DIGITAL NOTES
ON
LINUX PROGRAMMING

B.TECH III- YEAR - I-SEM
(2018-19)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)
(Affiliated to INTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad — 500100, Telangana State, INDIA.

LINUX PROGRAMMING

A4

o
%
:

©%¢ MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
&
2w DEPARTMENT OF INFORMATION TECHNOLOGY

e

Il Year B.Tech. IT -1 Sem L T/PID C
5 1/-- 4

(R15A0527)LINUX PROGRAMMING

Objectives:
e To develop the skills necessary for Unix systems programming including file system
programming, process and signal management, and interprocess communication.
To make effective use of Unix utilities and Shell scripting language such as bash.
To develop the basic skills required to write network programs using Sockets.

UNIT I

Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities,
Networking commands, Filters, Text processing utilities and Backup utilities.

Sed-Scripts, Operation, Addresses, Commands, Applications, awk- Execution, Fields and Records,
Scripts, Operation, Patterns, Actions, Associative Arrays, String and Mathematical functions, System
commands in awk, Applications.

Shell programming with Bourne again shell(bash)- Introduction, shell responsibilities, pipes and
Redirection, here documents, running a shell script, the shell as a programming language, shell meta
characters, file name substitution, shell variables, command substitution, shell commands, the
environment, quoting, test command, control structures, arithmetic in shell, shell script examples,
interrupt processing, functions, debugging shell scripts.

UNIT I

Files and Directories- File Concept, File types, File System Structure, file metadata-Inodes, kernel
support for files, system calls for file I/O operations- open, create, read, write, close, Iseek, dup2,file
status information-stat family, file and record locking-lockf and fcntl functions, file permissions -
chmod, fchmod, file ownership-chown, Ichown, fchown, links-soft links and hard links — symlink, link,
unlink. Directories-Creating, removing and changing Directories-mkdir, rmdir, chdir, obtaining
current working directory-getcwd, Directory contents, Scanning Directories-opendir, readdir,
closedir, rewinddir, seekdir, telldir functions.

UNIT Il

Process — Process concept, Kernel support for process, process identification, process hierarchy,
process states, process control - process creation, waiting for a process, process termination, zombie
process, orphan process, system call interface for process management-fork, vfork, exit, wait,
waitpid, exec family, system, 1/0O redirection

Signals — Introduction to signals, Signal generation and handling, Kernel support for signals, Signal
function, unreliable signals, reliable signals, kill, raise , alarm, pause, abort, sleep functions.

UNIT IV

Interprocess Communication - Introduction to IPC, IPC between processes on a single computer
system,IPC between processes on different systems, pipes-creation, IPC between related processes
using unnamed pipes, FIFOs-creation, IPC between unrelated processes using FIFOs (Named
pipes),differences between unnamed and named pipes, popen and pclose library functions.Message
Queues- Kernel support for messages, APIs for message queues, client/server example.Semaphores-
Kernel support for semaphores, APls for semaphores, file locking with semaphores.

LINUX PROGRAMMING Page 2

UNITV

Shared Memory- Kernel support for shared memory, APIs for shared memory, shared memory
example.

Sockets- Introduction to Berkeley Sockets, IPC over a network, Client-Server model, Socket address
structures (Unix domain and Internet domain),Socket system calls for connection oriented protocol
and connectionless protocol, example-client/server programs-Single Server-Client connection,
Multiple simultaneous clients, Comparison of IPC mechanisms.

TEXT BOOKS:

1. Unix System Programming using C++, T.Chan, PHI.

2. Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH,2006.
3. Unix Network Programming, W.R.Stevens, PHI

REFERENCE BOOKS:

1. Linux System Programming, Robert Love, O’Reilly, SPD, rp-2007.

2. Unix for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson2003,
3. Advanced Programming in the Unix environment, 2nd Edition, W.R.Stevens, Pearson
4. System Programming with C and Unix, A.Hoover, Pearson.

Outcomes:
e Students will be able to use Linux environment efficiently
e Solve problems using bash for shell scripting
e Work confidently in Unix/Linux environment

LINUX PROGRAMMING

MALILA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
DEPARTMENT OF INFORMATION TECHNOLOGY

Topic

Linux Utilities-File handling utilities, Security by file
permissions, Process utilities, Disk utilities,

Networking commands Filters, Text processing utilities and
Backup utilities.

Sed-Scripts, Operation, Addresses, Commands, Applications

awk- Execution, Fields and Records, Scripts, Operation,
Patterns, Actions, Associative Arrays

String and Mathematical functions, System commands in awk,
Applications.

Shell programming with Bourne again shell(bash)- Introduction,
shell responsibilities, pipes and

Redirection, here documents, running a shell script, the shell as
a programming language, shell meta characters, file name
substitution

shell variables, command substitution, shell commands, the
environment, quoting, test command, control structures

Files and Directories- File Concept, File types, File System
Structure, file metadata-Inodes,

kernel support for files, system calls for file 1/0 operations-
open, create, read, write, close, Iseek, dup2

file and record locking-lockf and fentl functions, file
permissions - chmod, fchmod, file ownership-chown, Ichown,
fchown, links-soft links and hard links — symlink, link, unlink
Directories-Creating, removing and changing Directories-mkdir,
rmdir, chdir, obtaining current working directory-getcwd,
Directory contents

Process — Process concept, Kernel support for process, process
identification, process hierarchy, process states, process control
- process creation, waiting for a process, process termination,
zombie process

orphan process, system call interface for process management-
fork, vfork, exit, wait, waitpid, exec family, system, 1/O
redirection

Signals — Introduction to signals, Signal generation and
handling, Kernel support for signals, Signal function, unreliable
signals, reliable signals, kill, raise , alarm, pause, abort, sleep
functions

Interprocess Communication - Introduction to IPC, IPC between
processes on a single computer system,IPC between processes
on different systems, pipes-creation, IPC between related
processes using unnamed pipes

LINUX PROGRAMMING

FIFOs-creation, IPC between unrelated processes using FIFOs
(Named pipes),differences between unnamed and named pipes,
popen and pclose library functions.Message Queues- Kernel
support for messages, APIs for message queues

91-92

client/server example.Semaphores-Kernel ~ support for
semaphores, APIs for semaphores, file locking with semaphores

93-94

Shared Memory- Kernel support for shared memory, APIs for
shared memory, shared memory example

95-99

Sockets- Introduction to Berkeley Sockets, IPC over a network,
Client-Server model, Socket address structures

100-107

Socket system calls for connection oriented protocol and
connectionless protocol, Multiple simultaneous clients,
Comparison of IPC mechanisms

108-110

LINUX PROGRAMMING

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT-1

LINUX PROGRAMMING

Linux Programming

"Unit-I - Linux Utilities"

Introduction to Linux

Linux is a Unix-lhke computer cperating system assembled under the model of free and open
source software development and distribution. The defining component of Linux is the Linux

kernel. an operating system kernel first released 5 October 1991 by Linus Torvalds.

Linux was orgmally developed as a free operating system for Intel x86-based persomnal
computers. It has since been ported to mere computer hardware platforms than any other
operating system. It is a leading operating system on servers and other big iron systems such as
mainframe computers and supercomputers more than 90% of today's 300 fastest supercomputers
mn some variant of Linux, including the 10 fastest. Linux also mns on embedded systems
(devices where the operating system s typically bualt into the firmware and highly tailored to the
system) such as mobile phones. tablet computers, network routers, televisions and video game

consoles; the Androdd system in wide use on mobile devices is built on the Linx kernel.

A distribution oriented toward deslktop use will typically inelude the X Window System and an
accompanying desktop environment such as GNOME or KDE Plasma. Some such distributions
may include a less resource mtensive desktop such as LXDE or Xfee for use on older or less
powerful computers. A distribution intended to run as a server may omut all graphical
environments from the standard install and instead include other software such as the Apache
HTTP Server and an S5H server such as OpenSS5H. Because Linux iz freely redistributable,
anyone may create a distribution for any intended uvse. Applications commonly used with
deskiop Linux systems include the Mozilla Firefox web browser, the LibreOffice office

application suite, and the GIMP image editor.

Sinee the main supporting user space system tools and libraries originated in the GNU Project,
imtiated in 1983 by Richard Stallman, the Free Scftware Foundation prefers the name

GNLLinux.

LINUX PROGRAMMING

The Unix operating system was conceived and implemented in 1969 at AT&T's Bell
Laboratories in the United States by Ken Thompson, Dennis Ritchie, Douglas Mellroy, and Joe
Ossanna. It was first released 1n 1971 and was iitially entirely wriften in assembly language, a
common practice at the time. Later. in a key pioneering approach tn 1973, Unix was re-written in
the programming language C by Denmis Ritchie (with exceptions to the kernel and 1'0). The
availability of an operating system written in a high-level language allowed easier portability to

different computer platforms.

