list usually consists of alternating "description
titles" (dt's) and "description descriptions" (dd's). Think of a
description list as a glossary: a list of terms or phrases, each
of which has an associated definition.





76

4

BLOCK LEVEL TAGS , TEXT LEVEL

TAGS AND GRAPHICS

Unit Structure

4.1 Block Level Tags

• Block formatting, Heading, Paragraph, Comments, Text
alignment, Font size

4.2 Text Level Tags

• Bold, Italic, Underlined, Strikethrough, Subscript, superscript
4.3 Web publishing

4.3 Inserting graphics, Scaling images

4.1 BLOCK LEVEL TAGS

HTML includes several tags to delimit, and hence, format

paragraphs of text. These tags include the following:

 <p> —Formatted paragraphs


 Break

 <h1> through <h6> —Headings

 <blockquote> —Quoted text

 <pre> —Preformatted text

 <center> —Centered text

 <div> —A division of the document

 <HR> horizontal Line

1. Formatted paragraphs <p>

 Tag Type : Container

 Function:

o Denotes a paragraph.

 Syntax:

<p align = ”LEFT|RIGHT|CENTER|JUSTIFY”>

…PARAGRAPH… </p>

77

Example:

<html>

<head> <Title> Formating Paragraph </title> </head>

<body>

<p> Global warming is when the earth heats up (the temperature

rises). It happens when greenhouse gases (carbon dioxide, water

vapor, nitrous oxide, and methane) trap heat and light from the

sun in the earth’s atmosphere, which increases the temperature.

This hurts many people, animals, and plants. Many cannot take

the change, so they die. </p>

<p> Although adults do many things to help stop global warming,

kids can do just as much. Kids can’t do hard things like making a

law, but we can do easier things like not watching as much TV.

You can listen to your parents when they say, turn off your lights

or go play outside. Listening to them and actually trying to help

can help you, your environment, and the world. </p>

</body>

</html>

2. Preserving Formatting—The <pre> Element

 Tag type: container

 Function:

o Denotes text to be treated as preformatted. Browsers

render preformatted text in fixed in a fixed with font.

o Sometimes you will want the client browser to interpret

your text literally, including the white space and forced

78

formatting (line breaks, and so on). In those cases, you

can use the preformatted tag (<pre>).

o The tag also causes all text within to be rendered in a

monospace font.

For example, consider the following output from a MySQL

database:

mysql> select * from settings;

+---------------+-------------------+

| name | value |

+---------------+-------------------+

| newsupdate | 1069455632 |

| releaseupdate | Tue, 1/28, 8:18pm |

| status | 0 |

| feedupdate | 1069456261 |

+---------------+-------------------+

4 rows in set (0.00 sec)

If you wanted this to appear in a browser as-is, you would have to

use liberal nonbreaking spaces and line breaks, as well as specify

a monospaced font, as shown in the following code:

<p style = “font-family: courier;”>

mysql> select * from settings;

+---------------+-------------------+

| name

 | value

 |

+---------------+-------------------+

|

 newsupdate | 1069455632

 |

|

 releaseupdate | Tue, 1/28, 8:18pm

|

| status

| 0

 |

|

 feedupdate | 1069456261

 |

+---------------+-------------------+

79

4 rows in set (0.00 sec) </p>

Not only is this a lot of work, but it also renders the code practically

illegible. A

better way is to simply use the <pre> tag, as follows:

<pre>

mysql> select * from settings;

+---------------+-------------------+

| name | value |

+---------------+-------------------+

| newsupdate | 1069455632 |

| releaseupdate | Tues, 1/28, 8:18pm|

| rolfstatus | 0 |

| feedupdate | 1069456261 |

+---------------+-------------------+

4 rows in set (0.00 sec)

</pre>

80

3. Headings <h1> to <h6>

HTML supports six levels of headings. Each heading uses a large,

usually bold character-formatting style to identify itself as a

heading. The following HTML example produces the output shown

in Figure :

<html>

<body>

<h1> Heading 1 </h1>

<h2> Heading 2 </h2>

<h3> Heading 3 </h3>

<h4> Heading 4 </h4>

<h5> Heading 5 </h5>

<h6> Heading 6 </h6>

<p> Plain body text:The quick brown fox jumped over the lazy

dog. </p>

</body>

</html>

4. Quoted text

The <blockquote> tag is used to delimit blocks of quoted text.

For example, the following code identifies the beginning paragraph

of the Declaration of Independence as a quote:

<body>

81

<p> The Declaration of Independence begins with the following

paragraph: </p>

<blockquote>

When in the Course of human events, it becomes necessary for

one people to dissolve the political bands which have connected

them with another, and to assume among the powers of the earth,

the separate and equal station to which the Laws of Nature and of

Nature’s God entitle them, a decent respect to the opinions of

mankind requires that they should declare the causes which impel

them to the separation.

</blockquote>

</body>

The <blockquote> indents the paragraph to offset it from

surrounding text, as shown in Figure.

Figure: The <blockquote> tag indents the paragraph.

5. Comments <!-- -->

Although HTML documents tend to be fairly legible, there are

several advantages to adding comments to your HTML code.

HTML uses the tag <!– to begin a comment and –> to end a

comment. Note that the comment can span multiple lines, but the

browser will ignore anything between the comment tags. For

example, the following two comments will both be ignored by the

browser:

82

<!-- This section needs better organization. -->

and

<!-- The following table needs to include these columns:

Age

Marital Status

Employment Date

-->

6. Line Breaks

Inserts the line break in documents.

Example:

<html>

<body>

This is the first statement.
 this is the second statements.

</body>

</html>

7. Horizontal Rules <hr>

Horizontal rules are used to visually break up sections of a

document. The <hr> tag creates a line from the current position in

the document to the right margin and breaks the line accordingly.

So basically places horizontal line on page.

Syntax <HR>

Attribute

Specifications

 ALIGN = [left | center | right] (horizontal

alignment)

 NOSHADE (solid line)

 SIZE = Pixels (line height)

 WIDTH = Length (line width)

 common attributes

Contents Standalone

Contained in APPLET, BLOCKQUOTE, BODY, BUTTON,

CENTER, DD, DEL, DIV, FIELDSET, FORM,

IFRAME, INS, LI, MAP, NOFRAMES,

NOSCRIPT, OBJECT, TD, TH

8. Grouping with the <div> Element

The <div> tag defines a division or a section in an HTML

document. The <div> tag is often used to group block-elements to

format them with styles. For example, consider the following code,

which uses styles and paragraph tags:

83

<html>

<body>

<h3> This is a

header </h3>

<p> This is a

paragraph. </p>

<div style =

"color:#00FF00"

>

<h3> This is a

header </h3>

<p> This is a

paragraph. </p>

</div>

</body>

</html>

This is a header

This is a paragraph

Optional Attributes

Attribute Value Description

align

left

right

center

justify

Deprecated. Use styles instead.

Specifies the alignment of the content

inside a div element

4.2 TEXT LEVEL TAGS

 TT teletype or monospaced text

o The quick red fox jumped over the lazy brown dog.

 I italic text style

o The quick red fox jumped over the lazy brown dog.

 B bold text style

o The quick red fox jumped over the lazy brown

dog.

 U underlined text style

o The quick red fox jumped over the lazy brown dog.

 STRIKE strike-through text style

o The quick red fox jumped over the lazy brown dog.

 BIG places text in a large font

o The quick red fox jumped over the lazy brown dog.

 SMALL places text in a small font

o The quick red fox jumped over the lazy brown dog.

84

 SUB places text in subscript style

o The foxred jumped over the dogbrown.

 SUP places text in superscript style

o The foxquick jumped over the doglazy.

Example:

<html>

<body>

<p> This text is bold </p>

<p> <big> This text is big </big> </p>

<p> <i> This text is italic </i> </p>

<p> <code> This is computer output </code> </p>

<p> This is _{subscript} and <sup> superscript

</sup> </p>

</body>

</html>

4.3 INSERTING IMAGE



 Tag type: Stadalone

 Function:

o Images can be placed in a web page by using

tag.

o The gif format is considered superior to the jpeg format

for its clarity and ability to maintain the originality of an

image without lowering its quality.

85

Appearance:

Attributes: SRC=URL, ALT=string,
ALIGN=left|right|top|middle|bottom, HEIGHT=n,
WIDTH=n, BORDER=n, HSPACE=n, VSPACE=n,
USEMAP=URL, ISMAP

Syntax:

SRC – Source of the image file

image_URL – represents the image file with its location.

Example:

Here, image_URL = file:///C:/sunset.GIF, it means image is

available in the Hard Drive C: on the local hard disk.

This SRC attribute is mandatory for the tag.

Other attributes used with are: -

 ALIGN: used to set the alignment of the text adjacent to the

image. It takes the following values:

 ALIGN = LEFT - Displays image on left side and the

subsequent text flows around the right hand side of that

image

 ALIGN = RIGHT - Displays the image on the right side and

the subsequent text flows around the left hand side of that

image

 ALIGN = TOP - Aligns the text with the top of the image

 ALIGN = MIDDLE - Aligns the text with the middle of the

image

 ALIGN = BOTTOM - Aligns the text with the bottom of the

image

 By default, the text is aligned with the bottom of the image

 HEIGHT and WIDTH: Height and Width of an image can be

controlled by using the HEIGHT and WIDTH attributes in the

 tag as follows:

o Example: <IMG SRC = NOSlogo.GIF HEIGHT = 320

WIDTH = 240>

 HSPACE and VSPACE: White space around an image can

be provided by using HSPACE (Horizontal Space) and

VSPACE (Vertical Space) attributes of the tag.

These attributes provide the space in pixels.

86

Example: <IMG SRC = NOSlogo.GIF VSPACE = 30 HSPACE =

25>

87

 ALT (Alternative Text)

o This attribute is used to give alternative text that can be

displayed in place of the image

o This is required when the user needs to stop display of

images while retrieving a document in order to make the

retrieval faster, or when the browser does not support

graphics. It is also used a tool tips – displaying description of

the image when the mouse is over the image.

o Example:

 BORDER

o Border around the image can be controlled by using

BORDER attribute of tag.

o By default image displays with a thin border.

o To change the thickness or turn the border off, the value in

pixels should set to BORDER attribute.

o Example:

o BORDER = 0 to Turn the Border off

88

Example:

Summary:

 Certain HTML elements that may appear in BODY are said

to be "block-level" while others are "inline" (also known as

"text level").

 Inthis unit we have covered block level formatting and text

level formatting which is used for making HTML page.

 inline elements may contain only data and other inline
elements.

 They do not create new lines.

 block-level elements may contain inline elements and other
block-level elements.

 They begin on new lines, and will close an unterminated
paragraph element.

 This enables you to omit end-tags for paragraphs in many
cases.

 Block level tags are: <p>,
 , <h1> through <h6> ,
<blockquote>, < pre> , <center> , <div> , <HR>

 Text level elements that define character styles can
generally be nested.

Logical markup

 EM - Emphasized text

 STRONG - Strongly emphasized

 DFN - Definition of a term

 CODE - Code fragment

 SAMP - Sample text

 KBD - Keyboard input

 VAR - Variable

 CITE - Short citation

Physical markup

 TT - Teletype

 I - Italics

 B - Bold

 U - Underline

 STRIKE - Strikeout

 BIG - Larger text

 SMALL - Smaller text

 SUB - Subscript

 SUP - Superscript

 They can contain other text level elements but not block
level elements

89

Question:

1. Write a program to demonstrate Lists.

2. What are the different types of lists?

3. Explain tags with its properties and attributes:

a. <HEAD>

b. <BODY>

c. <TITLE>

d.

e.

4. Xplain all text level tags

5. Explain all Block level tags

6. Explain with propertied

a. img

b. Alt

c. border



90

5

FRAMESET AND FORMS

Unit Structure

5.1 Frameset

5.2 Forms

5.1 FRAMESET

Syntax <FRAMESET>...</FRAMESET>

Attribute

Specifications

 ROWS = MultiLengths (row lengths)

 COLS = MultiLengths (column lengths)

 ONLOAD = Script (all frames have been

loaded)

 ONUNLOAD = Script (all frames have

been removed)

 core attributes

Contents One or more FRAMESET and FRAME

elements, as well as an optional NOFRAMES

Contained in HTML

The FRAMESET element is a frame container for dividing a

window into rectangular subspaces called frames. In a Frameset

document, the outermost FRAMESET element takes the place of

BODY and immediately follows the HEAD.

The FRAMESET element contains one or more FRAMESET

or FRAME elements, along with an optional NOFRAMES element

to provide alternate content for browsers that do not support frames

or have frames disabled. A meaningful NOFRAMES element

should always be provided and should at the very least contain

links to the main frame or frames.

91

The ROWS and COLS attributes define the dimensions of

each frame in the set. Each attribute takes a comma-separated list

of lengths, specified in pixels, as a percentage, or as a relative

length. A relative length is expressed as i* where i is an integer. For

example, a frameset defined with ROWS = "3*,*" (* is equivalent to

1*) will have its first row allotted three times the height of the

second row.

The values specified for the ROWS attribute give the height

of each row, from top to bottom. The COLS attribute gives the width

of each column from left to right. If ROWS or COLS is omitted, the

implied value for the attribute is 100%. If both attributes are

specified, a grid is defined and filled left-to-right then top-to-bottom.

<Frame>

Syntax <FRAME>

Attribute

Specifications

 NAME = CDATA (name of frame)

 SRC = URI (content of frame)

 LONGDESC = URI (long description of

frame)

 FRAMEBORDER = [1 | 0] (frame

border)

 MARGINWIDTH = Pixels (margin width)

 MARGINHEIGHT = Pixels (margin

height)

 NORESIZE (disallow frame resizing)

 SCROLLING = [yes | no | auto] (ability

to scroll)

 core attributes

Contents Empty

Contained in FRAMESET

The FRAME element defines a frame--a rectangular

subspace within a Frameset document. Each FRAME must be

contained within a FRAMESET that defines the dimensions of the

frame.

The SRC attribute provides the URI of the frame's content,

which is typically an HTML document. If the frame's content is an

image, video, or similar object, and if the object cannot be

described adequately using the TITLE attribute of FRAME, then

92

authors should use the LONGDESC attribute to provide the URI of

a full HTML description of the object.

For better accessibility to disabled users and better indexing

with search engines, authors should not use an image or similar

object as the content of a frame. Rather, the object should be

embedded within an HTML document to allow the indexing of

keywords and easier provision of alternate content.

The NAME attribute gives a name to the frame for use with

the TARGET attribute of the A, AREA, BASE, FORM, and LINK

elements. The NAME attribute value must begin with a character in

the range A-Z or a-z.

The NAME should be human-readable and based on the

content of the frame since non-windows browsers may use the

NAME as a title for presenting a list of frames to the user. For

example, NAME = left would be inappropriate since it says nothing

about the content while NAME = nav would be inappropriate since

it is not very human-readable. More suitable would be NAME =

Content and NAME = Navigation. The TITLE attribute can also be

used to provide a slightly longer title for the frame, though this is not

widely supported by current browsers.

The FRAMEBORDER attribute specifies whether or not the

frame has a visible border. The default value, 1, tells the browser to

draw a border between the frame and all adjoining frames. The

value 0 indicates that no border should be drawn, though borders

from other frames will override this.

The MARGINWIDTH and MARGINHEIGHT attributes define

the number of pixels to use as the left/right margins and top/bottom

margins, respectively, within the frame. The value must be non-

negative.

The boolean NORESIZE attribute prevents the user from

resizing the frame. This attribute should never be used in a user-

friendly Web site.

The SCROLLING attribute specifies whether scrollbars are

provided for the frame. The default value, auto, generates

scrollbars only when necessary. The value yes gives scrollbars at

93

all times, and the value no suppresses scrollbars--even when they

are needed to see all the content.

<FRAMESET ROWS = "*,100">

<FRAMESET COLS = "40%,*">

<FRAME NAME = "Menu" SRC = "nav.html" TITLE =

"Menu">

<FRAME NAME = "Content" SRC = "main.html" TITLE =

"Content">

</FRAMESET>

<FRAME NAME = "Ad" SRC = "ad.html" TITLE =

"Advertisement">

<NOFRAMES>

<BODY>

<H1>Table of Contents</H1>

 HTML 4 Reference

 HTML 3.2 Reference

 CSS Guide

<P>

<IMG SRC = "ad.gif" ALT = "Ad: Does your bank charge too

much?">

</P>

</BODY>

</NOFRAMES>

</FRAMESET>

94

The following example sets up a grid with two rows and three

columns:

<FRAMESET ROWS = "70%,30%" COLS = "33%,33%,34%">

<FRAME NAME = "Photo1" SRC = "Row1_Column1.html">

<FRAME NAME = "Photo2" SRC = "Row1_Column2.html">

<FRAME NAME = "Photo3" SRC = "Row1_Column3.html">

<FRAME NAME = "Caption1" SRC = "Row2_Column1.html">

<FRAME NAME = "Caption2" SRC = "Row2_Column2.html">

<FRAME NAME = "Caption3" SRC = "Row2_Column3.html">

<NOFRAMES>

<BODY>

<H1>Table of Contents</H1>

Photo 1

(Caption)

Photo 2

(Caption)

Photo 3

(Caption)

</BODY>

</NOFRAMES>

</FRAMESET>

95

The next example features nested FRAMESET elements to

define two frames in the first row and one frame in the second row:

<FRAMESET ROWS = "*,100">

<FRAMESET COLS = "40%,*">

<FRAME NAME = "Menu" SRC = "nav.html" TITLE = "Menu">

<FRAME NAME = "Content" SRC = "main.html" TITLE =

"Content">

</FRAMESET>

<FRAME NAME = "Ad" SRC = "ad.html" TITLE =

"Advertisement">

<NOFRAMES>

<BODY>

<H1>Table of Contents</H1>

HTML 4 Reference

HTML 3.2 Reference

CSS Guide

<P>

<IMG SRC = "ad.gif" ALT = "Ad: Does your bank charge too

much?">

</P>

</BODY>

</NOFRAMES>

</FRAMESET>

96

The FRAMESET element also accepts ONLOAD and

ONUNLOAD attributes to specify client-side scripting actions to

perform when the frames have all been loaded or removed.

NOFRAMES - Frames Alternate Content

Syntax <NOFRAMES>...</NOFRAMES>

Attribute

Specifications

 common attributes

Contents  In HTML 4 Transitional: inline elements,

block-level elements

 In HTML 4 Frameset: one BODY element

that must not contain any NOFRAMES

elements

Contained in APPLET, BLOCKQUOTE, BODY, BUTTON,

CENTER, DD, DEL, DIV, FIELDSET, FORM,

FRAMESET, IFRAME, INS, LI, MAP, NOSCRIPT,

OBJECT, TD, TH

The NOFRAMES element contains content that should only

be rendered when frames are not displayed. NOFRAMES is

typically used in a Frameset document to provide alternate content

for browsers that do not support frames or have frames disabled.

When used within a FRAMESET, NOFRAMES must contain

a BODY element. There must not be any NOFRAMES elements

contained within this BODY element.

A meaningful NOFRAMES element should always be

provided in a Frameset document and should at the very least

contain links to the main frame or frames. NOFRAMES should not

contain a message telling the user to upgrade his or her browser.

Some browsers support frames but allow the user to disable them.

<FRAMESET ROWS = "*,100">

<FRAMESET COLS = "40%,*">

<FRAME NAME = "Menu" SRC = "nav.html" TITLE = "Menu">

<FRAME NAME = "Content" SRC = "main.html" TITLE =

"Content">

</FRAMESET>

<FRAME NAME = "Ad" SRC = "ad.html" TITLE =

"Advertisement">

97

<NOFRAMES>

<BODY>

<H1>Table of Contents</H1>

HTML 4 Reference

HTML 3.2 Reference

CSS Guide

<P>

<IMG SRC = "ad.gif" ALT = "Ad: Does your bank charge too

much?">

</P>

</BODY>

</NOFRAMES>

</FRAMESET>

5.2 INTRODUCTION TO FORMS

An HTML form is a section of a document containing normal

content, markup, special elements called controls (checkboxes,

radio buttons, menus, etc.), and labels on those controls. Users

generally "complete" a form by modifying its controls (entering text,

selecting menu items, etc.), before submitting the form to an agent

for processing (e.g., to a Web server, to a mail server, etc.)

Here's a simple form that includes labels, radio buttons, and

push buttons (reset the form or submit it):

<FORM action = "http://somesite.com/prog/adduser" method =

"post">

<P>

<LABEL for = "firstname">First name: </LABEL>

<INPUT type = "text" id = "firstname">

<LABEL for = "lastname">Last name: </LABEL>

98

<INPUT type = "text" id = "lastname">

<LABEL for = "email">email: </LABEL>

<INPUT type = "text" id = "email">

<INPUT type = "radio" name = "sex" value = "Male"> Male

<INPUT type = "radio" name = "sex" value = "Female">

Female

<INPUT type = "submit" value = "Send"> <INPUT type = "reset">

</P>

</FORM>

Controls

Users interact with forms through named controls.

A control's "control name" is given by its name attribute. The

scope of the name attribute for a control within a FORM element is

the FORM element.

Each control has both an initial value and a current value,

both of which are character strings. Please consult the definition of

each control for information about initial values and possible

constraints on values imposed by the control. In general, a control's

"initial value" may be specified with the control element's value

attribute. However, the initial value of a TEXTAREA element is

given by its contents, and the initial value of an OBJECT element in

99

a form is determined by the object implementation (i.e., it lies

outside the scope of this specification).

A control's initial value does not change. Thus, when a form

is reset, each control's current value is reset to its initial value. If a

control does not have an initial value, the effect of a form reset on

that control is undefined.

When a form is submitted for processing, some controls

have their name paired with their current value and these pairs are

submitted with the form. Those controls for which name/value pairs

are submitted are called successful controls.

 Text Fields

<input type = "text" /> defines a one-line input field that a user can

enter text into:

<form>

First name: <input type = "text" name = "firstname" />

Last name: <input type = "text" name = "lastname" />

</form>

How the HTML code above looks in a browser:

First name

Last name:

Note: The form itself is not visible. Also note that the default width

of a text field is 20 characters.

<input>

This is the tag name for many of the form elements that are

there to collect user input.

type

The value of this attribute decides which of the input

elements this one is. In this case, text is telling the browser

that it’s a single-line text-box.

name

When you get the results of this form in your email, you’re

going to need to know which responses were placed in

which boxes, as you just get back a load of text. This is

where the name attribute comes in. With this, each line in

the response will be given a label in the email. If you used

100

name = "firstname", because you were using this box to find

out the reader’s first name, you would receive

firstname = Ross in the email you are sent.

size

This specifies the length of the box on your page. If the box

is not wide enough for the information that is entered, it will

scroll across to allow more letters, but you should tailor this

to the type of information being asked for so that most

people can see their whole response at once.

 Password Field

<input type = "password" /> defines a password field:

<form>

Password: <input type = "password" name = "pwd" />

</form>

How the HTML code above looks in a browser:

Password:

Note: The characters in a password field are masked (shown as

asterisks or circles).

These three elements give the reader a choice of options,

and asks them to pick out one or more of them.

 Radio Buttons

These small circular buttons can be used in polls or

information forms to ask the user their preference. When you set

up a group of them, you can only select one choice. Try it here:

1. 2. 3.

They’re called radio buttons because they function like the

buttons on a really old car radio. Remember, the guys who came

up with this stuff have beards as long as your arm, so you should

expect things like that. The code for a radio button is:

101

<input type = "radio" name = "choices" value = "choice1">

<input type = "radio" /> defines a radio button. Radio buttons let a

user select ONLY ONE one of a limited number of choices:

<form>

<input type = "radio" name = "sex" value = "male" /> Male

<input type = "radio" name = "sex" value = "female" /> Female

</form>

How the HTML code above looks in a browser:

Male

Female

The code is about the same as the one you’ve seen before.

type = "radio" says that this is going to be a radio button. There is a

new attribute here too — value. This is like the answer to a

question. Say you were asking the reader what they liked most

about your site. The name of this group of questions would be

’likemost’ and there would be three choices, all radio buttons, all

with name = "likemost" in them, to show that they’re all part of the

same question. Then the three values could be ’layout’, ’content’

and ’graphics’. When you receive the results, you’ll get something

like likemost = layout depending on which button was checked. Get

it? I should tell you now that you can add the value attribute to the

single-line text box above to add in some text before the user even

starts typing.

 Check Boxes

Groups of check boxes are similar to radio buttons except

they are not grouped, so multiple boxes can be selected at the

same time. They are small squares that are marked with a tick

when selected. Here’s a few to play with:

1. 2. 3.

The code for these boxes is the same as for the radio

buttons, with just the value of the type attribute changed:

<input type = "checkbox" name = "checkbox1">

102

<input type = "checkbox" /> defines a checkbox. Checkboxes let a

user select ONE or MORE options of a limited number of choices.

<form>

<input type = "checkbox" name = "vehicle" value = "Bike" /> I have

a bike

<input type = "checkbox" name = "vehicle" value = "Car" /> I have a

car

</form>

How the HTML code above looks in a browser:

I have a bike

I have a car

Notice that there is no value attribute for checkboxes, as

they will either be checked or left blank. If you want a checkbox to

be checked before the user gets to modify it, add the boolean

checked attribute:

<input type = "checkbox" name = "newsletter" checked =

"checked">

Looks a little silly with the attribute’s value being the same as

the attribute itself, but that’s the way it’s done. This checked

attribute can also be used on a radio button to set one of the radios

as selected by default.

 Drop-down Select Boxes

These are a cool way to get a user to select an option. They

perform the same thing as radio buttons, it’s just the way they look

that’s different. Most of the options available are not in view until

the user gets intimate with the box and clicks on it. The rest of the

options will then pop-up below the box.

This box would be used to find out what continent you come

from, like I care. The lengthy code is:

103

<select name = "continent" size = "1">

<option value = "europe">europe</option>

<option value = "namerica">n. america</option>

<option value = "samerica">s. america</option>

<option value = "asia">asia</option>

<option value = "africa">africa</option>

<option value = "oz">the other one</option>

</select>

select boxes are like textareas — they have their own tag, but

these elements hold further tags inside them too. Each choice you

give your reader is denoted by an option. The name/value system

remains from the tags above. The size attribute sets how many

lines of options are displayed. Setting this to anything over 1 (the

default) is really defeating the purpose of having the options hidden

away.

 Send and Reset Buttons

Now that you’ve gotten the reader to fill in all the information

you want, you need a finishing button to click on to send it all to

your email address (or wherever you’ve said at the start). You can

also clear all the info in the form out with the reset button. They’re

both real easy to make, and look like this:

Submit Reset

The simple tags for these two are:

<input type = "submit" value = "Submit">

<input type = "reset">

The value attribute in this case sets the text that’s displayed

on the front of the button. When you click submit all the form

information is sent to your target and the page (or following page) is

loaded. Done.

A submit button is used to send form data to a server. The

data is sent to the page specified in the form's action attribute. The

file defined in the action attribute usually does something with the

received input:

104

<form name = "input" action = "html_form_action.asp" method =

"get">

Username: <input type = "text" name = "user" />

<input type = "submit" value = "Submit" />

</form>

How the HTML code above looks in a browser:

Username:
Submit

If you type some characters in the text field above, and click

the "Submit" button, the browser will send your input to a page

called "html_form_action.asp". The page will show you the received

input.

Question:

1. Explain all tags of forms and frame

2. Write an html code to design a resgistration.htm form using all

tags.



105

6

CASCADING STYLE SHEETS

Unit Structure

6.1 The usefulness of style sheets

6.2 Creating style sheets

6.3 Common tasks with CSS

6.1 WHAT IS CSS STYLE?

While Web site visitors demand more attractive, fast loading,

and interesting sites, traditional formatting and page layout are no

longer efficient enough to handle more complex design

requirements. As a simple example, imagine a page with hundreds

of lines and more than 50 paragraphs. Each paragraph is to be

formatted by the traditional font face and size attributes. It would be

an administrative nightmare to make any changes. Therefore a

structural cascading mechanism is urgently needed. To rescue this

reusability crisis, W3C came up with an elegant solution called the

Cascading Style Sheet (CSS). It is a structure that separates

formatting features from the contents of a page.

Using the <style> element

The <style> element behaves like other HTML elements. It

has a beginning and ending tag and everything in between is

treated as a style definition. As such, everything between the

<style> tags needs to follow style definition guidelines. A

document’s <style> section must appear inside the document’s

<head> section, although multiple <style> sections are permissible.

The <style> tag has the following, minimal format:

<style type=“text/css”>

... style definitions ...

</style>

106

CSS works by specifying the element you want to modify, and

stating how you want it to be displayed by the Web browser. For

example, a typical CSS may look like this:

<style>

h2 {color:red;font-family:arial;font-size:14pt}

</style>

This CSS defines the characteristics or style for the second-

level headers (i.e., <h2>). In this case, the text within the element

<h2> will be displayed using the Arial font, 14pt, and red color.

More importantly, the style h2 can be cascaded over by subsequent

CSS definitions.

CSS is the term used to broadly refer to several style

methods of applying style elements to HTML pages. These are the

inline style, internal (embedded) style, and external style sheets. A

style is simply a set of formatting instructions that can be applied to

a piece of text.

Styles define how to display HTML elements. The results are

better font control, color management, margin control, and even the

addition of special effects such as text shading. Multiple style

definitions will cascade into one. This means that the first is

overridden by the second, the second by the third, and so on.

Since the beginning of HTML usage for web page creation,

people have realized the need to separate the way the page looks

and the actual content it displays. Even the first versions of HTML

have supported different ways to present text using FONT, B (bold)

or I (italic) tags. Those HTML elements still exist today, but their

capabilities are far below what Web pages should provide.

As we've already said, CSS enables you to separate the

layout of the Web page from its content. This is important because

you may want the content of your web page to change frequently

(for example, a current events page) but not the design/layout, or

vice versa. It is a standard of the World Wide Web Consortium

(W3C), which is an international Web standards consortium.

Practically, all the style and layout guidelines for a website are kept

in CSS files that are separate from the HTML files which contain

the data, text and content for a website. Simply put, when talking

107

about displaying Web pages in the browser, HTML answers the

question "What?", while CSS answers "How?". When using CSS,

you are defining how to display each element of the page. You can,

for example, say to show all text in DIV elements in blue color, to

have all links italic and bold, etc. With CSS you can also define

classes, which tell the browser how to display all elements of that

class. Maybe you're asking yourself, why bother with CSS? Isn't it

much simpler and faster to define everything inside the HTML

page? Using HTML tags and attributes, you can modify the style of

each element on your page.

But what if you have a Web site with a larger number of

pages, let's say 50? Imagine the process of setting the style for

each element on your 50 pages. And then, if later on down the road

you want to change the font style, you’ll have to manually go

through each file and change all the HTML elements. You can

count on a very long, boring and tiring process! With CSS you can

put all the information about displaying HTML elements in a

separate page. Then you can simply connect this CSS file with all

pages of your Web site, and voilà – all the pages will follow the

same guidelines. Change the CSS file, and you have indirectly

changed all pages of your Web site. In addition, you get much

greater design capabilities with CSS, as we will show in this guide.

Use of Style Sheet

Understanding the Style Sheet Cascade

The concept behind Cascading Style Sheets is essentially
that multiple style definitions can trickle, or cascade, down through
several layers to affect a document. Several layers of style
definitions can apply to any document. Those layers are applied in
the following order:
1. The user agent settings (typically, the user is able to modify
some of these settings)
2. Any linked style sheets
3. Any styles present in a <style> element
4. Styles specified within a tag’s style attribute

Each level of styles overrides the previous level where there
are duplicate properties being defined. For example, consider the
following two files:

108

mystyles.css
/* mystyles.css - Styles for the main site */
h1, h2, h3, h4 { color: blue; }
h1 { font-size: 18pt; }
h2 { font-size: 16pt; }
h3 { font-size: 14pt; }
h4 { font-size: 12pt; }
p { font-size: 10pt; }

index.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
<link rel=“stylesheet” type=“text/css”
href=“mystyles.css” />
<style type=“text/css”>
h1 { color: Red; }
</style>
</head>
<body>
<h1>A Sample Heading</h1>
...

What color will the <h1> heading in index.html be? The
external style specifies blue, but the style element specifies red. In
this case, the internal style takes precedence and the <h1> text will
appear in red.

How do I use CSS?

Let's get started with using style sheets. CSS data is actually

plain text written in a specific way. Let's take a look at the contents

of a sample CSS file:

It is actually completely readable – this style sheet defines

that all content within the HTML BODY element will use font

Verdana with size of 9 points and will align it to the right. But, if

there's a DIV element, the text within that will be written in font

Georgia. We're also using a class named "important" (classes use

"." notation, which we will cover later on). All elements of this class

will have a set background color, a border and will use Franklin

Gothic Book font. As you see, style definitions for a certain element

or class are written inside curly braces (“{ }”) and each line ends

with a semicolon “;”.

109

Now is the perfect time to explain the scoping of styles. All

CSS definitions are inheritable – if you define a style for BODY

element, it will be applied to all of its children, like P, DIV, or SPAN

elements. But, if you define a style for DIV element, it will override

all styles from its parent. So, in this case, the DIV element text

would use font Georgia size 9 points and would be aligned to the

right. As you see, DIV style definition for the font family has

overridden BODY style definitions. This goes on – if you have a

DIV element which is also of class "important", the class definition

will override DIV style definitions. In this case, such DIV element

would have a background color set, a border, it would use font

Franklin Gothic Book size 9 points and be aligned to the right.

Here are the elements that would be affected by the sample

CSS file.

110

Write it in notepad. Copy and paste the CSS sample above

into this file and save this file as “style.css” into a folder on your

computer. Now select File | New File and choose “HTML Page”.

Also save this HTML page into the same folder on your computer.

Insert the following code into the HTML page.

<link rel="STYLESHEET" type="text/css" href="style.css" />

This code should be put within the HTML page header,

within HEAD element. As you see, href attribute defines which CSS

file to use. Put this LINK element within all HTML pages you wish

to apply styles to and you're done!

111

CSS data doesn't necessarily have to be in a separate file.

You can define CSS styles inside of a HTML page. In this case, all

CSS definitions have to be inside a STYLE element. This approach

can be used to define the looks of elements that are specific to a

certain page and will not be reused by other pages. Take a look at

how that HTML page might look:

112

Notice that in this example you can see how to define an

element of a specific class – just add class attribute and set its

value. All classes within CSS style definitions are prefixed with a

dot ("."). The third way to define a CSS style, in addition to the

previously explained methods of a separate CSS file, and the

STYLE element within the HTML page header, is inside of a

specific HTML element. To do this, you need to use the style

attribute. Take a look at the following example:

My

text

As you're probably guessing, all the text inside of this SPAN

element will be displayed using 12 point Tahoma font. And

remember – when applying styles directly to elements, as in this

last example, these style definitions will override all element

definitions and class definitions previously set in a separate CSS

file or inside of HTML page header STYLE element.

CSS style definition syntax

To be able to write CSS files and definitions correctly, you

need to remember few simple rules. Although CSS syntax is rather

logical and easy to learn, there are 6 basic things you need to

know. First, take a look at the structure of a style definition.

And here are 6 rules of style definitions:

1. Every CSS definition has to have a selector and a declaration.

The declaration follows the selector and uses curly braces.

2. The declaration consists of one or more properties separated

with a semicolon.

3. Every property has a name, colon and a value.

113

4. A property can have multiple values separated with a comma

(e.g. "Verdana, Arial, Franklin Gothic Book").

5. Along with a value, can also be a unit of measure (e.g. "9pt",

where "pt" stands for points). No space is allowed between the

value and the unit.

6. When writing CSS code, you can use whitespaces as needed –

new lines, spaces, whatever makes your code more readable.

6.2 CREATING STYLE SHEET

Styles can be defined within your HTML documents or in a

separate, external style sheet. CSS is the term used to broadly

refer to several style methods of applying style elements to HTML

pages. These are the inline style, internal (embedded) style, and

external style sheets. A style is simply a set of formatting

instructions that can be applied to a piece of text. You can also use

both methods within the same document. The following sections

cover the various methods of defining styles.

Inline style

They are basically inline styles. You can add inline style to any

"sensible" HTML elements by using the style attribute in the

associated element. The browser will then use the inline style

definitions to format only the contents of that element. The style

attribute can contain any CSS property. Example ex02-01.htm

shows how to define the style of a document body and how to

change its default definitions

Example: ex02-01.htm - Inline CSS Style

<html>
<head><title> Inline CSS Style - ex02-01.htm</title></head>
<body style="font-family:Times;font-weight: bold; background:

#000088">
<div style="font-size:20pt;text-align:center;color:#00ffff">
Inline CSS Style </div>

<p style="font-family:arial;font-size:16pt;color:#ffff00;
margin-left:20px;margin-right:20px">
With CSS, we can control the margins of an element.
This is a paragraph with margin-left:20px and margin-right:20px.
</p>

</body>
</html>

114

In this example, the style attribute is used within the <body>
element (line 6). The default font and background color are now set
to bold Times and color value #000088 (dark blue) respectively. All
CSS properties have to be included inside the double quotation
marks of the style attribute and are separated by semi-colons.

The division element <div> in line 8 has all the CSS
properties from <body> with some additional definitions. A division
is similar to a paragraph but without an additional line break. Next
to this division, there is a paragraph element <p> (line 10). This
paragraph changes the default font family to "arial" and adds some
margin controls. When an element has two or more of the same
CSS definitions, the earlier ones will be overridden by the latest
one. That is, the styles will be cascaded into one.

