

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

		Summer – 2019 Examinations	
		<u>Model Answers</u> Subject & Code: Electric Maters and Transformers (22418)	
		Subject & Code: Electric Motors and Transformers (22418)	
1		Attempt any <u>FIVE</u> of the following:	10
1	a)	State any four parts of the D.C motor. Ans:	
		Part of the D.C. Motor as follow: (i) Armature core.	1 Mark for two parts
		(ii) Armature winding.(iii) Field winding.	(Any four) = 2 Marks
		(iv) Commutator.	
		(v) Brusnes. (vi) Yoke.	
		(vii) Pole core.(viii) Pole shoe.	
1	b)	State the working principal of d.c. generator.	
		 Working principle of DC generator is the principle of dynamically induced emf or electromagnetic induction. 	
		• According to this principle, if flux is cut by a conductor, then emf is induced in conductor.	2 Marks
		• In case of DC generator, when armature winding is rotated in magnetic field by the prime mover, the flux is cut by the armature winding and an emf is dynamically induced in the armature winding.	
1	c)	State principle operation of a transformer.	
		Working Principle of a Transformer:	
		The transformer operates on the principle of mutual induction.	1 Mark
		link with secondary. The changing flux linking with the secondary induces emf in secondary winding.	1 Mark
1	d)	List various losses take place in a transformer.	
		Various Losses in Transformer: 1) Copper losses (P _{cu}):	
		These are also known as Variable losses. The total power loss taking place in the winding resistances of a transformer is known as the copper loss	1 Marks
		Cu loss = Primary Cu loss + Secondary Cu loss $P_{cu} = I_1^2 R_1 + I_2^2 R_2$	1 Iviunto
		 R₁ & R₂ are resistances of primary & secondary winding respectively. 2) Iron losses (P_i): 	
		These are also known as Fixed losses. These are further divided into Eddy current loss and hysteresis loss.	1 Mark
		i) Eddy current loss = $K_E B_m^2 f^2 T^2$ where K_E is eddy current constant B is the maximum value of the flux density	
		where, $\mathbf{x}_{\mathbf{E}}$ is easy current constant, $\mathbf{b}_{\mathbf{m}}$ is the maximum value of the flux density,	

f is the frequency of magnetic reversals; T is thickness of core in m.

Summer – 2019 Examinations

Model Answers

Subject & Code: Electric Motors and Transformers (22418)

ii) Hysteresis loss = $K_H B_m^{1.67} f V$

Where K_H is Hysteresis constant, B_m is the maximum flux density f is the frequency of magnetic reversals and V is the volume of the core in m^3

1 e) Draw circuit diagram for polarity test on single-phase transformer. **Ans:**

Circuit Diagram of Polarity test of Single-phase Transformer:

OR any equivalent diagram

1 f) Define current transformer.

Ans:

Current transformer:Current transformer is an instrument transformer which is used 2 Marks in conjunction with measuring instrument like ammeter for measurement of current.

1 g) State the function of the isolation transformer.

Ans:

Functions of Isolation Transformer:2 Marks fori) Disconnect the load equipment from supply ground:two functionii) Reduction of voltage spikestwo function

- iii) It acts as a decoupling device.
- iv) Protects loads from harmonic distortion.

2 Attempt any <u>THREE</u> of the following:

- 2 a) State function of following parts of D.C motor:
 - (i) Pole shoe
 - (ii) Commutator
 - (iii) Brushes
 - (iv) Yoke

Ans:

Function of Pole shoe in D.C Motor:

i)Gives machanical support to field coil and reduce magnetic reluctance due to 1 Mark enlarged area.

ii)Distribute the flux uniformly in the air gap.

Function of commutator in D.C Motor:

i)It helps to produce an unidirectional current from the armature winding. 1 Mark

ii) It collects the current from armature conductors and passes it to the external load via brushes

Function of Brushes in D.C Motor:

i)Function of brush is to give current to the armature conductors through commutator 1 Mark segments.

ii) It makes moving contact with commutator to facilitate the contact between stationary and moving parts.