Teday, Linux systems are vsed in every domain, from embedded systems to supercomputers, and
have secured a place in server installations often using the popular LAMP application stack. Use
of Linux distributions in home and enterprise desktops has been growing. They have also gained
popularity with various local and national governments. The federal government of Brazil 15 well
known for its support for Linux. News of the Eussian military creating its own Linux distribution
has also surfaced, and has come to frudtion as the G.H.ost Project. The Indian state of Kerala has

gone to the extent of mandating that all state high schools tun Linux on their computers.
Design

A Linux-based system 13 a modular Unix-like operating system. It derives much of its basic
design from principles established in Unix during the 19705 and 1980s. Such a system uses a
menelithic kernel, the Linux kernel, which handles process control, networking, and peripheral
and file system access. Device drivers are either integrated directly with the kernel or added as

modules loaded while the system 15 rmunning.

Separate projects that interface with the kemnel provide much of the system's higher-level
functionality. The GINU userland is an important part of most Linme-based systems, providing
the mest commen implementation of the C library. a popular shell, and many of the common

Unix tools which carry out many basic operating system tasks. The graphical user interface (or

GUT) used by mest Linux systems i3 built on top of an implementation of the X Window System.

LINUX PROGRAMMING

Linux Advantages

Low cost: You don’t need to spend fime and money to obtain licenses since Linux and
much of its software come with the GINU General Public License. You can start to work
immediately withowt wonryving that vour software may stop working anvtime because the
free trial version expires. Additionally, there are large repositories from which vou can
freelv download high quality software for almost any taszk vou can think of

Stability: Linux doesn’t need to be rebooted periodically to maintain performance levels. It
doesn’t freeze up or zlow down over time due to memory leaks and such. Continuous up-
times of hundreds of days (up to a year or more) are not unConUMON.

Performance: Linux provides persistent high performance on workstations and on
networks. It can handle vovsually large numbers of users simultaneously, and can make old
computers sufficiently responsive to be useful again.

Network friendliness: Linux was developed by a group of programmers over the Internet
and has therefore strong support for network functionalify; client and server systems can be
eazily set up on any computer running Linux. It can perform tasks such as network backups
faster and more reliably than alternative svatems.

Flexibility: Linux can be used for high performance server applications, desktop
applications, and embedded systems. You can save disk space by onlv installing the
components needed for a particular use. You can restrict the use of specific computers by
installing for example only selected office applications instead of the whole suite.

LINUX PROGRAMMING

Linux Programming
I —

Compatibility: It runs all common Unix software packages and can process all common
file formats.

Choice: The large number of Linux distributions gives vou a choice. Each distribution is
developed and supported by a different organization. You can pick the one you like best;
the core functionalities are the same; most software rmuns on most distributions.

Fast and easy installation: Most Linux distributions come with wser-friendly installation
and setup programs. Popular Linux distributions come with tools that make installation of
additional software very user friendly as well.

Full use of hard disk: Linux continues work well even when the hard disk is almost full.

- Multitasking: Limux 15 designed to do many things at the same time; e g a large printing
job in the background won't slow down vour other work.

. Security: Linux 15 one of the most secure operating svstems. “Walls”™ and flexible file
aCcess Permission syvstems prevent access by unwanted visitors or virnses. Linux users have
to option to select and safelv download software, free of charge, from online repositories
containing thousands of high guality packages. No purchase transactions requiring credit
card mumbers or other sensitive personal information are necessary.

. Open Source: If you develop software that requires Imowledge or modification of the
operating system code, Linux’s source code is at yvour fingertips. Most Linux applications
are Open Source as well.

The difference hetween Linux anid UNIX operating systems T

UNIX is copvrighted name onlv biz companies are allowed to use the UNIX copvright and
name, so IBM ATY and Sun Selaris and HP-UX all are UNIX operating systems. The Open
Group holds the UNIY trademark in trust for the industry, and manages the UNIX trademark
licensing program.

Most UNIX systems are cotumercial in nature.

Linux is a UNIX Clone

But if you consider Portable Operating System Interface (POSIX) standards then Linux can be
considered as UNDL To quote from Official Linux kernel REEADME file:

Linux 15 a Unix clone written from scratch by Linus Torvalds with assistance from a loosely-knit
team of hackers across the Net. It aims towards POSIX compliance.

However, "Open Group" do not approve of the construction "Unix-like”, and consider it misuse
of their UNIX trademark.

LINUX PROGRAMMING

Linux Programming
L]

Linux is just a kernel. All Linux distributions mecludes GUI system + GNU utilities (such as cp,
mv, 1s.date, bash etc) + installation & management tools + GNU o/c++ Compilers + Editors (vi)
+ and varions applications (such as OpenOffice. Firefox). However, most UNIX operating
svstems are considered as a complefe operating system as evervthing come from a single source
or vendor.

Ax T said earlier Linux 15 just a kernel and Linux distribution makes it complete usable operating
systems by adding vanous applications. Lost UNIEK operating systems comes with A-Z
programs such as editor, compilers etc. For example HP-UX or Solaris comes with A-Z
programs.

License and cost

Linux is Free (as in beer [freedom]). You can download it from the Internet or redistribute it
under GNU licenzes. You will see the best community support for Linux. Mest UNIX like
operating systems are not free (but this is changing fast, for example OpenSolans UNE).
However, some Linux distributicns such as Bedhat / Novell provides additional Linux support,
consultancy, bug fixing, and training for additional fees.

User-Friendly

Linux is considered as most user friendly UNIX like operating systems. It makes it easy to install
sound card, flash players, and other desktop goodies. However, Apple 05 X i3 most popular
UNIX operating system for desktop usage.

Security Firewall Software

Linux comes with open source netfilter/iptables based firewall tool to protect your server and
desktop from the crackers and hackers. UNCY operating systems comes with ifts own firewall
product (for example Solaris UNIE comes with ipfilter based firewall) or vou need to purchase a
3rd party software such as Checlkpoint UNTY firewall

Backup and Recovery Software

UNIX and Linux comes with different set of tools for backing up data to tape and other backup
media. However, both of them share some commeon tools such as far, dumpirestore, and cpio etc.

File Systems

» Linux by default supports and use ext3 or extd file svstems.

LINUX PROGRAMMING

File Handling utilities:

cat COMMAND:

cat linux comumand concatenates files and print it cn the standard output.
SYNTAX:
The Syntax is

cat [OPTIONS] [FILE]...

OPTIONS:

LINUX PROGRAMMING

Show all.

Omits line numbers for blank space in the cutput.

A S character will be printed at the end of each line prior to a new line.
Displays a § (dollar sign) at the end of each line.

Line numbers for all the output lines.

If the output has multiple empty lines it replaces it with one empty line.
Displays the tab characters in the output.

Non-printing characters (with the exception of tabs. new-lines and form-feeds)
are printed visibly.

EXAMPLE:

. To Create a new file:

cat = filel fxt

This command creates a new file filel txt. After fyping into the file press control+d (*d)

simultaneously to end the file.

!, To Append data into the file:

cat == filel txt

To append data into the same file use append operator == to write into the file, else the

file will be overwritten (i.e., all of its contents will be erased).

. To display a file:

cat filel txt

This command displays the data in the file.

4. To concatenate several files and display:

LINUX PROGRAMMING

cat filel txt file2 txt

The above cat command will concatenate the two files (filel txt and file? txf) and it will
dizplay the output in the screen. Some fimes the cutput may not fit the monitor screen. In
such sifuation vyou can print those files in a new file or display the file uwsing less

command.
cat filel .txt file2 txt | less

. To concatenate several files and to transfer the output to another file.
cat filel txt file2 txt > file3 ixt

In the above example the output is redirected to new file file3 txt. The cat command will

create new file file3 txt and store the concatenated cutput into file3 txt.

rm COMMAND:

rm linux command is vsed to remove/delete the file from the directory.
SYNTAX:
The Syatax is
rm [options..] [file | directory]

OPTIONS:

Eemove all files in a directory without prompting the user.

Interactive. With this option, rm prompts for confirmation before removing

any files.

Becursively remove directories and subdirectories in the argument list. The
directory will be emptied of files and removed. The user is normally
prompted for removal of any write-protected files which the directory

contains.

LINUX PROGRAMMING

EXAMPLE:

. To Remove / Delete a file:

rm filel txt

Here rm command will remove/delete the file filel txt.

', To delete a directory tree:

rim it tp

This rm conunand recursively removes the contents of all subdirectories of the tmp
directory, prompting vou regarding the removal of each file, and then removes the tmp

directory itself

. To remove more files at once

rm filel txf file? txt

rm command removes filel tut and file txt files at the same time.

cd COMMAND:

cd comunand is used to change the directory.
SYNTAX:
The Syntax is

cd [directory | ~| -

OFTIONS:

-L Use the physical directory structure.