Notice how you can call for a font using the font's name as
well as point size. In CSS, you can also use points (pt), pixels (px),
percentage (%), inches (in), and centimeters (cm) to control sizing
and positioning of an element. As a good design habit, always
include the measurement units in your page

 The embedded style element <style>

In addition to inline style, there are also internal (or
embedded) and external styles. External style is a separate file for
CSS properties. Internal styles are usually defined within the
<style> element. A typical example is

<style type="text/css">
h2 {color:#00ffff;font-size:20pt;text-align:center}
h4 {margin-left:70%}
body {font-family:arial;font-size:14pt;color:#ffff00;
background-image: url("backgr01.jpg")}

</style>

115

The browser will then read the style definitions and format
the document accordingly.

A browser normally ignores unknown elements. This
means that an earlier browser that does not support styles will
ignore the <style> element, but the content of <style> will still be
displayed on the page. It is possible to prevent an earlier browser
from displaying the content by hiding it in the HTML comment
symbols.

Example: ex02-02.htm - The Style Element <style> I

<html>

<head><title> The Style Element <style> I - ex02-
02.htm</title></head>

<style type="text/css">

h2 {color:#00ffff;font-size:20pt;text-align:center}

h4 {margin-left:70%}

p {font-family:arial;font-size:16pt;color:#ffff00;

margin-left:20px;margin-right:20px}

body {font-family:arial;font-size:14pt;color:#ffff00;

background-image: url("backgr01.jpg")}

</style>

</head>

<body>

<h2>Internal CSS Style</h2>

<h4>This area was created by CSS margin

margin-left:70% and margin-right:20%</h4>

<p>With CSS, you can control text font, color, dimension,
position,

margin, background and much more ...</p>

</body>
</html>

Lines 613 define an internal style. This adds CSS information
to a Web page. Line 7 assigns the level 2 heading with color #00ffff,
font size 20pt, and text centrally aligned. Line 8 sets the left and
right margins of the level 4 heading to be 70% and 20% of the
element's width respectively. Line 9 defines the default font
typeface "arial," font size, color value, and left and right margins of
a paragraph element. The body also has a background image
backgr01.jpg. This page has a screen output as shown in Fig. 6.2.

116

Figure 6.2. ex02-02.htm

As can be seen from this example, with CSS styles you have
precise control over how you would like your text to be displayed.
There are also a number of CSS elements that can take a URL. In
CSS, the URL should be contained within round brackets,
immediately preceded by the statement URL without an equals sign
as illustrated in line 12.

Another useful aspect of the CSS style is the inline keyword
class. This gives you ways of breaking down your style rules into
very precise pieces to provide a lot of variety. You define a style
class by putting a dot in front of a CSS definition. This class style
can be used in almost any XHTML element with attribute class=
and the unique class name.

Example ex02-03.htm defines two CSS classes. One of them is
dedicated to defining a button on your browser window.

Example: ex02-03.htm - The Style Element <style> II

<html>

<head><title> The Style Element <style> II - ex02-
03.htm</title></head>

<style type="text/css">

.txtSt {font-family:arial;color:#ffff00;font-size:20pt;

font-weight:bold}

117

.butSt {background-color:#aaffaa;font-family:arial;font-
weight:bold;

font-size:14pt;color:#008800;width:240px;height:30px}

</style>

</head>

<body style="background:#000088;text-align:center">

<div class="txtSt">Internal CSS Style Example II</div>

<input type="button" class="butSt" value="CSS Style Button" />

</body>

</html>

The screen shot is shown in Fig. 6.3. In this example, line 7
defines the CSS class with the unique name txtSt with appropriate
CSS properties. Lines 910 define another class butSt for a button.
All elements that you named class="textSt" will have the .txtSt class
attributes. Similarly the <input> element that has class="butSt" will
use the .butSt attributes to format the button on the Web

Figure 6.3. ex02-03.htm

 External CSS style sheets

An external style sheet is ideal when the style is applied to

many pages. The style information is placed in a separate

document with the file extension .css. With an external style sheet,

you can change the look of an entire Web site by changing the

corresponding style information file. Each page must link to the

118

style sheet using the <link> element, which usually goes within the

<head> section. For example,

<head>

<link rel="stylesheet" type="text/css" href="ex02-04.css">

</head>

The browser will read the style definitions from the external

CSS file ex02-04.css and format the document accordingly.

An external style sheet can be written in any text editor and

should be saved with the file extension .css. You should also be

sure either that this file is in the root directory with the HTML files

that you intend to process or that the link is coded appropriately. An

example of a style sheet file is shown below.

The following is an example of an external style sheet at work

Example: ex02-04.htm - External CSS Style

<html>

<head><title> External CSS Style - ex02-

04.htm</title></head>

<link rel="stylesheet" type="text/css" href="ex02-04.css">

</head>

<body>

<div style="text-align:center;color:#00ffff">

External CSS File</div>

<div>

This is a paragraph defined by the division element

<div>with

margin-left:20% and margin-right:20%</div>

<hr>

<div>

This is another paragraph defined by the division element and

separated

by a horizontal line. All CSS properties are defined in the

external CSS

file: ex02-04.css

</div>

</body>

</html>

119

This page includes a link (line 6) to an external style sheet called

ex02-04.css. This file defines all the default formatting features

used inside the page. The corresponding external CSS style sheet

ex02-04.css is given next:

Example: ex02-04.css - Eternal CSS File For ex02-04.htm

hr {color: sienna}

div {margin-left:20px; margin-right:20px; color:#ffff00}

body {background-image: url("backgr01.jpg");

font-family:arial; font-size:14pt;color:#ffff00; font-weight:bold}

Any page containing this link adopts the styles defined in the

external style sheet ex02-04.css. In this example, the horizontal

rule line <hr> is changed to the color sienna. Additional margin

control is added to the <div> element and the element <body> is

given a different style definition. Bold "arial" and color value #ffff00

in a font size of 14 points are used as default attributes. A

background image backgr01.jpg is also added to specify graphics

as background images. This page has a screen output as shown in

Fig. 6.4.

Figure 6.4. ex02-04.htm

120

/* mystyles.css - Styles for the main site */

h1, h2, h3, h4 { color: blue; }

h1 { font-size: 18pt; }

h2 { font-size: 16pt; }

h3 { font-size: 14pt; }

h4 { font-size: 12pt; }

p { font-size: 10pt; }

Tip You can include comments in your styles to further annotate

your definitions. Style comments begin with a /* and end with a */.

Comments can span several lines, if necessary.



121

7

FONT FAMILY & PROPERTIES

Unit Structure

7.1 Font Family

• Font Metrics

• Units

7.2 Properties

7.1 FONT FAMILY

7.1.1 Working with Font Styling Attributes

There are several styling attributes to control such

characteristics as font families, sizes, bolding, and spacing.

7.1.2 Naming font families using CSS

As I’ve shown, CSS provides a mechanism for rendering font

families in a browser if those fonts are installed on a user’s system.

This is accomplished by creating either an inline style on an

element such as a td or span element, or by creating a class rule

selector within the style element. Either way, the syntax is the

same, with a list of font family names, each separated by a comma,

contained within a set of braces:

font-family {Arial, Helvetica, sans-serif;}

The browser will look first for the Arial font in the preceding

example, then the Helvetica font, then the “default” sans-serif font,

which is whatever sans-serif font the user’s operating system

defaults to. If you name a font family with spaces between

characters, you need to enclose the name in quotes, as shown in

bold in the following:

.myFontClass {font-family: ‘Helvetica Narrow’, sans-serif}

122

In practice, it may be a good idea to use quotes even when

there are no spaces between characters, because some versions

of Netscape 4 have trouble recognizing font names otherwise.

Listing 18-3 shows a brief example of creating both an inline

style and calling a class selector to name a font family.

Listing 7.1: Using Class Selector and Inline Style to Name a

Font Family

<html>

<head>

<title>Font sizes</title>

<style type=“text/css”>

<!--

.myFontClass {font-family: “Helvetica Narrow”, sans-

serif}

-->

</style>

</head>

<body>

<p>This is an <span style=“font-family: ‘Helvetica Narrow’,

sans-serif”>inline style.</p>

<p>This uses a class

selector</p>

</body>

</html>

The first bolded line shows a class selector named

myFontClass, which is called by a span element’s class attribute

(the last bolded code fragment). Figure 18-5 shows the results from

rendering Listing 18-3 in the browser.

123

7.1.3 Working with font styles

In traditional HTML, you can choose whether you want your font to

appear in Roman style (non-italic) font or italics by using or not

using the em or i elements: Emphasizing a point with the em

element or the <i>I element</i>.

The preceding code fragment results in the following in a

browser: Emphasizing a point with the em element or the i element.

If you want to really be sure even the earliest of browsers recognize

your italics, em is the way to go. More importantly, it’s a better

choice because aural browsers should emphasize the contents of

this element to sight-impaired users of your Web site. For this

reason, this is one of the rare exceptions to the rule of using CSS

for styling over HTML elements. However, there’s nothing wrong

with using both. To use italics in CSS, simply include the following

either inline or in a rule selector: font-style: italic

Note Be sure to call it “italic,” not “italics” with an s. You can

also use font-style: oblique, but older versions of Netscape will not

recognize it.

124

7.1.4 Establishing font sizes

Managing font size can be tricky even with CSS, but most

developers seem to agree that the most reliable unit of

measurement in CSS is the pixel. To establish size using CSS, you

simply name the property in your selector or inline style rule:

.twelve {font-size: 12px}

H1 {font-size: xx-large}

.xsmall {font-size: 25%}

In the preceding code fragment, three style rules are created,

each with its own font size. The first creates a relative size using

pixels as the unit of measure. Never spell out the word pixels in

your style definition. Always use the form px. px is the most reliable

unit of measure because it is based on the user’s screen size, and

the pixel resolution of his or her monitor. It also has virtually bug-

free support across all browsers that support CSS.

Other relative sizes include the following:

✦ em, for ems, is based on the em square of the base font size, so

that 2em will render a font twice as large as your document’s

base font size. Support in Netscape 4 and IE3 is awful.

✦ ex is based on the X height of the base font size, so that 2ex will

render a font whose X character is twice as tall as the X

character at the default, or base, font size. This is a

meaningless unit in the real world, because support is either

nonexistent or so poor as to make it worthless.

The next line in the preceding code fragment sets an absolute

size called xx-large, although it isn’t absolute among browsers,

only the one browser your user is using to render the page. xx-

large is part of a larger collection that includes the following

possible values:

xx-small, x-small, small, medium, large, x-large, xx-large

Other absolute sizes include the following:

✦ pt for points. This is appropriate for pages that are used for

printing, but is not a particularly reliable measure for managing

screen-based fonts.

✦ in (inches), cm (centimeters), mm (millimeters), and pc (picas)

are all rarely used on the Web, because they’re designed with

print production in mind.

125

Finally, you can create a font size using a percentage by

simply adding the % character next to the actual size. This will

render the font x% of the base size. You can experiment with font

sizes by modifying below code.

Creating Font Sizes with CSS and the Font Element’s Size

Attribute

<html>

<head>

<title>Font sizes</title>

<meta http-equiv=“Content-Type” content=“text/html;

charset=iso-8859-1”>

<style type=“text/css”>

<!--

.12pixels {font-size: 12px;}

.13pixels {font-size: 13px;}

.14pixels {font-size: 14px;}

.15pixels {font-size: 15px;}

.16pixels {font-size: 16px;}

.17pixels {font-size: 17px;}

.18pixels {font-size: 18px;}

.sans-serif {font-family: Frutiger, Arial, Helvetica, sansserif;}

.sans-serif-b {font-family: Frutiger, Arial, Helvetica, sansserif;

font-weight: 900;}

-->

</style>

</head>

<body>

<table width=“100%” border=“0” cellspacing=“0”

cellpadding=“5” style=“border: #cccccc thin solid”>

<tr align=“left” valign=“top” bgcolor=“#D5D5D5” >

<td width=“26%” valign=“bottom” class=“sans-serif-b”>Font

Size</td>

<td width=“29%” valign=“bottom” class=“sans-serifb”>

Font Size +</td>

<td width=“17%” valign=“bottom” class=“sans-serifb”>

Font Size -</td>

126

<td width=“28%” valign=“bottom” class=“sans-serifb”>

CSS</td>

</tr>

<tr align=“left” valign=“top”>

<td><p>Font Size = 1 </p></td>

<td>Font Size = +1 </td>

<td>Font Size = −1</td>

<td class=“12pixels”>font-size: 12px</td>

</tr>

<!-- Additional rows of all the font-sizes here - download

actual code to view all rows -->

</table>

<p> </p>

</body>

</html>

7.1.5 Bolding fonts by changing font weight

Font weight refers to the stroke width of a font. If a font has a

very thin, or light, stroke width, it will have a weight of 100. If it has

a thick, or heavy, stroke width, it will be 900. Everything else is

inbetween. To denote font width, you use a numeric set of values

from 100 to 900 in increments of 100: 100, 200, 300, 400, and so

on. Or, you can use the keywords bold, normal, bolder or lighter to

set a value, which will be relative to the font weight of the element

containing the font. The keyword bold is equal to the numeric value

700. An example of using font-weight in style rules written for a

style element might be as follows:

p {font-weight: normal}

p.bold {font-weight: 900}

7.1.6 Making font wider or thinner using font stretch

This font property is supposed to allow you to make a font look

fatter or thinner.

127

7.1.7 Line height and leading

The CSS line-height property is another one of those nice-in-

theory properties that just doesn’t pan out in the real world. The

syntax is supposed to let you set the space between lines in a

process that in the print world is called leading. It works fairly well in

Internet Explorer, but is a mess in Netscape 4. The syntax is easy

enough:

line-height: normal

line-height: 1.1

line-height: 110%

The first example in the preceding series of rules makes the

line height the same as the base line height of the document. The

next line makes the line height 1.1 times greater than the base line

height, as does the third, except the third uses percentages as a

unit of measure.

7.2 PROPERTIES

 Text Properties

 Color and background

 Box

 Font(we hav already seen that refer topic just before

this)

7.2.1 Controlling text properties with style

Some frequently used CSS properties related to font are listed in
Table

. Table 2.1. Font family, size, weight, style, and color

CSS
property

CSS
values

NS IE Description CSS
version

Color #rrggbb

color
name

4.+ 4.+ Sets the color of the
font in 24-bit red, green,
blue mode

CSS1

Font font- 4.+ 4.+ A shorthand property to
set all font values

CSS1

128

Some frequently used CSS properties related to font are listed in
Table

. Table 2.1. Font family, size, weight, style, and color

CSS
property

CSS
values

NS IE Description CSS
version

family,

font-size,

font-
style,

font-
weight

Font
family

Family
name

Generic
family

4.+ 4.+ A prioritized list of font
family names

CSS1

Font size Length
fixed

%
relative

4.+ 4.+ Sets the size of font CSS1

Font style Normal

Italic

Oblique

4.+ 4.+ Sets the style of the
font

CSS1

Font
variant

Normal

Small
caps

4.+ 4.+ Displays text in a small-
caps font or normal font

CSS1

Font
weight

Normal

Bold

Bolder

Lighter

4.+ 4.+ Sets the weight of the
font

CSS1

129

7.2.2 Alignment, indent, and margins

In addition to font properties, text formatting elements and

margins can also be controlled using the CSS elements, Using

these elements, you can specify such things as spacing between

words, indentation, alignment, positions of text, and much more.

Table 2.2 lists some frequently used CSS properties on margins

and text alignments.

Table 2.2. Margins and alignments

CSS
property

CSS
values

NS IE Description CSS
version

Margin margin-
top

margin-
right

margin-
left

margin-
bottom

4.+ 4.+ A shorthand property to
set the margin
properties in one
definition

CSS1

margin-
bottom

auto

length

%

4.+ 4.+ Sets the bottom margin
of an element

CSS1

margin-
left

auto

length

%

4.+ 4.+ Sets the left margin of
an element

CSS1

margin-
right

auto

length

%

4.+ 4.+ Sets the right margin of
an element

CSS1

margin-
top

auto

length

4.+ 4.+ Sets the top margin of
an element

CSS1

130

Table 2.2. Margins and alignments

CSS
property

CSS
values

NS IE Description CSS
version

%

margin-
align

left

right

center

justify

4.+ 4.+ Aligns the text in an
element

CSS1

margin-
indent

length

%

4.+ 4.+ Indents the first line of
text in an element

CSS1

CSS can take a specific unit of measurement in length. It can be
in points (pt), inches (in), centimeters (cm), or a percentage (%).
The left and right margins together with the division element can be
used to define a text box with arbitrary length on the browser
window.

Consider the following example ex02-07.htm:

Example: ex02-07.htm - Margins and Alignments

<html>

<head>

<title>Indent Margin and Alignment ex02-07.htm</title>

</head>

<style type="text/css">

.ins {font-size:14pt;font-weight:normal;text-align:left;

text-indent:1in;margin-left:5%;margin-right:50%}

.pts {font-size:14pt;font-weight:normal;text-align:justify;

margin-left:50%;margin-right:5%}

.pct {font-size:14pt;font-weight:normal;text-align:left;

text-indent:5%;margin-left:5%;margin-right:50%}

</style>

131

<body style="font-family: arial; font-size: 16pt; font-weight: bold">

<div style="font-family: arial; font-size: 18pt; text-align: center">

Text Indent Margin and Alignment Demo</div>

<div class="ins">

This is a left aligned text box defined by margin left right

(5%,50%). The first

line of text should be indented 1 inch from the left margin of

the box.</div>

<div class="pts">

This is a right aligned text box defined by margin left right

(50%, 5%). All lines

are justified within the text box</div>

<div class="pct">

This is a left aligned text box defined by margin left right (5%,

50%). The first

line of text should be indented 5% of the browser

window.</div>

</body>

</html>

In this example, three classes ins, pts, and pct are defined in
lines 616. For example, the class ins sets the 14pt normal text to be
indented 1 inch from the left margin of the box and left aligned. The
left and right margins of the box are also set to be 5% from the left
edge and 50% from the right edge of the browser window
respectively. Similarly for the classes pts and pct. A screen shot of
this page is shown in Fig. 2.8.

132

Figure 2.8. ex02-07.htm

The example program ex02-08.htm shows text-decoration and

text-transform in action. The corresponding screen shot is shown in

Fig. 2.9.

<html>

<head>

<title>Text Decor. and Trans. ex02-08.htm</title>

</head>

<style>

.bSt

{

font-family: 'Comic Sans MS' ,times;

font-size: 18pt;

color: #000088;

}

</style>

<body style="font-family: arial; font-size: 24pt; font-weight: bold">

<div style="text-align: center; color: #880000; text-align: center">

Text Decoration and

Transformation Demo Page</div>

<div class="bSt" style="text-decoration: underline; color:

#000088">

133

A text string uses the CSS "text-decoration:underline"</div>

<div class="bSt" style="text-decoration: overline; color:

#008800">

A text string uses the CSS "text-decoration:overline"</div>

<div class="bSt" style="text-decoration: line-through; color:

#880000">

A text string uses the CSS "text-decoration:line-

through"</div>

<div class="bSt" style="text-transform: uppercase; color:

#000088">

A text string uses the CSS "text-

transform:uppercase"</div>

<div class="bSt" style="text-transform: lowercase; color:

#008800">

A text string uses the CSS "text-

transform:lowercase"</div>

<div class="bSt" style="text-transform: capitalize; color:

#880000">

A text string uses the CSS "text-transform:capitalize"</div>

</body>

</html>

134

7.2.3 Text box dimensions and spacing

With CSS, you can scale the HTML elements it is associated
with to fit the specified height and width dimensions. The CSS
white-space element is a powerful element that controls the way
that white space and carriage returns are handled within a Web
page. It allows you to add plenty of visual space to enhance the
clarity of your Web pages.

Some of the most frequently used CSS properties relating to
line and character spacing are given in Table 2.4. They are all
CSS1 elements and therefore fully supported by both the IE6+ and
NS6+ browsers.

Table 2.4. Line and character spacing

CSS
property

CSS
values

NS IE Description CSS
version

Height auto
length
%

6.+ 4.+ Sets the height of an
element

CSS1

Width auto
length
%

4.+ 4.+ Sets the width of an
element

CSS1

line-height normal
number
length
%

4.+ 4.+ Sets the distance
between lines

CSS1

white-
space

normal
pre
nowrap

4.+ 4.+ Sets how white space
inside an element is
handled

CSS1

letter-
spacing

normal
length

6.+ 4.+ Increases or decreases
the space between
characters

CSS1

word-
spacing

normal
length

6.+ 6.+ Increases or decreases
the space between
words

CSS1

These CSS properties provide you with yet more control over

how your text should be displayed by the browser. For example, the

CSS element word-spacing can be used to set the spacing distance

between words on a Web page. Wide values can make your text

easier to read, or achieve some visual effects.

135

The example ex02-09.htm demonstrates some of these CSS
properties.

<html>

<head>

<title>Line-height and Spacing ex02-09.htm</title>

</head>

<style>

div

{

font-size: 14pt;

color: #000088;

padding: 2ex;

margin-left: 1in;

font-weight: normal;

width: 6in;

}

.line01

{

line-height: 150%;

letter-spacing: 0.2em;

}

.line02

{

line-height: 200%;

word-spacing: 1.5em;

}

</style>

<body>

<div style="font-family: arial; font-size: 20pt; font-

weight: bold; color: #880000">

CSS Line-height, Letter and Word Spacing Demo

</div>

<div>

This paragraph should be leading of 100% i.e., the

default leading produced by the

CSS line-height property.</div>

136

<div class="line01">

This paragraph should be leading of 150% produced

by the CSS line-height property.

The letter-spacing feature is supported in IE4 but not

NS4. You should have no problem

if you are using NS6+</div>

<div class="line02">

This should be leading of 200% produced by the CSS

line-height property. Word spacing

is not supported by IE4 or NS4. You have no

problems if you are using the latest

browsers</div>

</body>

</html>

Three CSS properties are defined within the internal CSS style

sheet in lines 613. Line 7 has an attribute padding:2ex which is

used to add padding (of 2ex units) equally to the top, bottom, and

sides of the division element. This will add visual space to the text.

Line 10 defines a class line01 that sets the spacing of 0.2em

between characters. The distance between two lines is 150% in

relation to the size of the font in use. The unit em is a measure

relative to the height of the current font used. The unit ex, on the

other hand, refers to the relative height of a lower case "x." Line 11

is another class line02. It sets the distance between two lines to be

200% and the spacing distance between words is 1.5em.

An interesting element is the <div> element in line 16. This line

has an inline style that redefines the font-size (20pt) and font-

weight (bold). The browser will use this new set of CSS properties

to format the text that is assocciated with this division element. This

is an example of cascading styles in practice.

137

A screen shot of this example is shown in Fig. 2.10.

7.2.4 Background and border

The background family of CSS style elements is used
to set the background characteristics on your Web page. For
example, you could apply some CSS background elements to
highlight an area on a page, or just simply to enhance the contrasts
of the display and the background. Another useful CSS element is
border. The border properties set the display of borders around its
associated CSS element. All these, together with the dimensioning
and postioning CSS elements, give a variety of controls down to
pixel level to help you design your pages. The dimensioning and
positioning CSS elements will be discussed in more detail in
section 2.4.

138

Some frequently used background CSS elements are shown in
Table 2.5.

Table 2.5. Background CSS elements

CSS
property

CSS values NS IE Description

background #rrggbb 4.+ 4.+ Sets the background
color or image

background-
color

#rrggbb

transparent

4.+ 4.+ Sets the background
color for an element, or
sets it to transparent

background-
image

image_file_name 4.+ 4.+ Specifies the
image_file_name as a
background image

background-
repeat

repeat

repeat-x

repeat-y

no-repeat

4.+ 4.+ Specifies how the
background image is
repeated

background-
atachment

scroll

fixed

4.+ 4.+ Specifies background
image movement when
the browser window is
scrolled

background-
position

x y

% %

left/center/right

top/center/bottom

4.+ 4.+ Indicates the
coordinates in which
the background image
first appears

Note that the background CSS element is the father of all the
other background CSS elements, all of which share similar CSS
properties for adding special background effects to your Web page.
Some CSS elements like background-repeat, background-
attachment, and background-position will not work unless the CSS
element background-image is specified first.

Let's now have a look at the background CSS elements.

139

7.2.4.1 Background color and image

The CSS background element allows you to add a
background color or image to your Web page. For example, you
may like to use a dark color to set a background against light-
colored paragraphs to create an effect of sidebars or offsetting text
for emphasis.

The CSS element <background-color> takes the general format
<b style="background-color:#rrggbb">

your body text here ...

The following example ex02-10.htm shows some simple
background-color effects:

Example: ex02-10.htm - Background Color

<html>

<head><title>Background Color ex02-10.htm</title></head>

<body style="background:#f0fff0">

<div style="font-family:arial,times,serif; font-size:20pt;

font-weight:bold;text-align:center">

Background Color
Demo</div>

<div style="background-color:#00ffff;font-family:'Comic Sans MS',

times; font-size:20pt;color:#ff0000">

This text will appear in red in a small box with cyan

background on a larger honeydew background

</div>

</body>

</html>

Line 7 sets a general background color for the whole page.
With the CSS background-color element, you can have additional
control over the background color that is associated with this
element. The division element in lines 1317 uses a different color
(cyan) from that of the background (honeydew color) in order to
emphasize a string of text. This page has the screen output shown
in Fig. 2.11.

140

Figure 2.11. ex02-10.htm

You can also use a small picture, a photograph, or a graphic
design to form a background pattern. With the background-image
CSS properties, your small picture is tiled repeatedly in the
horizontal and/or vertical directions to form the image background.
If carefully arranged, this type of background can have both an
unusual and original effect.

In Chapter 1 we have already discussed adding images to the
background of your Web page. This is a very straightforward
process with the CSS element. The code
<body style="background-image:url (bg_image.gif)">
will repeatedly insert the image bg_image.gif into the body of the
page to create a background picture. Note that once this element is
specified, you can further modify the behavior of the background by
using the related CSS elements such as background-repeat,
background-attachment, and background-position.

The following example shows how to create a background
consisting of the image "Practical Web" logo:

Example: ex02-09.htm - Line-height, Letter and Word Spacing

<html>

<head><title>Background Image ex02-11.htm</title></head>

<style type="text/css">

.txtSt {background-color:#000000;font-family:arial; color:ffffff;

font-size:30pt; font-weight:bold; text-align:center}

</style>

141

<body style="background-image: url(logo_web.jpg);

background-repeat:repeat">

<div class="txtSt">We have an image background.

</div>

</body>

</html>

In this example, the CSS element background-repeat:repeat

tiles the image web_logo.jpg both horizontally and vertically to

create the image background. If the background-repeat:repeat-x is

set, then the image is tiled horizontally only and can be used to

create a graphical edge effect for your Web page. The background-

repeat element is always used in conjunction with the background-

image element and modifies the way the background image is

displayed.

A screen display of this example is shown in Fig. 2.12.

Figure 2.12. ex02-11.htm

142

7.2.4.2 Positioning a background image

You can further control the position at which a background

image begins to tile on your Web page. This is all done by the CSS

element background-position. It takes the general form

<body style="background-image:url (bg_image.gif) background-

position: x y">

where x y represents the position of the image. Note that with the

IE4 and NS4 browsers, tiling only happens down and to the right.

"Nailing" a background image

The CSS style element background-attachment allows you

to control whether the background image moves when the browser

window is scrolled. Similar to the background-repeat element, the

background-attachment CSS element only works when the

background-image element is set. It takes the general format

<body style="background-image:url (bg_image.gif)

background-attachment: fixed">

If the background-attachment is set to fixed, then the

background-image will be fixed with respect to the viewing area and

therefore not affected by any scrolling action. This has the effect of

"nailing" the background image in place and may be a useful

function if, for instance, you want to create a watermark feature

using your own logo. Example ex02-13.htm illustrates this action.

Example: ex02-13.htm - Fixing A Background Image Position

<html>

<head><title>Positioning a Background Image ex02-

13.htm</title></head>

<style type="text/css">

.txtSt1 {font-family:arial; color:#000000;

font-size:20pt; font-weight:bold}

.txtSt2 {font-family:'Comic Sans MS'; color:#000088;

font-size:20pt; font-weight:bold}

.txtSt3 {font-family:Times New Roman; color:#dd8800;

font-size:20pt; font-weight:bold}

</style>

143

<body style="background-image: url(title4.gif); background-

position:center; background-repeat:no-repeat;background-

attachment:fixed">

<div style="font-family:arial;font-size:24pt;color:#8b0000;

font-weight:bold;text-align:center">Fixing A Background Image

</div>

<div class="txtSt1">

The background-image is fixed

</div>

<div class="txtSt2">

and therefore

</div>

<div class="txtSt3">

will not be affected

</div>

<div class="txtSt1" style="font-size:10pt">

by any scrolling action

</div>

<div class="txtSt2" style="font-size:25pt">

The default scroll attribute makes the background-image

scroll when the user scrolls the page

</div>

</body>

</html>

Color, width, and style of element borders

One of the most powerful CSS properties is positioning. This
property gives you total, pixel-level control over the location of
every element on your Web page. The remainder of this section is
devoted to a discussion of the CSS border element and its
associated properties.

The CSS border property sets the display of borders around
the CSS element that it is associated with. Every border has three
aspects: width, style, and color. These properties allow you to have
full control as to how you want the borders to be displayed on the
Web page.

144

Some frequently used CSS border elements are shown in Table
2.6.

Table 2.6. Border CSS elements

CSS
property

CSS values NS IE Description

border-
style

none
dashed
solid
dotted
inset
outset
ridge
double
groove

4.+ 4.+

Sets the style of borders

border-
color

#rrggbb
color name

4.+ 4.+ Sets the color of border
sides

border-
width

length
thin
medium
thick

4.+ 4.+ Specifies the thickness of
each border side

border-top border-top-
width
border-style
color

4.+ 4.+ Sets the display values of
the top border

border-right border-right-
width
border-style
color

4.+ 4.+ Sets the display values of
the right border

border-
bottom

border-
bottom-width
border-style
color

4.+ 4.+ Sets the display values of
the bottom border

border-left border-left-
width
border-style
color

4.+ 4.+ Sets the display values of
the left border

There are a total of nine different border styles defined in the
CSS1 standard. However, only the support of the solid border style
is required for CSS1 compliance. For example,

145

<div style="border-style:double border-color:red">
Double bordered texts</div>

will create a double-line red border around "Double bordered texts."
The nine different border styles are demonstrated in the example
ex02-14.htm.

Example: ex02-14.htm - Border With CSS

<html>

<head><title>Borders with Styles ex02-14.htm</title></head>

<style>

.bSt {font-family:'Comic Sans MS',times;font-size:12pt}

</style>

<body style="font-family:arial;font-size:20pt;font-weight:bold">

<div style="text-align:center;color:#880000;text-align:center">

Border Styles and Colors Demo Page</div>

<div class="bSt" style="border-style:none;border-color:#000088">

The paragraph has no border style </div>

<div class="bSt" style="border-style:double;border-

color:#008800">

The paragraph has a DOUBLE border style </div>

<div class="bSt" style="border-style:dashed;border-color:#ff0000">

The paragraph has a DASHED border style </div>

<div class="bSt" style="border-style:dotted;border-color:#ffd700">

The paragraph has a DOTTED border style </div>

<div class="bSt" style="border-style:inset;border-color:#fff4e1">

The paragraph has an INSET border style </div>

<div class="bSt" style="border-style:outset;border-color:#ffa500">

The paragraph has an OUTSET border style </div>

<div class="bSt" style="border-style:groove;border-

color:#006400">

The paragraph has a GROOVE border style </div>

<div class="bSt" style="border-style:ridge;border-color:#00ffff">

The paragraph has a RIDGE border style </div>

<div class="bSt" style="border-style:solid;border-color:#0000ff">

The paragraph has a SOLID border style </div>

</body> </html>

146

In this example, the internal CSS style in lines 68 defines the

display text properties. Lines 1540 define all nine different border-

style attributes. The none attribute is the default style. Also the

support of only the solid style is required for CSS1 compliance. As

an example, the lines 3031

<div class="bSt" style="border-style:outset;border-color:#ffa500">
The paragraph has an OUTSET border style </div>

set an orange-colored outset border.

The screen shot of example ex02-14.htm is shown in Fig. 2.15.

Figure 2.15. ex02-14.htm



147

8

CLASSES AND CSS TAG

Unit Structure

8.1 Classes and Pseudo Classes

8.2 CSS Tag.

8.1 CSS PSEUDO-CLASSES

Syntax

The syntax of pseudo-classes:

selector:pseudo-class {property:value;}

CSS classes can also be used with pseudo-classes:

selector.class:pseudo-class {property:value;}

8.1.1 Anchor Pseudo-classes

Links can be displayed in different ways in a CSS-supporting

browser:

Example

a:link {color:#FF0000;} /* unvisited link */

a:visited {color:#00FF00;} /* visited link */

a:hover {color:#FF00FF;} /* mouse over link */

a:active {color:#0000FF;} /* selected link */

Note: a:hover MUST come after a:link and a:visited in the CSS

definition in order to be effective!!

Note: a:active MUST come after a:hover in the CSS definition in

order to be effective!!

Note: Pseudo-class names are not case-sensitive.

148

8.1.2 Pseudo-classes and CSS Classes

Pseudo-classes can be combined with CSS classes:

a.red:visited {color:#FF0000;}

CSS Syntax

If the link in the example above has been visited, it will be displayed

in red.

CSS - The :first-child Pseudo-class

The :first-child pseudo-class matches a specified element that is

the first child of another element.

Note: For :first-child to work in IE a <!DOCTYPE> must be

declared.

Match the first <p> element

In the following example, the selector matches any <p> element

that is the first child of any element:

Example

<html>

<head>

<style type="text/css">

p:first-child

{

color:blue;

}

</style>

</head>

<body>

<p>I am a strong man.</p>

<p>I am a strong man.</p>

</body>

</html>

149

Match the first <i> element in all <p> elements

In the following example, the selector matches the first <i> element

in all <p> elements:

Example

<html>

<head>

<style type="text/css">

p > i:first-child

{

font-weight:bold;

}

</style>

</head>

<body>

<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>

<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>

</body>

</html>

Match all <i> elements in all first child <p> elements

In the following example, the selector matches all <i> elements in

<p> elements that are the first child of another element:

Example

<html>

<head>

<style type="text/css">

p:first-child i

{

color:blue;

}

</style>

</head>

<body>

<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>

<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>

</body>

</html>

150

CSS - The :lang Pseudo-class

The :lang pseudo-class allows you to define special rules for

different languages.

Note: Internet Explorer 8 (and higher) supports the :lang pseudo-

class if a <!DOCTYPE> is specified.

In the example below, the :lang class defines the quotation marks

for q elements with lang="no":

Example:

<html>

<head>

<style type="text/css">

q:lang(no) {quotes: "~" "~";}

</style>

</head>

<body>

<p>Some text <q lang="no">A quote in a

paragraph</q> Some text.</p>

</body>

</html>

Pseudo-classes

The "CSS" column indicates in which CSS version the property is

defined (CSS1 or CSS2).

Pseudo name Description CSS

:active Adds a style to an element that is activated 1

:first-child
Adds a style to an element that is the first
child of another element

2

:focus
Adds a style to an element that has
keyboard input focus

2

:hover
Adds a style to an element when you mouse
over it

1

:lang
Adds a style to an element with a specific
lang attribute

2

151

:link Adds a style to an unvisited link 1

:visited Adds a style to a visited link 1

8.2 CSS ID AND CLASS

The id and class Selectors

In addition to setting a style for a HTML element, CSS

allows you to specify your own selectors called "id" and "class".

8.2.1 The id Selector

The id selector is used to specify a style for a single, unique

element.

The id selector uses the id attribute of the HTML element, and is

defined with a "#".

The style rule below will be applied to the element with id="para1":

Example

#para1

{

text-align:center;

color:red;

}

Do NOT start an ID name with a number! It will not work in

Mozilla/Firefox.

8.2.2 The class Selector

The class selector is used to specify a style for a group of

elements. Unlike the id selector, the class selector is most often

used on several elements.

This allows you to set a particular style for any HTML

elements with the same class.

The class selector uses the HTML class attribute, and is

defined with a "."

In the example below, all HTML elements with class="center"

will be center-aligned:

152

Example

.center {text-align:center;}

You can also specify that only specific HTML elements

should be affected by a class.

In the example below, all p elements with class="center" will

be center-aligned:

Example

p.center {text-align:center;}

Example:

<html>

<head>

<style type=”text/css”>

.para

{

font-family:Arial;

font-size:13px;

color:Aqua;

}

</style>

</head>

<body>

<p class=”para”>Hello World</p>

</body>

</html>



153

9

INTRODUCTION TO WEB

TECHNOLOGY

Unit Structure

9.1 Working of ASP page

9.2 Variables

9.3 Data types

9.4 Operators

9.5 Object hierarchies

a. ASP Object model

9.1 INTRODUCTION

Active Server Pages are Microsoft's solution to creating

dynamic Web pages. With the explosion of the Internet and the

World Wide Web into our everyday lives, Web site creation is

quickly becoming one of the fastest growing sectors.In the early

days of the World Wide Web, Web site design consisted primarily

of creating fancy graphics and nice-looking, easy-to-read Web

pages. As today's Web sites have become user interactive, the

steps in Web site design have changed. Although creating a

pleasant-looking Web site is still important, the primary focus has

shifted from graphical design to programmatic design. For example,

imagine that you wanted to create a Web site from which you could

sell widgets. The programmatic design, creating the Web pages

that will collect and store user billing information, for example, is

more pressing than deciding what background color to use.