Function of Yoke in D.C Motor:

i) Provides mechanical support for poles.

ii) Acts as protecting cover for machine.

iii) Provides path for magnetic flux.

2 b) Explain the principal of working of three phase induction motor.

Ans:

- When the motor is excited with three-phase supply, three-phase stator winding produces a rotating magnetic field of constant magnitude which rotates at synchronous speed.
- This changing magnetic field is cut by the rotor conductors and induces emf in them according to the principle of Faraday's laws of electromagnetic induction. As these rotor conductors are shorted, the current starts to flow through these conductors.
- The current carrying rotor conductors are placed in magnetic field produced by stator. Consequently, mechanical force acts on rotor conductors. The sum of the mechanical forces on all the rotor conductors produces a torque, which tend to move the rotor in same direction as the rotating magnetic field.
- This rotor conductor's rotation can also be explained by Lenz's law, which tells that the induced currents in the conductors oppose the cause for its production. Here this opposition is rotating magnetic field. This results in the rotor starts rotating in the same direction as that of the rotating magnetic field produced by stator.
- 2 c) Draw a neat labeled sketch of three-point starter.

Ans: Three Point Starter:

4 Marks for labeled sketch

3 Marks for partially labeled sketch

2 Marks for unlabeled sketch (Autonomous)

(ISO/IEC-27001-2013 Certified)

Summer – 2019 Examinations

Model Answers

Subject & Code: Electric Motors and Transformers (22418)

- 2 d) Select or suggest any two applications for:
 - D.C shunt motor (i)
 - D.C series motor (ii)

Ans:

Applications of DC shunt motor:

DC shunt motors are fairly constant speed and medium starting torque motors, hence they are used in applications requiring constant speeds.

- i) Lathe machine
- Drilling machines ii)
- Grinders iii)
- Blowers & fans iv)
- v) Compressors
- Centrifugal and reciprocating pumps vi)
- vii) Machine tools
- viii) Milling machine

Applications of DC series motor:

DC series motors are variable speed and high starting torque motors, hence they are 2 Marks for used in applications requiring variable speeds and high starting torque.

- i) Electric tractions
- ii) Cranes
- iii) Elevators
- iv) Air compressors
- v) Vacuum cleaners
- vi) Hair dryers

3 Attempt any <u>THREE</u> of the following:

Describe with suitable diagram speed control of DC shunt motor by field current 3 a) control method.

Ans:

Speed control of DC shunt motor by field current control method:

Start Rheostat Supply rated

2 Marks for circuit diagram

$$E_{b} = \frac{\phi ZN P}{60 A} \text{ volt}$$

Since Z, P, A are constants, $E_{b} \alpha \phi N$
i.e N $\alpha E_{b}/\phi$

2 Marks for any two applications

any two applications.

Since $E_b \cong$ Supply voltage V, we can write N $\alpha 1/\phi$, thus the speed is inversely proportional to the flux.

In this flux control method, speed of the motor is inversely proportional to the flux. Thus, by decreasing flux the speed can be increased. To control the flux, here a rheostat is added in series with the field winding. When the rheostat is increased, the field current and so the magnetic flux decreases. This results in an increase in the speed of the motor. Since the speed is inversely proportional to the flux or field current, the graphical representation curve showing relationship between speed and field current is hyperbola. The field current is relatively small and hence I^2R loss in field winding is less, which makes this method quite efficient.

With zero value of rheostat, the motor runs at rated speed and when rheostat is increased, the field current decreases and speed increases. Thus this method controls the speed above normal or rated speed.

3 b) Compare core type and shell type transformer on any four parameters.