-P Forces symbolic links.

LINUX PROGRAMMING

EXAMPLE:

. To Remove [Delete a file:

rm filel txt

Here rm command will remove/delete the file filel. txt.

. To delete a directory tree:

i -ir top

This rm comunand recursively removes the contents of all subdirectories of the tmp
directory, prompting vou regarding the removal of each file, and then removes the tmp

directory itself

. To remove more files at once

rm filel =t file2 txt

rm command removes filel tot and file? txt files at the same time.

cd COMMAND:

cd comumand is wsed to change the directory.
SYNTAX:
The Syntax is

cd [directory | ~| -

OPTIONS:

-L Use the physical directory struchre.

-P Forces symbolic links.

LINUX PROGRAMMING

EXAMPLE:

. od limmx-command

This command will talee you to the sub-directory(linux-command) from its parent

directory.

Food..

This will change to the parent-directory from the current working directory/sub-directory.

i

This command will move to the user's home directory wlich i3 "home/usemname".

cp COMMAND:

cp comunand copy files from one location to another. If the destination is an existing file, then
the file 13 overwritten; if the destination 13 an existing directory, the file iz copied into the

directory (the directory 1s not overwritten).

SYNTAX:
The Syntax is
cp [OPTIONS]... SOURCE DEST
cp [OPTIONS]... SOURCE... DIRECTOEY
cp [OPTIONS]... —target-directory=DIRECTORY SOURCE..

OPTIONS:

-A same a3 -dpE.
—backup[=CONTEOL] make a backup of each existing destination file
b like —backup but does not accept an argument.

-f if an existing destination file cannot be opened, remove it and fry

LINUX PROGRAMMING

Process utilities:

ps COMMAND:

ps command 15 used to report the process status. ps is the short name for Process Status.

SYNTAX:
The Syntax is

ps [options]

OPTIONS:

List information about all processes mest frequently requested: all those
except process group leaders and processes not associated with a terminal .
List information for all processes.

-d List information about all processes except session leaders.

-2 List information about every process now mumning.

-f Generates a full listing.

4 Print zession ID and process group ID.

-1 Generate a long listing.
EXAMPLE:
. P
Output:

PIDTTY TIME CMD
2540 pte/l 00:00:00 bash
2621 pts/l 00:00:00 ps

In the above example, typing ps alone would list the current minning processes.

LINUX PROGRAMMING

Linux Programming
|

Print the operating system version.

Print expanded system information, one information
element per line, as expected by SCO Unix. The

displayed information includes:

* gystem name, node, release, version, machine, and mumber of CPUs.
* BusType, Serial, and Users (set to "nnknown" in Solaris)

+ OEM? and Origin® (set to 0 and 1, respectively)

The nodename may be changed by specifying a system name argument. The
system name argument is restricted to SYS NMLN characters. 8Y5 NMLN is
an implementation specific value defined in <sys/utsname b= Only the super-
user is allowed

this capability.
Examples
uname -arv
List the basic system information, OS release, and OS5 version as shown below.
SunOs hope 5.7 Generic_106541-08 sundm sparc SUNW_ SPARCstation-10

uname -p

Display the Linux platform.

SED:

What 15 sed?

QA non-inferactive stream edifor

LINUX PROGRAMMING

Linux Programming
L. /|

© Interprets sed instructions and performs actions
© Use sed to:
s Aptomatically perform edits on file(s)
s Simplify deing the same edits on multiple files

* Write conversion programs

input file

script

sed | options script ‘ file list

/ \ usually in a

separate file ;

-n: no automatic output
-e: inline script
-f: in-file script

sed command syntax

LINUX PROGRAMMING

Linux Programming
S E —

$ sed -e 'address command' input file

(@) Inline Script

$ sed -f script.sed input file

(b) Script File

sed Operation

hold space

input file

:

pattern space
7 T
+ Holds one or

more input lines.
\ /

script
How Does sed Work?

QO sed reads line of input
* line of input is copied into a temporary buffer called pattern space
* editing commands are applied
Q subseguent commands are applied to line in the pattern space, not the
original input line

Q once finished, line is sent to output

LINUX PROGRAMMING

Linux Programming
1

(unless —n option was used)
* line i3 removed from pattern space
© sed reads next line of input. until end of file
Note: input file i3 unchanged
sed imstruction format

© address determines which lines in the input file are to be processed by the command(s)
* ifno address is specified, then the command 1s applied to each input line
O address types:
* Single-Line address
* Set-of-Lines address
* Range address

& Nested address
Single-Line Address

Q Specifies only one line in the input file

* special: dollar sign ($) denotes last line of input file

Examples:

& show only line 3

sed -n -e '3 p' input-file

* show only last line

sed -n -e 'S p' input-file

* substitute “endif” with “fi” on line 10

sed -e "10 s/endif/fi”" input-file

LINUX PROGRAMMING

Linux Programming
1

Set-of-Lines Address

Q use regular expression to match lines
& written between two slashes
* process only lines that match
* may match several lines

lines may of may not be consecutives
Examples:
sed -e “key/ simorefother” input-file
sed -n -e Y. p* input-file
Fange Address
© Defines a set of consecutive lines

Format:

start-addrend-addr (inclusive)

Examples:

LINUX PROGRAMMING

Linux Programming
L]

Example:

print lines that do not contain “obsolete™
sed - “/obsolete/Ip” input-file

sed commands

Commands

Line Numberl ‘ Substitute | Input/Output Branch I Quit I

Madify I | lransform | ‘ Files I Huald Spdtﬁl

Line Mumber

O line number conumand (=) writes the current line number before each matched output line

Examples:

LINUX PROGRAMMING

AWK

What 15 awk?

O created by: Aho, Weinberger, and Kemnighan
QO scripting language used for manipulating data and generating reports
© versions of awk

* awk nawk, mawk. pgawk, ...

s GNUawk: gawk

What can you do with awk?

Q awk operation:
& gcans a file line by line
* splits each input line into fields
* compares input line/fields to pattern
* performs action(s) on matched lines
© Useful for:
* transform data files
* produce formatted reports
© Programming constriets:
& format output lines
* arithmetic and string operations

& conditionals and loops

The Command: awlk

LINUX PROGRAMMING

Linux Programming

input file

options files
—‘-—\.._,__‘__-!-‘_ 'l;; -

-F:input field separator usually ina

-f:script file separate file

Basic awk Syntax

© awk [options] *seript’ file(s)
O awk [options] —f scriptfile file(s)

tioms:

-F to change input field separator

-f to name script file

Basic awk Program

© consists of patterns & actions:

pattern {action}

¢ fpattern 15 missing, action is applied to all lines

LINUX PROGRAMMING

Linux Programming

& ifaction is missing. the matched line 15 printed

& must have either pattern or action

Example:
awk "for/" testfile

* prints all lines containing string “for™ in testfile
Basic Terminclogy: input file

O A field 15 a unit of data 10 a line

© Each field is separated from the other fields by the field separator
s default field separator is whitespace

© A record 13 the collection of fields in a line

© A dara file is made up of records

Example Input File

Field 1 Field 2
(First_Mame) | | (Last_MName)

Susan White 6.00

Record 2 Mark Eagle 6.25
Tuan Mguyen 7.89

Record 4 | Dan Black 7.23 40
Arnanda Trapp 6.95 40
Brian Devaux 795 0
Chiris Walljasper 6.89 32
Mary Lamb 8232 40
Jackie Kammaoto 71.59 40

Record 10 Nicky Barber 6.35 40

A file with 10 records, each with four fields

LINUX PROGRAMMING

Linux Programming

nput il

soript
Q awk supports two types of buffers:
record and field

QO field buffer:
* one for each fields in the current record.