Enter Active Server Pages. If you need to build a dynamic Web

site—one that can interact with users—Active Server Pages are an

easy-to-use solution. Today, you take your first step into the world

of Active Server Pages!

 What Are Active Server Pages?

Over the past couple of years, we have seen some major

changes concerning the Internet.

154

Initially, the Internet served as a medium for members of

government and education institutions to communicate. With the

advent of the World Wide Web, the Internet became a multimedia,

user-friendly environment. Originally, the Internet served as a place

for enthusiasts to create personal home pages, but as more people

began going "online," the Internet transformed into an informational

resource for the common man. When the number of people online

reached a critical mass, companies that sold products and services

began to spring up. These companies had no physical presence,

only a virtual one. For example, you can buy a book from

Amazon.com's Internet site, but you won't be able to find an

Amazon.com bookstore in your neighborhood. As the Internet has

matured into a viable marketplace, Web site design has changed

in step.

In the early days of the World Wide Web, HTML was used to

create static Web pages. Today, though, static Web pages are

quickly becoming obsolete. Imagine if Amazon.com was composed

of nothing but static Web pages—you couldn't search its inventory;

you couldn't place an order online; you couldn't read other users'

comments. It is a safe bet that Amazon.com wouldn't sell many

books if it didn't use dynamic Web pages. You can create dynamic

Web pages in many ways. Microsoft's solution to building dynamic

Web pages is through the use of Active Server Pages, commonly

abbreviated ASP.

NOTE

Many large Web sites use Active Server Pages to serve

dynamic Web content. For example, Buy.com, HotBot.com, and

Dell.com use Active Server Pages to build their interactive, dynamic

Web sites. Active Server Pages contain two parts: programmatic

code and embedded HTML. The programmatic code can be written

in a number of scripting languages. A scripting language is a

particular syntax used to execute commands on a computer. A

program composed of commands from a particular scripting

language is referred to as a script.

Some popular Web-related scripting languages include VBScript

and JavaScript. When creating an ASP page, you can use one of

four programming languages:

 VBScript—Similar to Visual Basic's syntax, the most

commonly used scripting language for Active Server Pages

155

 JScript—Similar to JavaScript

 PerlScript—Similar to Perl

 Python—A powerful scripting language commonly used for

Web development

Most ASP pages are created using VBScript. VBScript has

the most English-like syntax of the four scripting languages and is

similar to Visual Basic's syntax, which many Web developers have

experience with.

NOTE

An ASP page must contain an .ASP extension

 Understanding the Client-Server Model

Have you ever wondered what, exactly, happens when you

type a URL into your browser's Address window? The Internet

operates on a client-server model. In a client-server model, two

computers work together to perform a task. A client computer

requests some needed information from a server computer. The

server returns this information, and the client acts on it. Many

everyday activities mimic the client-server model. For example, a

map at a large mall performs the role of the server, whereas those

strolling through the mall are the clients. If one of these clients

wants to know how to reach Sears, he would consult this map,

requesting a particular piece of information—namely, "How do I get

to Sears from here?" After the client (the mall shopper) has

received the information from the server (the map), he leaves,

headed in the correct direction. The client-server model typically

has many more clients than servers. For example, many mall

shoppers are requesting information from just a few maps spread

throughout the mall.

The Internet runs on a client-server model as well. With the

Internet, the server is a particular Web server.

NOTE

A Web server is a computer that contains all the Web pages

for a particular Web site and has special software installed to send

these Web pages to Web browsers that request them. The client,

on the Internet, is a Web browser.

When you visit a static Web page through a Web browser,

the following steps occur:

1. The client (the Web browser) locates the Web server specified

by the first part of the URL (http://www.Something.com).

156

2. The client then requests the static Web page specified by the

second part of the URL (/index.htm).

3. The Web server sends the contents of that particular file to the

client in HTML format.

4. The client receives the HTML sent by the server and renders it

for you, the user.

In this transaction, the Web server acts passively, like the

mall map in the previous example. The Web server sits around idly,

waiting for a client to request a static Web page. After such a page

is requested, the Web server sends that page to the client and then

returns to idly wait for the next request. With this series of steps,

only static Web pages can be sent to the client.

To allow for dynamic Web pages, the Web server must play

a more active role. code. This code, which can be written in many

different languages, allows ASP pages to be dynamic; however, the

Web server has to process this programmatic code before sending

the HTML to the client. When a Web browser requests an ASP

page, the following steps occur:

1. The client (the Web browser) locates the Web server specified

by the first part of the URL (http://www.Something.com).

2. The client then requests the ASP page specified by the second

part of the URL (/default.asp).

3. The Web server reads the ASP file and processes the code.

4. After the ASP page has been completely processed by the Web

server, the output is sent in HTML format to the client.

157

5. The client receives the HTML sent by the server and renders it

for you, the user.

The client cannot tell the difference between an ASP page

and a static Web page because, in both cases, it receives just

HTML. When the Web server processes an ASP page, all the

programmatic code is interpreted on the server—none of it is sent

to the client. Figure 1.2 graphically represents this transaction.

Figure 1.2. The Web server plays a more active role when an

ASP page is requested by

the client.

We've just looked at the two ways a Web server responds to

a client's request. If the request is for a static HTML page, the

server simply sends back the contents of the Web page. If,

however, the request is for an ASP page, the Web server first

processes the ASP page and then sends the resulting HTML output

to the client. How, though, does the Web server determine whether

the client is requesting a static HTML page or an ASP page? The

Web server determines this by the extension of the Web page

being requested. This is why when you create an ASP page you

must give it an .ASP extension. This way, the Web server knows to

process the programmatic code before sending the output to the

client.

Let's briefly look at an example ASP page. Contains code

that displays the current date and time. To execute the code in, you

first need to install a Web server on your computer. We will discuss

how to do this later today in "Running ASP Pages." For now, just

examine the code to get a feeling for what an ASP page looks like.

158

Example 1.1. An ASP Page Displaying the Current Date and

Time

1: <%@ Language=VBSCRIPT %>

2: <HTML>

3: <BODY>

4: The current time is

5: <% Response.Write Time() %>

6: </BODY>

7: </HTML>

Note that the ASP code is surrounded by a <% and %>.

When an ASP page is requested from a Web server, the Web

server fully processes all the code between <% and %> before

sending the output to the client. The code in Listing 1.1 probably

looks a lot like a regular HTML file. This embedded HTML (lines 2,

3, 6, and 7) makes it easy to create ASP pages from existing HTML

documents. In fact, the only ASP code is on lines 1 and 5. Line 1

informs the Web server what scripting language this particular ASP

page is using. Recall that an ASP page can use one of four

scripting languages. If you wanted to use JScript instead of

VBScript in this example, you could change line 1 to the following:

<%@ LANGUAGE=JScript %>

The second line of ASP code (line 5) displays the current

date and time. The Time() function is a VBScript function The

Response.Write outputs the results of the Time() function to the

client. This Response object and the Response.Write method

"Using the Response Object." If you have a Microsoft Web server

already running on your computer, you can test the code

Create a file named CurrentTime.asp and place it in your

Web site's root directory. Next, load your favorite browser and visit

the ASP page you just created. The URL you want to type in is

http://machineName/CurrentTime.asp

where machineName is the name of your computer.

TIP

The following URL will also work:

http://localhost/CurrentTime.asp

Figure 1.3 displays the output of Listing 1.1 when viewed through a

browser.

159

Figure 1.3. The current date and time is displayed.

Remember that the browser just receives HTML text from

the Web server—it does not receive any of the ASP code that was

between the <% and %> delimiters. You can see exactly what the

browser received from the client by viewing the HTML source code

the browser received. To see this in Internet Explorer, select View,

Source from the menu. This opens up Notepad and shows you the

source code received. the source code received by the browser

when visiting CurrentTime.asp.

Example 1.2. The Browser Receives Only HTML

1: <HTML>

2: <BODY>

3: The current time is

4: 3:26:57 PM

5: </BODY>

6: </HTML>

 How ASP Differs from Client-Side Scripting

Technologies

When using ASP, it is vitally important to understand that

ASP code exists on the server only. ASP code, which is code

surrounded by the <% and %> delimiters, is processed completely

on the server. The client cannot access this ASP code. If you've

created Web pages before, you might be familiar with client-side

scripting. Client-side scripting is programmatic code in an HTML file

160

that runs on the browser. Client-side scripting code is simply HTML

code and is denoted by the <SCRIPT> HTML tag. Client-side

scripting is commonly written using the JavaScript programming

language due to the fact that Netscape Navigator only supports the

JavaScript scripting language for clientside scripting. Listing 1.3

contains a static HTML page that contains client-side scripting

code.

Example 1.3. The Browser Receives Only HTML

1: <HTML>

2: <HEAD>

3: <SCRIPT LANGUAGE="JavaScript">

4: <!--

5: alert("Hello world!");

6: // -->

7: </SCRIPT>

8: </HEAD>

9: <BODY>

10: Welcome to my web page!

11: </BODY>

12: </HTML>

The code is includes raw HTML (lines 1 through 3, and lines

7 through 12) and client-side JavaScript code (lines 4 through 6).

Its is nothing more than a static HTML file. If the contents of Listing

1.3 were entered into a Web page named ClientSideScripting.htm,

the entire contents would be sent to the browser when the client

requested the Web page. The browser, when rendering the HTML,

would display a message box when the alert method was reached

(line 5). Figure 1.4 shows the output

Figure 1.4. Use client-side scripting to display message boxes

on the client's computer.

You can have client-side scripting code in an ASP page

because client-side scripting is HTML code, as far as the Web

161

server is concerned. When developing ASP pages, though, it is

important to remember that client-side scripting and ASP code are

two different things and cannot interact with one another. ASP

scripts are server-side scripts. Server-side scripts are scripts that

execute on the Web server. These scripts are processed and their

output is sent to the client.

Table 1.1 outlines the differences between client-side scripting

and server-side ASP scripting.

1. Working With asp Page

 Creating Your First ASP Pages

To create ASP pages, you need access to a computer with a

Web server that supports Active Server Pages technology. In

"Running ASP Pages," we showed how to set up and install two

free Microsoft Web servers: Personal Web Server and Internet

Information Server. At this point, you should either have an ASP-

enabled Web server installed on your computer, or have access to

a computer that has such a Web server already installed. After you

have a Web server installed, you can create ASP pages in your

Web site's root physical directory, or in subdirectories of the root

physical directory, and view the result of these ASP pages through

a standard Web browser. Because ASP pages are processed

completely on the server-side and only return HTML to the client,

any Web browser can be used to view ASP pages. There are no

restrictions on the client-side. You now have the elements

necessary to create and visit ASP pages. Over the next four days,

you will learn the ins and outs of the VBScript scripting language,

the most commonly used scripting language for ASP pages.

162

Although at this point you may not be familiar with VBScript, let's

look at an example ASP page. This will help you become familiar

with the notation and VBScript syntax. Furthermore, it will show you

some neat things you can do with Active Server Pages. Imagine

that, depending on the time of the day, you want a Web page to

display a different message. For example, if the time is 11:00 AM,

you want to display Good Morning!, whereas if the time is 5:00 PM,

you want to display Good Evening! Using static HTML pages, you

would have to edit the HTML page twice a day—once before noon

and once after, altering the Web page and changing its message.

With ASP pages, however, you can use programmatic code to

determine the current time and display a custom message based

on the time. Example 1.5 contains the code for an ASP page that

displays a custom message based on the current time.

Example 1.5. Displaying a Different Message Depending on the

Time of Day

1: <%@ Language=VBScript %>

2: <% Option Explicit %>

3:

4: <HTML>

5: <BODY>

6: The current time is <%=Time()%>

7: <P>

8: <%

9: If DatePart("h",Time()) >= 12 then

10: 'Is is after noon

11: Response.Write "Good Evening!"

12: Else

13: 'Is is before noon

14: Response.Write "Good Morning!"

15: End If

16: %>

17:

18: </BODY>

19: </HTML>

To view the output, create an ASP page named

TimeBasedMessage.asp and save this file in your Web's root

physical directory. Enter the code in Listing 1.5, save the file, and

then view it through your browser of choice using the following

URL:

163

http://localhost/TimeBasedMessage.asp

Let's look over the code in Listing 1.5. Line 1 begins with the

@LANGUAGE directive, which informs the Web server what

scripting language the current ASP page is using Option Explicit, is

another line of code that should always be used in every ASP page

you create. When Option Explicit is used, all variables must be

explicitly declared. We'll discuss Option Explicit in greater

Line 6 displays the current system time using the Time()

function. The notation for displaying the results of the function,

<%=…%>. For the time being, realize that <%=…%> shares the

same functionality as Response.Write, which outputs information to

the client. Lines 8 through 16 are an ASP code block, denoted by

the <% and %> delimiters. An If statement is used on line 9 to

determine whether the current time is after or at noon or before

noon.The DatePart, which is used here to get just the hour portion

of the current time Figure 1.21 shows the output of Listing 1.5 when

viewed through a browser.

164

9.2 VARIABLE

Now that you know what ASP is and what an ASP page

looks like, it is time to get into some programming topics. Today,

you will learn about variables and operators. These are

fundamental to moving and manipulating data in ASP and VBScript.

Without these, your pages would have no way of remembering the

information they are told and would be unable to perform basic

computations using that information. Today, you will learn the

following:

• What a variable is

• What the different types of variables are

• Good programming techniques with variables

• What operators are found in VBScript and how to use them

• What operator precedence is and how it affects programmers

What Is a Variable?

If you have never programmed before, you may wonder

what the term variable means. A variable is a small section of a

computer's memory that you give a name to. Think of a variable as

a box into which you can put numbers, letters, dates, and more.

This information can now be carried around and manipulated by

referring to the name you gave it. For example, as illustrated in

Figure 3.1, you might put the number 3 into a variable. Then you

might add 1 to it. Or you could decide that you do not want that

number after all, and so you replace it with 5. All these things, and

more, are possible with variables.

Figure 3.1. A variable may be thought of as a box that data is

put into.

165

9.3 DATA TYPES

There are many different types of data that you might want

to be able to store into a variable: numbers, words, dates, and

many more. In this section, you will look at a few of the most

important data types that can be stored in variables and discuss the

way in which VBScript does this.

 Integer

i. An integer is a whole number—that is, a number with no

fractional portion.

ii. For example, 1, 3, 9, and -4 are all integers, but 1.2, 0.9, and -

5.5 are not.

iii. Two other data types are related to the integer: byte and long.

iv. A long can store a larger range of numbers than an integer.

v. A byte stores fewer.

vi. You do not have to worry too much about which range your

numeric values fall into.

vii. VBScript handles the issue for you.

 Floating-point Numbers

i. Floating-point numbers may have a decimal. 1.5, -3.4, 4.1, and

even 5.0 are all floating-pointnumbers.

ii. It is important to note, however, that although integers are

stored exactly, that is not necessarily true of floating-point

numbers.

iii. Floating-point numbers are often rounded or truncated to fit into

the space allotted for them.

iv. Single and Double data types are associated with floating-

point numbers.

v. The difference between the two has to do with the precision

used to store the number.

vi. Doubles require twice as much memory as singles, but can

obviously hold a much greater range of numbers and to greater

precision than can singles.

vii. Again, in VBScript, you do not have to worry about the

distinction too much.

 String

i. A string can hold any sequence of letters, numbers, and

symbols.

166

ii. Strings are distinguished from code, variable names, and

numbers by putting them between double quotation marks.

"My name is Fred.", "20mph", and "14" are all possible

strings.

iii. Even the empty string "" can be treated like a string in most

cases.

iv. For example: When we would use a statement like

Response.Write "Hello", the "Hello" is a string value.

v. It is not stored in a variable,but it is the same kind of data.

String values will be used often in sending output like this.

Do Don't

DO remember when using digits in strings that there is a difference

between a string of digits and a number. The string "14" is handled

differently than the integer value 14.

DON'T confuse a string variable's name with the value it contains.

A string variable called black might contain a value of "white".

 Date

i. A nice feature of VBScript that is missing in other programming

languages is its date handling.

ii. Although it is possible to represent the date using strings

and/or integers, this variable type simplifies things.

iii. A date variable can hold either a date or a time, and VBScript's

various date functions and operators make the formatting and

printing of date-related information easy.

 Boolean

i. A Boolean variable may hold a value of either True or False.

ii. Boolean variables are generally used when a decision needs to

be made.

iii. The value of the variable can determine which of two actions

should be taken.

 Currency

i. A single precision number would work fine for storing monetary

values, but VBScript provides a special data type for money

that works with several special VBScript functions and

displays nicer.

 Object

i. This refers to special objects. It is used a lot in performing

database operations.

167

Q. What Are Variant Variables?

 In most programming languages, a distinction must be made

between variables of different types.

 A variable used to contain a string cannot later be used to

contain an integer.

 This is not true in VBScript.

 VBScript uses variant variables, which are variables that may

contain values of any type.

Q. What Does It Mean to Declare a Variable?

 Many programming languages require that, before you use a

variable, you tell the system what type of data you intend to put

into the variable and what you want it to be called. For

example, in the C++ programming language, you might say

 int my_variable;

 my_variable = 2;

 The first line tells the system that you want to use a variable

that you will call my_variable, and that you want to be able to

put integer data into it

 This is an example of an explicit declaration.

 You explicitly tell the system what variable you want to create.

 The second line begins to use that variable by putting the

value 2 into it.

 If you are familiar with C or C++, this should look familiar to

you.

 If you are not, you need not be concerned with it. VBScript

makes things a little easier.

 In VBScript, it is not necessary to specify integer, real, char, or

whatever when you create a variable.

 In VBScript, all variables are declared using the keyword dim.

 This is because VBScript uses the aforementioned variant

variables.

 Therefore, the VBScript equivalent of the preceding statements

would be as follows:

 dim my_variable

 my_variable = 2

 Here the first line declares my_variable without specifying that

my_variable will represent an integer.

 Further, it is not even necessary to include the first line at all.

 In VBScript, it would be acceptable to simply use the second

line with no prior mention of my_variable whatsoever.

168

 This is called an implicit declaration. That is, the system figures

out on its own that you wantto create a variable named

my_variable.

Q. Why Use Explicit Declarations in VBScript?

 Now that you can see that explicit declarations are not

necessary in VBScript, you may well be wondering why anyone

would want them.

 Try putting Listing 3.1 into your editor of choice. Name the file

Typo1.asp.

Example 3.1. Mistyping a Variable Without Using Option

Explicit

1: <%@ Language=VBScript %>

2: <% myfirstvariable = 2 %>

3: <HTML>

4: <BODY>

5: The variable named "myfirstvariable" has a value of

6: <%

7: Response.Write(myfirtvariable)

8: %>

9: </BODY>

10: </HTML>

 Notice that in line 7, the variable name has been misspelled.

 This is deliberate. Now try viewing this page. You get no error

message, but the result is not what the programmer had

intended.

 In this simple example, you could probably find the problem

with no great difficulty. Imagine, though, a longer page with 200

lines.

 Finding the typo might be a bit more of a challenge!

 That is why the following line is often included in active server

pages, especially ones of any great length:

<% Option Explicit %>

 Adding this immediately following the <%@ Language=…%>

line will cause VBScript to require explicit declarations of all

variables.

 So let's try adding this line into the previous example.

 Name the new file Typo2.asp. It should now look like Listing

3.2.

169

Example 3.2. Declaring Variables with Option Explicit

<%@ Language=VBScript %>

<% Option Explicit %>

<% myfirstvariable = 2 %>

<HTML>

<BODY>

The variable named "myfirstvariable" has a value of

<%

Response.Write(myfirtvariable)

%>

</BODY>

</HTML>

 You get an error message when you try to view this in your

Web browser.

 It says something like, "Variable is undefined: 'myfirstvariable'."

 Do you know what is causing this error?

 It's the work of that Option Explicit.

 You did not declare the variable "myfirstvariable" explicitly.

 So, let's do that, and call this Typo3.asp. This version can be

found in Listing 3.3.

Example 3.3. Finding the Typo with Option Explicit

<%@ Language=VBScript %>

<% Option Explicit %>

<% Dim myfirstvariable

myfirstvariable = 2

%>

<HTML>

<BODY>

The variable named "myfirstvariable" has a value of

<%

Response.Write(myfirtvariable)

%>

</BODY>

</HTML>

 So that is fixed now.

 Try viewing it again. You will still get an error message.

 Now it says "Variable is undefined: 'myfirtvariable'."

 This makes fixing the problem easy because you know you

didn't mean to have any variables named 'myfirtvariable'.

170

 Also notice that below that it tells you what file the error is in

and what line number it is on. You can see the full error

message in Figure 3.2.

 This is much better than when you had a page with incorrect

results, but no error message. Now all you have to do is go

down to line 10 and fix your typo!

Figure 3.2. Because we used Option Explicit, we see our error.

3. Constants

 A constant is a little like a variable in that you give it a name

and store data in it.

 Unlike variables, however, constants are assigned a value

when they are declared, and that value cannot be changed.

 VBScript has several constants built into it. For example, the

constant vbInteger is declared to be equivalent to the

number 2.

 In your code, you could either refer to the number directly or

using the constant name.

 Typing the number directly may involve fewer keystrokes, but

using the constant name makes your code a little easier to

read.

 It also helps save you from having to memorize many numbers

171

 For example, if you were creating a page to sell merchandise,

you might find you need to use the sales tax rate several times

within the page.

 If you did not make a constant for the tax rate, you would need

to refer to a strange decimal number like 0.0625 a lot.

 Plus, if the tax rate ever changed, you would have to update

several lines of code.

 Put a simple declaration like this at the top of your page,

though, and you can refer to TAXRATE throughout the rest of

the page and make updates easily:

 Const TAXRATE = 0.0625

 It is suggested that you use all capital letters to refer to

constants to help distinguish them from

9.4 VBSCRIPT OPERATORS

Operators allow us to work with data, combining, changing,

or replacing it. There are five major classes of operators we will

deal with. The first is assignment, which you have already seen a

little of.

i. Assignment Operator

 So far today we have discussed variables and mentioned that

data may be stored in them without explaining how to do so.

 The most common way to accomplish this is through the

assignment operator.

 The assignment operator, in VBScript, is the equals sign (=).

 The assignment operator takes whatever is on the right-hand

side of it and stores it in the variable on the left-hand side of it.

For example, consider the following code:

<% Dim iVar

iVar = 3

iVar = 5

%>

If you have not done any programming before, you may be

wondering how iVar could equal 3 and 5 at the same time. It does

not. You must be careful not to confuse the assignment operator

with mathematical equality. The third statement does not say iVar

equals 5. Rather, it says 5 is stored in iVar. For a little review, we

shall step through this code line-by-line. The first line is the variable

172

declaration, as discussed previously. At this point, a value of Empty

is stored in iVar. The next line assigns a value of 3 to iVar. So in the

box labeled iVar, there is now a 3. Finally, a value of 5 is assigned

to iVar. The 3 that was in there before is gone now. Be careful with

this when you are programming. Do not overwrite variables with

new values until you are sure that you are finished with the

previous value.

If it is absolutely necessary to overwrite a value you plan to use

later, you might create a

second variable to hold onto it:

<% Dim iVar, iOldVar

iVar = 3

iOldVar = iVar

iVar = 5

%>

Here, the first line declares two variables now: iVar and

iOldVar. Both begin with an empty value.

The next line assigns a value of 3 into iVar. At this point,

iOldVar still has an empty value. The third line might be a bit

confusing if you are new to programming. Assignment may be done

not just with explicit values such as 3 or 5 on the right, but also with

variables. Following this statement, both iOldVar and iVar will have

values of 3 stored in them. Finally, iVar is assigned a value of 5.

This does not affect iOldVar. Line 3 copied what was in iVar into

iOldVar, but it did not establish any kind of permanent connection

between iVar and iOldVar. This way, iVar can be used with its new

value, but if you still need to use the old value of iVar, it is available.

Now look at one last version of this code before going on to a new

topic:

<% Dim iVar

iVar = 3

5 = iVar

%>

Do you think this code will work? Reread the first paragraph

on the assignment operator if you are not sure. The answer is No.

This code is not valid. The first two lines are carried out as

expected, but the third is meaningless. The assignment operator

copies what is on the right into the variable on the left. In this case,

the number 5—not a variable—is on the left. 5 cannot be the name

of a variable since all variable names must begin with letters

173

I have been using integers in these examples, but I needn't have.

The assignment operator works with singles, doubles, strings,

Booleans, and so on, just as well.

strName = "John Smith"

bol_The_Assignment_Operator_Is_Powerful = True

dtJills_Birthday = #03/06/1946#

NOTE

Surrounding the date with #s keeps it from being evaluated

as three divided by six divided by 1946. You might have noticed

that Listing 3.5 used the assignment operator. Listing 3.6 is a

modified version of that code to show off the assignment operator a

bit more. The file is called AssignmentDemo.asp.

Example 3.6. Demonstration of the Assignment Operator

1: <%@ Language=VBScript %>

2: <% Option Explicit

3: Dim strName, iAge

4: %>

5: <HTML>

6: <BODY>

7: <%

8: Response.Write("Before assigning a value, strName has value

")

9: Response.Write(strName)

10: %>

11:

12: <%

13: strName = "James"

14: iAge = 21

15: Response.Write("Now strName has value ")

16: Response.Write(strName)

17: %>

18:

19: <%

20: Response.Write("Now iAge has value ")

21: Response.Write(iAge)

22: %>

23: </BODY>

24: </HTML>

174

Line 3 declares the two variables we will use: strName and iAge.

Lines 8 and 9 write a message that demonstrates the value that

strName has before we use the assignment operator to set it.

Lines 13 and 14 set the values of the two variables. Lines 15 and

16 show the new value given to strName. Looking at the output,

you can now verify that the assignment wassuccessful. Lines 20

and 21 similarly display the new value given to iAge.

ii. Mathematical Operators

Now that you can put values into variables, it is time to start

using those values. We begin with the operations VBScript can

perform that are classified as mathematical operators. They include

addition, subtraction, negation, multiplication, division, and

exponentiation, all of which you have probably seen before, as well

as integer division, modulus, and string concatenation, which may

be new.

Addition

Addition takes the form argument + argument where each

argument may be a number, a numerical variable, or another

numerical expression:

<% Dim iSum

iSum = 3 + 5

%>

This is one of the simplest cases, where both arguments are

numbers. When the code is run, the variable iSum ends with a

value of 8.The next example demonstrates how a variable may be

used as an argument:

<% Dim sngSum, sngLeft

sngLeft = 3.2

sngSum = sngLeft + 1.1

%>

In this case the result, as you may have guessed, is 4.3. The

value in sngLeft is added to 1.1 and stored into sngSum. sngLeft is

unaffected by the addition. Let's take a look at another tricky

example.

<% Dim iCount

iCount = 2

iCount = iCount + 1

%>

This case may seem strange to you at first. How can iCount

be equal to iCount plus 1? First, remember that the equals sign

175

refers to the assignment operator. Let's step through this line-by-

line. The first line, as you have seen before, is the declaration. The

variable iCount is created, with an empty value. The second line

assigns a value of 2 to iCount. In the third line, the 2 is retrieved

from iCount. Then 1 is added to that value, giving 3. 3 is then sent

to the assignment operator, which stores it in iCount. So, at the end

of this code, iCount holds a value of 3. The 2 formerly in iCount has

been overwritten. Notice that the 1 is added to iCount before the

assignment is carried out. Everything on the right side of an

assignment operator is executed before the assignment. Table 3.4

lists the order in which operations are carried out.

Table 3.4. Operator Precedence

Subtraction

Now that you know how to add, you may well wonder how to

subtract. Subtraction works much like addition, taking the form

argument - argument. Any combinations you might have used with

addition will again work for subtraction. One difference, however, is

that with subtraction the order of arguments is important. For

example, 3 – 5 is certainly much different from 5 - 3. In the following

176

code, can you tell what value iCount will have after the code is

finished?

<% Dim iCount

iCount = 3

iCount = iCount + 1

iCount = iCount – 2

%>

The answer you should come up with is 2. iCount begins as

3, adding 1 makes it 4, and subtracting 2 makes it 2.

Multiplication

Multiplication should be easy for you. The symbol for

multiplication is the asterisk (*). Multiplication follows the same form

as the other operations we have covered so far.Multiplication does

introduce a new complication, though. Think about the expression 3

* 5 + 2. What should this expression evaluate to? If you perform the

addition first, the result is 21. If you perform the multiplication first,

the result is 17. Which is correct? You should remember from math

class that multiplication is performed before addition, making the

correct answer 17. VBScript knows this, too. This understanding

that multiplication comes before addition is an example of

precedence. Precedence is a set of rules for the order in which

operations should be performed. Multiplication is said to have

higher precedence than addition. Table 3.4 offers a complete listing

of operator precedence in VBScript.

If you wanted to evaluate the addition first, there is a way.

Perhaps you remember from math class that whatever is in

parentheses is carried out first. VBScript works the same way.

Putting parentheses into the previous expression gives you 3 * (5 +

2), which evaluates to 21. Parentheses can be used with any

operation to force it to be evaluated in a certain order.

Division

VBScript has two different kinds of division. The first is the

kind you are probably most familiar with. Standard division is

represented with the slash (/). It takes two numerical values and

returns their floating-point quotient. For example, 5 / 2 returns 2.5,

and 4 / 5 returns 0.8. Some divisions will result in decimals that do

not terminate. In these cases, the best approximation the system

can store is used. For example, in the case of 1 / 3, the computer

cannot store an infinitely repeating decimal like 0.33333…. Also, be

177

careful to avoid division by zero. Dividing by zero, or a number so

close to zero that the computer thinks it is zero, results in an error.

Integer Division

Chances are, before you knew what decimals were, you

learned division like this: 5 divided by 3 is 1 with a remainder of 2.

Together, the integer division and modulus operators allow you to

do this kind of division in VBScript. The integer division operator,

represented with the backslash (\), returns the quotient. So, for

example

5 \ 3 returns 1

4 \ 2 returns 2

0\ 8 returns 0

1 \ 2 returns 0

Unlike most other programming languages, integer division

is even defined when the terms are floating-point numbers. When a

term in an integer division operator is a floating-point number, it is

rounded to the nearest integer and then integer division is applied.

For example 4 \ 2.2 returns 2 8.3 \ 2.6 returns 2

Modulus

Going along with integer division is the modulus operator.

Whereas integer division returns the quotient when the two

numbers are divided, modulus returns instead the remainder. For

example

5 Mod 3 returns 2

4 Mod 2 returns 0

0 Mod 8 returns 8

1 Mod 2 returns 1

4 Mod 2.2 returns 0

8.3 Mod 2.6 returns 2

The usefulness of these last two operators may not be

apparent right now, but, in truth, they are very powerful. Notice that

the Mod operator repeats.

0 Mod 3 returns 0

1 Mod 3 returns 1

2 Mod 3 returns 2

3 Mod 3 returns 0

4 Mod 3 returns 1

5 Mod 3 returns 2

178

and so forth. This can make the Mod operator useful when you

need something to behave in a cyclical manner. Mod can also help

you check whether one number divides evenly into another. If a

Mod b returns 0, b divides evenly into a.

Exponentiation

In VBScript, the exponentiation operator is represented by

the carat symbol (^). If you do not recall much about

exponentiation, a^b = a*a*a*a… *a (b times). For example

3^3 = 3*3*3 = 27

5^2 = 5*5 = 25

6^3 = 6*6*6 = 216

Also, note that exponentiation is executed from left to right.

This means that if you have an expression such as 2^3^2, the 2^3

is carried out first and then raised to the second power.

2^3^2 = 8^2 = 64

Negation

Negation is the operation that converts a positive number to

a negative number and vice versa. It is equivalent to multiplying by

-1. Negation is denoted using the same symbol, the dash (-), as

subtraction. The difference between negation and subtraction is

that subtraction—like addition, multiplication, and the other

operations discussed so far—is a binary operation. A

binaryoperation is one that takes two arguments. Negation, on the

other hand, is a unary operation. It takes only one argument. So the

dash means subtraction when it is between two numerical values

and negation when it is just in front of one. Listing 3.7 puts together

a few of the arithmetic operations covered so far. Take a good look

at it and make sure that you can follow what is happening.

Example 3.7. Putting the Arithmetic Operators Together

1: <%@ Language=VBScript %>

2: <% Option Explicit

3: Dim iTerm1, iTerm2, sngArithmetic, sngGeometric

4: %>

5: <HTML>

6: <BODY>

7: <%

8: iTerm1 = 5

9: iTerm2 = 16

179

10: Response.Write("We are computing the averages of ")

11: Response.Write(iTerm1)

12: Response.Write(" and ")

13: Response.Write(iTerm2)

14: %>

15:

16: <%

17: sngArithmetic = iTerm1 + iTerm2

18: sngArithmetic = sngArithmetic / 2

19: sngGeometric = (iTerm1 * iTerm2)^0.5

20: Response.Write("Their arithmetic mean is ")

21: Response.Write(sngArithmetic)

22: Response.Write(" and their geometric mean is ")

23: Response.Write(sngGeometric)

24: %>

25: </BODY>

26: </HTML>

Line 3 declares the variables this script will use. Line 8

initializes one of the variables with the number 5. Line 9 initializes

the other with 16. Lines 10 through 13 print a message that tells the

user what numbers are being used for the calculations. Lines 17

and 18 proceed to calculate the arithmetic mean of the two

numbers. The arithmetic mean is simply the standard average you

learned in school. Line 17 takes the two numbers, adds them

together, and stores the result in sngArithmetic. Then line 18

divides sngArithmetic by 2 and stores the result in sngArithmetic.

Notice that the slash is used, indicating that we are performing

floating-point division rather than integer division. sngArithmetic

now holds the average of the two numbers. Line 19 computes the

geometric mean. If you have not seen the geometric mean of two

numbers before, it is simply the square root of their products. To

calculate it, we first multiply the two numbers. Then, the result is

raised to the power 0.5. Raising a number to the power 0.5 is the

same as finding its square root. Notice the parentheses that are

used on line 19. They are necessary. Without them, the

exponentiation would be performed first, and then the multiplication.

Lines 20 through 23 print out some closing messages. The values

of sngArithmetic and sngGeometric are displayed.

You can see the output of this listing in Figure 3.5.

180

Figure 3.5. Operators may be put together to form more

complex expressions.

Concatenation

The arithmetic operations we have discussed have been

operations on numbers. Concatenation, though, is an operation

between two strings. The two strings are joined together, becoming

one string. Concatenation may be represented by either the plus

sign (+) or the ampersand (&), but the ampersand is preferred to

avoid confusion with addition. Look at a few examples:

"Hello" & "World" becomes "HelloWorld"

"Hello " & "World" becomes "Hello World"

"My name is " & "John Smith" becomes "My name is John

Smith"

Like the numerical operations, concatenation may be used

several times in one statement, as in the following:

"Welcome," & " John Smith, " & "to the wonderful world of strings"

Becomes "Welcome, John Smith, to the wonderful world of strings"

Listing 3.8 demonstrates how string concatenation can make life a

little easier. Instead of constantly using Response.Write as was

done in Listing 3.7, you can collect data, put it together with the

concatenation operator, and write it out together.

181

Example 3.8. Simplifying Things with String Concatenation

1: <%@ Language=VBScript %>

2: <% Option Explicit

3: Dim iTerm1, iTerm2, sngArithmetic, sngGeometric, strOut

4: %>

5: <HTML>

6: <BODY>

7: <%

8: iTerm1 = 5

9: iTerm2 = 16

10: strOut = "We are computing the averages of "& iTerm1 &_

11: " and " & iTerm2 & "
"

12: Response.Write(strOut)

13: sngArithmetic = iTerm1 + iTerm2

14: sngArithmetic = sngArithmetic / 2

15: sngGeometric = (iTerm1 * iTerm2)^0.5

16: strOut = "Their arithmetic mean is " & sngArithmetic &_

17: " and their geometric mean is " & sngGeometric

18: Response.Write(strOut)

19: %>

20: </BODY>

21: </HTML>

This listing does the same thing as Listing 3.7. The only

difference is that we were able to cut down on calls to

Response.Write by using the string concatenation operator. Lines

10 and 11 take all the output that was displayed on lines 10 through

13 of Listing 3.7, and concatenate them together. Then, line 12

needs only one Response.Write to send the entire message to the

output at once. Lines 13 through 15 perform the same

computations as before. Now, lines 16 and 17 concatenate the

output strings. Once again, strOut is used to hold the result. Then,

line 18 simply needs to write strOut to output.

Comparison Operators

The comparison operators make comparisons between two

arguments and evaluate to either True or False. The VBScript

comparison operators are equality (=), inequality (<>), less than (<),

greater than (>), less than or equal to (<=), and greater than or

equal to (>=). You probably worked with all these in math class, but

in case you are a bit unsure about them, Table 3.5 provides a little

review.

182

Table 3.5. Comparison Operators

Comparison operators can also be used to compare strings.

