

Summer – 2018 Examinations Model Answers

Page No: 1 of 12

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Summer – 2018 Examinations **Model Answers**

Page No: 2 of 12

Subject Code: 22212 (FEE)

10

1 Attempt any **<u>FIVE</u>** of the following:

Write any two differences between direct current and alternating current. 1 a) Ans:

Differences	Between	Direct cur	rrent and A	lternating	current:
Differences	Derneen	Direct cui		moor matting	cui i ciitt

Particulars	Direct Current	Alternating Current
1. Waveform		$ \begin{array}{c} \uparrow \\ 2 \\ \hline 0 \\ \hline \hline + $
2. Definition	It is the current whose	It is the current whose
	magnitude and direction do	magnitude and
	not change with respect to	direction continuously
	time.	changes with respect to
		time.
3. Use of	Not possible	Possible
transformer		
4. Design of machines	Complicated	Simple
5. Frequency	Zero	It is 50 Hz or 60 Hz
		depending upon
		country.
6. Obtained from	Battery, Cell and DC	Alternator
	Generator	
7. Passive	Resistance only	Resistance, Inductance,
parameters		Capacitance.
8. Applications	DC machines, HVDC	AC machines,
	system, electroplating,	Domestic and
	Battery charging, Traction.	industrial supply.

1 Mark for each of any two points = 2 Marks

1 b) Define-

- (i) Node
- Loop for a DC circuit (ii)

Ans:

i) Node: A point or junction at which two or more elements of network are connected is 1 Mark called as node.

ii) Loop: A closed path for flow of current in an electrical circuit is called loop. 1 Mark

1 c) Define dielectric strength for a capacitor.

Ans:

Di-electric Strength for a capacitor:

The voltage which a dielectric material can withstand without breaking down (without 2 Marks losing its dielectric property) is called as dielectric strength.

An iron ring of mean circumference 80 cm is uniformly wound with 500 turns of wire 1 d) and carries 0.8A. Find the magnetic field strength.

Ans:

Magnetic field strength H = NI ℓ = 500 x 0.8 / 80 x 10⁻² = 500 AT/m 2 Marks

	Subj	Summer – 2018 Examinations Model Answers	Page No:	3 of 12
1	e)	Define magnetic flux density. State its unit. Ans: Magnetic flux density (B): It is the magnetic flux per unit area measured angles to the flux path. Its unit is weber/m ² or tesla(T).	at right	1 Mark for definition & 1 Mark for its unit
1	f)	Define the term – statically induced emf. Ans: Statically induced emf: The emf induced in coil or conductor when conductor is stationary and flux linke it changes with respect to time then it is known as statically induced emf.	ed with	2 Marks
1	g)	A coil of 500 turns is linked with a flux of 25 mwb, when carries a current of 12. Calculate the value of self-inductance. Ans: Self-Inductance: $L = N\Phi / I = 500 \times 25 \times 10^{-3} / 12.5 = 1 H$	5A.	2 Marks
2		Attempt any <u>THREE</u> of the following:		12
2	a)	 List any four types of resistors. Give one application of each. Ans: Types of resistors with their applications: Carbon composition resistor: Potential divider, welding control circuits, supplies, H. V. and high impulse circuits as switching spark circuits, rareceiver circuit, biasing circuits of transistor, amplifier circuits, zener regulator. Metal film resistor: Transmitter circuits, Oscillator, telecommunication of testing circuits, measurement circuits, audio amplifier circuits, Modulator a modulator circuits. Wire wound resistor: Power amplifiers, Zener voltage regulators, radi receiver circuit, High power resistance in DC power supplies, measurement circuits. H V Ink Film type resistor: C R O circuits, Radar, medical electronics. Carbon film resistors: used for electronic circuits 	, power adio/TV voltage circuits, and De- o / TV urement	Any 4 resistors with one application = 4 Marks

2 b) Find current through 1Ω resistance of Figure No.1 using Kirchhoff's laws.