* pames: 5152, .
O record buffer

s 30 holds the entire record
Some System Variables
ES Field separator (default=whitespace)
ES Fecord separator (default="n)
NF Number of fields in current record
NE Number of the current record
OFs Onutput field separator (default=space)
ORS Orutput record separator (defanlt=\n)
FILENAME Current filename
Example: Records and Fields

0% cat emps

LINUX PROGRAMMING

Linux Programming
Tom Jomes 4424 5/12/66 543354
Mary Adams 5346 11/4/63 18765
Sally Chang 1654 650000
Billy Black 1683 9/23/44 336500
Up awk '{print NR, 30}' emps
1 Tom Jones 4424 5/11/66 43354
2Mary Adams 5346 1l/4/63 218765
3 Sally Chang 1654 7/21/54 650000

4 Billy Black 1683 9/23/44 336500

Example: Space as Field Separator

Uo cat emps

Tom Jones 4424 5/12/66 543354
Mary Adams 5346 11/4/63 18765
Sally Chang 1654 7/22/54 650000
Billy Black 1683 9/23/44 336500
%o awk '{print NR, 51, 52, 55}" emps
1 Tom Jones 543354

2 Mary Adams 28765

3 Sally Chang 650000

LINUX PROGRAMMING

Linux Programming

4 Billy Black 336500

Example: Colon as Field Separator

% cat em2

Tom Jones:4424:5/12/66:543354
Mary Adams:5346:11/4/63:28765
Sally Chang:1654:7/22/54:650000
Billy Black:1683:9/23/44:336500

&% awk -F: "/Jones/{print 51, $2}' em?2
Tom Jones 44214

awk Scripts

O awk scripts are divided into three major parts:

BEGIN {Begin's Actions} Preprocessing

Pattern {Action}
Pattern {Action]

Pattern {Action}

END {End's Actions} Postprocessing

Q comment lines start with =

LINUX PROGRAMMING

Linux Programming

awlk Scripts

© BEGIN: pre-processing
* performs processing that must be completed before the file processing starts (1e.,
before awk starts reading records from the input file)
wseful for initialization tasks such as to initialize variables and to create report
headings
© BODY: Processing
* containg main processing logic to be applied to input records
* like a loop that processes input data cne record at a time:
Q if a file contains 100 records, the body will be executed 100 times, one for
each record
© END: post-processing
* contains logic to be executed after all input data have been processed
* logic such as printing report grand total should be performed in this part of the

script

Pattern / Action Syntax

pattern [statement]} I

{a) One Statement Action
pattern {statementl; statement?; statement3i}

(b) Multiple Statements Separated by Semicolons

pattern

{
statementl
statement?
statementl

(c) Multiple Statements Separated by Newlines

LINUX PROGRAMMING

Linux Programming

Patterns

Categories of Patterns

Range |
|

BEGIN I ‘ EMD» I ‘ Expresslon | ‘ Mothing I

Expression Pattern types

© maich

* enfire input record

regular expression enclosed by °s

* explicit pattern-matching expressions

~ (match), !~ (not match)

QO expression operators
* arithmetic
* relational

* Jlogical

Example: match input record

O cat employees2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

LINUX PROGRAMMING

LINUX Frogramming
__|

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:236500

% awk -F: 005" employees

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500
Example: explicit match

%% cat datafile

northwest NW Charles Main 3.0
western WE Sharon Gray 53 .97
southwest SW Lewis Dalsass
southern 50 Suan Chin

southeast SE Patricia Hemenway 4.0
eastern EA TE Savage 4.4
northeast NE AM Main

north NO Margoet Weber

central CT Ann Stephens

by awk 'S5 - AL[7-9]+" datafile
southwest SW Lewis Dalsass

central CT Ann Stephens

LINUX PROGRAMMING

LInux Frogramming
|

Examples: matching with BEs

O awlk '$2 !~ /E/{print 31, 32}" datafile

northwest NW

southwest W

southern SO

north NO

central CT

0y awl ' []1'5]]'{P1'il1t S].}r datafile

northwest

sonthwest

southern

sontheast

northeast

north

Arithmetic Operators

erator Meaning

Add

Subtract

Multiply

LINUX PROGRAMMING

Linux Programming

Divide
Modulus
Exponential

Example:

B awlk '$3 * 84 = 500 {print S0}' file

Eelational Operators

Operator Meaning

Less than

Less than or egual

Equal to

Mot equal to

Greater than

Greater than or equal to

Matched by reg exp

Mot matched by req exp
Logical Operators

Operator Meaning Example

& f Logical AND adedeb

Logical OR

LINUX PROGRAMMING

Linux Programming
! NOoT l'a
Examples:
B awk (51> 5) && (32<=15) {print 30}" file
% awk "S53 == 100 || 54 = 50" file
Eange Patterns
© Matches ranges of consecutive input lines

patternl , pattern {action}

© pattern can be any simple pattern
© patternl tums action on

Q pattern2 tums action off

Eange Pattern Example

First match:
blue - yellow

/blue//yellow/ {print}

awk Actions

LINUX PROGRAMMING

Linux Programming

Statements

Expression I Output Decision | Loop

print

printf getline

+ sprintf — do-while J§4

awk expressions

© Expression is evaluated and remms value
* consists of any combination of numeric and string constants, variables, operators,
functions, and regular expressions
© Can involve variables
* As part of expression evaluation

* Astarget of assiznment

awk vanables

A vser can define any number of variables within an awk script
The variables can be numbers, strings, or arrays

Variable names start with a letter, followed by letters, digits. and underscore

Varables come into existence the first time they are referenced; therefore, they do not

need to be declared before nze

All vaniables are initially created as strings and initialized to a null string *

LINUX PROGRAMMING

Linux Programming
L. /|

© File: grades
john 8592 78 04 §8
andrea 89 90 75 00 86
jasper 54 88 80 92 54
awk script: average
average five grades
{total =52+ 53+ 34+ 55+ 56
avg =total / &
print 31, avg }
Faun as:
awk —f average grades
Output Statements
print

print easy and simple output

printf

print formatted (similar to C printf)

sprintf

format string (similar to C sprintf)

Function: print

LINUX PROGRAMMING

Linux Programming
I —

© Writes to standard output
© Output 15 terminated by ORS
* default ORS is newline

Q If called with no parameter, it will print 30

© Printed parameters are separated by OFS,

* defanlt OFS is blank
© Print control characters are allowed:

= niflattth o
print example
by awlk '{print}’ grades
john 3592 78 94 88
andrea 89 20 75 90 86
by awk '{print 50}" grades
john 3592 78 94 88
andrea 89 90 75 90 86
Lo awk '{print(30)}' grades
john 3592 78 94 88
andrea 89 90 75 90 86
Bedirecting print output

© Print output goes to standard cutput

unless redirected via:

> “file”

LINUX PROGRAMMING

== file”

“command”

Q will open file or command only once

© subsequent redirections append to already open stream
print Examgple
%o awk '{print 51 , 52 = "file"}' grades
Uo cat file
john 85
andrea 89
jasper 54
by awk '{print 51,52 | "sort"}' grades
andrea 89
jasper 54
john 85
&% awk '{print 51,52 | "sort -k 2"} grades
jasper 54
john 85
andrea 89

%o date

LINUX PROGRAMMING

Linux Programming

Wed Nov 19 14:40:07 CST 2003
bo date |

awk "{print "Month: " 52 "nYear: ", 56}
Month: Nov
Year: 2008
printf: Formatting output
printf{format-string, varl, varl, ...

* works like C printf

each format specifier in “format-string” requires argument of matching type
Fommat specifiers
%ad. Yeidecimal integer
Yo single character

string of characters

fleating point nmumber

actal number

hexadecimal number

scientific floating point notation

the letter “%0~

LINUX PROGRAMMING

Linux Programming
|

Format specifier examples

printfi" The character is %«c 'n", x)

output: The characteris A

printfi " The boy is %d years old In", v)

output: The boy is 15 vears old

printfi"My name is %s \n", $1)

output: My name is Bob Smith

printfi"'z is %331 n", z)

output: z is 2.300

Format specifier modifiers

O between “%"” and letter

%a10s

%a7d

LINUX PROGRAMMING

Linux Programming
I —

© meaning:
& ydth of field, field is printed night justified
& precision: number of digits after decimal point

s 7 il left justify
sprintf: Formatting text
Syntax:

sprintf{format-string, varl, var2, ...)

* Works like printf, but does not produce output

* Instead it refurns formatted string

Example:

text = sprintf{"'1: %d - 21: ad", 51, 83)

print text

awk builtin functions

tolower(string)

O retumns a copy of string with each uwpper-case character converted to lower-case.

Nonalphabetic characters are left unchanged.
Example: tolower("MiXeD cAsE 123")

refurns "mixed case 123"

toupper(string)

LINUX PROGRAMMING

The Shell as a Programming Language

You can type in a sequence of commands and allow the shell to execute them
mteractively, or youn can sotre these commands 1n a file which vou can mvoke as a
program.

Interactive Programs

A quick way of trying out small code fragments 15 to just type mn the shell script on the

command line. Here 1s a shell program to compile only files that contain the string
POSIX.

for fils in #®
Ao

LE grep

Ehan

mere Ffile
|

Acue

Creating a Script

To create a shell script first use a text editor to create a file contamning the commands.
For example, type the followmg commands and save them as first.sh

B adn/ak

Clrst. &k
B Thls flls lsaks theough all tha [llas in ©hs surrsnt
digmctory for the string POEIE, and then prints thods
filas o che stamdard oubgul.
Fox Flla Ilw &
do

if grap =3 POSIX Rflls

ehan

mora SElle

Il

e

axic 0
Mote: commands start with a #.
The line

#/n/sh
1s special and tells the svstem to use the /bin'sh program to execute this program.