In this case, it compares them alphabetically. The string that comes

first alphabetically is treated like it is less than the one that comes

later. It treats uppercase letters like they come before lowercase

letters. So "Alligator" comes before "aardvark," which comes before

"alligator." This means that "Alligator" < "aardvark" would return

true, and "alligator" < "aardvark" would return false.

Logical Operators

The last set of operators allows you to join together and

manipulate Boolean expressions such as those in the "Comparison

Operators" section. They are And, Or, Not, the exclusive or (XOR),

equivalence (EQV), and implication (IMP). If you have had some

logic courses, you should find using these operators comes

naturally. All these, except NOT, take two Boolean values and

return a Boolean value. AND returns true when both of its

arguments are true. Table 3.6 describes when each logical operator

evaluates to True and to False.

183

Table 3.6. Logical Operators

Notice in that last case, we do not know based on the

information shown what the value of bolExpr is. However, because

it is an AND statement and we know the first part is false, the whole

statement is false regardless.

9.5 . WORKING WITH OBJECTS

A popular buzzword in programming is "object-oriented

programming." Today, you will get a high-level overview of objects,

including what they are and how they can help you in your

programming. Today, you will learn the following:

• What objects are

• Components of objects

• Actions that can be performed on objects

• Available ASP built-in objects

• What a collection is

What Are Objects?

Think about your car. You know that when you want to start

your car, you put the key into the ignition and turn it. You probably

have not thought too much about everything that happen when you

turn that key. You do, however, know the result you expect. Your

car executes a sequence of steps to get ready for your next

instruction.Imagine if you had to specify each step yourself. It would

be difficult to keep it straight. Youmight occasionally forget a step

and cause serious damage. Further, if you ever wanted todrive a

different car, you would have to learn a whole new set of

instructions.It is much easier to simply remember to put the key in

the ignition and turn it. This is aninstruction you can remember, and

184

you can apply to any car.This is the object-oriented way of thinking

about your car. You think about a couple of general things: the

things that describe your car and the things you can tell it to do. An

object is a reusable piece of software that contains related data and

functions that represent some reallife thing. Why would objects be

useful in the pages you write? Objects help increase the level of

abstraction in our pages. Say that you want to display a randomly

chosen banner. You could read in the list of banners to choose

from, run the random number generator, and write the code for the

 tag. You could do all these things every time you

wanted to display a banner. But wouldn't it be easier to write all that

into an object that represents arandom banner? From then on, you

would only need to write something like RandomBanner.Display to

display a banner. Then, if you wanted to change or add to your

banner displaying system, you would only need to change one

piece of code instead of many.And wouldn't it be even better to find

out that someone else had already written an object that would do it

all for you? Using functions helps to improve the simplicity and

readability of your code, and objects takes that to the next level.

Pages can then be built from objects rather than low-level

statements.

The Building Blocks of Objects

Like your car, programming objects are composed of the

things that describe them and the things that can be done with

them. The things that describe the object are called properties.The

things you can do with an object are called methods.

Properties

Properties describe an object. If you were treating your car like an

object, some of the properties might be

• Color

• Manufacturer

• Model

• What year it was made

These are things about your car that tend not to change.

This is not all you need to completely describe your car, though.

Probably even more important is describing the thingsthat change

often:

• Is it stopped or moving?

• How fast is it moving?

185

• Is it in forward or reverse?

• Are the headlights on?

All this information and more is needed to fully describe your

car. Examining your car at particular moment in time, we might be

able to describe it like this:

• Manufacturer: Ford

• Model: Explorer

• Year: 1995

• Color: Silver

• Speed: 55 mph

• Headlights: On

Figure 9.5.1. An object consists of properties and methods.

If you had an object to represent a random banner, you

might have properties to represent things such as the URL a user is

taken to when that banner is displayed, which would change for

different banners. You might also have properties to represent the

height and width of the image, which would probably be the same

for all your banners.In programming, properties work pretty much

the same as variables. You access properties of an object in the

following way:

ObjectVariableName.Property

So if you had an object variable called objLesson, with a property

called Name, you would set a value for the property Name like this:

<% objLesson.Name = "Joe" %>

And you would write the value of Name like this:

<% Response.Write(objLesson.Name) %>

186

Some properties are hidden. Just like you do not know all of

Ford's trade secrets for making your car, you will not know

everything that goes into building most of the objects you will

use.Some properties may be hidden from you, just as parts inside

your car are hidden from you.That does not matter, though. As long

as you follow the documentation, you do not need to see

everything.

Methods

Methods are the things you can do with an object. A few of

your car's methods might be:

• Accelerate

• Brake

• Change gears

• Turn on headlights

• Check speed

You may notice that the method "Change gears" is, by itself,

pretty meaningless. Change to which gear? That method requires

more information. It receives that information based on how you

move the shift stick. Accelerate needs more information and gets it

based on howyou press the pedal.

Methods associated with programming objects may also

need information. They receive it in much the same way as the

functions and subroutines we have discussed during the last two

days did. Functions and subroutines receive arguments. So, too, do

methods. Methods, like functions, may have zero, one, or more

arguments. Methods often affect the values of properties. For

example, when you use "accelerate," the value of the property

"speed" should change. Methods are also often used to retrieve the

values of properties. You might want to know what your current

speed is. To find out, you would look at the speedometer.

"Displaying the speed on the speedometer" is another example of a

method. Unlike "accelerate," it does not change the speed. It

merely tells you what the speed is.

Figure 9.2 shows what some of the methods of a car would be. You

can see that some methods, such as "Accelerate" change

properties of the car. Other methods, such as "checkspeed" give

you information about the properties of the car.

187

Figure 9.5.2.2. Methods are often used to set and retrieve

property values.

Methods can also tell you the value of properties. They do

this by returning values, the same way functions return values.

Methods are accessed like this:

ObjectVariableName.Method

Most methods behave just like the functions and subroutines

discussed in the last two days. If you had a method called Go in

objLesson and it returned a value, you could store the value in a

variable like this:

MyVariable = objLesson.Go

or write it to the browser like this:

Response.Write(objLesson.Go)

If another method called Compute took a numerical

argument, you would write the result to the screen like this:

Response.Write(objLesson.Compute(4.5))

or

Response.Write(objLesson.Compute(sngMyNumber))

So again, there is not much difference between an object's method

and a function.

Like properties, methods may be hidden.

Instances of Objects

One important thing to understand is the difference between

an instance of an object and the object itself. In the car analogy, the

object is "car." Your specific car would be one instance of "car."

Your neighbor's car would be another instance of "car." The

properties of "car" would be manufacturer, model, year, and so on.

All instances of "car" have some value for each of these things, but

they may be different values. Your car is a Ford, and your

neighbor's is a Chevrolet. Both have the property "Manufacturer,"

but they each have different values for that property. Figure 9.5.3

illustrates how two separate instances can have different values for

the properties.

188

Figure 9.5.3. Two instances of the same object have the same

properties but different

values.

Built-in ASP Objects

You may not realize it, but you have already been using an

ASP object. During the last few days, you have been using

Response.Write without really knowing what it is. Response is one

of the six objects built-in to ASP.

1. Response Object

Response is used to send output. The Write method sends

output to the user's Web browser. Response can also control how

and when data is sent and write cookies to store information

2. Request Object

Request is used to retrieve data from the client. When the

client's Web browser makes a request for a particular page, it

sends some information along to the server. That data is packaged

together in the Request object. Some of it may be useful to the

requested page; some of it may not be. Request allows the page to

retrieve what it needs—cookie information, information from a form,

query string data, and more. Query string data is the extra stuff

sometimes attached at the end of a URL. It might look like

"?firstname=John&lastname=Smith". You have probably seen

query string data before, but may not know much about it.

3. Application Object

Application is used to share information among several

clients visiting the same group of pages. In ASP, the term

application refers to all the .asp pages in a directory and its

189

subdirectories. Only one instance of the Application object is

created per application. It is shared among all the clients accessing

that application

4. Session Object

A session, on the other hand, refers to a single client

accessing an application. Therefore, a new instance of the Session

object is created for each session. Session is important to carrying

information as a client travels between pages because Session

variables persist for the entire session.

5. Server Object

The Server object provides a few basic properties and

methods. Probably the most important of these is the CreateObject

method. CreateObject is used to create an instance of a server

component. Components are packages of related objects that you

can use in your pages. They make common ASP tasks easier, and

add a great deal of power to your pages. CreateObject is used in

conjunction with the Set statement like this:

<% Set objInstance = Server.CreateObject("Class.Component") %>

You will see CreateObject more throughout this book. The property

ScriptTimeout can be used to specify the length of time the script

may be allowed to execute before an error occurs.

<% Server.ScriptTimeout = 90 %>

This specifies that if the script is still executing after 90

seconds, it should give up and produce an error message.

HTMLEncode and URLEncode are two methods that apply

encoding to a string. HTMLEncode goes through the string and

replaces the character "<" with "<" and ">" with ">". This

causes the Web browser to display the text literally rather than

interpret it as HTML tags. For example,

<%=Server.HTMLEncode("<P align=right>")%> returns the string

"<P align=right>", which the Web browser displays as <P

align=right> rather than applying the tag. This is useful if you need

to display HTML source code on your page. URLEncode applies

URL encoding. Often, you may want to pass data to another page

as part of the URL. This is done through the query string. Certain

characters, such as the ampersand (&) have special meanings to

the query string and can cause problems if you try to use them in

your data. URLEncode can help encode that data so it can be

190

safely passed as part of the query string. The MapPath method

converts a virtual path into a physical path. So, if your script is in

C:\mypage\www\, Server.MapPath("scripts/test.asp") would return

C:\mypage\www\scripts\test.asp. Various objects, such as the

FileSystemObject, may require physical paths rather than virtual

paths.

6. ObjectContext Object

The ObjectContext object is used to link ASP and the Microsoft

Transaction Server. MTS is used to make web sites more scalable

and improve the performance of other components.

7. ASPError Object

The ASPError object is new to ASP. It allows you to obtain

information about script errors in your pages. It will not be covered

further in this book.

Collections

Sometimes, values need to be grouped together. For

example, a query string may contain any number of names and

values. In these cases, a collection is used to store the data. A

collection is a set of name/value pairs. The query string

"?firstname=John&lastname=Smith" contains two name/value

pairs. The first pair has the name "firstname" and the value "John".

The second has the name "lastname" and the value "Smith". When

this data is stored in the Request object, it is stored in QueryString,

which is a collection. Suppose that you have an object instance

named Texas that contains a collection namedCities. Further

suppose that one of the pairs in namedCities has the name

"Capital". The value that corresponds to "Capital" could be found

using the Item method, like this:

Texas.Cities.Item("Capital")

This retrieves the value that corresponds to the name "Capital". To

print out each name/value pair in Cities, you would use the For

Each…Next statement as follows:

For Each varItem in Texas.Cities

Response.Write(varItem & " = " & Texas.Cities.Item(varItem) &

"
")

Next

Item is the default method for collections, so Texas.Cities("Capital")

is equivalent to Texas.Cities.Item("Capital").

191

You can also access a value in a collection using an index

number. Index numbers in collections work about like index

numbers for arrays. For example, Texas.Cities(2) would refer to

one element of the collection, and Texas.Cities(3) would be

another. However, this is usually not useful because a pair's index

number might change. For example, Texas.Cities("LargestCity")

might have index number 5 at one point and index number 4 later.

So, depending on where it is in your code, Texas.Cities(5) might or

might not be the same as Texas.Cities("LargestCity").

Be careful about using the index number. However, if all you need

to do is iterate through the

pairs, the index number works fine:

For iCount = 1 to 5

Response.Write(iCount & "th value = ")

Response.Write(Texas.Cities(iCount) & "
")

Next

You may recall that array index numbers start at zero. For

collections, index numbers start at one. This code will work if there

are five pairs in Cities. If you do not know how many pairs there

are, use the Count property.

For iCount = 1 to Bob.Frank.Count

Response.Write(iCount & "th value = ")

Response.Write(Bob.Frank(iCount) & "
")

Next

Example 9.1. Using Collections

1: <%@ Language=VBScript %>

2: <% Option Explicit %>

3: <HTML>

4: <BODY>

5: <%

6: Dim varItem

7: For Each varItem in Request.QueryString

8: Response.Write(varItem & " = ")

9: Response.Write(Request.QueryString(varItem) & "
")

10: Next

11: %>

12: </BODY>

13: </HTML>

192

This listing uses For Each (line 7) to iterate through all the

name/value pairs in the QueryString collection. For each one, the

name (line 8) and the value (line 9) is printed. Try viewing this script

in your browser, passing in some values on the QueryString. For

example, you might call it like this:

listing0601.asp?firstname=Jim&lastname=Smith&age=23&day=Tue

sday

This passes in four name/value pairs. firstname has value

"Jim", lastname has value "Smith", age has value "23", and day has

value "Tuesday". Figure 6.4 shows the results of passing these into

listing9.1.

Looping through a collection (QueryString).



193

10

INTRODUCTION TO ASP

Unit Structure

10.1 Request, Response Object collections
10.2 ASP Applications

10.2.1 Creating Active Server Page Application
10.2.2 Session Object
10.2.3 Session Collections
10.2.4 Content Collection
10.2.5 Response Object Model

10.1 WORKING WITH OBJECTS

 Now, we will write some code to demonstrate how objects are

used.

 The most powerful objects you will use generally are either the

built-in ASP objects or separate ASP components.

 It is possible to create simple objects within your VBScript code.

 We will do this using the VBScript Class statement.

 Listing 10.2 shows a simple class.

Example : Simple Object with No Methods

<%

Class Car

public Color

public CurrentSpeed

public HeadlightsOn

End Class

%>

194

 Above creates an object called Car, which contains three

properties and no methods.

 Its three properties are Color, CurrentSpeed, and HeadlightsOn.

 The keyword public specifies that all three of them can be

accessed from outside the class.

 Notice that we have not yet created any instances of Car.

 Creating an instance of an object is called instantiation.

 In ASP, creating an instance of an object is a two-step process.

 First, declare a variable normally, using Dim.

 Normal variable naming requirements apply, and it's a good

idea to begin the name with obj to indicate what it is.

 Second, use the Set statement to make your variable an

instance of the appropriate object.

Set variablename = objectexpression

 objectexpression is either the name of an object, another

instance of the same object type, or the keyword New followed

by a class name.

 Because we are using a class name, we will use the last form.

So, if you want to create an instance of Car called objMyCar,

you would do this:

Dim objMyCar

Set objMyCar = New Car

 This creates a single instance of Car. You could now set the

Color property of objMyCar like this:

objMyCar.Color = "Blue"

It would not, however, make any sense to write a statement like

Car.Color = "Blue"

The class Car defines what cars will look like and what guidelines

they follow. It does not actually create any cars.

If you wanted a second instance of Car called objJoesCar, and set

its color as "Black", you would do it like this:

Dim objJoesCar

Set objJoesCar = New Car

objJoesCar.Color = "Black"

objMyCar would still have a value of "Blue".

195

 Changing the value of a property of one instance of Car does

not affect the value of that property in any other instance of Car.

The fact that Joe's car is black does not change the color of

your car. Let's expand Car a bit. So far, to change the value of a

property, we have been doing it directly, as in objMyCar.Color =

"Silver"

 However, this is not always the best way to change the value of

a property. Often, objects have properties that should not be

changed, should only be changed in special circumstances, or

require some other kind of special attention. Rather than leaving

it to the user to understand those special circumstances,

properties can be changed through methods included in the

object.

 We can add such methods to Car, as shown in Example

Example: Simple Object with Methods

<%

Class Car

public Model

public CurrentSpeed

public HeadlightsOn

public Sub Accelerate(PercentAccel)

CurrentSpeed = CurrentSpeed * (1 + PercentAccel * 0.01)

End Sub

End Class

%>

This adds a method called Accelerate that increases CurrentSpeed

by the percentage specified by PercentAccel.

Now there are two ways to change the current speed. The first is

the direct approach:

objMyCar.CurrentSpeed = 26

The second way uses the new method:

objMyCar.Accelerate(50)

Either way, save the file as CarDefinition.asp.

196

Example: Car Object's Definition

1: <%

2: Class Car

3: private internal_color

4: private internal_speed

5: private internal_headlights

6: private Sub Class_Initialize()

7: internal_speed = 0

8: internal_color = "WHITE"

9: internal_headlights = FALSE

10: End Sub

11: public Property Get CurrentSpeed

12: CurrentSpeed = internal_speed

13: End Property

14: public Property Let CurrentSpeed(ByVal iSpeedIn)

15: internal_speed = iSpeedIn

16: End Property

17: public Property Get Color

18: Color = internal_color

19: End Property

20: public Property Let Color(ByVal strColorIn)

21: internal_color = Ucase(strColorIn)

22: End Property

23: public Sub TurnHeadlightsOn

24: internal_headlights = True

25: End Sub

26: public Sub TurnHeadlightsOff

27: internal_headlights = False

28: End Sub

29: public Function CheckHeadlights

30: if internal_headlights then

31: CheckHeadlights = "ON"

32: else

33: CheckHeadlights = "OFF"

34: end if

35: End Function

197

36: public Sub Accelerate(PercentAccel)

37: Dim sngMultiplier

38: sngMultiplier = (1 + PercentAccel * 0.01)

39: internal_speed = internal_speed * sngMultiplier

40: End Sub

41: End Class

42: %>

Above example defines the car object.

(Explanation of above example)

As mentioned before, you do not need to worry too much

about how this listing works, but here is a quick look at it. Basically,

the Class statement on line 2 tells VBScript what we are defining.

Lines 3 through 5 define three properties. The private keyword is

used with each, so they are only accessible within the object. If you

want to modify them, you have to go through special methods.

Lines 6 through 10 define a method. It is also private. When you

create a new instance of the car object, this method will run. It

initializes the values of the three private properties. This will be

discussed more in the section "Events". Lines 11 through 13 and 14

through 16 define two related methods. These two methods,

together, allow us to pretend we have a property called

CurrentSpeed. Lines 11 through 13 set how we can read the value

of CurrentSpeed using the Property Get statement. Lines 14

through 16 set how we can assign the value of the property. With

these two methods together, we can treat CurrentSpeed as if it

were a normal property of the object. Lines 17 through 22 define a

similar "property" called Color. You can use Property Get and

Property Let to control how values are given to your data. If you

only want to allow certain values, you can control this. Line 21

converts the user's data into upper case before saving it, for

example.

Lines 23 through 25 and 26 through 28 create two more

traditional methods, for turning the headlights on or off. Lines 29

through 35 create a method that checks the headlights and returns

"ON" or "OFF". Lines 36 through 40 create one more method,

which increases the speed by a specified percentage. This is

probably all a bit confusing for you. That is okay; writing objects and

components is a pretty advanced topic. For now, what you should

know is that we have a Car object. For all our purposes, it has two

198

properties, CurrentSpeed and Color. It has two methods for

controlling the headlights, TurnHeadlightsOn and Turn Headlights

Off, and one for finding out the current status of the headlights,

called CheckHeadlights. Finally, there is an Accelerate method.

Then type in Listing 10.5 and call it UsingCar.asp.

If you want to find out more about VBScript's class

statement, you can read about it on the Web:

http://www.4guysfromrolla.com/webtech/092399-1.shtml

Example 10.5. More Complex Object with Methods

1: <%@ Language=VBScript %>

2: <% Option Explicit %>

3: <HTML>

4: <BODY>

5: <!--#include file="CarDefinition.asp"-->

6: <%

7: Dim objMyCar

8: Set objMyCar = New Car

9: Response.Write("The car is " & objMyCar.Color)

10: Response.Write("
")

11: Response.Write("The headlights are ")

12: Response.Write(objMyCar.CheckHeadlights)

13: Response.Write("
")

14: objMyCar.CurrentSpeed = 44

15: Response.Write("My car is currently travelling at ")

16: Response.Write(objMyCar.CurrentSpeed & ".")

17: Response.Write("
")

18: objMyCar.Accelerate(25)

19: Response.Write("My car is currently travelling at ")

20: Response.Write(objMyCar.CurrentSpeed & ".")

21: Response.Write("
")

22: objMyCar.TurnHeadlightsOn

23: Response.Write("The headlights are ")

24: Response.Write(objMyCar.CheckHeadlights)

25: objMyCar.Color = "blue"

26: Response.Write("
")

27: Response.Write("The car is " & objMyCar.Color)

28: Set objMyCar = Nothing

29: %>

30: </BODY>

31: </HTML>

199

Line 5 of Listing 10.5 is a server-side include. Server-side

includes will be discussed more in Day 13. For now, all you need to

know is that the server will insert CarDefinition.asp into

UsingCar.asp. This breaks up our script to keep it from getting too

long and difficult to follow.

Rather than worrying about how CarDefinition.asp works at

the moment, let's look at what it can do. You still declare an

instance of car like before, as you can see in lines 7 and 8 of

Listing 10.5.

Now if you want to set CurrentSpeed, you may do so

directly, as before. This is done in line 14. You can also affect the

current speed using Accelerate, as in line 18. You write the current

speed to the screen the same way, too, as in lines 16 and 20. If you

want to turn on the headlights, use objMyCar.TurnHeadlightsOn, as

in line 22. To turn them off, use objMyCar.TurnHeadlightsOff. To

find out whether they are on or off, use objMyCar.CheckHeadlights,

as in lines 12 and 24. Line 25 shows how to set the color property

of the car. Finding out what color the car is works like you would

expect, too, as in line 27. Notice, though, that no matter how you

typed "blue", it is stored all in capital letters.

Normally, if you typed something like

variablename = "blue"

you would expect it to be stored exactly as you typed it. That

is not the case here because objMyCar.Color is not really a

variable. The data is being stored in a property that is hidden from

you. Color acts as sort of an interface between you and the data

hidden in this object. For some reason, when this object was

written, it was decided not to allow lowercase letters in that

particular value. Why? It does not matter. Whatever the reason, the

writer chose not to make you remember this rule. Instead, he built

barriers into the object. This is not to restrict your freedom. It is to

help you, so that you do not have to know anything about

theinterior working of this object. In fact, when you set

CurrentSpeed, the same thing happened. It appeared that

CurrentSpeed was a simple property of Car, as in the earlier

versions. In truth, though, CurrentSpeed is now another interface

between you and the hidden data. Does CurrentSpeed do anything

special to protect the data? In this case, no, but it does not matter.

Again, the important thing is to know how to use the object, not

200

what is going on "behind the scenes" of the object. Figure 10.5

shows the results of viewing Listing 10.5. Compare the output with

the code to make sure you understand how to set and change

properties, and call methods.

Figure10 .5. Using the Car object.

In this version of Car, we have three hidden properties:

internal_color, internal_speed, and internal_headlights. They are

hidden because the keyword private is used instead of public. Try

changing line 14 of Listing 10.5 to objMyCar.internal_speed = 44

This gives you an error message. Because of the keyword

private, you cannot modify internal_speed directly. In fact, you

cannot retrieve internal_speed directly either. Try changing line 16

to Response.Write(objMyCar.internal_speed & ".")

The only way to access the properties of Car is to go through

the methods Accelerate, TurnHeadlightsOn, TurnHeadlightsOff,

and CheckHeadlights, or the special subroutines CurrentSpeed and

Color. The special subroutines are created using Property Let and

Property Get.

In line 23 of Listing 10.5, Set is used again. This time, it frees up

the memory used by the objMyCar instance of Car. Following line

201

28, objMyCar is back to being an empty variable. Doing this frees

up memory the system may need. A general guideline to follow is,

"instantiate late, free early." You should wait as late in your code as

possible before you use the first Set statement to create an

instance. You should also free the memory as soon as possible. As

soon as you know you are finished using an object, Set it to

Nothing.Although memory is getting cheaper, a Web server may

deal with thousands of visitors. It does not hurt to minimize memory

use in your pages!

B. Events

 A third part of the object is the capability of the object to alert

you that something has happened.

 If you have a fairly new car, it may beep at you to bring your

attention to a problem: if your door is not closed, if your seat belt

is not buckled, and so on. Some programming objects do

something similar.

 Now if your car wants to warn you about something, it could

just light up a warning on your dashboard.

 Then it is up to the driver to check the dashboard and notice

the problem.

 This is fine, if it is not something too urgent.

 If it is urgent, though, it is important to get the driver's attention

immediately. This is why the car beeps. This is also why we

need events.

 Events are what objects use to let the user know that

something important just happened. Some possible events your

car might generate include "Driver not buckled in", or "Engine

overheating". If you have a car alarm, "Person touching car"

might be another.

 Unlike methods and properties, events are different from

anything we have discussed before.

 When an event is generated, special code called an event

handler can be executed.

 For example, with the event "Engine Overheating" your car

would automatically start taking actions to try to cool it down.

Generating events of your own is difficult and will not be

discussed in this book. Writing event handlers to deal with

existing events is not too difficult, though.

 Two commonly handled events are Initialize and Terminate.

Initialize is the event generated when an instance of the object

is created.

202

 Terminate is the event generated when an instance of the

object is destroyed (set to Nothing). If you will recall Listing 6.4,

lines 6 through 10 created a private method called

Class_Initialize. This name designates the method as an event

handler for the Initialize event. When an instance of Car is

created, Class_Initialize is called.

 Below figure adds events to complete our picture of what an

object is.

Figure: . Events send out alerts that something important has

happened.

 For example, in Example: Car Object's Definition, (snap shot

of above example)

6: private Sub Class_Initialize()

7: internal_speed = 0

8: internal_color = "WHITE"

9: internal_headlights = FALSE

10: End Sub

create an event handler for the Initialize event of the Car object.

 It sets the car's color to white, the speed to 0, and the headlights

to off before you do anything with it.

 These become the default values for the properties of Car.

10.1.1 Response Object

The Response object is used to send output to the client

from the web server. The syntax, collections, properties and

methods of the ASP Response object are as follows:

203

Syntax:

Response.collection|property|method

A.1 Collections

Collectio

ns

Description

Cookies i. The Cookies collection sets the value of a

cookie.

ii. If you attempt to set the value of a cookie that

does not exist, it is created.

iii. If it already exists, the new value you set

overwrites the old value already written to the

client machine.

Response.Cookies(name)[(key)|.attribute]=value

variablename=Request.Cookies(name)[(key)|.attribute

]

Examples

 The "Response.Cookies" command is used to

create a cookie or to set a cookie value:

204

<%

Response.Cookies("firstname")="Alex"

%>

 In the code above, we have created a cookie

named "firstname" and assigned the value

"Alex" to it.

 It is also possible to assign some attributes to a

cookie, like setting a date when a cookie

should expire:

<%

Response.Cookies("firstname")="Alex"

Response.Cookies("firstname").Expires=#May

10,2002#

%>

 Now the cookie named "firstname" has the

value of "Alex", and it will expire from the user's

computer at May 10, 2002.

 The "Request.Cookies" command is used to

get a cookie value.

 In the example below, we retrieve the value of

the cookie "firstname" and display it on a page:

<%

fname=Request.Cookies("firstname")

response.write("Firstname=" & fname)

%>

Output:

Firstname=Alex

 A cookie can also contain a collection of

multiple values.

 We say that the cookie has Keys.

 In the example below, we will create a cookie-

collection named "user".

 The "user" cookie has Keys that contains

information about a user:

205

<%

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

 The code below reads all the cookies your

server has sent to a user.

 Note that the code checks if a cookie has Keys

with the HasKeys property:

<html>

<body>

<%

dim x,y

for each x in Request.Cookies

response.write("<p>")

if Request.Cookies(x).HasKeys then

for each y in Request.Cookies(x)

response.write(x & ":" & y & "=" &

Request.Cookies(x)(y))

response.write("<br /")

next

else

Response.Write(x & "=" & Request.Cookies(x) &

"
")

end if

response.write "</p>"

next

%>

</body>

</html>

%>

Output:

firstname=Alex

user:firstname=John

user:lastname=Smith

user:

country=Norway

user:

age=25

206

10.1.1.2 Properties

Properties Description

Buffer i. The Buffer property determines whether
to buffer page output or not.

ii. If set to True, then output from the page
is not sent to the client until the script on
that page has been processed, or until
the Response object Flush or End
methods are called.

iii. Note: If this property is set, it should be
before the <html> tag in the .asp file

Syntax

response.Buffer[=flag]

Parameter Description

flag A boolean value that specifies
whether to buffer the page
output or not.

False indicates no buffering.
The server will send the
output as it is processed.
False is default for IIS version
4.0 (and earlier). Default for
IIS version 5.0 (and later) is
true.

True indicates buffering. The
server will not send output
until all of the scripts on the
page have been processed,
or until the Flush or End
method has been called.

Examples

Example 1
 In this example, there will be no output

sent to the browser before the loop is
finished.

 If buffer was set to False, then it would
write a line to the browser every time it
went through the loop.

207

<%response.Buffer=true%>
<html>
<body>
<%
for i=1 to 100

response.write(i & "
")
next
%>
</body>
</html>

Example 2
<%response.Buffer=true%>
<html>
<body>
<p>I write some text, but I will control when
the text will be sent to the browser.</p>
<p>The text is not sent yet. I hold it
back!</p>
<p>OK, let it go!</p>
<%response.Flush%>
</body>
</html>

Example 3
<%response.Buffer=true%>
<html>
<body>
<p>This is some text I want to send to the
user.</p>
<p>No, I changed my mind. I want to clear
the text.</p>
<%response.Clear%>
</body>
</html>

CacheControl i. The CacheControl property determines
whether proxy servers are able to
cache the output generated by ASP or
not.

ii. If your page’s content is large and
doesn’t change often, you might want
to allow proxy servers to cache the
page.

iii. In this case set this property to Public.
iv. Otherwise set it to Private.

208

Syntax

response.CacheControl[=control_header]

Parameter Description

control_

header

i. A cache control header
that can be set to "Public"
or "Private".

ii. Private is default and
indicates that only private
caches may cache this
page. Proxy servers will
not cache pages with this
setting.

iii. Public indicates public
caches.

iv. Proxy servers will cache
pages with this setting.

Examples
<%response.CacheControl="Public"%>
or
<%response.CacheControl="Private"%>

Charset i. The Charset property appends the name
of the character set to the Content-Type
header in the Response object.Default
character set is ISO-LATIN-1.

Note: This property will accept any string,
regardless of whether it is a valid character
set or not, for the name.

Syntax
response.Charset(charsetname)

Parameter Description

charsetname A string that specifies
a character set for
the page

Examples
If an ASP page has no Charset property set,
the content-type header would be:
content-type:text/html

209

If we included the Charset property:
<%response.Charset="ISO-8859-1"%>

the content-type header would be:
content-type:text/html; charset=ISO-8859-1

ContentType The ContentType property specifies the HTTP
content type for the response. If not specified,
the default is "text/html".

Syntax
response.ContentType[=contenttype]

response.ContentType[=contenttype]

Paramet
er

Description

contentt
ype

A string describing the content
type.

For a full list of content types, see
your browser documentation or the
HTTP specification.

Examples
If an ASP page has no ContentType property
set, the default content-type header would be:
content-type:text/html

Some other common ContentType values:
<%response.ContentType="text/HTML"%>
<%response.ContentType="image/GIF"%>
<%response.ContentType="image/JPEG"%>
<%response.ContentType="text/plain"%>
<%response.ContentType="image/JPEG"%>

This example will open an Excel spreadsheet
in a browser (if the user has Excel installed):
<%response.ContentType="application/vnd.ms
-excel"%>
<html>
<body>
<table>
<tr>
<td>1</td>

210

<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</table>
</body>
</html>

Expires i. The Expires property specifies the length
of time (in minutes) that the client machine
will cache the current page.

ii. If the user returns to the page before it
expires, the cached version will be
displayed.

Syntax

response.Expires[=number]

Parameter Description

number The time in minutes before the
page expires

Examples

Example 1
The following code indicates that the page will
never be cached:
<%response.Expires=-1%>

Example 2
The following code indicates that the page will
expire after 1440 minutes (24 hours):
<%response.Expires=1440%>

ExpiresAbsolute i. The ExpiresAbsolute property specifies a
date and time on which a page cached on
a browser will expire.

211

ii. If the user returns to the same page
before that date and time, the user will
view the cached version of the page.

iii. If no time is specified, the page expires at
midnight on the date specified.

iv. If a date is not specified, the page expires
at the given time on the day that the script
is run.

Syntax

response.ExpiresAbsolute[=[date][time]]

Parameter Description

date Specifies the date on which
the page will expire.

If this parameter is not
specified, the page will expire
at the specified time on the
day that the script is run.

time Specifies the time at which the
page will expire.

If this parameter is not
specified, the page will expire
at midnight of the specified
day.

Examples
The following code indicates that the page will
expire at 4:00 PM on October 11, 2009:
<%response.ExpiresAbsolute=#October
11,2009 16:00:00#%>

Is Client

Connected

i. The IsClientConnected property is a read-
only property that indicates if the client
has disconnected from the web server
since the last use of the Response
object’s Write method.

Syntax
response.IsClientConnected

212

Examples
<%
If response.IsClientConnected=true then

response.write("The user is still connected!")
else

response.write("The user is not connected!")
end if
%>

Pics The PICS (Platform for Internet Content
Selection) property adds a value to the pics-
label field of the response header.

The PICS property appends a value to the
PICS label response header.

Note: This property will accept any string
value, regardless of whether it is a valid PICS
label or not.

What is PICS?
The PICS (Platform for Internet Content
Selection) rating system is used to rate the
content in a web site. It looks something like
this:
PICS-1.1 "http://www.rsac.org/ratingsv01.html"
by "your@name.com" for
"http://www.somesite.com" on
"2002.10.05T02:15-0800" r (n 0 s 0 v 0 l 0)

Part Description

PICS-1.1 PICS version
number

"http://www.rsac.org/
ratingsv01.html"

Rating
organization

by "your@name.com" Author of the label

for
"http://www.somesite.

com"

The URL or the
document that has
been rated

on "2002.10.05T02:
15-0800"

Expiration date

r (n 0 s 0 v 0 l 0) Rating

213

One of the most popular rating system is
RSACi (Recreational Software Advisory
Council on the Internet). RSACi rating system
uses four categories: violence, nudity, sex, and
language. A number between 0 to 4 is
assigned to each category. 0 means that the
page does not contain any potentially offensive
content and 4 means that the page contains
the highest levels of potentially offensive
content.

Level Violence
Rating

Nudity
Rating

Sex Rating Language
Rating

0 None of the
below or
sports
related

None of the
below

None of the
below or
innocent
kissing;
romance

None of the
below

1 Injury to
human
being

Revealing
attire

Passionate
kissing

Mild
expletives

2 Destruction
of realistic
objects

Partial
nudity

Clothed
sexual
touching

Moderate
expletives
or profanity

3 Aggressive
violence or
death to
humans

Frontal
nudity

Non-explicit
sexual acts

Strong
language
or hate
speech

4 Rape or
wanton,
gratuitous
violence

Frontal
nudity
(qualifying
as
provocative
display)

Explicit
sexual acts
or sex
crimes

Crude,
vulgar
language
or extreme
hate
speech

There are two ways you can obtain rating for
your site. You can either rate your site yourself
or use a rating provider, like RSACi. They'll ask
you fill out some questions. After filling out the
questions, you will get the rating label for your
site.

Microsoft IE 3.0 and above and Netscape 4.5
and above support the content ratings. You
can set the ratings in IE 5, by selecting Tools
and Internet Options. Select the Content tab
and click the Enable. When the rating exceeds
the defined levels the Content Advisor will
block the site. You can set the ratings in
Netscape 4.7, by selecting Help and
NetWatch.

214

We can use the META tag or the
response.PICS property to add a rating to our
site.

Syntax
response.PICS(picslabel)

Parameter Description

picslabel A properly formatted PICS
label

Examples
For an ASP file that includes:

Note: Because PICS labels contain quotes,
you must replace quotes with " & chr(34) & ".

<%
response.PICS("(PICS-1.1
<http://www.rsac.org/ratingv01.html>
by " & chr(34) & "your@name.com" & chr(34)
&
" for " & chr(34) & "http://www.somesite.com" &
chr(34) &
" on " & chr(34) & "2002.10.05T02:15-0800" &
chr(34) &
" r (n 2 s 0 v 1 l 2))")
%>

the following header is added:
PICS-label:(PICS-1.1
<http://www.rsac.org/ratingv01.html>
by "your@name.com"
for "http://www.somesite.com"
on "2002.10.05T02:15-0800"
r (n 2 s 0 v 1 l 2))

Status The Status property specifies the value of the
status line that is returned to the client machine
from the web server.

Tip: Use this property to modify the status line
returned by the server.

215

Syntax

response.Status=statusdescription

Parameter Description

statusdescription A three-digit number and
a description of that code,
like 404 Not Found.
Note: Status values are
defined in the HTTP
specification.

Examples

<%
ip=request.ServerVariables("REMOTE_ADDR"
)
if ip<>"194.248.333.500" then

response.Status="401 Unauthorized"
response.Write(response.Status)
response.End

end if
%>

10.1.1.3 Methods

Methods Description

AddHeader i. The AddHeader method allows you to add

your own HTTP header with a specified value.

ii. If you add an HTTP header with the same

name as a previously added header, the

second header will be sent in addition to the

first; adding the second header does not

overwrite the value of the first header with the

same name.

iii. Also, once the header has been added to the

HTTP response, it cannot be removed.

Note: Once a header has been added, it cannot

be removed.