Fig. No. 1

Subject Code: 22212 (FEE)Summer – 2018 ExaminaModel Answers	ations Page No: 4 of 12
Ans: Mark the currents on the diagram	
$\begin{array}{c} A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	$-\frac{1}{T} \leq v$ 1 Mark
l	
Write KCL and KVL based equations	
(2)I = 1(I + I) + A = 0	
$(-2)I_1 - I(I_1 + I_2) + 4 = 0$ $: 2I_1 + I_2 - 4 $ (1)	
$\cdots SI_1 + I_2 - 4 \cdots \cdots$	
(3)L = 5 + 1(L + L) = 0	
$\therefore 1L + 4L_2 = 5 \tag{2}$	
Solving simultaneous equations	
$\therefore I_2 = 1 \cdot 0 \cdot \mathbf{A} \dots \dots$	1Mark
$3l_1 + 1 = 4$ (1)	
$\therefore I_1 = 1 A \dots \dots$	1Mark
Final answer The connect through 10 registering is	
The current through 152 resistance is, -L + L = +1 + 1	
$= I_1 + I_2 = +1 + 1$	
$\cdots \ 2 \ A \ Howing \ Hom \ D \ to \ D$	1Mark

2 c) Draw a practical set-up to plot charging and discharging curves of a capacitor through a resistor. Draw the curves.

Ans:

Practical set-up to plot charging of a capacitor through a resistor:

1 Mark

Variation in capacitor voltage while charging

Variation in capacitor current while charging

Summer – 2018 Examinations **Model Answers**

Page No: 5 of 12

Practical set-up to plot dis-charging of a capacitor through a resistor with curves:

1 Mark

Discharging curves of a capacitor:

2 d) When a voltage of 220 V is applied to a coil with resistance of 50Ω , produces 5mWb of flux. If the coil has 1000 turns, find inductance of coil and energy stored in the magnetic field.

Ans:

Current in the coil I= V/R = 220/50 = 4.4 A 1 Mark 1 Mark

Inductance of coil
$$L = \frac{N\emptyset}{I} = \frac{1000 \times 5 \times 10^{-3}}{4.4} = 1.136H$$

Energy stored in the magnetic field

$$E = \frac{1}{2}L I^2 = \frac{1}{2} \times 1.136 \times 4.4^2 = 10.996 J \cong 11$$
 joules

2 Marks

	Sub	S Niect Code: 22212 (FEE)	ummer – 2018 Examinations Model Answers	Page No:	6 of 12
2		Attempt ony THDEE of the follow	ing.	I uge 1100	12
3		Attempt any <u>IHREE</u> of the follows	ing:		12
3	a)	A device stores 500J and releases in msec. Find the terminal voltage. Ans: Energy stored $E = VIt$ $V = \frac{E}{It} = \frac{500}{40 \times 15 \times 10^{-3}} = 833.33V$	n the form of current of 40A in the duration	on of 15	4 Marks
3	b)	List any two effects of electric curren Ans: Effects of electric current: i) Heating effect: It is utilized in Electric cooker, H furnace, Electric ii) Magnetic effect: It is utilized in H Measuring instru- Electric hoist etc iii) Chemical effect: It is utilized in Fuel cells, Produ- process etc.	nt. Give one example of each. ectric iron, Water heater, Hot plates, Electr lair dryer, Room heater, Electric oven, Elec fuse, Electric heat treatment process etc. Electric motor, Electric bell, Electromagnet ument, Alternator, Various electric applian- c. Electro-plating, Battery charging, Electro-1 uction of chemicals, Electro-typing, Electro-	ic lamp, etric , ces, refining, olytic	2 Marks for One effect with an example = 4 Marks
3	c)	State and explain Ohm's law. Ans: Ohm's law: As long as physical conditions (su constant, the potential difference of proportional to current flowing through As long as physical conditions (su constant, the current flowing through potential difference or voltage applied $V\alpha I$ Or $I \alpha V$ i. e. $V = R I$ Or $I = V/R$ where, $R = constant$ of proportionality	ich as dimensions, pressure and temperat r voltage applied across the conductor is igh it. OR ich as dimensions, pressure and temperat igh the conductor is directly proportionated across it.	ture) are directly ture) are al to the	4 Marks
3	d)	Three capacitors 15µf, 18µf and 12µ capacitance when they are connected 1) Series 2) Parallel Ans: Value of equivalent capacitance: Given: C_1 = 15µF, C_2 =18 µF, C_3 = 1 i) For Series combination of capacitor 1/Cs = (1) = (1) 1/Cs = 0.	f are connected in a circuit. Find equivalen l in – 2µF ors: /C1)+(1/C2) +(1/C3) /15)+(1/18)+(1/12) 0666+0.0555+0.0833	t	