Ans:

Sr. No.	Core type	Shell type		
1				
2	It has one window	It has two windows		
3	It has one magnetic circuit.	It has two magnetic circuits.		
4	Core surrounds the winding.	Winding surrounds the core		
5	Average length of core is more.	Average length of core is less.		
6	Area of cross section is less so more turns are required.	Area of cross section is more so less turns are required.		
7	Better cooling for winding	Better cooling for core		
8	Mechnical strength is less	Mechnical strength is high		
9	Repair and maintenance is	Repair and maintenance is		
	easy	difficult		
10	Application: Low current,	Application: High current, low		
	high voltage	voltage		

Comparision of Core Type and Shell Type Transformer:

2 Marks for explanation

1 Mark for each of any 4 parameters = 4 Marks

3 c) Draw a neat experimental set up to conduct OC test on a single phase transformer. **Ans:**

3 d) Explain with circuit diagram, the direct loading tests on single phase transformer. How the efficiency and regulation at given load condition is determined?Ans:

Direct loading test on Single-phase Transformer

Direct loading test is conducted on small capacity transformers whose voltage and current ratings are within the limits of direct measurement. The transformer is directly connected to load and subjected to various load conditions just like its operation in the field.

Procedure to conduct Direct Loading Test:

- i) Connect the circuit as shown in figure.
- ii) Adjust primary voltage to its rated value and keep it constant throughout the experiment.
- iii) Take first reading on No-load condition. No-load supply voltage V_0 = Rated primary voltage V_1 . No-load primary current = I_0

1 Mark for procedure

No-load input Power = W_0 = Iron loss of transformer.= W_i No-load secondary load voltage = E_2 No-load output power $W_2 = 0$ iv) Increase the load gradually from no load to full load and note down all the meter readings. v) At any particular loading condition, Secondary on-load voltage = V_2 Secondary on-load current = I_2 Input power = W₁ Output power = $W_2 = V_2 I_2$ (Load is purely resistive) ¹/₂ Mark for each of **Calculation of Efficiency:** efficiency % Efficiency = $(W_2/W_1) \times 100$ and **Calculation of Regulation:** regulation % Regulation = { $(E_2 - V_2) / E_2$ }×100 = 1 Mark 12

Attempt any THREE of the following: 4

State the criteria of selection of power transformer as per IS:10028 (part-I) 4 a)

Ans:

Criteria of Selection of Power Transformer:

- i) Ratings The kVA ratings should comply with IS:10028 (Part I) -1985. The noload secondary voltage should be 5 % more than nominal voltage to compensate the transformer regulation partly. The transformer requiring to be operated in parallel, the voltage ratio should be selected in accordance with guidelines given in 12.0.1 & 12.0.1.1 of IS: 10028 (Part 1)-1985
- ii) Taps On-Load tap changers on HV side should be specified, wherever system conditions warrant. In case of OLTC, total number of taps should be 16 in steps of 1.25 %. The standard range for off-circuit taps which are provided should be in range of +2.5 percent and +5 percent.
- iii) Connection Symbol The preferred connections for two winding transformers should be preferably connected in delta/star (Dyn) and star/star (YNyn). For higher voltage connections star/star (YNyn) or star/delta (YNd) may be preferred accordance with IS: 10028 (Part 1)-1985.

iv) Impedance:

- The value of transformer impedance is decided by considering the secondary • fault levels and the associated voltage dips. For deciding the precise value of transformer impedance, IS:2026(Part-I)-1977 is referred.
- If the transformer is to be operated in parallel, then the impedance be selected as per the guidelines given IS:10028(Part-II)-1981.

v) Termination Arrangement:

- The HV & LV terminals may be one of following three types depending upon on the method of installation:
 - Bare outside bushing
 - \succ Cable boxes
 - > Bus trunking

1 Mark for each of any four criteria = 4 Marks

- The types of bushings that should be specified are:
 - Upto 33kV: Porcelain bushings
 - ➢ 66kV & above: Oil filled condenser type bushings.

vi) Cooling:

Sr. No.	Rating	Voltage class	Type of cooling
1	Upto 10MVA	Upto 66kV	ONAN
2	12.5 to 40MVA	Upto 132kV	ONAN(60%),
			ONAF(40%)
3	50 to 100MVA	Upto 220kV	ONAN(50%),
			ONAF(62.5%)
4	Above 100MVA	Upto 400kV	ONAN(50%),
			ONAF(62.5%)

4 b) List the condition for parallel operation of three phase transformer. Ans:

Conditions For Parallel Operation of 3 Phase Transformer:

- 1) Voltage ratings of both the transformers must be identical.
- 2) Percentage / p.u. impedance should be equal in magnitude.
- 3) X / R ratio of the transformer winding should be equal.
- 4) Transformer connections w.r.t. polarity must be that identical polarity terminals of corresponding phases are connected together.
- 5) Phase displacement between primary & secondary line voltages of the = 4 Marks transformers must be identical.
- 6) Phase sequence of both transformers must be same
- 4 c) Explain the Polarity test of a transformer. Why it is necessary? **Ans:**

Polarity test of single Phase transformer:

2 Marks for 2 circuit diagrams

1 Mark for

Necessity: This test is conducted to identify the corresponding polarity terminals of the transformer HV and LV windings.

The primary winding (high-voltage winding) terminals of single-phase transformer are marked as A_1 - A_2 and the secondary winding (low-voltage winding) terminals will be marked as a_1 - a_2 after the polarity test. The transformer primary is connected to a low

2 Marks for explanation

voltage a.c. source with the connections of link and voltmeter made as shown in the figure. The reading of the voltmeter is noted.

This test is carried out on open circuit. Hence the primary applied voltage V_1 is equal to E_1 and the corresponding secondary voltage V_2 is E_2 .

If the voltmeter reading appears to be $V = (E_1-E_2)$ then it is referred as subtractive polarity connection and the terminals so connected are of similar polarity. Therefore, the secondary terminal connected to A_1 is marked as a_1 . The secondary terminal connected to A_2 through voltmeter is marked as a_2 .

If voltmeter reading appears to be $V = E_1+E_2$, it is referred as additive polarity. The terminals connected to each other are of opposite polarity. Therefore, the secondary terminal connected to A_1 is marked as a_2 and the secondary terminal connected to A_2 through voltmeter is marked as a_1 .

A 20 KVA, 2200/220V, 50 Hz transformer. The OC / SC test result are as follows 4 d) O.C. test: 220V, 4.2A, 148W (L.V. side) S.C test: 86V, 10.5A, 360W (H.V. side) Determine the regulation at 0.8 pf lagging at full load. Ans: $K = V_2/V_1 = 220/2200 = 0.1$ Full load primary current $I_{1 FL} = (20 \times 1000)/2200 = 9.09 \text{ A}$ 1 Mark From S.C.test: ZT1= Vsc/Isc= 86/10.5= 8.19 ohm 1 Mark $R_{T1} = W_{SC}/(I_{SC})^2 = 360/(10.5)^2 = 3.26 \text{ ohm}$ $X_{T1} = \sqrt{(8.19^2 - 3.26^2)} = 7.51$ ohm 1 Mark % Regulation = $100 \times \text{I}_{\text{IFL}}(\text{RT}_{1}\cos \omega + \text{XT}_{1}\sin \omega)/\text{V}_{1}$ 1 Mark $= 100 \times 9.09(3.26 \times 0.8 + 7.51 \times 0.6)/2200$ = 2.94%

4 e) Describe the method for measurement of high voltage in a.c circuit using potential transformer.

Ans:

Measurement of high voltage a.c. circuit using Potential Transformer.

The potential transformer is used to measure high alternating voltage in a power system.

The primary of this transformer has very large turns while the secondary has few turns as shown in the figure. It is well designed step-down transformer. The stepped down 3 Marks voltage is measured with a low range a. c. voltmeter.