Note: In IIS 4.0 you have to call this method

before any output is sent to the browser. In IIS

216

5.0 you can call the AddHeader method at any

point in the script, as long as it precedes any calls

to the response.Flush method.

Syntax

response.AddHeader name,value

Parameter Description

name Required. The name of the new

header variable (cannot contain

underscores)

value Required. The initial value of the

new header variable

Examples

<%Response.AddHeader "WARNING","Error

message text"%>

AppendToLog i. The AppendToLog method adds a string to the

end of the Web server log entry for the current

page request.

ii. You can only add up to 80 characters at a

time, but you can call this method multiple

times.

Syntax

response.AppendToLog string

Parameter Description

string Required. The text to append to

the log file (cannot contain any

comma characters)

Examples

<%Response.AppendToLog "My log

message"%>

BinaryWrite The BinaryWrite method writes information

directly to the output without any character

217

conversion.

Syntax

response.BinaryWrite data

Parameter Description

data Required. The binary information

to be sent

Example

If you have an object that generates an array of

bytes, you can use BinaryWrite to send the bytes

to an application:

<% Set

objBinaryGen=Server.CreateObject("MyCompon

ents.BinaryGenerator")

pic=objBinaryGen.MakePicture

response.BinaryWrite pic %>

Clear i. The Clear method erases any buffered HTML

output. It does so without sending any of the

buffered response to the client.

ii. Calling Clear will cause an error if Buffer

property of the Response object is not set to

True.

Note: This method does not clear the response

headers, only the response body.

Note: If response.Buffer is false, this method will

cause a run-time error.

Syntax

response.Clear

Examples

<%

response.Buffer=true

%>

<html>

218

<body>

<p>This is some text I want to send to the

user.</p>

<p>No, I changed my mind. I want to clear the

text.</p>

<%

response.Clear

%>

</body>

</html>

Output:

(nothing)

End i. The End method stops the processing of the

script in the current page and sends the

already created content to the client.

ii. Any code present after the call to the End

method is not processed.

Note: This method will flush the buffer if

Response.Buffer has been set to true. If you do

not want to return any output to the user, you

should call Response.Clear first.

Syntax

Response.End

Examples

<html>

<body>

<p>I am writing some text. This text will never be

<%

Response.End

%>

finished! It's too late to write more!</p>

</body>

</html>

Output:

I am writing some text. This text will never be

219

Flush i. The Flush method sends buffered output to the

client immediately.

ii. Flush will cause a run-time error if Buffer

property of the Response object is not set to

True.

Note: If response.Buffer is false, this method will

cause a run-time error.

Syntax

Response.Flush

Example

<%

Response.Buffer=true

%>

<html>

<body>

<p>I write some text, but I will control when the

text will be sent to the browser.</p>

<p>The text is not sent yet. I hold it back!</p>

<p>OK, let it go!</p>

<%

Response.Flush

%>

</body>

</html>

Output:

I write some text, but I will control when the

text will be sent to the browser.

The text is not sent yet. I hold it back!

OK, let it go!

Redirect i. The Redirect method redirects the user to

a different URL

220

Syntax

Response.Redirect URL

Parameter Description

URL Required. The URL that the user

(browser) is redirected to

Examples

<%

Response.Redirect "http://www.w3schools.com"

%>

Write The Write method writes a specified string to

the output.

Syntax

Response.Write variant

Parameter Description

variant Required. The data to write

Examples

Example 1

<%

Response.Write "Hello World"

%>

Output:

Hello World

Example 2

<%

name="John"

Response.Write(name)

%>

Output:

John

221

Example 3

<%

Response.Write("Hello
World")

%>

Output:

Hello

World

10.1.2 Request Object

 The Request object makes available all the values that client

browser passes to the server during an HTTP request. It

includes client browser info, cookie details (of this domain only),

client certificates (if accessing through SSL) etc.

Syntax

Request.collection|property|method (variable)

Collections Description

ClientCertificate i. Makes us available a collection of values stored

in the client certificate that is sent to the HTTP

request.

ii. It is usually of interest when the client is

requesting secure pages through SSL

connection.

iii. But before using this collection the server should

be configured to request client certificates.

Cookies i. Makes us available all the cookies stored in the

client browser for this domain.

ii. the Cookies collection is used to set or get

cookie values. If the cookie does not exist, it will

be created, and take the value that is specified.

Note: The Response.Cookies command must

appear before the <html> tag.

Syntax

Response.Cookies(name)[(key)|.attribute]=value

variablename=Request.Cookies(name)[(key)|.

attribute]

222

Parameter Description

name Required. The name of the cookie

value Required for the Response.
Cookies command. The value of
the cookie

attribute Optional. Specifies information

about the cookie. Can be one of

the following parameters:

 Domain - Write-only. The

cookie is sent only to requests

to this domain

 Expires - Write-only. The date

when the cookie expires. If no

date is specified, the cookie will

expire when the session ends

 HasKeys - Read-only.

Specifies whether the cookie

has keys (This is the only

attribute that can be used with

the Request.Cookies

command)

 Path - Write-only. If set, the

cookie is sent only to requests

to this path. If not set, the

application path is used

 Secure - Write-only. Indicates if

the cookie is secure

key Optional. Specifies the key to

where the value is assigned

Examples

The "Response.Cookies" command is used to

create a cookie or to set a cookie value:

<%

Response.Cookies("firstname")="Alex"

%>

In the code above, we have created a cookie

named "firstname" and assigned the value "Alex"

to it

223

It is also possible to assign some attributes to a

cookie, like setting a date when a cookie should

expire:

<%

Response.Cookies("firstname")="Alex"

Response.Cookies("firstname").Expires=#May

10,2002#

%>

Now the cookie named "firstname" has the value of

"Alex", and it will expire from the user's computer at

May 10, 2002.

The "Request.Cookies" command is used to get a

cookie value.

In the example below, we retrieve the value of the

cookie "firstname" and display it on a page:

<%

fname=Request.Cookies("firstname")

response.write("Firstname=" & fname)

%>

Output:

Firstname=Alex

A cookie can also contain a collection of multiple

values. We say that the cookie has Keys.

In the example below, we will create a cookie-

collection named "user". The "user" cookie has

Keys that contains information about a user:

<%

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

224

The code below reads all the cookies your server

has sent to a user. Note that the code checks if a

cookie has Keys with the HasKeys property:

<html>

<body>

<%

dim x,y

for each x in Request.Cookies

response.write("<p>")

if Request.Cookies(x).HasKeys then

for each y in Request.Cookies(x)

response.write(x & ":" & y & "=" &

Request.Cookies(x)(y))

response.write("<br /")

next

else

Response.Write(x & "=" & Request.Cookies(x) &

"
")

end if

response.write "</p>"

next

%>

</body>

</html>

%>

Output:

firstname=Alex

user:firstname=John

user:lastname=Smith

user:

country=Norway

user:

age=25

Form Collection of all the values of Form element in the

HTTP request.

225

Syntax

Request.Form(element)[(index)|.Count]

Parameter Description

element Required. The name of the form

element from which the collection

is to retrieve values

index Optional. Specifies one of multiple

values for a parameter. From 1 to

Request.Form(parameter).Count.

Examples

Example 1

You can loop through all the values in a form

request. If a user filled out a form by specifying two

values - Blue and Green - for the color element, you

could retrieve those values like this:

<% for i=1 to Request.Form("color").Count

Response.Write(Request.Form("color")(i) & "
")

next

%>

Output:

Blue

Green

Example 2

Consider the following form:

<form action="submit.asp" method="post">

<p>First name: <input name="firstname"></p>

<p>Last name: <input name="lastname"></p>

<p>Your favorite color:

<select name="color">

<option>Blue</option>

<option>Green</option>

<option>Red</option>

<option>Yellow</option>

<option>Pink</option>

226

</select>

</p>

<p><input type="submit"></p>

</form>

The following request might be sent:

firstname=John&lastname=Dove&color=Red

Now we can use the information from the form in a

script:

Hi, <%=Request.Form("firstname")%>.

Your favorite color is

<%=Request.Form("color")%>.

Output:

Hi, John. Your favorite color is Red.

If you do not specify any element to display, like

this:

Form data is: <%=Request.Form%>

the output would look like this:

Form data is:

firstname=John&lastname=Dove&color=Red

QueryString Collection of variables which are stored in the

HTTP query string. Name / value pairs can also be

appended to the URL after the end of page name

e.g.

"http://www.stardeveloper.com/asp_request.asp?au

thor=Faisal+Khan" contains one variable 'author'

with a value of 'Faisal Khan'.

The QueryString collection is used to retrieve the

variable values in the HTTP query string.

The HTTP query string is specified by the values

following the question mark (?), like this:

<a href= "test.asp?txt=this is a query string

test">Link with a query string

The line above generates a variable named txt with

the value "this is a query string test".

227

Query strings are also generated by form

submission, or by a user typing a query into the

address bar of the browser.

Note: If you want to send large amounts of data

(beyond 100 kb) the Request.QueryString cannot

be used.

Syntax

Request.QueryString(variable)[(index)|.Count]

Parame

ter

Description

variable Required. The name of the variable in

the HTTP query string to retrieve

index Optional. Specifies one of multiple

values for a variable. From 1 to

Request.QueryString(variable).Count

Examples

Example 1

To loop through all the n variable values in a Query

String:

The following request is sent:

http://www.w3schools.com/test/names.asp?n=Jo

hn&n=Susan

and names.asp contains the following script:

<%

for i=1 to Request.QueryString("n").Count

Response.Write(Request.QueryString("n")(i) &

"
")

next

%>

The file names.asp would display the following:

John

Susan

228

Example 2

The following string might be sent:

http://www.w3schools.com/test/names.asp?name

=John&age=30

this results in the following QUERY_STRING value:

name=John&age=30

Now we can use the information in a script:

Hi, <%=Request.QueryString("name")%>.

Your age is <%= Request.QueryString("age")%>.

Output:

Hi, John. Your age is 30.

If you do not specify any variable values to display,

like this:

Query string is: <%=Request.QueryString%>

the output would look like this:

Query string is: name=John&age=30

ServerVariables Contains a collection of predetermined environment

variables plus a collection of all the HTTP header

values sent from the client browser to the server.

The ServerVariables collection is used to retrieve

the server variable values.

Syntax

Request.ServerVariables (server_variable)

Parameter Description

server_variable Required. The name of the

server variable to retrieve

Server Variables

Variable Description

ALL_HTTP

Returns all HTTP headers

sent by the client. Always

prefixed with HTTP_ and

capitalized

229

ALL_RAW
Returns all headers in raw

form

APPL_MD_PATH

Returns the meta base

path for the application for

the ISAPI DLL

APPL_PHYSICAL_

PATH

Returns the physical path

corresponding to the meta

base path

AUTH_

PASSWORD

Returns the value entered

in the client's

authentication dialog

AUTH_TYPE

The authentication

method that the server

uses to validate users

AUTH_USER
Returns the raw

authenticated user name

CERT_COOKIE
Returns the unique ID for

client certificate as a string

CERT_FLAGS

bit0 is set to 1 if the client

certificate is present and

bit1 is set to 1 if the

cCertification authority of

the client certificate is not

valid

CERT_ISSUER
Returns the issuer field of

the client certificate

CERT_KEYSIZE

Returns the number of bits

in Secure Sockets Layer

connection key size

CERT_

SECRETKEYSIZE

Returns the number of bits

in server certificate private

key

CERT_

SERIALNUMBER

Returns the serial number

field of the client certificate

CERT_SERVER_

ISSUER

Returns the issuer field of

the server certificate

230

CERT_SERVER_

SUBJECT

Returns the subject field

of the server certificate

CERT_SUBJECT
Returns the subject field

of the client certificate

CONTENT_

LENGTH

Returns the length of the

content as sent by the

client

CONTENT_TYPE Returns the data type of
the content

GATEWAY_

INTERFACE

Returns the revision of the

CGI specification used by

the server

HTTP_

<HeaderName>

Returns the value stored
in the header Header
Name

HTTP_ACCEPT
Returns the value of the

Accept header

HTTP_ACCEPT_

LANGUAGE

Returns a string

describing the language to

use for displaying content

HTTP_COOKIE
Returns the cookie string

included with the request

HTTP_REFERER

Returns a string

containing the URL of the

page that referred the

request to the current

page using an <a> tag. If

the page is redirected,

HTTP_REFERER is

empty

HTTP_USER_

AGENT

Returns a string

describing the browser

that sent the request

HTTPS

Returns ON if the request

came in through secure

channel or OFF if the

request came in through a

non-secure channel

231

HTTPS_KEYSIZE

Returns the number of bits

in Secure Sockets Layer

connection key size

HTTPS_SECRETK

EYSIZE

Returns the number of bits

in server certificate private

key

HTTPS_SERVER_

ISSUER

Returns the issuer field of

the server certificate

HTTPS_SERVER_

SUBJECT

Returns the subject field

of the server certificate

INSTANCE_ID
The ID for the IIS instance

in text format

INSTANCE_META_

PATH

The meta base path for
the instance of IIS that
responds to the request

LOCAL_ADDR
Returns the server
address on which the
request came in

LOGON_USER
Returns the Windows
account that the user is
logged into

PATH_INFO

Returns extra path

information as given by

the client

PATH_

TRANSLATED

A translated version of
PATH_INFO that takes
the path and performs any
necessary virtual-to-
physical mapping

QUERY_STRING

Returns the query

information stored in the

string following the

question mark (?) in the

HTTP request

REMOTE_ADDR

Returns the IP address of

the remote host making

the request

REMOTE_HOST
Returns the name of the

host making the request

232

REMOTE_USER
Returns an unmapped
user-name string sent in
by the user

REQUEST_

METHOD
Returns the method used
to make the request

SCRIPT_NAME Returns a virtual path to
the script being executed

SERVER_NAME

Returns the server's host
name, DNS alias, or IP
address as it would
appear in self-referencing
URLs

SERVER_PORT
Returns the port number
to which the request was
sent

SERVER_PORT_

SECURE

Returns a string that
contains 0 or 1. If the
request is being handled
on the secure port, it will
be 1. Otherwise, it will be
0

SERVER_

PROTOCOL

Returns the name and

revision of the request

information protocol

SERVER_SOFTWA

RE

Returns the name and

version of the server

software that answers the

request and runs the

gateway

URL
Returns the base portion

of the URL

Examples

You can loop through all of the server variables like

this:

<%

for each x in Request.ServerVariables

response.write(x & "
")

next

%>

233

The following example demonstrates how to find
out the visitor's browser type, IP address, and
more:
<html>

<body>

<p>

You are browsing this site with:

<%Response.Write(Request.ServerVariables("htt

p_user_agent"))%>

</p>

<p>

Your IP address is:

<%Response.Write(Request.ServerVariables("re

mote_addr"))%>

</p>

<p>

The DNS lookup of the IP address is:

<%Response.Write(Request.ServerVariables("re

mote_host"))%>

</p>

<p>

The method used to call the page:

<%Response.Write(Request.ServerVariables("re

quest_method"))%>

</p>

<p>

The server's domain name:

<%Response.Write(Request.ServerVariables("se

rver_name"))%>

</p>

<p>

The server's port:

<%Response.Write(Request.ServerVariables("se

rver_port"))%>

</p>

<p>

The server's software:

<%Response.Write(Request.ServerVariables("se

rver_software"))%>

</p>

</body>

</html>

234

Properties Description

TotalBytes An integer read-only value which gives the

total number of bytes the client browser is to

the server with each request.

Methods Description

BinaryRead Retrieves data sent to the server from the

client in raw format as part of the POST

request. It saves all this data in a SafeArray.

10.2 APPLICATION OBJECT

i. The Application object is created when the first .asp page is

requested after starting the IIS and remains there until the

server shuts down.

ii. All the variables created with application object have

application level scope meaning there by that they are

accessible to all the users.

iii. All .asp pages in a virtual directory and its subdirectories come

under the application scope. So application level variables are

shared by more than one user at a timeThe Application object

is used to store and access variables from any page, just like

the Session object.

iv. The difference is that ALL users share ONE Application object

(with Sessions there is ONE Session object for EACH user).

v. The Application object holds information that will be used by

many pages in the application (like database connection

information).

vi. The information can be accessed from any page. The

information can also be changed in one place, and the

changes will automatically be reflected on all pages.

Syntax : Application.method

response.ContentType[=contenttype]

235

Collections Description

Contents A collection of all the items that have been added

to the Application object.

Syntax

Application.Contents(Key)

Session.Contents(Key)

Parameter Description

key Required. The name of the item to

retrieve

Examples for the Application Object

Example 1

Notice that both name and objtest would be

appended to the Contents collection:

<%

Application("name")="W3Schools"

Set

Application("objtest")=Server.CreateObject("AD

ODB.Connection")

%>

Example 2

To loop through the Contents collection:

<%

for each x in Application.Contents

Response.Write(x & "=" &

Application.Contents(x) & "
")

next

%>

or:

<%

For i=1 to Application.Contents.Count

Response.Write(i & "=" &

Application.Contents(i) & "
")

Next

%>

236

Example 3

<%

Application("date")="2001/05/05"

Application("author")="W3Schools"

for each x in Application.Contents

Response.Write(x & "=" &

Application.Contents(x) & "
")

next

%>

Output:

date=2001/05/05

author=W3Schools

Examples for the Session Object

Example 1

Notice that both name and objtest would be

appended to the Contents collection:

<%

Session("name")="Hege"

Set

Session("objtest")=Server.CreateObject("ADOD

B.Connection")

%>

Example 2

To loop through the Contents collection:

<%

for each x in Session.Contents

Response.Write(x & "=" & Session.Contents(x)

& "
")

next

%>

or:

<%

For i=1 to Session.Contents.Count

237

Response.Write(i & "=" & Session.Contents(i)

& "
")

Next

%>

Example 3

<%

Session("name")="Hege"

Session("date")="2001/05/05"

for each x in Session.Contents

Response.Write(x & "=" & Session.Contents(x)

& "
")

next

%>

Output:

name=Hege

date=2001/05/05

Static

Objects

Collection of all the items that have been added to

the Application object through <object> tag.

Syntax

Application.StaticObjects(Key)

Session.StaticObjects(Key)

Parameter Description

key Required. The name of the item

to retrieve

Examples for the Application Object:

Example 1

To loop through the StaticObjects collection:

<%

for each x in Application.StaticObjects

Response.Write(x & "
")

next

%>

238

Example 2

In Global.asa:

<object runat="server" scope="application"

id="MsgBoard" progid="msgboard.MsgBoard">

</object>

<object runat="server" scope="application"

id="AdRot" progid="MSWC.AdRotator">

</object>

In an ASP file:

<%

for each x in Application.StaticObjects

Response.Write(x & "
")

next

%>

Output:

MsgBoard

AdRot

Examples for the Session Object

Example 1

To loop through the StaticObjects collection:

<%

for each x in Session.StaticObjects

Response.Write(x & "
")

next

%>

Example 2

In Global.asa:

<object runat="server" scope="session"

id="MsgBoard" progid="msgboard.MsgBoard">

</object>

<object runat="server" scope="session"

id="AdRot" progid="MSWC.AdRotator">

</object>

239

In an ASP file:

<%

for each x in Session.StaticObjects

Response.Write(x & "
")

next

%>

Output:

MsgBoard

AdRot

Methods Description

Contents.Remove Deletes the specified item from the

Application.Contents collection.

The Contents.Remove method deletes an

item from the Contents collection.

Syntax

Application.Contents.Remove(name|index)

Session.Contents.Remove(name|index)

Parameter Description

name The name of the item to remove

index The index of the item to remove

Examples for the Application Object

Example 1

<%

Application("test1")=("First test")

Application("test2")=("Second test")

Application("test3")=("Third test")

Application.Contents.Remove("test2")

for each x in Application.Contents

240

Response.Write(x & "=" &

Application.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

Example 2

<%

Application("test1")=("First test")

Application("test2")=("Second test")

Application("test3")=("Third test")

Application.Contents.Remove(2)

for each x in Application.Contents

Response.Write(x & "=" &

Application.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

Examples for the Session Object

Example 1

<%

Session("test1")=("First test")

Session("test2")=("Second test")

Session("test3")=("Third test")

241

Session.Contents.Remove("test2")

for each x in Session.Contents

Response.Write(x & "=" &

Session.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

xample 2

<%

Session("test1")=("First test")

Session("test2")=("Second test")

Session("test3")=("Third test")

Session.Contents.Remove(2)

for each x in Session.Contents

Response.Write(x & "=" &

Session.Contents(x) & "
")

next

%>

Output:

test1=First test

test3=Third test

Contents.RemoveAll Deletes all the items from the

Application.Contents collection.

The Contents.RemoveAll method deletes all

items from the Contents collection.

Syntax

Application.Contents.RemoveAll()

Session.Contents.RemoveAll()

242

Example for the Application Object

<%

Application.Contents.RemoveAll()

%>

Example for the Session Object

<%

Session.Contents.RemoveAll()

%>

Lock Locks the application object so that only one

user at a time can modify the values.

Lock Method

The Lock method prevents other users from

modifying the variables in the Application

object (used to ensure that only one client at

a time can modify the Application variables).

Unlock Method

The Unlock method enables other users to

modify the variables stored in the Application

object (after it has been locked using the

Lock method).

Syntax

Application.Lock

Application.Unlock

Example

The example below uses the Lock method to

prevent more than one user from accessing

the variable visits at a time, and the Unlock

method to unlock the locked object so that

the next client can increment the variable

visits:

243

<%

Application.Lock

Application("visits")=Application("visits")+1

Application.Unlock

%>

This page has been visited

<%=Application("visits")%> times!

UnLock Unlocks the application object allowing other

users to modify application level variables.

Events Description

Application_OnEnd This event occurs when the IIS is shut down

after Session_OnEnd event. All the variables

are destroyed after that.

Application_OnStart This event occurs when the first .asp page is

called after starting the IIS. Application level

variables can be declared here.

244

Application_OnStart Event

The Application_OnStart event occurs before the first new session

is created (when the Application object is first referenced).

This event is placed in the Global.asa file.

Note: Referencing to a Session, Request, or Response objects in

the Application_OnStart event script will cause an error.

Application_OnEnd Event

The Application_OnEnd event occurs when the application ends

(when the web server stops).

This event is placed in the Global.asa file.

Note: The MapPath method cannot be used in the

Application_OnEnd code.

Syntax

<script language="vbscript" runat="server">

Sub Application_OnStart

. . .

End Sub

Sub Application_OnEnd

. . .

End Sub

</script>

Examples

Global.asa:

<script language="vbscript" runat="server">

Sub Application_OnEnd()

Application("totvisitors")=Application("visitors")

End Sub

Sub Application_OnStart

Application("visitors")=0

End Sub

245

Sub Session_OnStart

Application.Lock

Application("visitors")=Application("visitors")+1

Application.UnLock

End Sub

Sub Session_OnEnd

Application.Lock

Application("visitors")=Application("visitors")-1

Application.UnLock

End Sub

</script>

To display the number of current visitors in an ASP file:

<html>

<head>

</head>

<body>

<p>

There are <%response.write(Application("visitors"))%>

online now!

</p>

</body>

</html>

10.2.2 Session Object

i. When you are working with an application on your computer,

you open it, do some changes and then you close it.

ii. This is much like a Session. The computer knows who you are.

It knows when you open the application and when you close it.

However, on the internet there is one problem: the web server

does not know who you are and what you do, because the

HTTP address doesn't maintain state.

iii. ASP solves this problem by creating a unique cookie for each

user.

246

iv. The cookie is sent to the user's computer and it contains

information that identifies the user.

v. This interface is called the Session object.

vi. The Session object stores information about, or change settings

for a user session.

vii. Variables stored in a Session object hold information about one

single user, and are available to all pages in one application.

viii. Common information stored in session variables are name, id,

and preferences.

ix. The server creates a new Session object for each new user,

and destroys the Session object when the session expires.

x. The Session object's collections, properties, methods, and

events are described below:

10.2.2.1 Collections

Syntax: Session.collection|property|method

A.1 Collections Description

Contents Contains all the items which have been added

to the Session object. You can iterate through

the Contents collection and retrieve a list of all

the items added or you can retrieve a specific

item. Note that it contains all the Session

items except the ones created using <object>

element.

StaticObjects Contains all the items which have Session

scope created using <object> element. As with

Session.Contents collection you can iterate

through the StaticObjects collection to get a

list of items or you can get a specific item out

of the StaticObjects collection.

247

A.2 Properties Description

CodePage An integer which defines the code page to be used to display

content to the client browser e.g. code page 1252 is used to

for American english and most European languages and 932

is used for Japanese kanji.

Example of some code pages:

 1252 - American English and most European

languages

 932 - Japanese Kanji

Syntax

Session.CodePage(=Codepage)

Parameter Description

codepage Defines a code page (character set) for the

system running the script engine

Examples

<%

Response.Write(Session.CodePage)

%>

Output:

1252

LCID Stands for locale identifier. It is a standard international

abbreviation that uniquely identifies the locale e.g. LCID

2057 stands for British locale.

Syntax

Session.LCID(=LCID)

Parameter Description

LCID A locale identifier

248

Examples

<%

response.write("<p>")

response.write("Default LCID is: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " &

FormatCurrency(350))

response.write("</p>")

Session.LCID=1036

response.write("<p>")

response.write("LCID is now: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " &

FormatCurrency(350))

response.write("</p>")

Session.LCID=3079

response.write("<p>")

response.write("LCID is now: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " &

FormatCurrency(350))

response.write("</p>")

Session.LCID=2057

response.write("<p>")

response.write("LCID is now: " & Session.LCID & "
")

response.write("Date format is: " & date() & "
")

response.write("Currency format is: " &

FormatCurrency(350))

response.write("</p>")

%>

Output:

Default LCID is: 2048

Date format is: 12/11/2001

Currency format is: $350.00

249

LCID is now: 1036

Date format is: 11/12/2001

Currency format is: 350,00 F

LCID is now: 3079

Date format is: 11.12.2001

Currency format is: öS 350,00

LCID is now: 2057

Date format is: 11/12/2001

Currency format is: £350.00

SessionID A long which returns the session identifier for this client

browser.

The SessionID property returns a unique id for each user.

The unique id is generated by the server.

Syntax

Session.SessionID

Examples

<%

Response.Write(Session.SessionID)

%>

Output:

772766038

Timeout An integer which specifies a time out period in minutes. If the

client doesn't refresh or request any page of your site within

this time out period then the server ends the current session.

If you do not specify any time out period then by default time

out period is 20 minutes.

The Timeout property sets or returns the timeout period for

the Session object for this application, in minutes. If the user

does not refresh or request a page within the timeout period,

the session will end.

250

Syntax

Session.Timeout[=nMinutes]

Parameter Description

nMinutes The number of minutes a session can remain

idle before the server terminates it. Default is

20 minutes

Examples

<%

response.write("<p>")

response.write("Default Timeout is: " & Session.Timeout)

response.write("</p>")

Session.Timeout=30

response.write("<p>")

response.write("Timeout is now: " & Session.Timeout)

response.write("</p>")

%>

Output:

Default Timeout is: 20

Timeout is now: 30

10.2.3.3 Methods

Method Description

Abandon Destroys the current session object and

releases its resources, meaning there by

that if the client requests any page of your

site after Session.Abandon method has

been called then a separate session will be

started.

Note: When this method is called, the

current Session object is not deleted until

all of the script on the current page have

251

been processed. This means that it is

possible to access session variables on the

same page as the call to Abandon, but not

from another Web page.

Syntax

Session.Abandon

Examples

File1.asp:

<%

Session("name")="Hege"

Session.Abandon

Response.Write(Session("name"))

%>

Output:

Hege

File2.asp:

<%

Response.Write(Session("name"))

%>

Output:

(none)

Contents.Remove Deletes the given item from the

Session.Contents collection.

Contents.RemoveAll() Destroys all the items in the

Session.Contents collection.

10.2.3.4 Events

Event Description

Session_OnEnd This event occurs when the session is

abandoned or times out for a specific user.

252

Session_OnStart Occurs when a new session is started. All

the ASP objects are available for you to use.

You can define your session wide variables

here.

10.3 SERVER OBJECT

The ASP Server object is used to access properties and

methods on the server. Its properties and methods are described

below:

Syntax

Server.property|method

Properties Description

ScriptTimeout An integer which specifies time in seconds

until which the script can run after that the

server aborts the script and displays an error

message .

The ScriptTimeout property sets or returns

the maximum number of seconds a script can

run before it is terminated.

Syntax

Server.ScriptTimeout[=NumSeconds]

Parameter Description

NumSeconds The maximum number of seconds

a script can run before the server

terminates it. Default is 90

seconds

Examples

Example 1

Set the script timeout:

<%

Server.ScriptTimeout=200

%>

253

Example 2

Retrieve the current value of the

ScriptTimeout property:

<%

response.write(Server.ScriptTimeout)

%>

Methods Description

CreateObject Creates an instance of the object (a component,

application or a scripting object). The component

can be instantiated by giving its CLSID or ProgID

in the Server.CreateObject method e.g.

Server.CreateObject ("MSWC.MyInfo").

Note: Objects created with this method have

page scope. They are destroyed when the server

are finished processing the current ASP page. To

create an object with session or application

scope, you can either use the <object> tag in the

Global.asa file, or store the object in a session or

application variable.

Syntax

Server.CreateObject(progID)

Part Description

progID Required. The type of object to

create

Example 1

This example creates an instance of the server

component MSWC.AdRotator:

<%

Set

adrot=Server.CreateObject("MSWC.AdRotator"

)

%>

254

Example 2

An object stored in a session variable is

destroyed when the session ends. However, you

can also destroy the object by setting the variable

to Nothing or to a new value:

<%

Session("ad")=Nothing

%>

or

<%

Session("ad")="a new value"

%>

Example 3

You cannot create an instance of an object with

the same name as a built-in object:

<%

Set

Application=Server.CreateObject("Application")

%>

Execute Executes the given .asp page and then returns

the control to the page who called the method.

Very useful method which can be used to

execute another .asp page without leaving the

current page and then control is passed back to

the calling page.

After executing the called .asp file, the control is

returned to the original .asp file.

Syntax

Server.Execute(path)

Param

eter

Description

path Required. The location of the ASP

file to execute

255

Example

File1.asp:

<%

response.write("I am in File 1!
")

Server.Execute("file2.asp")

response.write("I am back in File 1!")

%>

File2.asp:

<%

response.write("I am in File 2!
")

%>

Output:

I am in File 1!

I am in File 2!

I am back in File 1!

Also look at the Server.Transfer method to see

the difference between the Server.Execute and

Server.Transfer methods.

GetLastError Returns an ASPError object which can be used

to get information about the last error occured in

the ASP script.

The GetLastError method returns an ASPError

object that describes the error condition that

occurred.

By default, a Web site uses the file

\iishelp\common\500-100.asp for processing ASP

errors. You can either use this file, or create your

own. If you want to change the ASP file for

processing the 500;100 custom errors you can

use the IIS snap-in.

Note: A 500;100 custom error will be generated if

IIS encounters an error while processing either

an ASP file or the application's Global.asa file.

Note: This method is available only before the

ASP file has sent any content to the browser.

Syntax

Server.GetLastError()

256

Examples

Example 1

In the example an error will occur when IIS tries

to include the file, because the include statement

is missing the file parameter:

<!--#includef="header.inc"-->

<%

response.write("sometext")

%>

Example 2

In this example an error will occur when

compiling the script, because the "next" keyword

is missing:

<%

dim i

for i=1 to 10

........

nxt

%>

Example 3

In this example an error will occur because the

script attempts to divide by 0:

<%

dim i,tot,j

i=0

tot=0

j=0

for i=1 to 10

tot=tot+1

next

tot=tot/j

%>

HTMLEncode Provides HTML encoding to a given string. All

non-legal HTML characters are converted to their

equivalent HTML entity e.g. "<" is converted to

< .

257

Syntax

Server.HTMLEncode(string)

Parameter Description

string Required. The string to encode

Example

The following script:

<%

response.write(Server.HTMLEncode("The

image tag: "))

%>

Output:

The image tag:

Web browser output:

The image tag:

MapPath Maps the specified virtual or relative path into

physical path of the server.

Note: This method cannot be used in

Session.OnEnd and Application.OnEnd.

Syntax

Server.MapPath(path)

Parame

ter

Description

path Required. A relative or virtual path to

map to a physical path. If this

parameter starts with / or \, it returns

a path as if this parameter is a full

virtual path. If this parameter doesn't

start with / or \, it returns a path

relative to the directory of the .asp file

being processed

258

Examples

Example 1

For the example below, the file test.asp is located

in C:\Inetpub\Wwwroot\Script.

The file Test.asp (located in C:\Inetpub

\Wwwroot\ Script) contains the following code:

<%
response.write(Server.MapPath("test.asp") &
"
")
response.write(Server.MapPath("script/test.asp
") & "
")
response.write(Server.MapPath("/script/test.as
p") & "
")
response.write(Server.MapPath("\script") &
"
")
response.write(Server.MapPath("/") & "
")
response.write(Server.MapPath("\") & "
")
%>
Output:
c:\inetpub\wwwroot\script\test.asp
c:\inetpub\wwwroot\script\script\test.asp
c:\inetpub\wwwroot\script\test.asp
c:\inetpub\wwwroot\script
c:\inetpub\wwwroot
c:\inetpub\wwwroot

Example 2

How to use a relative path to return the relative

physical path to the page that is being viewed in

the browser:

<%

response.write(Server.MapPath("../"))

%>

or

<%

response.write(Server.MapPath("..\"))

%>

Transfer Transfers the control of the page to another page

specified in the URL. Note that unlike Execute,

control of the page is not returned to the page

calling the Server.Transfer method.

259

Syntax

Server.Transfer(path)

Param

eter

Description

path Required. The location of the ASP

file to which control should be

transferred

Example

File1.asp:

<%

response.write("Line 1 in File 1
")

Server.Transfer("file2.asp")

response.write("Line 2 in File 1
")

%>

File2.asp:

<%

response.write("Line 1 in File 2
")

response.write("Line 2 in File 2
")

%>

Output:

Line 1 in File 1

Line 1 in File 2

Line 2 in File 2

Also look at the Server.Execute method to see

the difference between the Server.Transfer and

Server.Execute methods.

URLEncode Provides URL encoding to a given string e.g.

Server.URLEncode

("http://www.stardeveloper.com") returns http%

3A%2F%2Fwww%2Estardeveloper%2Ecom.

The URLEncode method applies URL encoding

rules to a specified string.

260

Syntax

Server.URLEncode(string)

Parameter Description

string Required. The string to encode

Example

<%

response.write(Server.URLEncode("http://ww

w.w3schools.com"))

%>

Output:

http%3A%2F%2Fwww%2Ew3schools%2Eco

m

Question:

1. What are objects of ASP.

2. Explain different type of onjects of ASP?

Or

3. Short Note on

a. Request Object
b. Response Object
c. Session Object
d. Application object
e. Server Object





261

11

ASP FORMS

Unit Structure

11.1 ASP Forms

11. 1 WHAT ARE FORMS?

1. Recall from Day 1, "Getting Started with Active Server
Pages," that the Internet is based upon the client-server
model.

2. When you visit a Web page, your browser, the client,makes a
request to the Web server, asking for a particular Web page.

3. The Web server responds by sending the requested
document to the client. When requesting an ASP page, the
web server first processes the ASP code before sending the
resulting web page back to the client.

4. What, though, if we want our ASP page to make decisions
based upon a user's input?

5. To accomplish this, we need to use forms.

6. A form has two duties: to collect information from the user and
to send that information to a separate Web page for
processing.

7. Through the use of a form, an ASP page can acquire the
user's input, and make programmatic decisions based on that
input.

8. Forms also allow for the user to enter detailed information
using a variety of input controls, such as text boxes, list
boxes, check boxes, and radio buttons.

11. 1.1 Creating Forms

Creating a form is straightforward and simple. It requires

as little as two lines of HTML, as shown in Listing 11.1.

262

Example 11.1. A Form is Created Using the <FORM> Tag

1: <FORM METHOD=POST ACTION="somePage.asp">

2: </FORM>

Listing 11.1 uses the HTML tag <FORM> to create a simple form.

The <FORM> tag has two properties: METHOD and ACTION.

• METHOD—The METHOD tag can be set to either GET or POST.

• ACTION—The ACTION tag specifies what page will be called

when the form is

submitted. Usually, this is an ASP page that will process the

information entered by

the user.

 A form is submitted when the user confirms that he is finished

entering the information, usually by clicking a button.

 If there is just one input field in the form, such as a text

box, the user can simply press Enter to submit the form.

Using Form Fields

The form in Listing 11.1 serves no function. It has no text

boxes for users to enter information into. It has no list boxes, radio

buttons, or check boxes either. On a Web site, this form would be

useless; however, it does demonstrate how a <FORM> tag is used.

To be useful, a form must contain one or more form fields: objects

inside a form that are used to collect information from the user.

Each text box, list box, check box, or radio button in a form is a

form field. You need a way to create form fields within your form.

To create text boxes, check boxes, and radio buttons, use the

<INPUT> tag. The <INPUT> tag has a number of properties, but we

will only concentrate on the following three:

• NAME—The NAME tag uniquely identifies each element in the

form. You will use the

NAME tag in tomorrow's lesson when you use ASP to process the

user's input.

• TYPE—The TYPE tag determines what type of form field is

displayed. To display a

text box, set TYPE equal to TEXT. To create a check box, assign

TYPE equal to

CHECKBOX.