The command

LINUX PROGRAMMING

exit U
Causes the script program to exit and return a value of 0, which means there were not
r1of1s.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the
script file as a parameter, thus:

Mbin/sh first.sh
Or 2) change the mode of the script to executable and then after execute it by just
typing its name.
chmod +x first.sh
first.sh
Acmally, vou may need to type:
Jirst.sh
to make the file execute unles the path vanable has your directory 1n 1t.

Shell Syntax
The modem UNIX shell can be used to write quite large, structured programs.
Variables

Variables are generally created when you first use them. By default, all variables are
considered and stored as stings. Varable names are case sensitive.

el larartlon=fAal 1o

sabo foalutation

SaluLatione"Yes Dear®

ik Paalubailon

s malutat lop=TeS

b fsalubtation

Quoting

Normally, parameters are separated by white space, such as a space. Single quot
marks can be used to enclose values containing space(s). Tvpe the following mnto a
file called quot.sh

LINUX PROGRAMMING

Linux Programming

Farameter Expansion Description

S{param;: -dafmale) | pEram
Fifiparan)

S{pasemuword] Fromn Lhi i, removes the smallesi part of pazam thai makche
§ { par ams%wo ro roet the ¢ etV es Bt kg es V| AEEn (0L

§ i parandword) LN | v | TV o s les) port of peoress fhat mabchae

B {paramiiword) o Al by

word and n
How It Works

The try 1t out exercise uses parameter expansion to demonstrate how parameter
expansion works.

Here Documents

A here document 1s a special way of passing mput to a command from a shell seript.
The document starts and ends with the same leader after == For example:

#1/bin/sh
cat < this 15 a here
document
IFUNKY!
How It Worls
It executes the here document as if 1t were mput commands.

Debugging Scripts

When an error occurs in a script, the shell prints out the line number with an error.
You can use the set command to set various shell option. Here are some of them.

LINUX PROGRAMMING

Linux Programming
|

exit O

Causes the script program to exit and return a value of 0. which means there were not
EIT0TS.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the
script file as a parameter, thus:

Mbin/sh first sh
Or 2) change the mode of the script to executable and then after execute it by just
typing its name.
chmod +x first sh
first.sh
Actally, vou may need to type:
Jfirst.sh
to make the file execute unles the path vaniable has your directory in 1it.

Shell Syntax
The modern UNIX chell can be usad to write quite large, structured programs.
Variables

Variables are generally created when you first use them. By default, all varables are
considered and stored as strings. Variable names are case sensitive.

arlom=fallo

fealutarlon

AL lone™Yas Dear®

o faalubation

latat iop=Te S

Faalutat ion

Normally, parameters are separated by white space, such as a space. Single quot
marks can be used to enclose values contaming space(s). Tvpe the following mnto a
file called quot.sh

LINUX PROGRAMMING

Linux Programming

|

#l bingah

Eyvar="Hi thars®

acho jsyrar

wnha *EEyear®

scho "Smyvar*

scho yEmyvar

schoe Emter some UTEND
il myEvar

scho 'Smyvar® pow egueals Ssyvar
axie 0

make sure to make 1t executable by typing the command:

= chmeod a+x quot.sh
The results of executing the file 15:

M=llo World

How It Werls

The vanable myvar 1s created and assigned the string Hi there. The content of the
variable 1z displyved using the echo 5. Double quotes don't effect echomg the value.
Single quotes and backslash do.

Emvironment Variables

When a shell starts. some variables are mmtialized from values in the environment.
Here 15 a sample of some of them.

LINUX PROGRAMMING

Linux Programming
]

¥ Felng ah
mywar=THi Thars®
achs Jeyvar
sals *Emyrar®
scho "Smyvac*
sicho \Smyvar

scho Enter some Texh
ruad myvar

wcho 'Snyvar® now egeals Ssyvar
axie 0

make sure to make 1t executable by typmng the command:

= chmod a+x quot.sh
The results of executing the file 15

H=llo World

Hew It Werks

The variable myvar 1s created and assigned the string Hi there. The content of the
vanable 15 displyed using the echo $. Double quotes don't effect echoing the value.
Single quotes and backslash do.

Environment Variables

When a shell starts. some vanables are intialized from values in the environment.
Here 1s a sample of some of them.

LINUX PROGRAMMING

Linux Programming

Description - Wﬁ‘l

Mhe home drectory of the current user.

A colonv-sepamated list of directories to search for commands
A convrard prompt, usually §

A sooondary promp msed when pe mpting for additional inps
usually »

An lnput Bedd separator. A List of charactens that are ased &
aparate words) the shell s mading input, ussally spoce

nal newlise charactery

| Paviroomeni Variable
$0
(1]
L1

wes 1D 0f the »

ating unigue lemporary il

Parameter Variable:z

If your script 1s invoked with parameters, some additional variables are created.

‘ Parameter Varlable Description

$1.52 The paramy
list o & varametes nghe vanabl
vironment vanable IFS

LINUX PROGRAMMING

Linux Programming
L. /|

File Conditiomnal Hesull

=i flle I
-a fils I
=f fils I

1 e ke 15 & diroctor
s il e [le o}

If the file s a pegular file
=g Eilm True il sat-group-14d = st on hle
=r flla = i thie file
=i [ils
= file

=w [ilm o i thaee

- Eile e if the |

w meackabli
{ the file has mn-zomo sige

ruc il sat-user-14 1§ & on

Control Structures

The shell has a set of control structures.

i

The 1if statement 1s vary similar other programming languages except 1t ends with a fi.

if condition
then

statements
else

statements
fi

elif

the elif is better known as "else 1f". It replaces the else part of an if statement with
another if statement. You can try 1t out by using the following script.

#l/bin/sh

echo "Is 1t morning? Please answer yes or no"
read timeofday

if [Stimeofday = "yes" |
then

echo "Good morning”
elif [$tmeofday = "no"]; then

echo "Good afternoon”
glse

LINUX PROGRAMMING

Linux Programming
L

echo "Sorry, $timeofday not recognized. Enter ves or no”
exit 1

Hew It Warls
The above does a second test on the variable timeofday 1f 1t 1sn't equal to yes.

A Problem with Variables
If a vanable 15 set to null, the statement

if [Stimeofday = "yes" |
looks like

if [="yes"]
which 1s illegal. This problem can be fixed by using double quotes around the variable
name.

if ["Stmeofday” = "yes"]

far

The for construct 1s used for looping through a range of values. which can be any set
of strings. The syntax 15

for vaniable in values
do
statements
done
Try out the following senipt:
#l/han/sh

for foo 1n bar fud 43
do
echo $foo
done
exit 0
When executed. the output should be:
bar
fud
43

LINUX PROGRAMMING

Linux Programming

Hear It Warke

The above example creates the variable foo and assigns it a different value each time
around the for loop.

Hear It Warks

Here 15 another script which uses the ${command) syntax to expand a list to chap3 txt.
chap4 txt. and chap5 ot and print the files.

#1/bin/sh

for file in 5(1s chap[345].mt); do
lpr $file
done

while

While loops will loop as long as some condition exist. OF course something in the
body statements of the loop should eventually change the condition and cause the loop
to exit. Here 1s the while loop syntax.

while condition do
statements
done
Here 15 a whil loop that loops 20 times.
#1/bin/sh

foo=1

while ["$foo" -le 20]

do
echo "Here we go agam"
foo=%(($foo+1))

done

exit 0

How It Werls

The above script uses the [] command to test foo for == the value 20. The line

foo=%((5foo+1))
mcrements the value of foo each time the loop executes..

LINUX PROGRAMMING

Linux Programming

uniil

The until statement loops vntil a condition becomes true! Tts syntax 1s:

until condition
do
statements
done
Here 1is a script using until.
#!/bin/sh

until who | grep "$1" = /dev/null
do

sleep 60
done

now ring the bell and announce the expected user.

echo -e'\a
echo "**%% £1 has just loogged mn #***"
exit 0

case

The case statement allows the testing of a variable for more then one value. The case
statement ends with the word esac. Its syntax 1s:

case variable i
pattern [| pattern]) statements;;
pattern [| pattern] ...) statements:;

25ac

Here 1s a sample script using a case statement:
#!/bin/sh

echo "Is 1t morning? Please answer ves or no”
read timeofday

case "Stimeofday” in

"ves") echo "Good Morning™:;
"no") echo "Good Afternoon”;;

LINUX PROGRAMMING

Linux Programming

Exil Codie L plion

exXport

The export command makes the variable named as ifs parameter available in
subshells.