1/Cs = 0.2054

 $\therefore Cs = 4.868 \ \mu F$

	Subject Code: 22212 (FEE)	Summer – 2018 Examinations <u>Model Answers</u>	Page No: 7 of 12
	ii) For parallel combination	on of capacitors: $Cp = C_1 + C_2 + C_3 = 15 + 18 + 12 = 45 \ \mu F$	2 Marks
4	Attempt any <u>THREE</u> of	the following:	12
4 a	a) Define – resistance and res having high resistivity. Ans:	sistivity. State relationship between them. Give	e one material
	Resistance: It is the oppose Resistivity: It is property	y: ition offered by the conductor to the flow of c of the substance by virtue of which it opposes	to the flow of
	The resistance of a spec sectional area is known as	imen piece of material having unit length resistivity of that material.	and unit cross ¹ Mark
	Spacific registeres or regis	OR	opposite feeds
	of a meter cube of the mat	erial	opposite faces
	Relationship between Re	sistance and Resistivity:	
	Resistance = $R = \rho (\ell / a)$	Ω	
	where, $\rho = \text{Resistivity}$	of material in Ω -m.	1 Mark
	ℓ = length of co	nductor in m.	
	a = cross sections	nal area of conductor in m^2 .	
	Material having high res Mica, Nichrom, Rubber, (istivity: Glass, Plastic Porcelain, Dry wood, Insulating	1 Mark material etc.
4 1	b) Define following networks (i) Active (ii) Passive (iii) Unilateral (iv) Bilateral.		
	 Ans: i) Active network: Active network: Active network: Active network: Pattern of the dependents on the dependents on the dependents on the dependents on the dependent of the	tive network is one which contains at least lled active network. ssive network is one which does not contain is called passive network. If the characteristic (response or behavio irection of flow of current through its elen unilateral network. If the characteristic (response or behavior) rection of current through its elements, then etwork.	t one source of n any source of or) of network = ments, then the of network is the network is

4 c) Find resistance R_{AB} from Figure No. 2

Summer – 2018 Examinations **Model Answers**

Page No: 8 of 12

1 Mark

1 Mark

Ans:

- i) In figure No.2 two 3Ω & two 5Ω resistances are in series and circuit reduces to figure 2a
- In figure No.2a two $6\Omega \&$ two 10Ω resistances are in parallel and circuit ii) reduces to figure 2b 1 Mark

iii) From figure 2b

$$R_{AB} = 2+3+5+4=14 \Omega$$

Derive the expression for energy stored in a capacitor with the help of neat diagram. 4 d) Ans:

Energy stored in Capacitor:

Let C be the capacitance of a capacitor in farad.

v be the potential difference across capacitor in volt at a particular instant.

q be the charge on the capacitor at that instant.

Therefore, potential difference $v = \frac{q}{c}$ or charge q = Cv

1 Mark for When the potential difference across capacitor is v and if small amount of charge dq is diagram shifted from one plate to other, the voltage is changed by dv. Therefore, dq = C. dvThe work done in shifting a small charge dq against P. D. of v volt is given by,

 $dW = v. dq = \left(\frac{q}{c}\right) dq$ OR dW = v. dq = v. C. dvThe work done is stored as potential energy in the p.d. 1 Mark v slope = 1/C electrostatic field by the capacitor. Therefore, total energy stored by the capacitor is given v+dv by, 1 Mark E = work done $W = \int dW = \int \left(\frac{q}{c}\right) dq = \frac{1}{2c}q^2$ $= \frac{1}{2}C\left(\frac{q}{c}\right)^2 = \frac{1}{2}Cv^2 \text{ joules}$ q+⊿a Ω

$$W = \int dW = \int Cv \, dv = \frac{1}{2}Cv^2$$
 joules

List any three types of capacitor. Give one application of any one type. 4 e) Ans:

Types of capacitors and their applications:

- Air capacitors: Radio tuning applications, Antenna tuning, RF matching i) networks, MRI medical scanners.
- Paper capacitors: High voltage and high current applications. ii)
- Mica capacitors: High frequency tuned circuits, such as filters and oscillators. iii)
- Ceramic Capacitors: Tone compensation, Automatic volume control filtering, iv) Antenna coupling, Resonant circuit, Volume control RF bypass, lighting ballasts.
- Electrolytic capacitors: Reduce voltage fluctuations in various filtering devices, v) In input and output smoothing to filter if DC signal is weak with AC component,

Any three types 1 Mark each

Application of any one type 1 Mark = 4 Marks

Summer – 2018 Examinations Model Answers

Page No: 9 of 12

For noise filtering or decoupling in power supplies, For coupling signals between amplifier stages, To store energy in flash lamps.

- vi) Film Capacitor: A/D converters, Filters, snubber circuits, In DC link circuits.
- vii) Glass capacitors: High power amplifier, Filters, R-F oscillator, Energy storage, Power factor correction, High voltage capacitors, Power electronic filters.
- viii) Polycarbonate capacitor: Filters, Timing and precision coupling circuits, Switching power supplies, AC applications to avoid corona.

5 Attempt any <u>TWO</u> of the following:

5 a) Draw a neat sketch of series magnetic circuit. State value of reluctance for both series and parallel magnetic circuit. Name each term used in them. **Ans:**

Series magnetic circuit:

2 Marks for diagram

2 Marks for

terms

12

Value of reluctance for series magnetic circuit:	1 M
$S=S_1+S_2+S_3$	I Mark
Value of reluctance for parallel magnetic circuit:	
$\frac{1}{s} = \frac{1}{s_1} + \frac{1}{s_2} + \frac{1}{s_3}$	1 Mark
Terms used:	
N= Number of Turns on magnetic circuit.	
S= Equivalent reluctance of magnetic circuit.	
S S - Deluctance of first second third part of magnetic sireuit	

 S_1 , S_2 , S_3 = Reluctance of first, second, third part of magnetic circuit.

 l_1 , l_2 , l_3 = Length of first, second, third part of magnetic circuit.

 μ_{r1} , μ_{r2} , μ_{r3} = Relative permeability of first, second, third part of magnetic circuit.

 a_1 , a_2 , a_3 = Cross-sectional area of first, second, third part of magnetic circuit.

 $l_g =$ Length of air gap.

 $a_g = Cross$ -sectional area of air gap.

I = Current through magnetizing coil of magnetic circuit.

 ϕ = Flux through series magnetic circuit.

5

5

Su	Summer – 2018 Examinationsbject Code: 22212 (FEE)Model AnswersPage No:	10 of 12	
b)	An iron ring of mean circumference 0.8 m is uniformly wound with 400 turns of wire. It carries 1.6A and produces a flux density of 1.1 T. Find permeability of the material.		
	Given data: $l = 0.8$ m, N =400 turns, I = 1.6 A, B = 1.1 tesla	2 Marks for	
	H =NI/ $l = 400 \times 1.6 / 0.8 = 800 \text{ AT/m}$ B = $\mu_0 \mu_r H$ therefore $\mu_r = B/(\mu_0 H)$, $\mu_0 = 4 \pi \times 10^{-7}$ Relative permebility of iron ring: $\mu_r = 1.1/(4 \pi \times 10^{-7} \times 800) = 1094.19$ $\mu = \mu_0 \times \mu_r = 4 \pi \times 10^{-7} \times 1094.19 = 1.375 \times 10^{-3} \text{ H/m}$	H 1 Mark for eq ⁿ of B 1 Mark for μ _r 2 Marks	
c)	Define any three laws related to electromagnetic induction. Write use of each law. Ans: Faraday's laws of electromagnetic induction: First law: Whenever a conductor cuts the magnetic flux, an emf is induced in it.		
	Whenever a changing magnetic flux links with the conductor, an emf is induced in the		
	conductor.		
	Use: Generator principle, Alternator principle.		
	Second law: The magnitude of induced EMF in the conductor is directly proportional to rate of change of flux linkages.	2 Marks for each of any	
	Use: To find magnitude of induced emf in Generator, To find magnitude of induced emf in Alternator		
	Fleming's Right Hand Rule:	of each	
	Stretch out the first three fingers of your right hand such that they are mutually perpendicular to each other, <i>align</i> first finger in direction of magnetic field, thumb in direction of motion of conductor with respect to magnetic field, <i>then</i> the middle finger will give the direction of induced emf in conductor. Use: Fleming's right hand rule is used for finding the direction of dynamically induced emf.	= 6 Marks	
	Lenz's Law: It states that the direction of an induced emf is such that it always opposes		
	the cause that produces it.		
	Use: Lenz's law used for finding the direction of statically induced emf.		
	Stretch out the first three fingers of your left hand such that they are mutually perpendicular to each other, <i>align</i> first finger in direction of magnetic field, middle		