The primary of the potential transformer is connected across the high voltage line whose voltage is to be measured. A low range (0-110V) a.c. voltmeter is connected across the secondary. The line voltages(V_p) and a .c. voltmeter voltage (V_s) are related as:

$$\frac{V_P}{V_S} = \frac{N_P}{N_S}$$

Subject & Code: Electric Motors and Transformers (22418)

$$\frac{V_P}{V_S} = P. T. ratio$$

Line voltage(V_p) = A.C. Voltmeter Reading × P. T. ratio

Potential Transformer (P.T.)

5 Attempt any <u>TWO of the following:</u>

5 a) A 4 pole, 220V shunt motor has 540 lap wound conductor. It takes 32 A from the supply mains and develops output power of 5.595 kW. The field winding takes 1A. The armature resistance is 0.09Ω and flux per pole is 30 mWb. Calculate:

i) The speed and				
ii) The torque developed in N-m.	1 Mark for			
Ans:	losses			
Data Given:				
Poles (P) = 4, Supply voltage V = 220V, Armature Resistance $R_a = 0.09\Omega$				
Output Power $P_{out} = 5.595 \text{ W} = 5595 \text{ W}$				
Total no. of conductors = $Z = 540$, Lap winding: No. of parallel paths $A = P = 4$	1 Mark			
Motor input current $I_m = 32A$, Flux per pole $\phi = 30 \text{ mWb}$				
Field current $I_f = 1A$				
\therefore Armature current $I_a = I_m - I_f = 32 - 1 = 31A$	1 Mark			
The voltage equation of motor is,				
$\mathbf{V} = \mathbf{E}_{\mathbf{b}} + \mathbf{I}_{\mathbf{a}}\mathbf{R}_{\mathbf{a}}$				
The back emf is then, $E_b = V - I_a R_a = 220 - (31)(0.09) = 217.21V$	1 Mark			
But $F_1 = \frac{\phi ZN P}{P} = \frac{(30 \times 10^{-3})(540)N}{(4)} - 21721V$				
$But L_b = \frac{60}{60} A = \frac{60}{60} (4) = 217.21 V$				
Therefore, Speed N = 804.48 rpm	1 Mark			
Output mechanical power developed $P_m = \frac{2\pi NT}{N} = \frac{2\pi (804.48)T}{N}$				
60 = 60 60 60 60 60 60 60 60				
Therefore, Torque developed = $\frac{1}{2\pi(804.48)} = \frac{1}{2\pi(804.48)}$	1 Mark			
T = 66.41 N-m				
Give the specification of three phase transformer as per IS 1180 (Part-1).				

Specification of 3-phase transformer:

5 b)

1) kVA rating of transformer2) Voltage ratings for the primary and secondary voltages3) HV and LV currents4) Operating frequency of the transformer5) % impedance of transformerspecification

1 Mark

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2013 Certified)

Summer – 2019 Examinations

Model Answers

Subject & Code: Electric Motors and Transformers (22418)

- 6) Allowable temperature rise.
- 7) Wiring instructions for HV and LV windings/terminal diagram
- 8) Model number and serial number of the transformer
- 9) Weight of the transformer
- 10) Information related to the tap changer
- 11) Transformer vector group
- 12) Winding connection diagrams
- 13) Type of cooling
- 14) Insulation class
- 15) Name of the manufacturer
- 16) Weight of core
- 17) Weight of winding
- 18) Volume of oil in litres.
- A 500 kVA, 3-phase, 50 Hz transformer has a voltage ratio (line voltages) of 33/11 kV 5 c) and is delta/star connected. The resistance per phase are: high voltage 35Ω , low voltage 0.876Ω and iron loss is 3050W. Calculate the value of efficiency at full load. Ans:

Data Given: 500kVA, 33/11kV, 3-phase, 50 Hz transformer $R_1 = 35\Omega$ $R_2 = 0.876\Omega$ Iron loss $W_i = 3050W$ $\therefore \sqrt{3} V_{1L} I_{1L} = \sqrt{3} V_{2L} I_{2L} = 500 \text{kVA}$ Primary (HV) line current $I_{1L} = \frac{500}{\sqrt{3} \times 33} = 8.75A$ Since HV side is connected in delta, Primary (HV) phase current $I_{1ph} = \frac{I_{1L}}{\sqrt{3}} = \frac{8.75}{\sqrt{3}} = 5.052 \text{ A}$ 1 Mark Secondary (LV) line current $I_{2L} = \frac{\sqrt{3}}{\sqrt{3} \times 11} = 26.24A$ Since LV side is connected in star, Secondary (LV) phase current $I_{2ph} = I_{2L} = 26.24$ A 1 Mark Primary Copper (Cu) loss, $W_{1Cu} = 3(I_{1ph})^2 R_1 = 3(5.052)^2(35) = 2679.884W$ 1 Mark Secondary Copper (Cu) loss, $W_{2Cu} = 3(I_{2ph})^2 R_2 = 3(26.24)^2(0.876) = 1809.48W$ 1 Mark Total Copper (Cu) loss at full load = $W_{Cu} = W_{1Cu} + W_{2Cu} = 2679.884 + 1809.48$ 1 Mark = 4489.364 WAssuming load pf as UNITY, Full load output = $P_{out} = 500 \text{KW} = 500 \times 10^3 \text{ W}$

% Efficiency at Full-load =
$$\eta_{FL} = \frac{Full-load output}{Full-load Output+Cu loss+Iron loss} \times 100$$

= $\frac{500 \times 10^3}{500 \times 10^3 + 4489.36 + 3050} \times 100$
= 98.51%

Attempt any <u>TWO of the following:</u>

6

Find the all-day efficiency of 500kVA distribution transformer whose copper loss and 6 a) iron loss at full load are 4.5kW and 3.5kW respectively. During a day of 24 hours, it is loaded as under:

1 Mark

No. of hrs.	Loading (KW)	Power Factor
06	400	0.8
10	300	0.75
04	100	0.8
04	0	

Ans:

The problem can be solved by using following steps:

Step-I: Convert the loading from kW to KVA

Step-II : Calculate copper losses at different KVA values

Step-III: Calculate iron losses in 24 hours & calculate Output energy

Step-IV: Calculate All day efficiency

No of Hrs	Load in KW	P.F.	Load in KVA= Load in KW COSØ	Copper Losses/hr = Losses at f.l. $\times \left(\frac{Actual KVA}{Rated KVA}\right)^2$	Total cu Losses in kwh	Total Iron losses	
06	400	0.8	$\frac{400}{0.8} = 500$	$4.5 kw \times \left(\frac{500}{500}\right)^2 = 4.5 kw$	$4.5 \times 6 \text{ hr}$ $= 27 \text{ kWh}$	- 3.5kW × 24hr	3 Mar
10	300	0.75	400	2.88	28.8		5 10101
04	100	0.8	125	0.281	1.125		
04	0	-	0	0	0		
			Total		56.925kwh	84kwh	1 Mar
nora	7 in 24 F	$\mathbf{Ir} = (6)$	$\times 100) \pm (10 \times 3)$	$300) \pm (4 \times 100) \pm (4 \times 100)$	$(1 \times 0) - 5800k$	Wh	l

Total energy in 24 Hr =
$$(6 \times 400) + (10 \times 300) + (4 \times 100) + (4 \times 0) = 5800$$
kWh
Output Energy in 24 hrs

Efficiency_{All day} =
$$\frac{1}{0}$$
 Output Energy in 24 Hrs + Losses in 24 Hrs
= $\frac{5800}{5800 + 56.925 + 84} = \frac{5800}{5940.925} = 0.97627$ 1 Mark

% Efficiency_{All day} = 97.63 %

6 b) Describe the method of converting three-phase to two-phase transformer by neat diagram. State any two applications. **Ans:**

Three-phase to Two-phase Transformation (Scott Connection of Transformers):

Working:

- i) Scott connection can be used for three-phase to two-phase conversion using two single-phase transformers.
- ii) Scott connection for three-phase to two-phase conversion is as shown in figure.
- iii) Point 'O' is exactly at midpoint of winding connected between phases Y & B.
- iv) The no. of turns of primary winding will be $\frac{\sqrt{3}}{2}N_1$ for Teaser and N₁ for main transformer. The no. of secondary turns for both the transformers are N₂.
- v) When three-phase supply is given to primary, two-phase emfs are induced in secondary windings as per turns ratio & mutual induction action.
- vi) It is seen that the voltage appearing across the primary of main transformer is $V_{1M} = V_L$ i.e line voltage. The voltage induced in secondary of main transformer is V_{2M} which is related to V_{1M} by turns ratio $N_1:N_2$.
- vii) From phasor diagram it is clear that the voltage appearing across the primary of Teaser transformer corresponds to phasor RO which is $\frac{\sqrt{3}}{2}$ times the line voltage V_L. Due to this limitation, the turns selected for primary of Teaser transformer are not N₁ but $\frac{\sqrt{3}}{2}N_1$. This makes the volts per turn in teaser transformer same as that in main transformer and results in voltage induced in secondary of teaser transformer same as that in main transformer, i.e V_{2T} = V_{2M}.

As seen from the phasor diagram, the output voltages to the two loads are identical.

Applications:

- i) The Scott-T connection is used in an electric furnace installation where it is desired to operate two single-phase loads together and draw the balanced load from the three-phase supply.
- ii) It is used to supply the single phase loads such as electric train which are so scheduled as to keep the load on the three phase system balanced as nearly as possible.
- iii) The Scott-T connection is used to link a 3-phase system with a two-phase system with the flow of power in either direction.

6 c) A 250/125 V, 5 kVA single-phase transformer has primary resistance of 0.2 Ω and reactance of 0.75 Ω. The secondary resistance is 0.05 Ω and reactance of 0.2 Ω. Determine its regulation while supplying full load on 0.8 leading P.F. Ans:
Data Given: 5 kVA, 250/125 V, 1-φ transformer.

 $R_1 = 0.2\Omega, R_2 = 0.05\Omega, X_1 = 0.75\Omega, X_2 = 0.2\Omega$ Transformation ratio $k = V_2/V_1 = 125/250 = 0.5$ Equivalent resistance referred to secondary side of transformer is given by, $R_{02} = R_2 + K^2 R_1 = 0.05 + (0.5)^2 (0.2) = 0.1\Omega$ 1 Mark Equivalent reactance referred to secondary side of transformer is given by, $X_{02} = X_2 + K^2 X_1 = 0.2 + (0.5)^2 (0.75) = 0.3875\Omega$ 1 Mark Full-load secondary current is given by, $I_2 = (kVA \times 1000)/V_2 = (5 \times 1000)/125 = 40A$ 1 Mark

1 Mark for each of any two applications = 2 Marks

2 Marks for

description

Summer – 2019 ExaminationsModel AnswersSubject & Code: Electric Motors and Transformers (22418)Power-factor = $\cos \phi_2 = 0.8$ leading $\therefore \phi_2 = 36.87^{\circ}$

Fower-factor = $\cos \varphi_2 = 0.8$ feading = 1. $\varphi_2 = 30.87$ $\sin \varphi_2 = 0.6$ Approximate voltage drop in equivalent impedance on secondary side of transformer for leading pf is given by, 1 Mark V.D. = $I_2R_{02} \cos \varphi_2 - I_2X_{02} \sin \varphi_2 = 40 \times 0.1 \times 0.8 - 40 \times 0.3875 \times 0.6$ = - 6.1 volt % Voltage regulation = $\frac{V_{20} - V_2}{V_{20}} \times 100 = \frac{V.D}{V_{20}} \times 100$ where, V_{20} = No-load secondary voltage = k V₁ V₂ = Secondary voltage on load 1 Mark % Voltage regulation = $\frac{-6.1}{125} \times 100 = -4.88\%$