BXPr

The expr command evaluates its arguments as an expression.

x=exprix+1
Here are some of its expression evaluations

I \rn s=ion Evaluation ! 'I"\--\."'Ir"“'I“

axprl | DTl axprl | asmprl s
-2
axprl & axprl £t

angre 1 axprd
exprl b exprd
asprl axprd
exprl « exprl
aupri & eaxprd
anprl axprl
auprl + axprl
auprl - sxprl
sprl SXpEd
axprl f axpri
axprl % axprd

priwtf

The prntf command 1s only available in more recent shells. It works sinmular to the
echo command. Its general form 1s:

printf "format string” parameter] parameter?
Here are some characters and format specifiers.

LINUX PROGRAMMING

refurn

The return command causes functions to return. It can have a value parameter which 1t
retums.

et
The set command sets the parameter vanables for the shell.
shift

The shift command moves all the parameters vanables down by one, =0 $2 becomes
$1. 33 becomes 52, and so on.

trap

The trap command 1s used for secifving the actions to take on receipt of signals_ It
SYntax 1s:

trap command signal
Here are some of the signals.

Unit Il — Files and Directories

Working with Files
In this chapter we learn how to create, open, read, write, and close files.
UNIX File Structure

In UNIX, everything is a file.

Programs can use disk files, serial ports, printers and other
devices in the exactly the same way as they would use a file.
Directories, too, are special sorts of files.

Directories

As well as its contents, a file has a name and "administrative
information’, i.e. the file's creation/modification date and its
permissions.

The permissions are stored in the inode, which also
contains the length of the file and where on the disc it's
stored.

A directory is a file that holds the inodes

and names of other files. Files are

arranged in directories, which also contain

subdirectories.

A user, neil, usually has his files stores in a *home' directory, perhaps /home/neil.

LINUX PROGRAMMING

F|Ies and DeV|ces

Even hardware devices are represented (mapped) by files in UNIX. For
example, as

root, you mount a CD-ROM drive as a file,

$ mount -t is09660 /dev/hdc /mnt/cd_rom
$ cd /mnt/cd_rom

<— Kernel Space

PR

Hardware
Dpwces

Low-level File Access

Each running program, called a process, has associated with it a number of file
descriptors.

LINUX PROGRAMMING

When a program starts, it usually has three of these descriptors already
opened. These are: The write system call arranges for the first n bytes
bytes from buf to be written to the file associated with the file descriptor

files.

With this knowledge, let's write our first program, simple_write.c:

struct stat statbuf:
mode. t modes;

atat ("filename", &statbuf);
. modes = statbuf.st mode;

if (1S ISDIR(modes) && (modes & S _IRWXU) == S_IXUSR)

e

dup and dup? |

finclude <unistd.h>

int dup(int £ildes);
int dup2(int fildes, int fildes2);

The dup system calls provide a way of duplicating a file descriptor, giving
two or more, different descriptors that access the same file.

The Standard 1/O Library

The standard 1/O library and its header file stdio.h, provide a versatile
interface to low-level 1/0 system calls.

Three file streams are automatically opened when a program is
started. They are stdin, stdout, and stderr.

Now, let's look at:
» fopen, fclos=e

fread, fwrite
fflu=sh

faasak
fgetc, getc, getchar
fputc, putc, putchar

fgets, gets
p printf, fprintf and sprintf

» scanf, fscanf and sscanf

fopen

LINUX PROGRAMMING

#include <stdioc.h>

FILE *fopen(const char #*filename, const char *mode):

The fopen library function is the analog of the low level open systerh_call.

fopen opens the file named by the filename parameter and associates a stream with it.

The mode
parameter specifies how the file is to be opened. It's one of the following strings:

npr or rb® Open for reading only

"' or "wh" Open for writing, truncate to zero length
"a" or "ab®" Open for writing, append to end of file
"r+" or "rb+" or "r+b" Open for update (reading and writing)
"w+" or "wb+" or 'w+b" Open for update, truncate to zero length
"a+" or "ab+" or "a+b" Open for update, append to end of file

If successful, fopen returns a non-null FILE * pointer.

fread
The fread library function is used to read data from a file stream. Data is read

into a data buffer given by ptr from the stream, stream.

Fwrite
The fwrite library call has a similar interface to fread. It takes data records from the

specified
data buffer and writes them to the output stream.
fclose

Zinclude <stdio.h>

int foeloze(FILE *stream);

The fclose library function closes the specified stream, causing any unwritten data to be
written.

Fflush
#include <stdio.h»>

int fflush(FILE *stream);

The fflush iibrary function causes all outpstanding data on a file stream to be written
immediately.
fseek

#ginclude <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

The fseek function is the file stream equivalént of the Iseek system call.
It sets the position in the stream for the next read or write on that stream.

LINUX PROGRAMMING

Tgetc, getc, getchar

#include <stdio.h>

|
int fgetc(FILE *stream);
int getc(FILE *stream):
int getchar();

The fgetc function returns the next byte, as a character, from a file
stream. When it reaches the end of file, it returns EOF.

The getc function is equivalent to fgetc, except that you can
implement it as a macro. The getchar function is equivalent to
getc(stdin) and reads the next character from the standard input.
fputc, putc, putchar

‘ #include <stdio_hs

int fputc(int ¢, FILE *sgtream):
int pute{int ¢, FILE *stream):
‘ int putchar{int c):

The fputc function writes a character to an output file stream. It returns the
value it has written, or EOF on failure.

The function putc is quivalent to fputc, but you may implement it as a macro.
The putchar function is equivalent to putc(c,stdout), writing a single
character to the standard output.

fgets, gets

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream):;
char *gets(char *s);

The fgets function reads a string from an input file stream. It writes characters to
the string pointed to by s until a newline is encountered, n-1 characters have been
transferred or the end of file is reached. Formatted Input and Output

There are library functions for producing output in a controlled fashion.

printf, fprintf and sprintf

#include <stdio.h>

int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int fprintf (FILE *stream, const char *format, ...);

The printf family of functions format and output a variable number of
arguments of different types. Ordinary characters are passed unchanged into
the output. Conversion specifiers cause printf to fetch and format additional
argumetns passed as parameters. They are start with a %.

For example

printf("Some numbers: %d, %d, and %d\n",; 2

LINUX PROGRAMMING

which produces, on the standard output:

Some numbers: 1, 2, and 3

Print an integer in decimal.

Print an integer in octal, hexadecimal.

Print a character.

Print a string.

Print a floating point (single precision) number.
Print a double precision number, in fixed format,

%g Print a double in a general format.
Here's another example:

char initial = 'A‘';
char *surname = "Matthew";
double age = 6.5;

printf("Hello Miss %c¢ %s, aged %g\n", initial, surname, aged);
This produces:

Hello Miss A Mathew, aged 6.5
Field specifiers are given as numbers immediatley after
the % character in a conversion specifier. They are used
to make things clearer.

Format Argument | output |

"Hello™ | Hello |
"Hello" |Hello |
1234 | 1234 |
1234 | 1234 |
1234 | 0000001234 |
12.34 i 12.3400 |

| 10, "Hello" | Hello | [

The printf function returns an integer, the number of characters written.

scanf, fscanf and sscanf

LINUX PROGRAMMING

£include <gtdio.h>

int scanf(const char *format, ...):
int fscanf(FILE *stream, const char *format, ...);
int gscanf (const char ¥s, const char *format, ...);

The scanf family of functions work in a similar way to the printf group,
except that thye read items from a stream and place vlaues into variables.

The format string for scanf and friends contains both
ordinary characters and conversion specifiers.
Here is a simple example:

int num:
scanf("Hello %d", &num);

The call to scanf will succeed and place 1234 into the variable num given either if the
following inputs

Hello 1234
Hellol234

Other conversion specifiers are:

%ad Scan a decimal integer.
%0, %X Scan an octal, hexadecimal integer.

%E, %e, %g Scan a floaling point number.

% Scan a character (whitespace not skipped).

%e Scan a string.
%] ; set of characters (see below).
%% % charactern

Given the input line,

Helle, 1234, X, string to the end of the line

this call to scanf will correctly scan four items:

LINUX PROGRAMMING

char s[256];
int n;

float £;
char ¢;

scanf ("Hello,%d, %g, %c¢, %[*\nl", &n,&f,&c,s8);

In general, scanf and friends are not highly regarded, for three reasons:

Other library functions use either stream paramters or the standard streams stdin,
stdout, stderr

LINUX PROGRAMMING

In UNIX, everything is a file.

Programs can use disk files, senal ports, printers and other devices m the exactly the
same way as they would use a file.

Dhrectories, too, are special sorts of files.
Directories

Aswell as its contents, a file has a name and "admimistrative information’, 1.e. the file's
creation/modification date and 1ts permuissions.

The pernussions are stored 1n the inode, which also contains the length of the file and
where on the disc 1t's stored.

A directory 1s a file that holds the imnodes and names of other files.
Files are arranged n directories, which also contaimn subdirectories.