263

• VALUE—The VALUE tag determines the default value for the

form field. This property

is important when processing the information submitted by list

boxes, check boxes,

and radio buttons.

To create list boxes, use the <SELECT> tag in conjunction with the

<OPTION> tag. Each option in the list box needs an <OPTION>

tag. The <SELECT> tag is only used once, encompassing many

<OPTION> tags. Let's say that you want a list box that lists the

months of the year. You would need 12 <OPTION> tags enclosed

by a <SELECT> tag, like so:

<SELECT NAME=Month>

<OPTION VALUE="January">January

<OPTION VALUE="February">February

<OPTION VALUE="March">March

…

<OPTION VALUE="November">November

<OPTION VALUE="December">December

</SELECT>

The VALUE property in the <OPTION> tags serves as a

unique identifier for each separate option in the list box. We will

discuss list boxes in "List Boxes."

Putting it All Together

Now that you know how to create forms and form fields,

let's create a form that asks for the user's name, age, and sex. This

form would need a number of form fields. First, we would need a

text box for the user's name. We could also use a text box for the

user's age; however, if we were only interested in what age group

our user fit in, we could use a list box.

Finally, to obtain the user's sex, we will use two radio

buttons, one labeled Male and the other labeled Female. Listing

11.2 contains the HTML code that will generate these form fields.

Example 11.2. A Form to Collect Generic User Information

1: <FORM METHOD=POST ACTION="somePage.asp">

2: What is your name?

3: <INPUT TYPE=TEXT NAME=Name>

264

4: <P>

5:

6: How old are you?

7: <SELECT NAME=Age>

8: <OPTION VALUE="Under 21">Under 21

9: <OPTION VALUE="21 - 50">21 – 50

10: <OPTION VALUE="Over 50">Over 50

11: </SELECT>

12: <P>

13:

14: Sex:

15: <INPUT TYPE=RADIO NAME=Sex VALUE=Male>

16: Male

17:

18: <INPUT TYPE=RADIO NAME=Sex VALUE=Female>

19: Female

20:

21:

22: <INPUT TYPE=SUBMIT VALUE="Send us your Information!">

23: </FORM>

The code in Listing 11.2 creates a form that contains a

number of form fields. These form fields are used to collect

information from the user. Each form field is created using either

the <INPUT> tag, for text boxes, check boxes, and radio buttons, or

the <SELECT> and <OPTION> tags, for list boxes.

For example, our users will be presented with a text box to

enter their names into. This text box was created using the

<INPUT> tag (line 3) with its TYPE property set to TEXT. The list

box that contains the various age ranges is created on line 7 with

the <SELECT> tag. Each option for the list box is created using the

<OPTION> tag (lines 8, 9, and 10). Finally, the two radio buttons

are created on lines 15 and 18. These are both created using the

<INPUT> tag with the TYPE property set to RADIO.

Line 22 in Listing 11.2 also demonstrates the use of a valid

submit button. All forms you create should contain a submit button.

A submit button, when clicked, submits the form. To create a

submit button, you use the <INPUT> tag with TYPE set equal to the

keyword SUBMIT. The VALUE tag determines the submit button's

label. If you do not include a VALUE for your submit button, the

265

browser will decide what to label the submit button. (Internet

Explorer 5.0, for example, will label the submit button as Submit

Query.)

Submitting Forms

Using a standard Web browser, a user can surf to a Web

page with a form on it and enter information. When the user does

this, the information he is typing in has not yet been sent to the

Web server. This information is not available for the Web server to

process until the user submits the form by clicking the form's submit

button.

It would be nice to be able to send this information to an

ASP page, which could then determine what the user entered into

the form and act on that information. The <FORM> tag offers two

properties that allow you to send form information to an ASP page

for processing: the ACTION property and the METHOD property.

Using the ACTION Property

The ACTION property of a form can be set to any valid

URL. When a user submits the form, the URL specified in the

ACTION property is called, and the values in the form fields are

passed. In Listing 11.3, the form's ACTION property is set to

catalog.asp. When the user clicks the submit button, the form field

values are sent to catalog.asp as the user's browser is redirected to

catalog.asp.

NOTE

The ACTION property does not have to be set to an ASP

page. The ACTION property can be set to any Web page name on

your Web server (such as a CGI script) or to a script on another

server altogether, or it could be left out completely.

Note that if you do not specify the ACTION property in a

form, when a user submits the form, the current page is reloaded.

In the examples in this book, we will always specify the

ACTION property in our forms. Also, because this book deals with

ASP, the ACTION property will always be set to an ASP page.

The second property of the <FORM> tag is called

METHOD and can be set to either GET or POST. The METHOD

266

determines how the form field values are passed to the ASP page

specified in the form's ACTION property.

The Difference Between GET and POST

There are, not surprisingly, two ways through which

information can be passed from a form to an ASP page. The first

method uses the querystring and is the method used when a form's

METHOD property is set to GET. The other method, POST, hides

the user's information by not using the querystring.

The querystring is additional information sent to a Web

page appended to the end of the URL.

The querystring is made up of name/value pairs, in the following

form:

VariableName=ValueOfVariable

For example, if a URL were to appear as

http://www.yourserver.com/someFile.asp?name=Scott

the querystring would be

?name=scott

Note that the start of the querystring is denoted by a question mark

(?).

The querystring can contain multiple name/value pairs. When more

than one name/value pairs is in the querystring, each name/value

pair is separated by an ampersand (&). For example, if both the

name and age were stored in the querystring, the querystring might

look like this:

?name=scott&age=21

Remember that the querystring is always appended to the URL, so

in your browser's address pane, the full URL of the page would

appear as follows:

http://www.yourserver.com/someFile.asp?name=Scott&age=21

CAUTION

If you have a vast number of form fields in your form, it

quickly becomes apparent that the querystring will become very

long! Strive to keep the length of the total URL fewer than 255

characters. This 255 character limitation was a shortcoming of older

browsers. Today's web browsers do not have this limitation;

however, you have no guarantee that all of your Web site's visitors

will be using up to date browsers, and therefore you should strive to

keep the length of the total URL fewer than 255 characters. That

267

means if you are going to have a vast number of form fields, it

might be wise to set the form's METHOD to POST. We'll discuss

how POST differs from GET shortly.

In Listing 11.4, you'll find a simple form that has its METHOD

property set to GET. This form doesn't really do anything complex;

it simply demonstrates how form values can be passed through the

querystring.

Example 11.4. Creating a Form Where METHOD=GET

1: <FORM METHOD=GET ACTION="GetMethodExample.asp">

2: Name: <INPUT TYPE=TEXT NAME=Name>

3:

4: Age: <INPUT TYPE=TEXT NAME=Age>

5:

6: <INPUT TYPE=SUBMIT>

7: </FORM>

For this example, the ASP file GetMethod Example.asp

does nothing useful; it simply prints a message about the

querystring. The complete code for GetMethod Example.asp is

shown in Listing 11.5. Note the Address bar in Figure 11.3, which

shows how the querystring is appended to the URL and contains

two name/value pairs:

?Name=Scott&Age=21

Figure 11.3. The form field values are stored as name/value

pairs in the querystring.

268

In Listing 11.4, we examined how to create a form using

the GET method. When this form is submitted, the ASP page

specified by the form's ACTION property is called, and values the

user entered are passed to this page. How they are passed

depends upon the form's METHOD property. In Listing 11.4, in line

1, the form's METHOD is set to GET. When the form is submitted,

the user's inputs are passed through the querystring to

GetMethodExample.asp, and the output is shown in Figure 11.3.

Let's take a moment to examine the code for

GetMethodExample.asp. Note that it outputs the contents of the

querystring. Listing 11.5 shows the code for

GetMethodExample.asp:

Example 11.5. Outputting the Contents of the querystring

1: Note the A<U>d</U>dress bar above.

2: <P>

3: The querystring is set to:

4: <%=Request.Querystring%>

Listing 11.5, the code for GetMethodExample.asp, is fairly

straightforward. The only non- HTML code used is on line 4, where

the contents of the Request.QueryString collection are outputted.

The Request.QueryString is discussed in detail in tomorrow's

lesson, "Collecting the Form Information." As you'll learn tomorrow,

the Request.QueryString collection contains the information passed

in the querystring. There are three ways to pass information to an

ASP page through the querystring. You've already seen the first

way, which is to set a form's METHOD property as GET. Another

way is to use the HREF tag, which creates a link in your Web page.

If you wanted to allow a user to click a link that would take him

directly to someFile.asp, passing in a querystring of

?Name=Scott&age=21 you would simply need to create an HREF

tag:<AHREF="someFile.asp?Name=Scott&age=21">Click Me!

This method proves useful when you want to provide a

quick link that passes some predetermined information to a Web

page The third and final way to pass information to an ASP page

through the querystring is to simply type in the full URL with the

querystring into your browser. For example, you could enter

http://www.yourserver.com/someFile.asp?Name=Scott&age=21

269

into your browser's Address bar, which would be equivalent to

using either of the other two methods.

CAUTION

Although passing form information through the querystring

might seem harmless, imagine if you have a form where you want

the user to enter his password or some other type of sensitive

information. When the information is passed through the

querystring, this sensitive information appears on the screen.

Furthermore, the browser might save the full URL in the Histories

folder, which could be a security threat if multiple individuals used

the computer.

If you are going to ask for private information, it is best not

to set METHOD to GET.

When the METHOD property is set to POST, the

information being passed is hidden, and, therefore, setting

METHOD=POST is preferred when collecting sensitive information

from your users. One disadvantage with using GET is that the form

field values are exposed through the Address bar. Also, some older

clients do not support URLs longer than 255 characters, which

means that you should always make sure that the Web page's URL

plus the querystring is less than 255 characters. You can hide

these variables being passed and get rid of the 255 character

limitation by simply setting the METHOD property to POST instead

of GET. When using POST, the data is still passed in name/value

pairs to the ASP page specified by the form's ACTION property.

Instead of being appended to the URL, however, the name/value

pairs are hidden from the Address bar. Therefore, if you plan to ask

your users to enter private information, it is best to use POST.

When using a form whose METHOD is set to POST, the

form field values are sent through the HTTP headers. These

headers are bits of information that the web browser sends to the

web server when requesting a Web page.

Reading Form Values from an ASP Page

Now that you know how to send form field values to an

ASP page, you may find yourself wondering how to read these form

field values in your ASP pages. Day 9 is dedicated to this

discussion, but I think it only fair that I give you a sneak peek today!

270

You read form field values by using the Request object. The

Request object contains two collections used to read form data:

• QueryString collection—The QueryString collection is used to

access the

name/value pairs passed through the querystring.

• Form collection—The Form collection is used to access the

name/value pairs passed

by a form that has its METHOD property set to POST.

A collection is a set of name/value pairs, similar to a two-

column matrix. Suppose that you wanted to list the months of the

year and how many days were in each month. Table 11.1 shows

such a two-column matrix. In a collection, you refer to each row by

the left column of the matrix, which gives you the value, or the right

column of the matrix. For example, say that you named your

collection DaysInMonths. If you requested the value of

DaysInMonth("August") you would get the value 31.

Table 11.1. DaysInMonths Collection Illustrated as a Matrix

Name Value

… …

June 30

July 31

August 31

September 30

… …

We will discuss collections in more detail during Day 9. For

now, just remember that a collection is a set of name/value pairs.

To refer to a particular value, you need to know its name and refer

to it as:

NameOfCollection(Name)

Because you want to read the values from a form in an

ASP page, you will need two Web pages: one page that contains

the HTML code for the form and another page, an ASP page, that

processes the information entered into the form.

Let's start by creating the page that will have the form on it.

For this example, we'll create a form that asks for the user's name

and date of birth. We will name this page BirthdateForm.htm.

271

Create this HTML page and enter the code in Listing 11.6. You can

see the output of BirthdateForm.htm in Figure 11.4.

Example 11.6. The HTML Code for BirthdateForm.htm

1: <HTML>

2: <BODY>

3: Please enter your name and birthdate:

4:

5: <FORM METHOD=POST ACTION="YourAge.asp">

6: Your name: <INPUT TYPE=TEXT NAME=Name>

7:

8:

9: Your Birthdate (in MM/DD/YY format):

10: <INPUT TYPE=TEXT NAME=Birthdate>

11:

12: <P>

13: <INPUT TYPE=SUBMIT VALUE="Send!">

14: </FORM>

15: </BODY>

16: </HTML>

The form created in Listing 11.6 is fairly straightforward.

The form consists of two form fields: a text box for the user to enter

his name (line 6) and a text box for the user to enter his date of

birth (line 10). In line 5, we set the form's ACTION property to

YourAge.asp. This is the ASP page that will be called when the

user submits the form.

You need to create YourAge.asp in the same directory as

BirthdateForm.htm. The code for YourAge.asp can be found in

Listing 11.7. Although some of the ASP code present in

YourAge.asp might be new, we will cover it in detail during Day 9.

The output for YourAge.asp can be seen in Figure 11.5.

It is important to understand how the form's ACTION

property works. If you specify a simple filename, such as

ACTION="someFile.asp", it is important that someFile.asp exists in

the same directory as the page that displays the form. In our

example with BirthdateForm.htm, we set the form's ACTION

property as ACTION="YourAge.asp" (line 5). This requires that both

YourAge.asp and BirthdateFile.htm exist in the same directory. If

YourAge.asp does not exist in the same directory as

272

BirthdateForm.htm, when the user submits the form she will receive

a 404 Error. A 404 Error occurs when the browser asks the Web

server for a Web page that does not exist. Although YourAge.asp

may exist, if it does not exist in the same directory as

BirthdateForm.htm, a 404 Error will occur.

With a slight modification of the form's ACTION property,

you can have these two files exist in different directories, or even

on different Web servers. This topic will be discussed in "Revisiting

the ACTION property."

Example 11.7. The Code for YourAge.asp

1: <%@ Language=VBScript %>

2: <% Option Explicit %>

3: <%

4: 'Read in the form field variables

5: Dim strName, dtBirthDate

6: strName = Request.Form("Name")

7: dtBirthDate = Request.Form("Birthdate")

8:

9: Dim idaysOld

10: idaysOld = DateDiff("d", dtBirthDate, Date)

11: %>

12: <HTML>

13: <BODY>

14:

15: Hello <%=strName%>!

16: You were born on <%=dtBirthDate%>.

17:

18: That makes you <%=iDaysOld%> days old.

19: </BODY>

20: </HTML>

Although the code in Listing 11.7 uses the Request object

(lines 6 and 7), which we have not formerly discussed, you should

be familiar with the rest of the ASP code. We've used the shorthand

notation for Response.Write (<%= … %>) before (lines 15, 16, and

18), and on Day 5, "Using VBScript's Built-in Functions," we

discussed how to use DateDiff (line 10), one of the many powerful

date functions available with VBScript. YourAge.asp simply reads in

the name and birth date that the user entered into the form in

BirthdateForm.htm (lines 6 and 7). It then takes this information and

273

uses DateDiff to calculate the number of days that have passed

since the user's date of birth (line 10). Finally, YourAge.asp prints

out a welcome message with the user's name and birth date, and

then displays the number of days since the user's date of birth

(lines 15 through 18).

Revisiting the ACTION Property

Up until this point we've specified the ACTION property as

a simple filename, such as YourAge.asp or

GetMethodExample.asp. Although there is nothing wrong with this,

it restricts you to placing your form creation Web pages and form

processing scripts in the same directory. What do you do, though, if

you want to have your form creation Web page and form

processing scripts in different directories? What if you want your

form processing script on another Web server altogether? The

ACTION property can be used to allow for either of these two

scenarios.

Assume that you have a directory called scripts, which you

create in the root directory. In the scripts directory, you place all

your form processing scripts.

Client-Side Form Validation

In "Reading Form Values from an ASP Page" you saw an

example of creating an HTML page to display a form to collect the

user's name and birth date. This HTML page was named

BirthdateForm.htm and is presented in Listing 11.6. We also

created an ASP page that read the form field values, calculated the

number of days between the user's date of birth and the current

date, and displayed this calculation, as well as the user's name and

birth date. This ASP page, named YourAge.asp, is available for

review in Listing 11.6. Suppose that in the Birth date form field, the

user entered an ill-formatted date. For the moment, let's assume

that the user entered Thirty years ago as the value for the Birth

date field. What would happen? What should happen?

The form would submit normally and would pass the

"Thirty years ago" as the value of the Birth date field. The ASP

page would read in the form field value with no problem but would

generate an error on line 10 of Listing 11.6 when trying to use the

DateDiff function. The DateDiff function, which we discussed on

Day 5, expects properly formatted dates as its parameters and

274

generates an error if improperly formatted dates are used. Now that

we know what will happen, what should happen instead? It would

be nice to be able to determine whether any form field values were

improperly formatted before the form was submitted. If any form

field values were incorrectly formatted, you would want to alert the

user and not allow the user to submit the form until the form field

values were properly formatted. Checking the user's form fields for

validity before the form is submitted is known as client-side form

validation: the process of using a client-side scripting language,

such as JavaScript, to validate form fields.

Client-side form validation can be bewildering for those

who do not have a solid programming background. Client-side form

validation scripting requires the use of a client-side scripting

language. The only client-side scripting language supported by both

Internet Explorer and Netscape Navigator is JavaScript, which is

similar in syntax to the C programming language.

Using the Different Form Fields

The examples in today's lesson have used all four types of

form fields. Although we used the various types of form fields, we

skimmed over the details of each form field type. This section

covers the more intricate details of each type of form field.

CAUTION

Whenever you want to place a form field within your Web page,

make sure that you place it after a <FORM> tag and before that

<FORM> tag's associated closing tag (</FORM>). Netscape

Navigator will not display form fields that are not encapsulated by

<FORM> … </FORM>.

There are times when a list box makes more sense than a

text box, or when it's easier to use a series of radio buttons as

opposed to a series of check boxes. Table 11.2 lists each form field

type and discusses what circumstances each form field type is best

suited for.

Choosing the Best Form Field Type

Form

Field

Type

When to Use

275

Text box

When you need to allow the user to enter a string of

characters or a number, the text box is the best option. If, however,

the input is restricted, such as in the case with a user choosing his

state of residency, it may be wiser to use a list box or a series of

radio buttons.

List box

If you want to restrict the user to selecting an item among a

set of acceptable answers, a list box is usually the best choice,

especially when the set of acceptable answers is large.

Check box

Anytime you have multiple, related, Yes/No options that

can be mixed and matched in any number of ways, you will want to

use a series of check boxes. Also, anytime you have a simple

Yes/No type question, such as, "Do you want to receive updates on

our products via email?", a check box will do nicely.

Radio button

Whenever you have a set of options that are mutually

exclusive—that is, only none or one of the options out of the set of

options can be selected, radio buttons are the way to go. Radio

buttons can also be used in place of list boxes when the number of

unique options is not too great.

Text Boxes

Text boxes can be created using the INPUT tag. Text

boxes are not the only form field type that is created via the INPUT

tag: check boxes and radio buttons are created similarly. To specify

that you want to create a text box and not a check box or radio

button, you must set the INPUT's TYPE property to TEXT. Other

important properties are the NAME, SIZE, and VALUE properties.

The NAME property, common among all form field types, uniquely

identifies the form field.

The form processing script also uses the value of the

NAME property. Recall that the form processing script interprets the

form field values as a set of name/value pairs. That is, to retrieve

the information the user entered into a specific form field, the form

processing script must know the form field's name. This name is

276

specified by the NAME property in the INPUT tag in the form

creation Web page.

This probably sounds a little confusing. Perhaps an

example will clear things up. For this example, we will create a new

ASP page that will contain a form. We'll name this ASP page

SimpleForm.asp, and set the form's ACTION property to

collectInfo.asp. The code for SimpleForm.asp is shown in Listing

11.8. Figure 11.6 displays SimpleForm.asp when viewed through a

browser. Note that in Figure 11.6 the user has entered two values

into the text boxes.

Example 11.8. SimpleForm.asp Creates a Form with Two Form

Fields

1: <%@ Language=VBScript %>

2: <% Option Explicit %>

3:

4: <HTML>

5: <BODY>

6: <FORM METHOD=POST ACTION="collectInfo.asp">

7: TextBox1:

8: <INPUT TYPE=TEXT NAME=TextBox1>

9:

10: TextBox2:

11: <INPUT TYPE=TEXT NAME=TextBox2>

12: <P>

13: <INPUT TYPE=SUBMIT>

14: </FORM>

15: </BODY>

16: </HTML>

Listing 11.8 demonstrates how to create form fields within

a form. We start by creating a form using the <FORM> tag (line 6).

Whenever you use the <FORM> tag, you should have a closing

form tag as well (line 14). The closing form tag, </FORM>, identifies

the end of a form. All of your form fields should be placed between

the <FORM>and </FORM> tags.

In Listing 11.8 we create two text boxes on lines 8 and 11.

Text boxes are created using the <INPUT> tag with its TYPE

property set to TEXT. The NAME property is responsible for

uniquely identifying each text box. Finally, we add a submit button

277

to our form (line 13). The form created in Listing 11.8 contains two

text boxes and a submit button; Figure 11.6 displays the output of

Listing 11.8 when viewed through a browser.

When this form is submitted, the user will be redirected to

the ASP page

Figure 11.6. SimpleForm.asp when viewed through a browser.

The user has entered two values for the text boxes.

collectInfo.asp. collectInfo.asp can easily read the form variables by

using the Request object. If we wanted to store the user's two text

box entries into two separate variables, we could do so with some

simple code. The code for collectInfo.asp, shown in Listing 11.9,

demonstrates how to use the name of the form field to obtain the

form field's value.

Example 11.9. Store the Values of the Form Fields into Two

Variables

1: <%@ Language=VBScript %>

2: <% Option Explicit %>

3: <%

4: 'Create two variables to hold the values from

5: 'TextBox1 and TextBox2

6: Dim strTextBox1, strTextBox2

7:

8: 'Read in the form field values using the Request object

9: strTextBox1 = Request.Form("TextBox1")

10: strTextBox2 = Request.Form("TextBox2")

11: 'Output the values of strTextBox1 and strTextBox2

12: Response.Write "TextBox1 = " & strTextBox1

13: Response.Write "
TextBox2 = " & strTextBox2

14: %>

278

The values of strTextBox1 and strTextBox2 in

collectInfo.asp depend on what the user entered into the text boxes

in SimpleForm.asp. These two variables are declared on line 6, and

are assigned the values passed in through the Request.Form

collection on lines9 and 10. In Figure 11.6, the user entered the

value ASP is fun! into the first text box (whose NAME property is

set to TextBox1), and Happy Programming! into the second (whose

NAME property is set to TextBox2). What are the values of the

variables in collectInfo.asp? In this example, strTextBox1 would be

equal to Happy Programming, and strTextBox2 would be equal to

Happy Programming!, exactly the values entered into the form

fields.

Besides the NAME and TYPE properties, there are a

couple of other interesting text box properties. The first is the

VALUE property, which allows you to set the default response in

the text box. For example, if you have a text box where you want

the user to type in the country she lives in, you might decide to

have the text box show United States by default. To do so, all you

need to do is create the text box and set the VALUE property

correctly:

<INPUT TYPE=TEXT NAME=Country VALUE="United States">

Another neat property is the SIZE property, which determines how

many characters long the text box is. If you create a text box for a

user to enter his email address, that text box might need to be 20

characters long. If you want the user to enter a shorter string,

perhaps an area code, a text box of length 3 would suffice. If you

want to create a small text box to inquire for the user's area code,

you might do so with the following code:

<INPUT TYPE=TEXT NAME=AreaCode SIZE=3>

NOTE

The SIZE property does not force the user's input to be less than a

certain length.

The SIZE property only determines how many characters wide the

text box will be.

In Listing 11.10, you'll find the code for an HTML page that creates

a form and displays three text boxes. One text box has its VALUE

property set. The other two text boxes have differing SIZE property

279

values. Figure 11.7 illustrates how the browser renders the user of

the VALUE and SIZE properties.

Example 11.10. Working with the VALUE and SIZE Properties

1: <HTML>

2: <BODY>

3: <FORM METHOD=GET ACTION="/scripts/someFile.asp">

4: This INPUT box has its VALUE property set to "United

States":

5:

6: <INPUT TYPE=TEXT NAME=Country VALUE="United States">

7: <P>

8: This INPUT box has its SIZE property set to 3:

9: <INPUT TYPE=TEXT NAME=AreaCode SIZE=3>

10: <P>

11: This INPUT box has its SIZE property set to 25

12: and its VALUE property set to "Hi, mom!"

13: <INPUT TYPE=TEXT NAME=Hi VALUE="Hi, mom!" SIZE=25>

14: </FORM>

15: </BODY>

16: </HTML>

In Listing 11.10 we create three text boxes. Recall that text

boxes are created using the <INPUT>tag. In line 6 we create our

first text box, setting the VALUE property to United States. The

VALUE property, when used with text boxes, indicates the entry a

text box will contain by default. When a user visits this page, the

first text box will already contain the words United States. The text

box created on line 13 also makes use of the VALUE property.

The text boxes created on lines 9 and 13 demonstrate the

use of the SIZE property. The SIZE property determines how many

characters wide the text box will be. If you expect that your users

will only enter a few characters into a given text box, it is a good

idea to use the SIZE property to make the text box smaller. When a

user sees a small text box, they instantly realize that the text box is

to only contain a few characters. On line 9 we query the visitor for

their age. Since it is ludicrous to expect this to be more than three

characters long, we create the text box with SIZE=3.

280

NOTE

The order with which you place properties in a form field is

unimportant. For example, these two lines are functionally identical:

<INPUT NAME=City SIZE=20 VALUE="Chicago" TYPE=TEXT>

And <INPUT VALUE="Boston" TYPE=TEXT SIZE=20 NAME=City>

Check the text boxes' differing sizes and default values.

List Boxes

There are times when a text box just won't cut it. Perhaps

you want to restrict the user to a specific set of choices. For

example, if you want users to specify their states of residency, you

don't want to use a text box because someone might misspell a

state's name or enter 41 as his state of residency. When you need

the user to choose a response to a particular set of valid options, it

is best to use a list box. Of all the form field types, the list box is the

oddball, being the only one that isn't created via the <INPUT> tag.

Rather, the list box uses two tags, the <SELECT> and the

<OPTION> tags.

The <SELECT> tag indicates that a list box will be created,

whereas each <OPTION> tag represents a unique choice for the

list box.

The <SELECT> tag has two properties that we will discuss: the

NAME property and the SIZE property. The NAME property serves

the same purpose as with the text box form field type—it uniquely

identifies the particular list box. The SIZE property determines how

many list box options are shown at one time. The default value for

the SIZE property is 1, which means that a list box, by default, will

show only one option at a time. Figure 8.8 displays a list box with

the default SIZE property and a list box with a SIZE property of 5.

The <OPTION> tag has two important properties. The first is the

VALUE property, which uniquely identifies each separate list box

option. When the user selects a list box option and submits the

form, the form processing script is passed the string in the VALUE

property of the selected list box item. The VALUE property does not

determine what is displayed in the list box. Rather, the text that

appears after the <OPTION> tag is displayed in the list box.

Examine the code in Listing 11.11. This is the code that, when

viewed through a browser, appears in OPTION tag>Figure 11.8.

281

Example 11.11. Understanding the <OPTION> Tag

1: <HTML>

2: <BODY>

3: <FORM METHOD=GET ACTION="/scripts/someFile.asp">

4: This list box has its SIZE property set to the default:

5:

6: <SELECT NAME=ASPOpinion>

7: <OPTION VALUE="5">I like ASP a lot!

8: <OPTION VALUE="4">ASP sure is neat.

9: <OPTION VALUE="3">It's Interesting.

10: <OPTION VALUE="2">ASP is difficult!

11: <OPTION VALUE="1">Ah!

12: </SELECT>

13: <P>

14: This list box has its SIZE property set to 5:

15:

16: <SELECT NAME=Experience SIZE=5>

17: <OPTION VALUE="10">10+ Years of ASP Experience

18: <OPTION VALUE="9">9 Years of ASP Experience

19: <OPTION VALUE="8">8 Years of ASP Experience

20: <OPTION VALUE="7">7 Years of ASP Experience

21: <OPTION VALUE="6">6 Years of ASP Experience

22: <OPTION VALUE="5">5 Years of ASP Experience

23: <OPTION VALUE="4">4 Years of ASP Experience

24: <OPTION VALUE="3">3 Years of ASP Experience

25: <OPTION VALUE="2">2 Years of ASP Experience

26: <OPTION VALUE="1">1 Year of ASP Experience

27: <OPTION VALUE="0">Less than a year of ASP Experience

28: </SELECT>

29: </FORM>

30: </BODY>

31: </HTML>

If you compare the code in Listing 11.11 to the output

shown in Figure 11.8, you'll notice that the text after the <OPTION>

tag is displayed in the list box. Look at line 7 in Listing 11.11 and

the first list box in Figure 11.8. Notice how the text in the list box

reads: I like ASP a lot! This is, not coincidentally, the text that

follows after the <OPTION> tag. The text that is displayed and the

text that is sent to the form processing script when the form is

submitted can be two completely different values. The form

processing script is sent the value in the <OPTION> tag's VALUE

282

property, not what is displayed as the list box's text in the browser.

To help you understand this concept, let's look at an example. The

following code creates a simple list box that contains two options,

Yes and No. The <OPTION> tags that define these two options

each have a unique VALUE.

<FORM METHOD=POST ACTION="/scripts/processListBox.asp">

<SELECT NAME=YesOrNo SIZE=1>

<OPTION VALUE="YesChoice">Yes

<OPTION VALUE="NoChoice">No

</SELECT>

<P>

<INPUT TYPE=SUBMIT VALUE="Voice your Opinion!">

</FORM>

The form processing script, /scripts/processListBox.asp,

could determine what list box option was selected with

Request.Form("YesOrNo"). YesOrNo is the value of the <SELECT>

tag's NAME property and is what the form processing script would

use to refer to the list box. The value of Request.Form("YesOrNo")

would depend on what list box option the user chooses. If the user

chooses Yes, Request.Form("YesOrNo") would be equal to

YesChoice. If, on the other hand, the user chooses the option

labeled No, Request.Form("YesOrNo") would be equal to

NoChoice.

NOTE

When you want to read the value of a list box in the form

processing script, you need to refer to it by the NAME property in

the <SELECT> tag. The value of the list box is equivalent to the

VALUE property of the selected list box option.

One other interesting property for <OPTION> tags

deserves mentioning. Notice that in a list box, the option selected

by default is the first <OPTION> tag. You can change that by using

the SELECTED property of the <OPTION> tag. Just place the word

SELECTED within the <OPTION> tag that you want to have

selected by default. If you created a list box like the following:

<FORM>

<SELECT NAME=DefaultTest>

<OPTION VALUE="1">1GuyFromRolla

<OPTION VALUE="2">2GuysFromRolla

283

<OPTION VALUE="3">3GuysFromRolla

<OPTION VALUE="4" SELECTED>4GuysFromRolla

</SELECT>

</FORM>

the preceding code, if viewed through a browser, would have the

last list box option selected by default.

Check Boxes

Suppose that you were asked to create a way for a large

eCommerce Web site to ascertain the interests of its visitors. You

might want to know what product lines customers are interested in.

Rather than asking the user to type into a text box what product

lines they are interested in, it would make more sense to use a

series of check boxes to limit the choices to those that make sense

for your business. Further, check boxes are useful if there is a

group of related Yes/No type questions that are not mutually

exclusive. That is, there are a number of Yes/No type questions,

and the user should be able to answer each question in the

affirmative or negative.

For the user interests example, you might ask the users to

choose what product lines they are interested in. You then might list

several product lines such as Home Electronics, Major Appliances,

and Stereos. It would be nice to have a series of check boxes next

to each product line name, so that the user could check the product

lines that interest them. In this example, we'd have three check

boxes, one for each of three product lines. Check boxes are

created with the <INPUT> tag. For a check box, you need to set the

TYPE property to TYPE=CHECKBOX. The NAME property is

slightly different for a check box. Rather than having a unique

NAME for each check box, you can group check boxes by giving

them all the same NAME. In the product line example, you would

want to give all three check boxes the same NAME. The VALUE

property needs to be unique among check boxes that have the

same NAME. The VALUE property is what the form processing

script will receive when referring to the check box group. Let's write

some HTML to create a form to query users about their interests in

the three product lines. The code will create three check boxes.

When creating a check box, the <INPUT> tag only creates the

check box. You need to use HTML to label the check box.

284

Listing 11.12, when viewed through a browser, can be seen in

Figure 11.9.

Example 11.12. Users Can Select Their Interests Via a Series of

Checkboxes.

1: <HTML>

2: <BODY>

3: <FORM METHOD=POST ACTION="/scripts/someFile.asp">

4: What Product Lines are you Interested in?

5: <INPUT TYPE=CHECKBOX NAME=ProductLine

VALUE=HomeElectronics>

6: Home Electronics

7:

8: <INPUT TYPE=CHECKBOX NAME=ProductLine

VALUE=MajorAppliances>

9: Major Appliances

10:

11: <INPUT TYPE=CHECKBOX NAME=ProductLine

VALUE=Stereos>

12: Stereos

13: <P>

14: <INPUT TYPE=SUBMIT>

15: </FORM>

16: </BODY>

17: </HTML>

Listing 11.12 creates three checkboxes. Recall that

checkboxes are created using the <INPUT> tag with the TYPE

property set to CHECKBOX. In lines 5, 8, and 11 we create our

three related checkboxes, each with the same NAME.

Each checkbox in the group of related checkboxes will be

uniquely identified in the form processing script via the INPUT tag's

VALUE property.

The INPUT tag simply creates a checkbox; we have to

supply our own label for the checkbox.

A checkbox's label is denoted by the text that follows the

INPUT tag used to create the checkbox. In Listing 8.12, the three

checkbox labels are Home Electronics, Major Appliances, and

Stereos. Line 5 creates our first checkbox, which, on line 6, is

285

labeled Home Electronics. Note how the other two labels follow

each of their respective checkboxes.

Radio Buttons

Radio buttons and check boxes are a lot alike. Both radio

buttons and check boxes are used to group options that users can

choose from. Looking back at the last example, we created a form

that listed three product lines and asked users to select which ones

they were interested in. Because we wanted to let the users select

one, two, or three product lines that they were interested in, we

used check boxes to facilitate our information gathering. However,

what if we wanted to let the user select only one product line?

Perhaps we want to ask users what is their most favorite product

line. Check boxes wouldn't work in this situation, but radio buttons

would.

Check boxes allow users to select none, one, or many of

the available options among a group of related options. Radio

buttons, on the other hand, only allow none or one of the options to

be selected from a group of options. Let's examine how you can

use radio buttons to query users for their favorite product line. The

code in Listing 11.13 creates a form with three radiobuttons, and

the output can be seen in Figure 11.10.

Example 11.13. Radio Buttons Allow the User to Select One

Option, at Most

1: <HTML>

2: <BODY>

3: <FORM METHOD=POST ACTION="/scripts/someFile.asp">

4: What Product Lines are you most interested in?

5: <INPUT TYPE=RADIO NAME=ProductLine

VALUE=HomeElectronics>

6: Home Electronics

7:

8: <INPUT TYPE=RADIO NAME=ProductLine

VALUE=MajorAppliances>

9: Major Appliances

10:

11: <INPUT TYPE=RADIO NAME=ProductLine VALUE=Stereos>

12: Stereos

13: <P>

14: <INPUT TYPE=SUBMIT>

286

15: </FORM>

16: </BODY>

17: </HTML>

The three radio buttons in Listing 11.13 are related radio

buttons; that is, they each share the same NAME (ProductLine).

Each radio button is created with an <INPUT> tag with its TYPE set

to RADIO. Lines 5, 8, and 11 contain the three INPUT tags

responsible for creating our three radio buttons. The text that

follows the radio button will be the radio button's label. Our first

radio button's label is Home Electronics, and is created in line 6.

Major Appliances and Stereos are the other two labels, shown on

lines 9 and 12 respectively. Note the syntax of the <INPUT> tag

when creating a radio button. It looks a lot like the syntax when we

created a check box. The only change is the value of the TYPE

property from TYPE=CHECKBOX to TYPE=RADIO. Again, with

radio buttons, as with check boxes, related radio buttons have their

NAME properties equal but different values for their VALUE

properties. You can also use the CHECKED keyword to have a

radio button selected by default. Again, its syntax is identical to the

syntax for having a check box selected by default. The following

line would create a radio button that is checked by default:

<INPUT TYPE=RADIO NAME=ProductLine VALUE=Stereos

CHECKED>

Summary

1. Explains how to collect information from your users using

forms.

2. We discussed a number of useful HTML tags in depth and

examined how to use <FORM>, <INPUT>, and <SELECT> tags

to create forms. A form, when submitted, sends the values

entered into its form fields to a form processing script, which can

be an ASP page.

3. This form processing script reads the form field values entered

by the user and makes decisions based on these values.

4. Today's lesson also detailed the four types of form fields: text

boxes, list boxes, check boxes, and radio buttons. Although

each form field type is fairly similar, there are some minor

differences in creating and correctly using each of them. Each

form field type is also best suited for a specific role. Text boxes

are useful when the user needs to enter a string or number.

287

List boxes are needed when there is a certain set of information

the user must select from. Check boxes and radio buttons are a

must when there is a related group of options you want to have

your users select from.

