17315

21718

3 Hours / 100 Marks

Seat No.

Instructions : (1) All questions are compulsory.
 (2) Answer each next main question on a new page.
 (3) Illustrate your answers with neat sketches wherever necessary.
 (4) Figures to the right indicate full marks.
 (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. A) Attempt any four of the following :
a) State Dalton's law and write its mathematical statement.
b) Give mathematical statement of ideal gas law and state the value of universal gas constant with its unit in SI system.
c) Define standard heat of formation and standard heat of combustion.
d) Draw a labelled diagram of distillation operation and an overall material balance equation for distillation.
e) Calculate the volume occupied by 20 kg of chlorine gas at a pressure of 100 KPa and 298 K.
f) Convert $105.6 \mathrm{KPa} . \mathrm{g}$ in absolute pressure.
B) Attempt any two of the following :
a) A cylinder contains 15 kg of liquid propane. What volume in m^{3} will propane occupy if it is released and brought to NTP conditions ?
b) Calculate the density of air containing $21 \% \mathrm{O}_{2}, 79 \% \mathrm{~N}_{2}$ by volume at 503 K and 1519.875 KPa .
c) Prove : Mole $\%$ of $\mathrm{A}=$ Mole fraction of $\mathrm{A} \times 100$.
2. Attempt any four of the following :
a) Write the outline of a procedure for material balance calculations involving no chemical reactions.
b) The ground nut seeds containing 45% oil and 45% solids are fed to an expeller, the cake coming out of expeller is found to contain 80% solids and 5% oil. Find the percentage recovery of oil.
c) In production of $\mathrm{SO}_{3}, 100 \mathrm{Kmol}$ of SO_{2} and 200 Kmol of O_{2} are fed to a reactor. The product stream found to contain $80 \mathrm{Kmol} \mathrm{SO}_{3}$. Find the percent conversion of SO_{2}.
d) Define the following terms with examples :
i) Stoichiometric equation.
ii) Stoichiometric ratio.
e) In the manufacture of sulphur trioxide, feed to a reactor consist of $50 \mathrm{Kmol} \mathrm{SO}_{2}$ and 150 Kmol air. Calculate the \% excess air is used.
f) Calculate the heat that must be added to 3 Kmol air to heat it from 298 K to 473 K using the mean molal heat capacity data for air given below :
$\mathrm{C}^{\circ} \mathrm{pm}$ (between 473 K and 298 K) $=29.3955 \mathrm{~kJ} /(\mathrm{Kmol} \mathrm{K})$.
3. Attempt any two of the following :
a) A feed containing $60 \mathrm{~mole} \% \mathrm{~A}, 30 \mathrm{~mole} \% \mathrm{~B}$ and $10 \mathrm{~mole} \% \mathrm{C}$ inerts enters a reactor. 80 percent of original A reacts according to following reaction.
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$
Find the composition of product stream on mole basis.
b) The dilute acid containing $25 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is concentrated by commercial grade sulphuric acid containing $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to obtain desired acid containing $65 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Find the quantities of the acids required to make 1000 kg of desired acid.
c) A feed to a continuous fractionating column analyses by weight 28% benzene and 72% toluene. The analysis of the distillate shows 52 weight $\%$ benzene and 5 weight $\%$ benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate the percent recovery of benzene.
4. Attempt any two of the following :
a) Calculate the standard heat of formation of n-propanol liquid using the following data.

Std. heat of formation of $\mathrm{CO}_{2}(\mathrm{~g})=-393.51 \mathrm{~kJ} / \mathrm{mol}$
Std. heat of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.83 \mathrm{~kJ} / \mathrm{mol}$
Std. heat of combustion of n-propanol liquid $=-2028.19 \mathrm{~kJ} / \mathrm{mol}$
b) Soyabean seeds are extracted with hexane in batch extractors. The flaked seeds are found to contain 18.6% oil, 69% solids and 12.4% moisture (by weight). At the end of the extraction process, cake is separated from hexane-oil mixture. The cake is analysed to contain 0.8% oil, 87.7% solids and 11.5% moisture (by wt.). Find the percentage recovery of oil.
c) Prove : Pressure $\%=$ Mole $\%=$ Volume $\%$.
5. Attempt any two of the following :
a) A tray dryer is fed with 1000 kg of wet orthonitroaniline containing 10% water. The dried product contains 99.5% orthonitroaniline and the rest water. Find the percentage of original water that is removed in the dryer.
b) A stream of CO_{2} flowing at a rate of $100 \mathrm{Kmol} / \mathrm{min}$ is heated from 298 K to 383 K . Calculate the heat that must be transferred using Cp°.
Data: $\mathrm{Cp}^{\mathrm{o}}=\mathrm{a}+\mathrm{bT}+\mathrm{CT}^{2}+\mathrm{dT}^{3}, \mathrm{~kJ} /(\mathrm{Kmol} . \mathrm{K})$

Gas	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
CO_{2}	21.3655	64.2841	-41.0506	9.7999

c) Calculate the standard heat of reaction of the following reaction :

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Data :

$$
\begin{array}{ll}
\text { Component } & \Delta \mathrm{H}_{\mathrm{C}}{ }_{\mathrm{C}}, \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) & -1410.09 \\
\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g}) & -11.92 .65 \\
\mathrm{H}_{2}(\mathrm{~g}) & -285.83
\end{array}
$$

6. Attempt any four of the following :
a) Write mathematical equation of Van-der Waals equation of state. Write the values for a and b constants.
b) Write overall material balance for evaporation and draw block diagram of evaporation indicating inflow and outflow materials.
c) Define the following terms :
1) Heat capacity
2) Heat of combustion.
d) Explain Hesse's law of constant heat summation with example.
e) Differentiate between conversion and yield.
f) Define Recycling and state any four reasons for performing recycling operation in industry.