A user, neil, usually has hus files stores in a 'home' directory, perhaps /home/neil.

mail letters programs

Files and Devices

LINUX PROGRAMMING

Even hardware devices are represented (mapped) by files in UNIX. For example,
as root, you mount a CD-ROM dnive as a file,

§ mount -t 1509660 /dev/hde /mnt/cd _rom
§ cd ‘'mnt/cd_rom
/deviconsole - this device represents the system console.
{dev/tty - This special file 15 an alias (logical device) for controlling terminal
(kevboard and screen. or window) of a process.
{dev/null - This is the null device. All output written to this device 1s discarded.

Svstem Calls and Device Drivers
System calls are provided by UNIX to access and control files and devices.
A number of device drivers are part of the kemel.
The system calls to access the device drivers meclude:
cpen Open a file or device,
read Read from an open file or device,

write Write 10 a file or device.

class Clase the file or deviee,

ioetl Specific control the device.

Library Functions

To provide a higher level mterface to device and disk files, UNIIX provides a number
of standard libraries.

LINUX PROGRAMMING

Library

T R A A T oo T o

R

\\ /{,’ﬁw Calis

.

oot . Kernel
Device Drivers
AN N AT N NS A SRS :-x-'a:a'a-t\‘ms

Hardware §
Devices &

O e

Low-level File Access

Each running program, called a process, has associated with 1t a number of file
descriptors.

When a program starts, 1t usually has three of these descriptors already opened. These
are:

LINUX PROGRAMMING

Meaning

No user permissions are to be disallowed.
User read permission is disallowed.

User write permission is disallowed.
User execute permission is disallowed.

Meaning

No group permissions are (o be disallowed.
Group read permission is disallowed.
Group write permission is disallowed.
Group execute permission is disallowed.

No other permissions are to be disallowed.
Other read permission is disallowed
Other write permission is disallowed.
Criher execute permission is disallowed.

|

For example. to block 'group’ write and execute, and 'other’ write, the umask would
be:

Digit Value

Values for each digit are ANDed together: so digit 2 will have 2 & 1. giving 3. The
resulting umask 1s 032,

cloze

LINUX PROGRAMMING

finclude <unistd.h>

#include <sys/types.h>

off_t lseek(int fildes, off t offsot, int whence);

The Iseek system call sets the read/write pomter of a file descriptor, fildes. You use 1t
to set where 1n the file the next read or write will occur.

The offset parameter 1s used to specify the position and the whence parameter
specifies how the offset 1s used.

whence can be one of the following:

» SEEK_SET offset is an absolute position
» SEEK_CUR offset is relative o the current position

) SEEK _END offset is relative to the end of the file

fstat, stat and lstat

#include <unistd.h>
£include <sys/stat.n>
#include <sycs/types.h>

int fstat(int £ildes, struct stat *buf);

int stat (const char *path, struct stat *buf);
int lstat (const char *path, struct stat *bui};

.Vofe*’th?z‘t tie inclusion of sys/types.his deemed ‘optional, but sensible’.

The fstat system call retums status information about the file associated with an open
file descriptor.

The members of the structure. stat. may vary between UNIX systems. but will
mclude:

LINUX PROGRAMMING

stat Member

Description

g2t_mode
st_ino
st_dev
st_uid
gt_gid
gt _atime
gt _ctime

st_mtime

st_nlink

File permissions and file type information.

The inode associated with the file.

The device the file resides on.

The user identity of the file owner.

The group identity of the file ownenr.

The time of last access,

The time of last change to mode, owner, group or content.
The time of last modification {0 contents.

The number of hard links to the file.

The permissions flags are the same as for the open system call above. File-type flags

mclude:

» 5 IFBLK
» 5 _IFDIR
#» S_IFCHR
% S_IFIFO
#» S _IFREG
P S_IFLNX

Entry is a block special device.
Entry is a directory.

Entry i5s a character special device.
Entry is a FIFO (named pipe).
Entry is a regular file.

Entry is a symbolic link.

Other mode flags mnclude:

P S8_ISUID
» S_ISGID

Entry has setuUID on execution.

Entry has setGID on execution.

Masks to mterpret the st_mode flags include:

LINUX PROGRAMMING

B s_IFMT File type.
% S_TIRWXU User read/write/execute permissions.
Yy 8_IRWXG Group read/write /execute permissions.

» S_IRWXO Others read/write/execute permissions,

There are some macros defined to help with determuming file types. These mclude:

% s _ISBLK Test for block special file.

% S_ISCHR Test for character special fi

» s_1SDIR Test for directory.

% s _IsFIFO Test for FIFO.
% S_IBREG Test for recular file,

& 8 TSLNE Test for symbolic link.

The Standard I'O Library

The standard T'O library and 1ts header file stdio.h, provide a versatile mnterface to
low-level I/O system calls.

Three file streams are automatically opened when a program 1s started. They
are stdin. stdout. and stderr.

Now, let's look at:

fopen, fclose

fread, fwritae
fflush

faeeck

£geta, geto, getchar
fpute, pute, putchar

#» fgets, gets

& printf, fprintf and sprintf

» scanf, fscanf snd sscanf

LINUX PROGRAMMING

fgetpos Get the current position in a file stream.
faetpos Set the current position in a file stream.

ftell Return the current file offeet in a stream.
rewind Eesel the hle position in a stream.

freopen Rese a file stream.

satvbuf Set the buffering scheme for a stream.

remowve Equivalent to unlink, unless the path parameter is a directory ir
case it's equivalent to zmdir.

You can use the file stream functions to re-mmplement the file copy program, by using
library functions.

Try It Out - Another File Copy Program

This program does the character-by-character copy 1s accomplished using calls to the
functions referenced mn stdio.h.

#F#include <stdio.hs>
int maini)
{

int a:
FILE: *imn, *out:

in = fopeni("file.in","=z"};
out = EZopen("file.out",Vwi};

while({c = fgeto(in)) 1= =OF)
ftputc{c,ont) ;

exit (0] ;

Funming this program as before, we get:

LINUX PROGRAMMING

UNIT-I11 PROCESSES AND SIGNALS

LCCLUTE NOLES

Processes and Signals

Processes and signals form a fundamental part of the UNIX operating environment,
controlling almost all activities performed by a UNIX computer system.

Here are some of the things vou need to understand.

Frocess structure, type and scheduling

sring new processes in different ways

Fzrent, child and zombie processes

“hat signals are and how to use them

What is a Process?

The X/Open Specification defines a process as an address space and single thread of
control that executes within that address space and 1ts requured system resources.

A process 1s, essentially. a running program.
Process Structure

Here 1s how a couple of processes nught be arranged within the operationg system.

Viewing Processes

We can see what processes are running by using the ps command. Here is
some sample output:

LINUX PROGRAMMING

B

A
]
=

TIME COMMAND

g:00 -khash

0:00 =sh fusr/Xll/bin/staritx
wiOL O:01 fvwm

prl 0:01 -bash

ool 2 0:06 emacs process.txt

vl 8 d:00 velock

B AL

e

B

b ooy 300

|
|
O Ao Mh wn

The PID column gives the PIDs, the TTY column shows which terminal
started the process, the STAT column shows the current status, TIME gives
the CPU time used so far and the COMMAND column shows the command
used to start the process.

Let's take a closer look at some of these:

87 whl '8 0:00 -khash
The initial login was performed on virtual console number one (v01).

The shell is running bash. Its status is s, which means sleeping. Thiis is
because it's waiting for the X Windows sytem to finish.