Question: (Sample of ASP)

A. Short Note on:
a. Text Box
b. List box
c. Radio button
d. Checkbox

B. Give the output for the following :
(i)

Response.Write(LTRIM(LEFT("####Congratulations", 7))
(where # denotes a blank space)

(ii) Response.Write((3 *5 > 4 + 5) AND (2 ^ 3 + 9 \
2))

(iii) Response.Write(ABS(3 – 11 * 4 ^ 2))5.
C. Questions given below are based on ASP:

a) Name and specify the usage of any two ASP components.
b) Differentiate between Properties and Methods with the help of
an example.
c) Underline the errors in the following code and write the
corrected script.

%>

dim fname

fname=Request.Query("fname")

If fname<>"" Then

Response.Output("Hello " fname "!
")

Response.Output("How are you today?")

End

<%

d) Give the output for the following code segment:

%>

Arr=Array(25,14,20,45,25,4,1,31)

max=ubound(Arr)

For i=max to 1 step -2

Arr[i]= 10*Arr[i]

Response.write (Arr(i) & "
")

Next

%>

288

D. What is a variable?
E. What are the methods in Session Object?
F. What is Global.asa file?
G. What is the difference between Cookies collection and

Form/Query string collection?
H. What are the properties of Session Object?
I. Explain the difference between POST and GET Method.
J. Why do we use Option Explicit?
K. What is Querystring collection?
L. What are LOCAL and GLOBAL variables?
M. What is the difference between ASP and HTML? Or Why

ASP is better than HTML?
N. What is ServerVariables collection?
O. What are the ASP Scripting Objects?
P. What is a Form collection?
Q. What is IIS?
R. What is the difference between Querystring collection and

Form collection?
S. What are the attributes of the tags? What are their

functions?
T. What is application Object?



289

12

INTRODUCTION TO JAVASCRIPT

Unit Structure

12.1 Introduction

12.2 Operators, Assignments and Comparisons, Reserved words

12.3 Starting with JavaScript

o Writing first JavaScript program

o Putting Comments

12.4 Functions

Client-Side versus Server-Side Scripting

There are two basic varieties of scripting, client-side and

server-side. As their names imply, the main difference is where the

scripts are actually executed.

Client-side scripting

Client-side scripts are run by the client software—that is, the

user agent. As such, they impose no additional load on the server,

but the client must support the scripting language being used.

JavaScript is the most popular client-side scripting language, but

Jscript and VBScript are also widely used. Client-side scripts are

typically embedded in HTML documents and deployed to the client.

As such, the client user can usually easily view the scripts. For

security reasons, client-side scripts generally cannot read or write

to the server or client file system.

Server-side scripting

Server-side scripts are run by the Web server. Typically,

these scripts are referred to as CGI scripts, CGI being an acronym

for Common Gateway Interface, the first interface for server-side

Web scripting. Server-side scripts impose more load on the server,

but generally don’t influence the client—even output to the client is

optional; the client may have no idea that the server is running a

290

script. Perl, Python, PHP, and Java are all examples of server-side

scripting languages. The script typically resides only on the server,

but is called by code in the HTML document. Although server-side

scripts cannot read or write to the client’s file system, they usually

have some access to the server’s file system. As such, it is

important that the system administrator takes appropriate measures

to secure server-side scripts and limit their access.

12.1 INTRODUCING JAVASCRIPT

It's important to understand the difference between

Java and JavaScript. Java is a full programming language

developed by Sun Microsystems with formal structures, etc.

JavaScript is a scripting language developed by Netscape that is

used to modify web pages. Most JavaScript must be written in the

HTML document between <SCRIPT> tags. You open with a

<SCRIPT> tag, write your JavaScript, and write a closing

</SCRIPT> tag. Sometimes, as an attribute to script, you may add

“Language=JavaScript” because there are other scripting

languages as well as JavaScript that can be used in HTML. We’ll

go through some examples to demonstrate the syntax of

JavaScript. To understand the workings of JavaScript, it is essential

to understand a few basic programming concepts.

JavaScript is object-oriented. An Object in JavaScript is

a resource that has specific characteristics known as properties

and provides several services known as methods and events. An

example of an object is document, which represents the current

web page and has properties such as location (which stores the

URL location of the document) and methods such as writeln ,

which writes dynamically created html text to the document.

A variable stores a value. It can be thought of as a

labeled box, with the name of the variable as the label and the

value as the contents. The JavaScript statement:

var x= “hello”;

assigns to the variable named x the String value “hello”.

var x=1;

This line of JavaScript assigns to the variable x the

integer value 1. As you can see, a JavaScript variable can refer to a

value of any type; this can be integer, string, or even any type of

291

object. You dont have to specify the type of variable before creating

it. Note that object properties can be thought of as variables that

belong to the object.

A method is basically a collection of statements that

does something. For example, a method “writeln()” exists in the

document object that can be used to write html to your document.

Methods are predefined in JavaScript. It is possible for you to

define functions, which can be thought of as methods you define

outside of any object. When you have the syntax object.method as

you do with document.writeln, the method operates on the object

given. In this case, the writeln method operates (the operation is

writing) to the document (the browser window that you see). This

syntactic structure is often used in JavaScript.

What java script can do???

Getting your Web page to respond or react directly to

user interaction with form elements (input fields, text areas, buttons,

radio buttons, checkboxes, selection lists) and hypertext links—a

class of application I call the serverless CGI

a. Distributing small collections of database-like information

and providing a friendly interface to that data

b. Controlling multiple-frame navigation, plug-ins, or Java

applets based on user choices in the HTML document

c. Preprocessing data on the client before submission to a

server

d. Changing content and styles in modern browsers

dynamically and instantly in response to user interaction

12.1.1 Writing JavaScript Code

JavaScript follows a fairly basic syntax that can be

outlined with a few simple rules:

1. With few exceptions, code lines should end with a semicolon

(;). Notable exceptions to the semicolon rule are lines that

end in a block delimiter

2. ({ or }). Blocks of code (usually under controls structures

such as functions, if

3. statements, and so on) should be enclosed in braces

({ and }).

4. Although not necessary, explicit declaration of variables is a

good idea.

292

The use of functions to delimit code fragments is highly

advised and increases the ability to execute those fragments

independently from one another.

12.2.2 Javascript and Comments

Some older browsers do not recognize JavaScript. These browsers

would sometimes display JavaScript code in the page as if it were

part of the contents of the page

Therefore, it is conventional to place

JavaScript code between comment tags as follows:

<script>

<!--

..JavaScript code goes here..

//-->

</script>

Older browsers would just ignore the Javascript code between the

<!-- and --> comment tags, while new browsers would recognize it

as JavaScript code. The // just before the end comment tag --> is a

JavaScript comment symbol, and tells the browser not to execute

the end comment tag --> as JavaScript. Using comment tags

makes a webpage more accessible to older browsers.

12.2.3 Entering Your First Script

It’s time to start creating your first JavaScript script. Launch

your text editor and browser. Next, follow these steps to enter and

preview your first JavaScript script:

1. Activate your text editor and create a new, blank document.

2. Type the script into the window exactly as shown in Listing.

3. Save the document with the name script1.htm. (This is the lowest

common denominator filenaming convention for Windows 3.1—feel

free to use an .html extension if your operating system allows it.)

4. Switch to your browser.

5. Choose Open (or Open File on some browsers) from the File

menu and select script1.htm. (On some browsers, you have to click

a Browse button to reach the File dialog box.)

293

12.2.4 Calculations and operators

JavaScript supports the usual range of operators for both

arithmetic and string values. Tables 5-1 through 5-4 list the various

operators supported by JavaScript.

294

12.2.5 Handling strings

Strings are assigned using the standard assignment operator (=).

You can concatenate two strings together using the concatenate

operator (+). For example, at the end of this code, the full_name

variable will contain “Terri Moore”:

first_name = “Terri”;

last_name = “Moore”;

full_name = first_name + “ ” + last_name;

12.3 FUNCTIONS

Functions are a means of grouping code fragments together

into cohesive pieces. Typically, those pieces perform very specific

tasks—receiving values to execute upon and returning values to

indicate their success, failure, or result. There are essentially two

types of functions, built-in JavaScript functions and user-defined

functions.

12.3.1 Built-in functions

JavaScript has quite a few built-in functions to perform a

variety of tasks. Augmenting the functions are a bunch of properties

and methods that can be used with just about any object, from

295

browser function to variable. The scope of built-in JavaScript

functions, methods, and properties is too vast to adequately convey

here. However, comprehensive references can be found on the

Internet, including the following:

✦ Netscape Devedge JavaScript 1.5 Guide

(http://devedge.netscape.com/library/manuals/2000/javascript/1.5/g

uide/)

✦ DevGuru JavaScript Quick Reference

(http://www.devguru.com/Technologies/ecmascript/quickref/javascri

pt_intro.html)

12.3.2 User-defined functions

Like any other robust programming language, JavaScript

allows for user-defined functions. User-defined functions allow you

to better organize your code into discrete, reusable chunks. User-

defined functions have the following syntax:

function function_name (arguments) {

...code of function...

return value_to_return;

}

For example, the following function will spacefill any string passed

to it to 25 characters and return the new string:

function spacefill (text) {

while (text.length < 25) {

text = text + “ ”;

}

return text;

}

Elsewhere in your code you can call a function similar to the

following:

address = spacefill(address);

This would cause the variable address to be spacefilled to

25 characters:

a. The spacefill function is called with the current value of address.

b. The spacefill function takes the value and assigns it to the local

variable text.

c. The local variable text is spacefilled to 25 characters.

d. The local variable text (now spacefilled) is returned from the

function.

e. The original calling assignment statement assigns the returned

value to the address variable.

296

Note The arguments passed to a function can be of any type. If

multiple arguments are passed to the function, separate them with

commas in both the calling statement and function definition, as

shown in the following examples:

Calling statement:

spacefill(address, 25)

Function statement:

function spacefill (text, spaces)

Note that the number of arguments in the calling statement

and in the function definition should match. The variables used by

the function for the arguments and any other variables declared

and used by the function are considered local variables—they are

inaccessible to code outside the function and exist only while the

function is executing.

12.4 DATA TYPES AND VARIABLES

Variables are storage containers where you can temporarily

store values for later use. JavaScript, like most scripting languages,

supports a wide range of variable types (integer, float, string, and

so on) but incorporates very loose variable type checking. That

means that JavaScript doesn’t care too much about what you store

in a variable or how you use the variable’s value later in the script.

JavaScript variable names are case-sensitive but can contain

alphabetic or numeric characters. The following are all valid

JavaScript variable names:

Rose

rose99

total

99_password

Although JavaScript doesn’t require that you declare

variables before their use, declaring variables is a good

programming habit to develop. To declare a variable in JavaScript,

you use the var keyword. For example, each of the following lines

declares a variable:

var name = “Hammond”;

var total;

var tax_rate = .065;



297

13

WORKING WITH OBJECTS

Unit Structure

13.1 Working with Objects
o Object Types and Object Instantiation
o Date object, Math object, String object, Event object, Frame

object, Screen object

13.1 WHAT DEFINES AN OBJECT?

When an HTML tag defines an object in the source code, the

browser creates a slot for that object in memory as the page loads.

But an object is far more complex internally than, say, a mere

number stored in memory. The purpose of an object is to represent

some “thing.” Because in JavaScript you deal with items that

appear in a browser window, an object may be an input text field, a

button, or the whole HTML document. Outside of the pared-down

world of a JavaScript browser, an object can also represent

abstract entities, such as a calendar program’s appointment entry

or a layer of graphical shapes in a drawing program.

Every object is unique in some way, even if two or more

objects look identical to you in the browser. Three very important

facets of an object define what it is, what it looks like, how it

behaves, and how scripts control it. Those three facets are

properties, methods, and event handlers.

13.1.1 Strings Objects

A string is any text inside a quote pair. A quote pair consists

of either double quotes or single quotes. This allows one string to

nest inside another, as often happens in event handlers. In the

following example, the alert() method requires a quoted string as a

parameter, but the entire method call also must be inside quotes.

onClick=”alert(‘Hello, all’)”

298

JavaScript imposes no practical limit on the number of

characters that a string can hold. However, most older browsers

have a limit of 255 characters in length for a script statement. You

have two ways to assign a string value to a variable. The simplest

is a basic assignment statement:

var myString = “Howdy”

You can also create a string object using the more formal

syntax that involves the new keyword and a constructor function

(that is, it “constructs” a new object):

var myString = new String(“Howdy”)

Whichever way you use to initialize a variable with a string,

the variable receiving the assignment can respond to all String

object methods.

 Joining strings

Bringing two strings together as a single string is called

concatenating strings. String concatenation requires one of two

JavaScript operators. the addition operator (+) linked multiple

strings together to produce the text dynamically written to the

loading Web page:

document.write(“ of ” + navigator.appName + “.”)

As valuable as that operator is, another operator can be

even more scripter friendly. This operator is helpful when you are

assembling large strings in a single variable. The strings may be so

long or cumbersome that you need to divide the building process

into multiple statements. The pieces may be combinations of string

literals (strings inside quotes) or variable values. The clumsy way to

do it (perfectly doable in JavaScript) is to use the addition operator

to append more text to the existing chunk:

var msg = “Four score”

msg = msg + “ and seven”

msg = msg + “ years ago,”

But another operator, called the add-by-value operator,

offers a handy shortcut. The symbol for the operator is a plus and

equal sign together (+=). This operator means “append the stuff on

the right of me to the end of the stuff on the left of me.” Therefore,

the preceding sequence is shortened as follows:

299

var msg = “Four score”

msg += “ and seven”

msg += “ years ago,”

You can also combine the operators if the need arises:

var msg = “Four score”

msg += “ and seven” + “ years ago”

 String methods

Of all the core JavaScript objects, the String object has the

most diverse collection of methods associated with it. Many

methods are designed to help scripts extract segments of a string.

Another group, rarely used in my experience, wraps a string with

one of several style-oriented tags (a scripted equivalent of tags for

font size, style, and the like). To use a string method, the string

being acted upon becomes part of the reference followed by the

method name. All methods return a value of some kind. Most of the

time, the returned value is a converted version of the string object

referred to in the method call—but the original string is still intact.

To capture the modified version, you need to assign the results of

the method to a variable:

var result = string.methodName()

 Changing string case

Two methods convert a string to all uppercase or lowercase

letters:

var result = string.toUpperCase()

var result = string.toLowerCase()

Not surprisingly, you must observe the case of each letter of

the method names if you want them to work. These methods come

in handy when your scripts need to compare strings that may not

have the same case (for example, a string in a lookup table

compared with a string typed by a user). Because the methods

don’t change the original strings attached to the expressions, you

can simply compare the evaluated results of the methods:

var foundMatch = false

if (stringA.toUpperCase() == stringB.toUpperCase()) {

foundMatch = true

}

300

 String searches

You can use the string.indexOf() method to determine if one

string is contained by another. Even within JavaScript’s own object

data, this can be useful information. For example, another property

of the navigator object (navigator.userAgent) reveals a lot about the

browser that loads the page. A script can investigate the value of

that property for the existence of, say, “Win” to determine that the

user has a Windows operating system. That short string might be

buried somewhere inside a long string, and all the script needs to

know is whether the short string is present in the longer one—

wherever it might be. The string.indexOf() method returns a number

indicating the index value (zero based) of the character in the larger

string where the smaller string begins.

The key point about this method is that if no match occurs,

the returned value is -1. To find out whether the smaller string is

inside, all you need to test is whether the returned value is

something other than -1.Two strings are involved with this method:

the shorter one and the longer one.The longer string is the one that

appears in the reference to the left of the method name; the shorter

string is inserted as a parameter to the indexOf() method. To

demonstrate the method in action, the following fragment looks to

see if the user is running Windows:

var isWindows = false

if (navigator.userAgent.indexOf(“Win”) != -1) {

isWindows = true

}

The operator in the if construction’s condition (!=) is the inequality

operator.

You can read it as meaning “is not equal to.”

 Extracting copies of characters and substrings

To extract a single character at a known position within a

string, use the charAt() method. The parameter of the method is an

index number (zero based) of the character to extract. When I say

extract, I don’t mean delete, but rather grab a snapshot of the

character. The original string is not modified in any way. For

example, consider a script in a main window that is capable of

301

inspecting a variable, stringA, in another window that displays map

images of different corporate buildings. When the window has a

map of Building C in it, the stringA variable contains “Building C.”

The building letter is always at the tenth character position of the

string (or number 9 in a zero-based counting world), so the script

can examine that one character to identify the map currently in that

other window:

var stringA = “Building C”

var bldgLetter = stringA.charAt(9)

// result: bldgLetter = “C”

Another method—string.substring()—enables you to extract a

contiguous sequence of characters, provided you know the starting

and ending positions of the substring of which you want to grab a

copy. Importantly, the character at the ending position value is not

part of the extraction: All applicable characters, up to but not

including that character, are part of the extraction. The string from

which the extraction is made appears to the left of the method

name in the reference. Two parameters specify the starting and

ending index values (zero based) for the start and end positions:

var stringA = “banana daiquiri”

var excerpt = stringA.substring(2,6)

// result: excerpt = “nana”

13.1.2 Math Objects

JavaScript provides ample facilities for math. The Math

object contains all of these powers. This object is unlike most of the

other objects in JavaScript in that you don’t generate copies of the

object to use. Programmers call this kind of fixed object a static

object. That Math object (with an uppercase M) is part of the

reference to the property or method. Properties of the Math object

are constant values, such as pi and the square root of two:

var piValue = Math.PI

var rootOfTwo = Math.SQRT2

Math object methods cover a wide range of trigonometric

functions and other math functions that work on numeric values

already defined in your script. For example, you can find which of

two numbers is the larger:

302

var larger = Math.max(value1, value2)

Or you can raise one number to a power of ten:

var result = Math.pow(value1, 10)

More common, perhaps, is the method that rounds a value

to the nearest integer value:

var result = Math.round(value1)

Another common request of the Math object is a random

number. The Math.random() method returns a floating-point

number between 0 and 1. To generate a random integer between

zero and any top value, use the following

formula:

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math.floor() returns the integer part of

any floating-point number.) To generate random numbers between

one and any higher number, use this formula:

Math.floor(Math.random() * n) + 1

where n equals the top number of the range. For the dice game, the

formula for each die is

newDieValue = Math.floor(Math.random() * 6) + 1

13.1.3 Dates Objects

Working with dates beyond simple tasks can be difficult

business in JavaScript. A lot of the difficulty comes with the fact that

dates and times are calculated internally according to Greenwich

Mean Time (GMT)—provided the visitor’s own internal PC clock

and control panel are set accurately. A scriptable browser contains

one global Date object (in truth, one Date object per window) that is

always present, ready to be called upon at any moment. The Date

object is another one of those static objects. When you wish to

work with a date, such as displaying today’s date, you need to

invoke the Date object constructor to obtain an instance of a Date

object tied to a specific time and date. For example,when you

invoke the constructor without any parameters, as in var today =

new Date() the Date object takes a snapshot of the PC’s internal

clock and returns a date object for that instant. Notice the

distinction between the static Date object and a date object

303

instance, which contains an actual date value. The variable, today,

contains not a ticking clock, but a value that you can examine, tear

apart, and reassemble as needed for your script.

Internally, the value of a date object instance is the time, in

milliseconds, from zero o’clock on January 1, 1970, in the

Greenwich Mean Time zone—the world standard reference point

for all time conversions. That’s how a date object contains both

date and time information.

You can also grab a snapshot of the Date object for a

particular date and time in the past or future by specifying that

information as parameters to the Date object constructor function:

var someDate = new Date(“Month dd, yyyy hh:mm:ss”)

var someDate = new Date(“Month dd, yyyy”)

var someDate = new Date(yy,mm,dd,hh,mm,ss)

var someDate = new Date(yy,mm,dd)

var someDate = new Date(GMT milliseconds from 1/1/1970)

If you attempt to view the contents of a raw date object,

JavaScript converts the value to the local time zone string as

indicated by your PC’s control panel setting.To see this in action,

use The Evaluator Jr.’s top text box to enter the following:

new Date()

Your PC’s clock supplies the current date and time as the

clock calculates them (even though JavaScript still stores the date

object’s millisecond count in the GMT zone). You can, however,

extract components of the date object via a series of methods that

you apply to a date object instance. Table shows an abbreviated

listing of these properties and information about their values.

304

Table Some Date Object Methods

Be careful about values whose ranges start with zero,

especially the months. The getMonth() and setMonth() method

values are zero based, so the numbers are one less than the month

numbers you are accustomed to working with (for example,

January is 0, December is 11).

13.1.4 Screen Object

In JavaScript 1.2, the screen property of a Window object refers

to a Screen object. This Screen object provides information about

the size of the user's display and the number of colors available.

The width and height properties specify the size of the display in

pixels. The availWidth and availHeight properties specify the display

size that is actually available: they exclude the space required by

features like the Windows 95 taskbar. You can use these properties

to help you decide what size images to include in a document, for

example, or in a program that creates multiple browser windows,

what size windows to create.

305

The colorDepth property specifies the base-2 logarithm of the

number of colors that can be displayed. Often, this value is the

same as the number of bits per pixel used by the display. For

example, an 8-bit display can display 256 colors, and if all of these

colors were available for use by the browser, the screen.colorDepth

property would be 8. In some circumstances, however, the browser

may restrict itself to a subset of the available colors, and you might

find a screen.colorDepth value that is lower than the bits-per-pixel

value of the screen. If you have several versions of an image that

were defined using different numbers of colors, you can test this

colorDepth property to decide which version to include in a

document.

 Javascript Window Screen Object Properties

Following are the commonly used properties of javascript

screen object that are also accessible in almost all the modern

browsers:

1. availWidth: returns the available width of the display screen

of the computer monitor based on resolution of the screen.

availWidth property of screen object gives approximate value of

width available to display the content in a browser along x-axis.

availWidth property returns the width in pixels without excluding

the width of window’s taskbar coz in Windows operation system,

according to default settings, position of taskbar is bottom of display

screen.

2. availHeight: returns the available height of the display

screen of the computer monitor based on resolution of the screen.

availHeight property of screen object gives approximate value of

height available to display the content in a browser along y-axis.

availHeight property returns the height in pixels excluding the

height of window’s taskbar coz in Windows operation system,

according to default settings, position of taskbar is bottom of display

screen that reduces the available height for the web browsers.

3. colorDepth: returns the bit depth of the color palette

retrieved from the graphic properties of the computer system.

colorDepth property of the javascript screen object returns the color

quality property of the client’s computer such as 16 bit, 24 bit or 32

bit that depends upon graphics card and its memory (buffer).

306

4. height: returns the height of display screen. Height property

of javascript screen object actually returns the number of pixels in

vertical direction i.e. vertical value for screen resolution along y-

axis.

5. width: returns the width of display screen. Width property of

javascript screen object actually returns the number of pixels in

horizontal direction i.e. horizontal value for screen resolution along

x-axis.

Eg:

<html>

<head>

<title>Javascript Window Screen availWidth</title>

</head>

<body>

<script type="text/javascript" language="javascript">

document.write(screen.availWidth);

document.write("
");

document.write(window.screen.availWidth);

</script>

</body>

</html>

13.1.5 Frame Object Properties

The JavaScript Frame object is the representation of an

HTML FRAME which belongs to an HTML FRAMESET. The

frameset defines the set of frame that make up the browser

window. The JavaScript Frame object is a property of the window

object.

The frame object is a browser object of JavaScript used for

accessing HTML frames. The user can use frames array to access

all frames within a window. Using the indexing concept, users can

access the frames array.

NOTE:

 The frames array index always starts with zero and not 1.

 The frame object is actually a child of the window object.

These objects are created automatically by the browser and

help users to control loading and accessing of frames.

307

 The properties and methods of frame object are similar to

that of Window object in JavaScript.

 The frame object does not support close() method that is

supported by window object.

 Using the <FRAMESET> document creates frame objects

and each frame created is thus a property of window object.

 Properties of frame object:

 frames

 name

 length

 parent

 self

frames:

The frames property of frame object denotes a collection or

array of frames in a window and also in a frame set.

self:

As the name implies, the self property of frames object

denotes the current frame. Using self property, the user can access

properties of the current frame window.

name:

The name property of frame object denotes the name of the frame.

The method of denoting the name attribute is performed by using

the name attribute of the <frame> tag.

For example it can be written as:

exforsys=window.frames(2).name

The above statement would store the name of the third

window frame (as the frames array start with index 0) in a frameset

document in the variable exforsys.

length:

The frames array has all the frames present within a window

and the length property of the frame object denotes the length of

the frames array or gives the number of frames present in a window

or a frames array.

308

parent:

As the name implies, the parent property of frames object

denotes the parent frame of the current frame.

 Methods of frame object:

 blur()

 focus()

 setInterval()

 clearInterval()

 setTimeout(expression, milliseconds)

 clearTimeout(timeout)

blur():

blur() method of frame object removes focus from the object.

focus():

focus() method of frame object gives focus to the object.

setInterval():

setInterval() method of frame object is used to call a function of

JavaScript or to evaluate an expression after the time interval

specified in arguments has expired. The time interval in arguments

is always specified in milliseconds. For example:

setInterval=exforsys(test(),2000)

In the above statement, the function test() executes after

2000 milliseconds (2 seconds), specified in the argument.

clearInterval():

clearInterval method of frame object is used to cancel the

corresponding defined setInterval method. This is written by

referencing the setInterval method using its ID or variable. General

syntax for the method clearInterval() is as below:

clearInterval (Interval_ID)

309

setTimeout(expression, milliseconds):

setTimeout method of frame object can be used to execute

any function, or access any method or property after a specified

time interval given to this method as argument. General syntax for

the method setTimeout() is as below:

setTimeout(expression, milliseconds)

For example:

exforsys=setTimeout ("test()", 3000)

The time is always specified in milliseconds and in the above

statement, the function test() is called after the specified time of

3000 milliseconds (3 seconds). This is stored in variable named

exforsys. There is confusion about the similarity between

setTimeout() method and setInterval() method. The main difference

between the two methods is the setInterval method will repeatedly

call the referenced function or evaluate the expression until the

user leaves the document. In the setTimeout method, the call

executes only once after the specified time interval given as

argument.

clearTimeout():

clearTimeout method of frame object is used to clear a specified

setTimeout method. This is written by referencing the setTimeout

method using its ID or variable.

General syntax for the method clearTimeout is as below:

clearTimeout ID_of_setTimeout

The above statement clears the setTimeout associated wit

the ID named as exforsys, created in the earlier example.

 Events associated with frame object:

Though the frame object and frames array have no event

handlers associated directly with them, the following event handlers

are used to access and controlframe objects and frames array:

 onBlur

 onFocus

 OnLoad

 OnUnLoad

310

13.1.6 Form Object

The JavaScript Form Object is a property of the document

object. This corresponds to an HTML input form constructed with

the FORM tag. A form can be submitted by calling the JavaScript

submit method or clicking the form submit button.

 Form Object Properties

 action - This specifies the URL and CGI script file name the

form is to be submitted to. It allows reading or changing the

ACTION attribute of the HTML FORM tag.

 elements - An array of fields and elements in the form.

 encoding - This is a read or write string. It specifies the

encoding method the form data is encoded in before being

submitted to the server. It corresponds to the ENCTYPE

attribute of the FORM tag. The default is "application/x-www-

form-urlencoded". Other encoding includes text/plain or

multipart/form-data.

 length - The number of fields in the elements array. I.E. the

length of the elements array.

 method - This is a read or write string. It has the value "GET"

or "POST".

 name - The form name. Corresponds to the FORM Name

attribute.

 target - The name of the frame or window the form

submission response is sent to by the server. Corresponds

to the FORM TARGET attribute.

 Form Objects

Forms have their own objects.

 button - An GUI pushbutton control. Methods are click(), blur(),

and focus(). Attributes:

o name - The name of the button

o type - The object's type. In this case, "button".

o value - The string displayed on the button.

 checkbox - An GUI check box control. Methods are click(),

blur(), and focus(). Attributes:

o checked - Indicates whether the checkbox is checked. This is

a read or write value.

o defaultChecked - Indicates whether the checkbox is checked

by default. This is a read only value.

311

o name - The name of the checkbox.

o type - Type is "checkbox".

o value - A read or write string that specifies the value returned

when the checkbox is selected.

FileUpload - This is created with the INPUT type="file". This is the

same as the text element with the addition of a directory browser.

Methods are blur(), and focus().

o name - The name of the FileUpload object.

o type - Type is "file".

o value - The string entered which is returned when the form is

submitted.

 hidden - An object that represents a hidden form field and is

used for client/server communications. No methods exist for this

object. Attributes:

o name - The name of the Hidden object.

o type - Type is "hidden".

o value - A read or write string that is sent to the server when the

form is submitted.

 password - A text field used to send sensitive data to the server.

Methods are blur(), focus(), and select(). Attributes:

o defaultValue - The default value.

o name - The name of the password object."

o type - Type is "password".

o value - A read or write string that is sent to the server when the

form is submitted.

 radio - A GUI radio button control. Methods are click(), blur(),

and focus(). Attributes:

o checked - Indicates whether the radio button is checked. This is

a read or write value.

o defaultChecked - Indicates whether the radio button is checked

by default. This is a read only value.

o length - The number of radio buttons in a group.

o name - The name of the radio button.

o type - Type is "radio".

o value - A read or write string that specifies the value returned

when the radio button is selected.

 reset - A button object used to reset a form back to default

values. Methods are click(), blur(), and focus(). Attributes:

o name - The name of the reset object.

o type - Type is "reset".

o value - The text that appears on the button. By default it is

"reset".

312

 select - A GUI selection list. This is basically a drop down list.

Methods are blur(), and focus(). Attributes:

o length - The number of elements contained in the options array.

o name - The name of the selection list.

o options - An array each of which identifies an options that may

be selected in the list.

o selectedIndex - Specifies the current selected option within the

select list

o type - Type is "select".

 submit - A submit button object. Methods are click(), blur(), and

focus(). Attributes:

o name - The name of the submit button.

o type - Type is "submit".

o value - The text that will appear on the button.

 text - A GUI text field object. Methods are blur(), focus(), and

select(). Attributes:

o defaultValue - The text default value of the text field.

o name - The name of the text field.

o type - Type is "text".

o value - The text that is entered and appears in the text field. It is

sent to the server when the form is submitted.

 textarea - A GUI text area field object. Methods are blur(),

focus(), and select(). Attributes:

o defaultValue - The text default value of the text area field.

o name - The name of the text area.

o type - Type is textarea.

value- The text that is entered and appears in the text area field. It

is sent to the server when the form is submitted.

 Form Object Methods

 reset() - Used to reset the form elements to their default values.

 submit() - Submits the form as though the submit button were

pressed by the user.

 Events

 onReset

 onSubmit

313

Onsubmit and Onchange

The onchange() event handler is triggered whenever the

content of a form field is changed. The form field where this is most

useful is for drop down selection lists since by using onchange

instead of onblur the field can be tested immediately rather than

waiting for a different field to be selected.

The onsubmit() event handler is attached to the form tag

itself. Whenever a submit button is selected (or the submit method

for the form is called from within your Javascript code) this event

will be triggered.

Here is a sample form to demonstrate how these events are

triggered:

Here is the code for the above form with the tag names and

the event handlers shown in bold.

<form name="ex" method="POST"

onsubmit="alert('onsubmit');return false;">

<div align="center">

<select name="sel" size="1"

onchange="alert('onchange')">

<option value="1" selected="selected">1</option>

<option value="2">2</option>

<option value="3">3</option>

</select>

<input type="submit" value="submit" />

</div></form>

Onreset

The onreset() event handler (like onsubmit) is attached to the form

itself. This event is triggered if the form contains a reset button and

that button is pressed.



314

14

HANDLING EVENTS

Unit Structure

14.1 Handling Events

o Event handling attributes

o Window Events, Form Events

o Event Object

o Event Simulation

14.1 HANDLING EVENTS

In this JavaScript tutorial, you will learn about handling

events in JavaScript, what is event handling in JavaScript? events

in JavaScript, events associated with mouse - onmousemove,

onclick, ondblclick, onmouseout, onmouseover, events associated

with keyboard - onkeydown, onkeyup, onkeypress. onerror,

onfocus, onblur, onsubmit, onload and onunload.

What is Event Handling in JavaScript?

This is a very vital concept of JavaScript because without

events there would be no code. Event handling is the execution of

code for the user’s reaction. In other words, when a user performs

some action, the associated event fires or executes. For example, if

a programmer want a piece of code to execute when a user

presses a button, then the code is placed in the onclick event of the

button, executing the code when the user clicks that button. In

addition, there areevents in JavaScript that are automatically fired

without the intervention of the user. The load event fires when the

page loads. Thus, there are various scenarios for firingevents such

as:

315

 When the user performs some action based on which event

fires

 When the page load event fires

 When some fields change, the associated events fire.

14.1 Events in JavaScript:

There are numerous events in JavaScript, some of which are

listed below. A particular object has numerous events associated

with it, depending on the action taken by the user.

For example, the object mouse has numerous events

associated with it which depend on the user’s actions.

 Events associated with Mouse:

a) onmousemove:

If the user moves a button, then the events associated with

onmousemove fire.

b) onclick:

onclick events fire when the mouse button clicks.

c) ondblclick:

The event ondblclick fires when the mouse button is double clicked.

There are also some events associated with the mouse pointer

position such as:

d) onmouseout:

onmouseout event fires if the mouse pointer position is out of focus

from the element.

e) onmouseover:

onmouseover event fires if the mouse pointer position is in focus of

the element position.

The above are some of the various mouse events available in

JavaScript.

 Events associated with Keyboard:

 onkeydown

 onkeyup

 onkeypress

316

a) onkeydown:

onkeydown event fires when key is pressed.

b) onkeyup:

onkeyup event fires when key is released.

c) onkeypress:

The event onkeypress fires if the onkeydown is followed by

onkeyup.

There are many additional events available in JavaScript. A few are

listed below:

d) onerror:

onerror event fires when an error occurs.

e) onfocus:

When a element gains focus, onfocus event fires or executes.

f) onblur:

In contrast to an onfocus event, this event fires when the element

loses its focus. Both onfocus and onblur may be used for handling

validation of forms.

g) onsubmit:

The event onsubmit fires when the command form submit is given.

This event is used for validating all fields in the form before

submitting the form.

h) onload:

onload event automatically executes as soon as the document fully

loads. This loads when the user enters the page. This is a

commonly used event. This event is used to check compatibility

with the browser version and type. Based on this compatibility, the

appropriate version of a page will then load.

i) onunload:

In contrast to onload event, the onunload event fires when the user

leaves the page.

317

14.1.1 JavaScript Event Handler

In this JavaScript tutorial, you will learn about using event

handlers along with events for each HTML tag.

 Using Event Handler in JavaScript:

Event Handlers are used in JavaScript by placing the name

of the event handler inside the HTML tag associated with object.

This is followed by =’JavaScript code’, the code in JavaScript which

must execute when the event fires.

The events for each HTML tag are as follows:

<A>

click(onClick)

mouseOver(onMouseOver)

mouseOut (onMouseOut)

<AREA>

mouseOver(onMouseOver)

mouseOut (onMouseOut)

<BODY>

blur(onBlur)

error(onError)

focus(onFocus)

load(onLoad)

unload (onUnload)

<FORM>

submit(onSubmit)

reset (onReset)

<FRAME>

blur(onBlur)

focus (onFocus)

<FRAMESET>

blur(onBlur)

error(onError)

focus(onFocus)

load(onLoad)

unload (onUnload)

318

abort(onAbort)

error(onError)

load (onLoad)

<INPUT TYPE = "button">

click (onClick)

<INPUT TYPE = "checkbox">

click (onClick)

<INPUT TYPE = "reset">

click (onClick)

<INPUT TYPE = "submit">

click (onClick)

<INPUT TYPE = "text">

blur(onBlur)

focus(onFocus)

change(onChange)

select (onSelect)

<SELECT>

blur(onBlur)

focus(onFocus)

change (onChange)

<TEXTAREA>

blur(onBlur)

focus(onFocus)

change(onChange)

select (onSelect)

For example, consider a button placed in a form named

PressButton. The following code placed in the click event of the

button named PressButton would be written:

<input type="button"

name="PressButton"

value="Press the Button to output value!!!"

onClick="outputvalue();">

319

In the above example, when the user clicks the button, the

onclick event of the button fires and the message assigned to value

displays:

Press the Button output value!!!

The block of code written in the function outputvalue() in

JavaScript fires or calls.

14.1.2 JavaScript Event Object

In this JavaScript tutorial you will learn about JavaScript

event object, properties of event object, altKey, ctrlKey and

shiftKey, button, integer value action representation, cancelBubble,

clientX and clientY, fromElement and toElement, height and width.

 event Object:
The event object is a browser object used to get information

about a particular event specified. Using event object, users can

access information about event happenings. The difference

between event object and Event object is such that the latter gives

constants that can be used to identify events, while the former is

used to get information about events.

