

21718

3 Hours / 100 M	arks	Seat No.						
Instructions :	(1) All que	estions are com	pulso	ry.				
(2) Answer each next main question on a new page.								
	(3) Illustrate your answers with neat sketches wherever necessary.				v.			

- (4) Figures to the **right** indicate **full** marks.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

1. A) Attempt **any four** of the following :

- a) State Dalton's law and write its mathematical statement.
- b) Give mathematical statement of ideal gas law and state the value of universal gas constant with its unit in SI system.
- c) Define standard heat of formation and standard heat of combustion.
- d) Draw a labelled diagram of distillation operation and an overall material balance equation for distillation.
- e) Calculate the volume occupied by 20 kg of chlorine gas at a pressure of 100 KPa and 298 K.
- f) Convert 105.6 KPa.g in absolute pressure.
- B) Attempt **any two** of the following :
 - a) A cylinder contains 15 kg of liquid propane. What volume in m³ will propane occupy if it is released and brought to NTP conditions ?
 - b) Calculate the density of air containing 21% O₂, 79% N₂ by volume at 503 K and 1519.875 KPa.
 - c) Prove : Mole% of A = Mole fraction of A \times 100.
- 2. Attempt any four of the following :
 - a) Write the outline of a procedure for material balance calculations involving no chemical reactions.
 - b) The ground nut seeds containing 45% oil and 45% solids are fed to an expeller, the cake coming out of expeller is found to contain 80% solids and 5% oil. Find the percentage recovery of oil.

17315

(2×4=8)

(2×6=12)

(4×4=16)

- c) In production of SO₃, 100 Kmol of SO₂ and 200 Kmol of O₂ are fed to a reactor. The product stream found to contain 80 Kmol SO₃. Find the percent conversion of SO₂.
- d) Define the following terms with examples :
 - i) Stoichiometric equation.
 - ii) Stoichiometric ratio.
- e) In the manufacture of sulphur trioxide, feed to a reactor consist of 50 Kmol SO_2 and 150 Kmol air. Calculate the % excess air is used.
- f) Calculate the heat that must be added to 3 Kmol air to heat it from 298 K to 473 K using the mean molal heat capacity data for air given below :

 $C^{\circ}pm$ (between 473 K and 298 K) = 29.3955 kJ/(Kmol K).

- 3. Attempt any two of the following :
 - a) A feed containing 60 mole% A, 30 mole% B and 10 mole% C inerts enters a reactor. 80 percent of original A reacts according to following reaction.

 $2A + B \rightarrow C$

Find the composition of product stream on mole basis.

- b) The dilute acid containing 25% H₂SO₄ is concentrated by commercial grade sulphuric acid containing 98% H₂SO₄ to obtain desired acid containing 65% H₂SO₄. Find the quantities of the acids required to make 1000 kg of desired acid.
- c) A feed to a continuous fractionating column analyses by weight 28% benzene and 72% toluene. The analysis of the distillate shows 52 weight% benzene and 5 weight % benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate the percent recovery of benzene.
- 4. Attempt any two of the following :

(2×8=16)

a) Calculate the standard heat of formation of n-propanol liquid using the following data.

Std. heat of formation of $CO_2(g) = -393.51 \text{ kJ/mol}$

Std. heat of formation of $H_2O(1) = -285.83 \text{ kJ/mol}$

Std. heat of combustion of n-propanol liquid = -2028.19 kJ/mol

- b) Soyabean seeds are extracted with hexane in batch extractors. The flaked seeds are found to contain 18.6% oil, 69% solids and 12.4% moisture (by weight). At the end of the extraction process, cake is separated from hexane-oil mixture. The cake is analysed to contain 0.8% oil, 87.7% solids and 11.5% moisture (by wt.). Find the percentage recovery of oil.
- c) Prove : Pressure% = Mole% = Volume%.

(2×8=16)

- 5. Attempt any two of the following :
 - a) A tray dryer is fed with 1000 kg of wet orthonitroaniline containing 10% water. The dried product contains 99.5% orthonitroaniline and the rest water. Find the percentage of original water that is removed in the dryer.

[3]

b) A stream of CO₂ flowing at a rate of 100 Kmol/min is heated from 298 K to 383 K. Calculate the heat that must be transferred using Cp^o. Data : Cp^o = $a + bT + CT^2 + dT^3 kJ/(Kmol K)$

Data . Cp	a + b 1	· OI · uI	, 10/(111101.1	x)
Gas	a	$b \times 10^3$	$c \times 10^6$	$d \times 10^9$
CO_2	21.3655	64.2841	-41.0506	9.7999

c) Calculate the standard heat of reaction of the following reaction :

$$C_2H_5OH(g) \rightarrow CH_3CHO(g) + H_2(g)$$

Data :

Component	ΔH^{o}_{C} , kJ/mol
$C_2H_5OH(g)$	-1410.09
CH ₃ CHO(g)	-11.92.65
H ₂ (g)	-285.83

- 6. Attempt any four of the following :
 - a) Write mathematical equation of Van-der Waals equation of state. Write the values for a and b constants.
 - b) Write overall material balance for evaporation and draw block diagram of evaporation indicating inflow and outflow materials.
 - c) Define the following terms :
 - 1) Heat capacity
 - 2) Heat of combustion.
 - d) Explain Hesse's law of constant heat summation with example.
 - e) Differentiate between conversion and yield.
 - f) Define Recycling and state any four reasons for performing recycling operation in industry.

17315

 $(2 \times 8 = 16)$

(4×4=16)