finger in direction of current *then* the thumb will give the direction of force acting on conductor.

Use: Fleming's left hand rule is used for finding the direction of force acting on current carrying conductor when placed in magnetic field.

Attempt any <u>TWO</u> of the following: 6

Draw hysteresis shapes for following materials-6 a)

- (i) Permanent magnet
- (ii) Steel alloy
- (iii) plastic

se

12

- 6 b) Related to inductor state
 - (i) any two types
 - (ii) any two applications
 - (iii) expression for self and mutual indutance

Ans:

i) Types of inductors & their applications:

- 1) Iron core inductors: Used in Low frequency applications such as filter choks, amplifires
- 2) Air core inductors: Used in high frequency applications such as oscillators, RF Any two amplifires, Radio and TV receivers. applications
- 3) Ferrite core inductors: Used in high frequency upto 100MHz applications = 2Marks such as oscillators, RF amplifires, Radio and TV receivers, signal genrators.

ii) Expression for self indutance

$$L = N \frac{d\emptyset}{di}$$
 OR $L = \frac{N\emptyset}{I}$ OR $L = \frac{N^2}{S}$ 1 Mark

where, L is the coefficient of self-inductance, N is the no. of turns of coil, dØ is the change in the flux, di is the change in current, S is the reluctance of magnetic path,

I is the current flowing in the coil,

2 Marks for each shape

Any two

types =

2Marks

6

Summer – 2018 Examinations		
Subject Code: 22212 (FEE)Model Answers	Page No:	12 of 12
iii) Expression for mutual indutance: $M = N_2 \frac{d\phi_{12}}{di_1} \text{ OR } M = \frac{N_2\phi_{12}}{I_1} \text{ OR } M = \frac{N_1N_2}{S}$		1 Mark
where, M is the coefficient of mutual inductance, N_1 is the no. of turns of coil 1, N_2 is the no. of turns of coil 2, $d\emptyset_{12}$ is the change in the flux produced by coil 1 and linking with coil 2 di_1 is the change in current in coil 1, S is the reluctance of magnetic path I_1 is the current flowing in the first coil.	',	
c) Two coils A of 1000 turns and B of 1200 turns are such that 60% of flux produce links with B. A current of 4A in coil A produces a flux of 0.05 Wb and in coil E 0.075 Wb. Find (i) L_1 (ii) L_2 (iii) M (iv) K	ced by A 3 of	
Ans: i) Inductance of Coil A: $L_1 = \frac{N_1 \phi_1}{L_1} = \frac{1000 \times 0.05}{4} = 12.5 H$		1 Mark
ii) Inductance of Coil B: $L_2 = \frac{N_2 \phi_2}{I_2} = \frac{1200 \times 0.075}{4} = 22.5 H$		1 Mark
iii) Mutual Inductance $M = K\sqrt{L_1L_2} = 0.6\sqrt{12.5 \times 22.5} = 10.06 H$		1 Mark
iv) Coefficient of coupling $K = \frac{\phi_{12}}{\phi_1} = 0.6$		1 Mark
where, ϕ_1 is the flux produced by coil 1 ϕ_{12} is the flux produced by coil 1 and linking with coil 2		