Properties of event Object:

 altKey,ctrlKey and shiftKey

 button

 cancelBubble

 clientX

 clientY

 fromElement

 toElement

 height

 width

 keycode

 layerX

 layerY

 modifiers

 offsetX

 offsetY

 pageX

 pageY

 reason

 returnValue

320

 screenX

 screenY

 srcElement

 srcFilter

 target

 type

 which

 x and y

In the above list, some of the events are supported with

Internet Explorer Browser and some with Navigator browser, which

will be detailed. Some of the properties of event object are

explained below.

altKey, ctrlKey and shiftKey:

The above property is used to indicate whether the Alt Key,

Control Key or Shift Key was pressed by the user when the event

occurred. The indication is known by appropriately setting the value

as true or false. This property takes a boolean value as its return

type. Both Internet Explorer and Navigator support this property. In

Navigator, there is an extra property called metaKey which is not

supported by Internet Explorer. This indicates if the user has

pressed Meta key when the event occurred.

button:

The button property of event object is used to denote

whether the mouse button was pressed or released when the event

occurred. The indication is performed by means of an integer value

where the values listed below are returned as per the action when

the event occurred. The return value from button property is an

integer.

Integer Value Action Representation

0 no Button was pressed

1 Left Mouse Button was pressed
2 Right Mouse Button was pressed
4 Middle Mouse Button was pressed

Sometimes, user presses more than one button at the same

time when the event occurs. To indicate such a situation, the

integer representation would take the sum of integer

representations of buttons pressed by the user.

321

For example, if a user presses both the right and the middle

button, then addition of the integer representations of right and

middle button gives 2+4=6 is returned by the property. This

property is supported both by Internet Explorer and Navigator. In

Navigator, the integer representation values differ:

Integer Value Action Representation

0 Left Mouse Button was pressed

2 Right Mouse Button was pressed
1 Middle Mouse Button was pressed

cancelBubble:

cancelBubble property of event object is used for enabling or

disabling the event bubbling concept of an event object. Event

bubbling concept will be discussed in the next section of this

tutorial. This property enables and disables event bubbling by

setting the boolean value appropriately as true or false as needed.

The value of the property cancelBubble is set to true to prevent the

event from bubbling and if it is set to false, the event bubbling is

enabled. Only Internet Explorer supports this property. In Navigator,

to implement the same property, the programmer has to use the

method associated with event object (to be discussed in the

methods of event object section).

clientX and clientY:

This property of event object indicates the cursor's horizontal

and vertical position when the event occurs relative to the upper-left

corner of the window. The denoted value would be in terms of

pixels. Both byInternet Explorer and Navigator support this

property.

Syntax for using this property is as follows:

event.clientX

event.clientY

fromElement and toElement:

These properties are supported only in Internet Explorer and

denote the HTML element. The event moves from or to,

respectively, for fromElement and toElement. The properties

fromElement and toElement each denote, respectively, the

322

elements the mouse is leaving from and moving onto. In Navigator,

the property named relatedTarget is used to achieve the same

result. In case of a mouseover event, the relatedTarget property of

event object denotes the element that the mouse has left. In case

of mouseout event, the relatedTarget property of event object

denotes the element that the mouse has entered.

height and width:

The height and width property of event object is only

supported by Navigator and it indicates the height and width of

window or frame, respectively. The value is denoted in pixels.

JavaScript Window Object

The JavaScript Window Object is the highest level

JavaScript object which corresponds to the web browser window.

PROPERTIES

closed Property

This property is used to return a Boolean value that

determines if a window has been closed. If it has, the value

returned is true.

Syntax: window.closed

The following code opens a new window and then immediately

closes it. The onClick event of the button then calls a function

which uses the window.closed property to display the status (open

or closed) of the window.

Code:

<INPUT TYPE="Button" NAME="winCheck" VALUE="Has window

been closed?" onClick=checkIfClosed()>

newWindow=window.open('','','toolbar=no,scrollbars=no,width=300,

height=150')

newWindow.document.write("This is 'newWindow'")

newWindow.close()

function ifClosed() {

document.write("The window 'newWindow' has been closed")

}

323

function ifNotClosed() {

document.write("The window 'newWindow' has not been closed")

}

function checkIfClosed() {

if (newWindow.closed)

ifClosed()

else

ifNotClosed()

}

defaultStatus Property

This property is used to define the default message displayed in a

window's status bar.

Syntax: window.defaultStatus(= "message") document

Property

Code:

window.defaultStatus = "This is the default status bar message."

document Property

This property's value is the document object contained within the

window.

Syntax: window.document

frames Property

This property is an array containing references to all the named

child frames in the current window.

Syntax: window.frames (= "frameID")

history Property

This property's value is the window's History object, containing

details of the URL's visited from within that window.

Syntax: window.history

324

innerHeight / innerWidth Properties

These properties determine the inner dimensions of a

window's content area.

Syntax: window.innerHeight = pixelDimensions

window.innerWidth = pixelDimensions

length Property

This property returns the number of child frames contained

within a window, and gives identical results as using the length

property of the frames array.

Syntax: window.length

location Property

This property contains details of the current URL of the

window and its value is always the Location object for that window.

Syntax: window.location

locationbar Property

This property relates to the area of a browser's window that

contains the details of the URL or bookmark (this is where you

physically enter URL details). The locationbar property has its own

property, visible, that defaults to true (visible) and can be set to

false (hidden).

Syntax: window.locationbar[.visible = false]

menubar Property

This property relates to the area of a browser's window that

contains the various pull-down menus (File, Edit, View, etc.). The

menubar property has its own property, visible, that defaults to true

(visible) and can be set to false (hidden).

Syntax: window.menubar[.visible = false]

name Property

This property is used to return or set a window's name.

Syntax: window.name

325

opener Property

When opening a window using window.open, use this

property from the destination window to return details of the source

window. This has many uses, for example, window.opener.close()

will close the source window.

Syntax: window.opener

outerheight / outerwidth Property

These properties determine the dimensions, in pixels, of the

outside boundary, including all interface elements, of a window.

Syntax: window.outerheight

Syntax: window.outerwidth

pageXOffset / pageYOffset Property

These properties return the X and Y position of the current

page in relation to the upper left corner of a window's display area.

Syntax: window.pageXOffset

Syntax: window.pageYOffset

parent Property

This property is a reference to the window or frame that contains

the calling child frame.

Syntax: window.parent

personalbar Property

This property relates to the browser's personal bar (or

directories bar). The personalbar property has its own property,

visible, that defaults to true (visible) and can be set to false

(hidden).

Syntax: window.personalbar[.visible = false]

scrollbars Property

This property relates to the browser's scrollbars (vertical and

horizontal). The scrollbars property has its own property, visible,

that defaults to true (visible) and can be set to false (hidden).

Syntax: window.scrollbars[.visible = false]

326

self Property

This property is a reference (or synonym) for the current active

window or frame.

Syntax: self.property or method

status Property

This property, which can be set at any time, is used to define

the transient message displayed in a window's status bar such as

the text displayed when you onMouseOver a link or anchor.

Syntax: window.status(= "message")

statusbar Property

This property relates to the browser's status bar. The

statusbar property has its own property, visible, that defaults to true

(visible) and can be set to false (hidden).

Syntax: window.statusbar[.visible = false]

toolbar Property

This property sets or returns a Boolean value that defines

whether the browser's tool bar is visible or not. The default is true

(visible). False means hidden. It can only be set before the window

is opened and you must have UniversalBrowserWrite privilege.

Syntax: window.toolbar[.visible = false]

top Property

This property is a reference (or synonym) for the topmost

browser window.

Syntax: top.property or method

window Property

This property is a reference (or synonym) for the current window or

frame.

Syntax: window.property or method

327

METHODS

alert Method Syntax: window.alert("message")

This method is used to display an alert box

containing a message and an o.k. button. Use this

method to convey a message that does not

require a decision from the user.

Code:

window.alert("Welcome to google.com")

If you wish to have the text appear on more than

one line, you use the \n as a line break.

window.alert("Welcome to\ngoogle.com")

Output:

back Method Using this method is the same as clicking the

browser's Back button, i.e. it undoes the last

navigation step performed from the current top-

level window.

Syntax: window.back()

The following example creates a button on the

page that acts the same as the browser's back

button.

Code:

<input type="button" value="Go back"

onClick="window.back()">

Output:

blur Method This method is used to remove focus from the

current window.

Syntax: window.blur()

captureEvent

s Method

This method instructs the window to capture all

events of a particular type. See the event object

for a list of event types.

Syntax: window.captureEvent(eventType)

328

clearInterval

Method

This method is used to cancel a timeout

previously set with the setInterval method.

Syntax: window.clearInterval(intervalID)

clearTimeout

Method

This method is used to cancel a timeout

previously set with the setTimeout method.

Syntax: window.clearTimeout(timeoutID)

close Method This method is used to close a specified window.

If no window reference is supplied, the close()

method will close the current active window. Note

that this method will only close windows created

using the open() method; if you attempt to close a

window not created using open(), the user will be

prompted to confirm this action with a dialog box

before closing. The single exception to this is if

the current active window has only one document

in its session history. In this case the closing of

the window will not require confirmation.

Syntax: window.close()

confirm

Method

This method brings up a dialog box that prompts

the user to select either 'o.k.' or 'cancel', the first

returning true and the latter, false.

Syntax: window.confirm("message")

The following example opens a new window,

creates a button in the original window and

assigns the closeWindow() function to its onClick

event handler. This function prompts the user to

confirm the closing of the new window.

Code:

<form action="" method="POST" id="myForm">

<input type="Button" name="" value="Close"

id="myButton" onClick="closeWindow()">

<script type="" language="JavaScript">

myWindow = window.open("", "tinyWindow",

'toolbar, width=150, height=100')

function closeWindow()

{

myWindow.document.write("Click 'O.K'. to

close me and 'Cancel' to leave me open.")

if (confirm("Are you sure you want to close this

329

window?"))

{

myWindow.close()

}

}

</script></form>

Output:

disableExtern

alCapture

Method

This method disables the capturing of events

previously enabled using the

enableExternalCapture method below.

Syntax: window.disableExternalCapture()

enableExtern

alCapture

Method

This method allows a window that contains

frames to capture events in documents loaded

from different servers.

Syntax: window.enableExternalCapture()

find Method This method allows the searching of the contents

of a window for a specified string. The

caseSensitive and backward arguments are

Booleans and to use either of these you must also

specify the other. If a search string is not supplied,

JavaScript will display a Find dialog box which

prompts the user for a string to search for, and

also provides the facility to set the other two

(caseSensitive and backward) arguments.

Syntax: window.find([string[, caseSensitive,

backward]])

The first example below uses the onClick event

handler of the <A> tag to call the findhello()

function that searches the contents of the window

for the strings "hello" and "goodbye". The results

of these searches are displayed, true or false, as

JavaScript alerts. The second example shows the

"Find" dialog box that is displayed if no search

string is supplied.

Code:

330

<SCRIPT>

function findhello ()

{

alert("FIND hello = " + window.find("hello"))

alert("FIND goodbye = " +

window.find("goodbye"))

}

</SCRIPT>

Find hello

Hello

Code:

self.find()

Output:

focus Method This method is used to give focus to the specified

window. This is useful for bringing windows to the

top of any others on the screen.

Syntax: window.focus()

forward

Method

Using this method is the same as clicking the

browser's Forward button, i.e. it goes to the next

URL in the history list of the current top-level

window.

Syntax: window.forward()

he following example creates a button on the

page that acts the same as the browser's Forward

button.

Code:

<input type="button" value="Go back"

onClick="window.forward()">

Output:

handleEvent

Method

This method is used to call the handler for the

specified event.

Syntax: window.handleEvent("eventID")

331

home Method Using this method has the same effect as

pressing the Home button in the browser, i.e. the

browser goes to the URL set by the user as their

home page.

Syntax: window.home()

moveBy

Method

This method is used to move the window a

specified number of pixels in relation to its current

co-ordinates.

Syntax: window.moveBy(horizPixels,

vertPixels)

moveTo

Method

This method moves the window's left edge and

top edge to the specified x and y co-ordinates,

respectively.

Syntax: window.moveTo(Xposition, Yposition)

open Method Syntax: window.open(URL, name [, features])

This method is used to open a new browser

window. Note that, when using this method with

event handlers, you must use the syntax

window.open() as opposed to just open().

Calling just open() will, because of the scoping of

static objects in JavaScript, create a new

document (equivalent to document.open()), not a

window.

The available parameters are as follows:

URL - this is a string containing the URL of the

document to open in the new window. If no URL is

specified, an empty window will be created.

name - this is a string containing the name of the

new window. This can be used as the 'target'

attribute of a <FORM> or <A> tag to point to the

new window.

features - this is an optional string that contains

details of which of the standard window features

are to be used with the new window. This takes

the form of a comma-delimited list. Most of these

features require yes or no (1 or 0 is also o.k.) and

any of these can be turned on by simply listing the

feature (they default to yes). Also, if you don't

supply any of the feature arguments, all features

with a choice of yes or no are enabled; if you do

specify any feature parameters, titlebar and

hotkeys still default to yes but all others are no.

332

Note that many of the values for the features

parameter are Netscape only. Further, with the

exception of dependent and hotkey, these

Netscape only values represent potential sources

of security problems and therefore require signed

script (and user's permission) if they are to be

used.

Details of the available values are given below:

features Value Description

alwaysLowered
When set to yes, this creates a

window that always floats below

other windows.

alwaysRaised
When set to yes, this creates a

window that always floats

above other windows.

dependent When set to yes, the new

window is created as a child

(closes when the parent

window closes and does not

appear on the task bar on

Windows platforms) of the

current window.

directories When set to yes, the new

browser window has the

standard directory buttons.

height
This sets the height of the new

window in pixels.

hotkeys When set to no, this disables

the use of hotkeys (except

security and quit hotkeys) in a

window without a menubar.

333

innerHeight
This sets the inner height of the

window in pixels.

innerWidth
This sets the inner width of the

window in pixels.

location When set to yes, this creates

the standard Location entry

feild in the new browser

window.

menubar When set to yes, this creates a

new browser window with the

standard menu bar (File, Edit,

View, etc.).

outerHeight This sets the outer height of the

new window in pixels.

outerWidth
This sets the outer width of the

new window in pixels.

resizable When set to yes this allows the

resizing of the new window by

the user.

screenX This allows a new window to be

created at a specified number

of pixels from the left side of the

screen.

screenY This allows a new window to be

created at a specified number

of pixels from the top of the

screen.

scrollbars When set to yes the new

window is created with the

standard horizontal and vertical

scrollbars, where needed

334

status When set to yes, the new

window will have the standard

browser status bar at the

bottom.

titlebar When set to yes the new

browser window will have the

standard title bar.

toolbar When set to yes the new

window will have the standard

browser tool bar (Back,

Forward, etc.).

width
This sets the width of the new
window in pixels.

z-lock When set to yes this prevents

the new window from rising

above other windows when it is

made active (given focus).

These features may only be used with IE4:

channelmode

sets if the window appears in

channel mode.

fullscreen

the new window will appear in

full screen.

Left same as screenX, allows a new

window to be created at a

specified number of pixels from

the left side of the screen.

top same as screenY, allows a new

window to be created at a

specified number of pixels from

the top of the screen.

335

The following example creates a new window of

the specified dimensions complete with toolbar,

changes the background color and writes a

message to it.

Code:

myWindow = window.open("", "tinyWindow",

'toolbar, width=150, height=100')

myWindow.document.write("Welcome to this new

window!")

myWindow.document.bgColor="lightblue"

myWindow.document.close()

Output:

print Method This method is used to print the contents of the

specifiedwindow.

Syntax: window.print()

prompt

Method

This method displays a dialog box prompting the

user for some input.Syntax: window. Prompt

(message [,defaultInput])

This method displays a dialog box prompting the

user for some input. The optional defaultInput

parameter specifies the text that initially appears

in the input field.

The following example prompts the user for their

name and then writes a personalized greeting to

the page.

Code:

<body onload=greeting()>

<script type="text/javascript">

function greeting()

{

336

y = (prompt("Please enter your name.", "Type

name here"))

document.write("Hello " + y)

}

</script>

Output:

releaseEvent

s Method

This method is used to release any captured

events of the specified type and to send them on

to objects further down the event hierarchy

Syntax: window.releaseEvents("eventType")

resizeBy

Method

This method is used to resize the window. It

moves the bottom right corner of the window by

the specified horizontal and vertical number of

pixels while leaving the top left corner anchored to

its original co-ordinates.

Syntax:window.resizeBy(horizPixels,

vertPixels)

resizeTo

Method

This method is used to resize a window to the

dimensions supplied with the outerWidth and

outerHeight (both integers, in pixels) parameters.

Syntax: window.resizeTo(outerWidth,

outerHeight)

routeEvent

Method

This method is used to send a captured event

further down the normal event hierarchy;

specifically, the event is passed to the original

target object unless a sub-object of the window (a

document or layer) is also set to capture this type

of event, in which case the event is passed to

that sub-object.

Syntax: window.routeEvent(eventType)

scroll Method This method is used to scroll the window to the

supplied co-ordinates. This method is now

deprecated; use the scrollTo method detailed

below instead.

Syntax: window.scroll(coordsPixels)

337

scrollBy

Method

This method is used to scroll the window's content

area by the specified number of pixels. This is

only useful when there are areas of the document

that cannot be seen within the window's current

viewing area, and the visible property of the

window's scrollbar must be set to true for this

method to work.

Syntax:window.scrollBy(horizPixels,

vertPixels)

scrollTo

Method

This method scrolls the contents of a window, the

specified co-ordinate becoming the top left corner

of the viewable area.

Syntax: window.scrollTo(xPosition, yPosition)

This method displays a dialog box prompting the

user for some input. The optional defaultInput

parameter specifies the text that initially appears

in the input field.

The following example prompts the user for their

name and then writes a personalized greeting to

the page.

Code:

<body onload=greeting()>

<script type="text/javascript">

function greeting()

{

y = (prompt("Please enter your name.", "Type

name here"))

document.write("Hello " + y)

}

</script>

Output:

setInterval

Method

This method is used to call a function or evaluate

an expression at specified intervals, in

milliseconds.

Syntax: indow.setInterval(expression/function,

milliseconds)

338

This method is used to call a function or evaluate

an expression at specified intervals, in

milliseconds. This will continue until the

clearInterval method is called or the window is

closed. The ID value returned by setInterval is

used as the parameter for the clearInterval

method. Note that if an expression is to be

evaluated, it must be quoted to prevent it being

evaluated immediately

The following example uses the setInterval

method to call the clock() function which updates

the time in a text box.

Code:

<form name="myForm" action=""

method="POST">

<input name="myClock" type="Text">

<script language=javascript>

self.setInterval('clock()', 50)

function clock()

{

time=new Date()

document.myForm.myClock.value=time

}

</script>

</form>

setTimeout

Method

This method is used to call a function or evaluate

an expression after a specified number of

milliseconds.

Syntax:

window.setTimeout(expression/function,

milliseconds)

This method is used to call a function or evaluate

an expression after a specified number of

milliseconds. If an expression is to be evaluated, it

must be quoted to prevent it being evaluated

immediately. Note that the use of this method

does not halt the execution of any remaining

scripts until the timeout has passed, it just

schedules the expression or function for the

specified time.

339

The following example opens a new window and

uses the setTimeout method to call the

winClose() function which closes it after five

seconds (5000 milliseconds).

Code:

function winClose()

{

myWindow.close()

}

myWindow = window.open("", "tinyWindow",

'width=150, height=110')

myWindow.document.write("This window will

close automatically after five seconds. Thanks for

your patience")

self.setTimeout('winClose()', 5000)

In this example, the setTimeout method is used

with the onClick core attribute in an input tag

within the body element to call a function after

five seconds (5000 milliseconds):

<html>

<head>

<script type="text/javascript">

function displayAlert()

{

alert("The GURU sez hi!")

}

</script>

</head>

<body>

<form>

Click on the button.

After 5 seconds, an alert will appear.

<input type="button"

onclick="setTimeout('displayAlert()',5000)"

value="Click Me">

</form>

</body>

</html>

340

stop Method This method is used to cancel the current

download. This is the same as clicking the

browser's Stop button.

Syntax: window.stop()

EVENT HANDLERS

onBlur Event handler This event handler executes some

specified JavaScript code on the

occurrence of a Blur event (when an

window loses focus).

Syntax:

window.onBlur="myJavaScriptCode"

Event handler for Button, Checkbox,

FileUpload, Layer, Password, Radio,

Reset, Select, Submit, Text, TextArea,

Window.

The onBlur event handler executes the

specified JavaScript code or function on

the occurance of a blur event. This is

when a window, frame or form element

loses focus. This can be caused by the

user clicking outside of the current

window, frame or form element, by using

the TAB key to cycle through the various

elements on screen, or by a call to the

window.blur method.

The onBlur event handler uses the

following Event object properties.

type - this property indicates the type of

event.

target - this property indicates the object

to which the event was originally sent.

The following example shows the use of

the onBlur event handler to ask the user

to check that the details given are

correct. Note that the first line is HTML

code.

Code:

Enter email address <INPUT

TYPE="text" VALUE=""

NAME="userEmail"

341

onBlur=addCheck()>

<script type="text/javascript"

language="JavaScript">

function addCheck() {

alert("Please check your email details

are correct before submitting")

}

</script>

onDragDrop Event

handler

This event handler executes some

specified JavaScript code on the

occurrence of a DragDrop event.

Syntax:

window.onDragDrop="myJavaScriptC

ode"

Event handler for Window.

The onDragDrop event handler

executes the specified JavaScript code

or function on the occurance of a

DragDrop event. This is when an object,

such as a shortcut or file, is dragged and

dropped into the browser window. If the

event handler returns true, the browser

will attempt to load the dropped item into

its window, and if false the drag and drop

process is cancelled.

The onDragDrop event handler uses

the following Event object properties.

data - this property returns the URLs of

any dropped objects as an Array of

Strings.

type - this property indicates the type of

event.

target - this property indicates the object

to which the event was originally sent.

screenX - the cursor location when the

click event occurs.

screenY - the cursor location when the

click event occurs.

modifiers - lists the modifier keys (shift,

alt, ctrl, etc.) held down when the click

event occurs.

342

onError Event

handler

This event handler executes some

specified JavaScript code on the

occurrence of an Error event

Syntax:

window.onError="myJavaScriptCode"

Event handler for Image, Window.

The onError event handler executes the

specified JavaScript code or function on

the occurance of an error event. This is

when an image or document causes an

error during loading. The distinction must

be made between a browser error, when

the user types in a non-existant URL, for

example, and a JavaScript runtime or

syntax error. This event handler will only

be triggered by a JavaScript error, not a

browser error.

As well as the onError handler triggering

a JavaScript function, it can also be set

to onError="null" which suppresses the

standard JavaScript error dialog boxes.

To suppress JavaScript error dialogs

when calling a function using onError,

the function must return true (example 2

below demonstrates this).

There are two things to bear in mind

when using window.onerror. Firstly, this

only applies to the window containing

window.onerror, not any others, and

secondly, window.onerror must be

spelt all lower-case and contained within

<script> tags; it cannot be defined in

HTML (this obviously doesn't apply when

using onError with an image tag, as in

example 1 below).

The onFocus event handler uses the

following Event object properties.

343

type - this property indicates the type of

event.

target - this property indicates the object

to which the event was originally sent.

The first example suppresses the normal

JavaScript error dialogs if a problem

arises when trying to load the specified

image, while example 2 does the same,

but applied to a window, by using return

true in the called function, and displays a

customized message instead.

Code:

<IMG NAME="imgFaulty"

SRC="dodgy.jpg onError="null">

Code:

<script type="text/javascript"

language="JavaScript">

s1 = new String(myForm.myText.value)

window.onerror=myErrorHandler

function myErrorHandler() {

alert('A customized error message')

return true

}

</script>

<body onload=nonexistantFunc()>

onFocus Event

handler

This event handler executes some

specified JavaScript code on the

occurrence of a Focus event.

Syntax: window.onFocus="my

JavaScriptCode"

Event handler for Button, Checkbox,

FileUpload, Layer, Password, Radio,

Reset, Select, Submit, Text, TextArea,

Window.

The onFocus event handler executes

the specified JavaScript code or function

on the occurance of a focus event. This

344

is when a window, frame or form

element is given focus. This can be

caused by the user clicking on the

current window, frame or form element,

by using the TAB key to cycle through

the various elements on screen, or by a

call to the window.focus method. Be

aware that assigning an alert box to an

object's onFocus event handler with

result in recurrent alerts as pressing the

'o.k.' button in the alert box will return

focus to the calling element or object.

The onFocus event handler uses the

following Event object properties

type - this property indicates the type of

event.

target - this property indicates the object

to which the event was originally sent.

The following example shows the use of

the onFocus event handler to replace

the default string displayed in the text

box. Note that the first line is HTML code

and it is accepted that the text box

resides on a form called 'myForm'.

Code:

<input type="text" name="myText"

value="Give me focus" onFocus =

"changeVal()">

<script type="text/javascript"

language="JavaScript">

s1 = new String(myForm.myText.value)

function changeVal() {

s1 = "I'm feeling focused"

document.myForm.myText.value =

s1.toUpperCase()

}

</script>

345

onload Event handler This event handler executes some

specified JavaScript code on the

occurrence of a Load event.

Syntax:

window.onload="myJavaScriptCode"

Event handler for Image, Layer and

Window.

The onload event handler executes the

specified JavaScript code or function on

the occurance of a Load event. A Load

event occurs when the browser finishes

loading a window or all the frames in a

window.

The onload event handler uses the

following Event object properties.

type - this property indicates the type of

event.

target - this property indicates the object

to which the event was originally sent.

width - when the event is over a

window, not a layer, this represents the

width of the window.

height - when the event is over a

window, not a layer, this represents the

height of the window

The following example shows the use of

the onload event handler to display a

message in the text box.

Code:

<body onload = "changeVal()" >

<form action="" method="POST"

id="myForm" >

<input type="text" name="myText" >

<script type="text/javascript"

language="JavaScript">

s1 = new String(myForm.myText.value)

function changeVal() {

346

s1 = "Greetings!"

myForm.myText.value =

s1.toUpperCase()

}

</script>

</form>

</body>

onMove Event

handler

This event handler executes some

specified JavaScript code on the

occurrence of a Move event.

Syntax: window.on Move=" my Java

Script Code"

Event handler for Window

The onMove event handler is used to

execute specified Javascript code

whenever the user or the script moves a

window or frame. It uses the following

properties of the Event object:

type - indicates the type of event.

target - indicates the target object to

which the event was sent.

screenX, screenY - indicates the

position of the top left corner of the

window or

frame.

onResize Event

handler

This event handler executes some

specified JavaScript code on the

occurrence of a Resize event.

Syntax:

window.onResize="myJavaScript

Code"

Event handler for Window

The onResize even handler is use to

execute specified code whenever a user

or script resizes a window or frame. This

allows you to query the size and position

of window elements, dynamically reset

SRC properties etc. It uses the following

properties of the Event object:

type - indicates the type of event.

347

target - indicates the target object to

which the event was sent.

width, height - indicates the width or

height of the window or frame

onUnload Event

handler

This event handler executes some

specified JavaScript code on the

occurrence of an Unload event.

Syntax:

window.onUnload="myJavaScriptCod

e"

Event handler for Window

The onUnload event handler is used to

run a function or JavaScript code

whenever the user exits a document.

The onUnload event handler is used

within either the <BODY> or the

<FRAMESET> tag, and uses the

following properties of the Event object:

type - indicates the type of even

target - indicates the target object to

which the event was sent.

The following example shows the

onUnload event handler being used to

execute the 'finishOff' function:

Code:

<BODY onUnload="finishOff()">

Compare to the onload event handler.



348

15

WEBDESIGN CONCEPT

Unit Structure

15.1 How the website should be
 Basic rules of Web Page design
 Types of Website

What Is Good Web Design?

Before you read about the process of building Web pages,

this section helps you define your goal clearly. What, exactly, is

good Web design? Some people discuss what isn’t good Web

design (www.webpagesthatsuck.com), but this really doesn’t

demonstrate how to create good Web sites. Others like to discuss

aesthetics and layout (www.highfive.com). This may be appropriate

on a superficial level, but beauty is often in the eye of the beholder.

Looks aren’t everything. Function is important, too, and some

people even claim that the answer to what constitutes good Web

design is purely a matter of function. If it isn’t usable

(www.useit.com), then it isn’t reasonable—but function without

motivating form is boring. Some talk too much about success, citing

numerous visitors as true validation of a site’s design. This

assumes that the Web is primarily about popularity. Who cares how

many visitors come to a page, unless it has some benefit? Think

about quality and success. If serving the most burgers says

anything about making good hamburgers, then McDonald’s makes

the world’s best hamburger. This kind of logic gets people in trouble

on the Web all the time. Consider whether economically successful

or trendy Web pages are well designed. Characterizing good Web

design is not easy, especially because it depends largely on your

target audience. Most Web discussions lose sight of the big picture,

placing too much emphasis on how pages look, and not enough

emphasis on their content, purpose, functionality, or the user’s

experience. Web design is not just graphic design. Web design

349

includes graphic design. Other important aspects of the Web

design process may include such areas as the following:

 _ Artistic style, color theory, typography, and other visual

concerns

 _ Information design, which specifies how information should

be organized and linked

 _ Hypertext theory

 _ Technical writing

 _ System design

 _ Programming

 _ Network and server design

 _ Business issues and project management

Obviously, many disciplines are part of Web design. The first

requirement, however, is a clear understanding of the site’s ultimate

purpose. The goal of a Web designer is to produce a usable and

appealing visual design for a software system, in the form of a Web

site that helps a user fulfill some goal. In other words, the goal is to

develop a site that can be delivered to the user in a satisfactory

manner, be interpreted correctly by the user, and induce the

desired outcome. Web design should be concerned not only with

the aesthetic qualities of a Web site, but also with the user’s overall

experience in the context of a specific task or problem. The focus is

on how something can be done, not just on how it looks. It is easy

to throw out expressions like “perception is reality” or “content is

king” as arguments for or against focusing on the visual nature of

the Web. However, the reality is a balance between these extreme

points of view. If you skimp on graphics, the site may seem boring.

If you provide a wonderful interface, but skimp on content, the user

may leave to find a site with more information. If you forget to

debug, you may send the user angrily away, facing error dialog

boxes. Remember: experience is vital. Always consider what

feeling the user will take away after visiting your site. A sense of

accomplishment? Frustration? Understanding? Disgust? The best

approach to Web design is a holistic one, in which content,

presentation, and interactivity work in harmony. So, how can you

make aWeb site that is both functional and visually appealing,

without exceeding the constraints of the Internet and Web

technologies?

Putting a page together with HTML and then sprucing it up

with a few colored balls, a rainbow-color bar, and animated clip art

350

doesn’t help. The page looks slapped together, and the graphics

provide little more than extra eye-catching glitz. In this case, the

background plain interferes with the user’s ability to read the text.

On the other hand, focusing too much on the visual aspects leads

to online brochures with slow-downloading, full-screen images.

Everything is created with graphic composition tools, such as

Photoshop, which provide nearly absolute layout control, but result

in huge files. Text on such a page can’t be changed without a

graphic designer, let alone be indexed by a Web search engine.

This design also excludes those who surf with images turned off,

use a text browser, or are disabled and simply can’t see your

images. Even worse, the site may not scale on a high-resolution

monitor, causing it to be so small that it’s unreadable.Many large

sites fall into this trap because they never test their pages over a

dial-in link. A page that seems to work well over the local Ethernet

network may take ages to load over a 56Kbps modem connection.

The average modem user still connects at that speed (or a lower

speed), and most users are not willing to wait forever for your page

to load before they give up and move on to less-bandwidth-

intensive sites. Again, balance is the issue. Sometimes, starkpages

are okay. Other times, full-screen images make sense. The form of

a site depends on its goals. Figuring out the site’s audience and

what its ultimate goals are before diving into HTML coding seems

obvious, but it isn’t always the approach adopted. Unfortunately,

once the simplicity of HTML is revealed, many eager authors

quickly mark up pages and then try to improve them by adding

graphics. At the other extreme, designers may ruin the site just by

thinking more about the user interface than about what is actually

delivered. Creating Web sites requires a process, not an ad hoc

decision to focus more on visuals or more on content.

5 Basic Rules of Web Page Design and Layout

Your Web Site Should Be Easy to Read

The most important rule in web design is that your web site

should be easy to read. What does this mean? You should

choose your text and background colors very carefully. You

don't want to use backgrounds that obscure your text or use

colors that are hard to read. Dark-colored text on a light-colored

background is easier to read than light-colored text on a dark-

colored background.

351

You also don't want to set your text size too small (hard to read)

or too large (it will appear to shout at your visitors). All

capitalized letters also give the appearance of shouting at your

visitors.

Keep the alignment of your main text to the left, not centered.

Center-aligned text is best used in headlines. You want your

visitors to be comfortable with what they are reading, and most

text (in the West) is left aligned.

Your Web Site Should Be Easy to Navigate

All of your hyperlinks should be clear to your visitors. Graphic

images, such as buttons or tabs, should be clearly labeled and

easy to read. Your web graphic designer should select the

colors, backgrounds, textures, and special effects on your web

graphics very carefully. It is more important that your

navigational buttons and tabs be easy to read and understand

than to have "flashy" effects.

Link colors in your text should be familiar to your visitor (blue

text usually indicates an unvisited link and purple or maroon text

usually indicates a visited link), if possible. If you elect not to use

the default colors, your text links should be emphasized in some

other way (boldfaced, a larger font size, set between small

vertical lines, or a combination of these). Text links should be

unique -- they should not look the same as any other text in your

web pages. You do not want people clicking on your headings

because they think the headings are links.

Your visitors should be able to find what they are looking for in

your site within three clicks. If not, they are very likely to click off

your site as quickly as they clicked on.

Your Web Site Should Be Easy to Find

How are your visitors finding you online? The myth, "If I build a

web site, they will come," is still a commonly held belief among

companies and organizations new to the Internet. People will

not come to your web site unless you promote your site both

online and offline.

Web sites are promoted online via search engines, directories,

award sites, banner advertising, electronic magazines (e-zines)

352

and links from other web sites. If you are not familiar with any of

these online terms, then it is best that you have your site

promoted by an online marketing professional. (See our section,

What to Look for in an Online Marketing Company, for some

general guidelines.)

Web sites are promoted offline via the conventional advertising

methods: print ads, radio, television, brochures, word-of-mouth,

etc. Once you have created a web site, all of your company's

printed materials including business cards, letterhead,

envelopes, invoices, etc. should have your URL printed on

them.

Your Web Pages' Layout Should Be Consistent Throughout

the Site

Just as in any document formatted on a word processor or as in

any brochure, newsletter, or newspaper formatted in a desktop

publishing program, all graphic images and elements,

typefaces, headings, and footers should remain consistent

throughout your web site. Consistency and coherence in any

document, whether it be a report or a set of web pages, project

a professional image.

For example, if you use a drop shadow as a special effect in

your bullet points, you should use drop shadows in all of your

bullets. Link-colors should be consistent throughout your web

pages. Typefaces and background colors, too, should remain

the same throughout your site.

Color-coded web pages, in particular, need this consistency.

Typefaces, alignment in the main text and the headings,

background effects, and the special effects on graphics should

remain the same. Only the colors should change.

Overall Web Page Size Should be 75K or Less

Studies have indicated that visitors will quickly lose interest in

your web site if the majority of a page does not download within

15 seconds. (Artists' pages should have a warning at the top of

their pages.) Even web sites that are marketed to high-end

users need to consider download times. Sometimes, getting to

web site such as Microsoft or Sun Microsystems is so difficult

and time consuming that visitors will often try to access the sites

353

during non-working hours from their homes. If your business

does not have good brand name recognition, it is best to keep

your download time as short as possible.

A good application of this rule is adding animation to your site.

Sure, animation looks "cool" and does initially catch your eye,

but animation graphics tend to be large files. Test the download

time of your pages first. If the download time of your page is

relatively short and the addition of animation does not

unreasonably increase the download time of your page, then

and ONLY then should animation be a consideration.

Finally, before you consider the personal preferences of your

web page design, you should consider all of the above rules

FIRST and adapt your personal preferences accordingly. The

attitude "I don't like how it looks" should always be secondary to

your web site's function. Which is more important: creative

expression corporate image or running a successful business?

Types of websites

There are three website types:

 Content (information)

 E-Commerce (online sales)

 Interaction (Blogs, Bulletin Boards, Chat Rooms, and gaming

sites).

Website types are implemented as dynamic or static:

 Dynamic websites have frequently changing content or

interact with the visitor. Dynamic websites typically use

server side programming to generate HTML code as

requested.

 Static websites are written in pure HTML perhaps with a bit

of JavaScript and only change when manually updated.

It's common to see combinations of the three types as well

as combinations of dynamic and static. It's important to understand

what they are are and what works for you!

Content or information websites may be dynamic or static

and the implementation depends upon how frequently the website

information changes. News sites and search engines are dynamic

354

database driven websites to allow rapid information update. Many

corporate websites are static but that is changing rapidly.

E-commerce sites are almost always dynamic allowing for

frequent product changes, pricing changes, sales and inventory

updates. Simple e-commerce transactions like membership

applications and online payment may be interactive while the main

website is still static.

Interaction sites (Blogs, Bulletin Boards, Chat Rooms, and

gaming sites) are dynamic.

Websites can be a combination of Content, E-Commerce

and Interactive as well as a combination of dynamic and static. It's

common to see a combination of dynamic and static

implementations implementations and and combination of types.

Because of this, more website owners are moving toward dynamic

pages.

Pictures and graphics are always good to liven up a

website. You should have at least some because the phrase "one

picture is worth a thousand words" is as true now as when it was

coined.