137 ==0% 5 000 eh /usr/¥ll/bin/startx

X Windows was started by the command startx. It won't finished until we exit from
X. It too is sleeping.
15 01 8 0:01 Evwm
The fvwm is a window manager for X, allowing other programs to be started and windows to
be arranged on t screen
115 ppt S 0:01 -bash
This process represents a window in the X Windows system. The shell, bash, is running in
the new window. T window is running on a new pseudo terminal (/dev/ptyp0Q) abbreviated
ppO.
129 oppl s 0:06 emacs process._txt

This is the EMACS editor session started from the shell mentioned above. It uses the pseudo
terminal

146 01 £ D:00 aclock

This is a clock program started by the window manager. It's in the
middle of a one- minute wait between updates of the clock hands.
System Processes

Let's look at some other processes running on this Linux system.
The output has been abbreviated for clarity:

LINUX PROGRAMMING

TINE COMMAND
0:00 init
0:00 update {(bdflush)
0:01 /Jusr/sbin/svslogd
G+ 00 Jfusr/ifsbin/lpd
0:00 sendmail: accepting connections
0:00 /sbhin/agetby 38400 trvz
G:41 ¥ D
U F G:00 ps -ax%
Here we can see one very important process indeed:

=]
i
[

[

e onow

i

1 =2 5 0:00 1pit
In general, each process is started by another, known as its parent process. A process so
started is known as a

child process.
When UNIX starts, it runs a single program, the prime ancestror and process

number one: init. One such example is the login procedure init starts the
getty program once for each terminal that we can use to long in.
These are shown in the ps output like this:

BE w02 E 0:00 /ekin/agetlby 38400 Towz
Process Scheduling
One further ps output example is the entry for the ps command itself:

182 ppd K 0:00 ps -ax
This indicates that process 192 is in a run state (R) and is executing the command ps- ax.
We can set the process priority using nice and adjust it using renice, which
reduce the priority of a process by 10. High priority jobs have negative values.
Using the ps -1 (forlong output), we can view the priority of processes. The
value we are interested in is shown in the NI (nice) column:

: ps -1
T UID PID PPID BRI NI SIZE RSS WICHEN TAY i TIME COMML
1,

S0r1 146 1 3 835 7546 130BhA5 r{)] 0:00 golo

Here we can see that the oclock program is running with a default nice
value. If it had been stated with the command,

nice oclock &

it would have been allocated a nice value of +10.
We can change the priority
How It Works
In the first example, the program calls system with the string **ps -
ax"', which executes the ps program. Our program returns from the
call to system when the ps command is finished.
In the second example, the call to system returns as soon as the shell
command finishes. The shell returns as soon as the ps program is started,
just as would happen if we had typed,

LINUX PROGRAMMING

S ps -axX &

at a shell prompt.

Replacing a Process Image
There is a whole family of related functions grouped under the exec heading. They differ in
the way that they start processes and present program arguments.

¢ PID 101
{__code |
Lo daig
S s=Rirk

$ ar:an .kirk trek. zext Sy $ o'xep tx:o:. ncxtqen.

] library

4-—-——-—) C lerarv [Pa

Cobrekiowmme . nextgen. doc

Each process 1s allocated a unique number, a process identifier. or PID.

The program code that will be executed by the grep command 1s stored m a disk file.
The system libranies can also be shared.

A process has 1ts own stack space.

The Process Table

The UNIX process table may be though of as a data structure describing all of the
processes that are currently loaded.

Viewing Processes
We can see what processes are running by using the ps command.

Here 15 some sample output:

LINUX PROGRAMMING

(]
1]

TIME COBMBAND
0:00 -bash

0:00 gk fusr/HLll/bin/startx

i R e T e A

[

Lo

01 f3wm

:01 -kash

N:08 emacs progess. bt
0:00 velogk

The PID column gives the PIDs, the TTY column shows which ternunal started the
process, the STAT column shows the current status, TIME gives the CPU time used
s0 far and the COMMAND column shows the command used to start the process.

Let's take a closer look at some of these:

87 w0l &8 0:00 -bhach

The initial login was performed on virtual console number one (v01). The shell 15
running bash. Its status 15 s, which means sleeping. Thas 15 because it's waiting for
the X Windows sytem to fimsh.

0:00 sh /usr/Xll/bin/etartx

X Windows was started by the command startx. It won't finished until we exit from
. It too 15 sleeping.

16 w01 8 0:0L Lvwm

This 1z the EMACS editor session started from the shell mentioned above. It uses the
pseudo ternunal.

146 w01 2 0:00 oclack

This 15 a clock program started by the window manager. It's in the middle of a one-
minute wait between updates of the clock hands.

System Processes

Let's look at some other processes running on this Linux system. The output has been
abbreviated for clarity:

i ps -ax
BID TTY 31 ! COMMANT
I & 3 imit
3 updatas (bAflush)
. 01 fusr/sbinfgyvslogd
; Mgy sbin/flpd

1=

L s
[T e

sendmail: accepting connections
fabinfagetty 38400 Loyl

=
e R o B 1
0o

ka3

LINUX PROGRAMMING

Process Scheduling
One further ps output example 1s the entry for the ps command 1tself:

1892 nph = G:00 pE —an

Thas indicates that process 192 1s 1 a run state (R) and 1s executing the command ps-
ax.

We can set the process prionty using nice and adjust it using renice, which reduce the
priority of a process by 10. High prionity jobs have negative values.

Using the ps -1 (forlong output). we can view the pnionity of processes. The value we
are interested m 15 shown m the NI (nice) column:

:ps -1
= UID

51

Here we can see that the oclock program 1s running with a defanlt nice value. If 1t had
been stated with the command,

: nice oclock &

it would have been allocated a nice value of +10.

We can change the prionty of a nunming process by using the renice conumand,

L renice 10 146
146: old priority 0, bow prigrity in

Starting New Processes

We can canse a program to run from inside another program and thereby create a new
process by using the system. library function.

ginclude <stdlib.hs

int system (oonst char *string);

The system function runs the command passed to 1t as string and waits for 1t to
complete.

The command 1s executed as if the command,

% sh =g gtring

has been given to a shell.
Try It Out - system

1. We can use system fo write a program to run ps for us.

LINUX PROGRAMMING

When a child process ternunates, an association with its parent survives until the
parent in turn erther terminates normally or calls wait.

This terminated child process 15 known as a zombie process.
Try It Qut - Zombies

fork2.c 15 jsut the same as fork.c. except that the number of messages printed by tl
child and paent porcesses 1s reversed.

Here are the relevant lines of code:

Input and Output Redirection

We can use our knowledge of processes to alter the behavior of programs by

exploiting the fact that open file descriptors are preserved across calls
to fork and exec.

Try It Out - Redirection

1. Here's a very simple filter program. upper.c. to convert all characters to uppercase:

#include <gtdioc.h>
#include <ctype.h>

int main()
{
int ch; _ s
while{(ch = getchar(}) != EOF) {
putchar (touppar(ch)) ; '
)

axit(0);

When we run this program, it reads our mput and converts it:

LINUX PROGRAMMING

There 15 a class of process known as a thread which are distinct from processes in
that they are separate execution streams within a single process.

Signals

A signal 1s an event generated by the UNIX system in response to some condition,
upon receipt of which a process may in tum take some action.

Signal names are defined in the header file signal.h. They all begin with SIG and
mclude:

Signal Name Description

SIGABORT *Process abort

SIGALRM Alarm clock

SIGFPE *Floating puint exception
SIGHUP Hangup

SIGILL *Mlegal inshucton

SIGINT Terminal Interrupt

SIGKILL Kill (can’t be caught or ignored)
SIGPIPE Write on a pipe with no reader
SIGQUIT Terminal Quit

SIGSEGV *Invalid memory segment access
SIGTERM Termination

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

Additional signals include:

LINUX PROGRAMMING

Seerle
World]
World!
World!

141

War Ll

Tarld!

How It Works

The program arranges for the function ouch to be called when we type Ctrl-C, which
gives the SIGINT signal.

Sending Signals

A process may send a signal to itself by calling raise.

-

finclude <signal.hs

ot rais=e{int sig);

A process may send a signal to another process, including itself, by calling kill.

= — —

#ilocluda <ays/types.h>
#includa <eigmal.hs

=t kill(pid t pid, 4nt glg);

LINUX PROGRAMMING

nr:.n.tft'wa:.t:mg E-:u: alarm. tu ;m afﬂn'i,;-
{wid.} signnl[SIEmI.Rm, ﬂng}.t 20

3paus&{>:

'J..przntf i “&cne‘\. n“} P
; ux_'r_t{ﬂ':r, :

When we run this program, it pauses for five seconds while 1t waits for the simulated
alarm clock.

2 Jfalarm

alarm application starting
waiting for alarm to go off
<5 sSecond pausex

alarm has gene off

done

=

This program mntroduces a new function, pause, which simply causes the program to
suspend execution until a signal occurs.

It's declared as,

[-_ finclude cuniptd.h>

int pause{wvold);

How It Works

The alarm clock stmulation program starts a new process via fork. This child process
sleeps for five seconds and then sends a SIGALRM to its parent.

A Robust Signals Interface

X/Open specification recommends a newer programming interface for signals that 1s
more robust: sigaction.

LINUX PROGRAMMING

fincluds <gignal.h>

int sigactioniint =sig, const struct gigactionh *ackt, struct sigactic

The sigaction structure, used to define the actions to be taken on receipt of the signal
specified by sig. 15 defined in signal.h and has at least the following members:

void (*) (int) ga handler function, 8IG DFL or SIG TGN
,slgsat._t sa_maak signials o block in sa_handler
int sa flags signal action modifiers

Try It Out - sigaction

Ivake the changes shown below so that SIGINT 1s intercepted by sigaction. Call the
new program ctrlc2.c.

finclude <signal.h>
std

firnclude <stdic.h>
$include <unistd. b

vaid ouchi{int sig)
£
printF("0OUCH! - I got =2ignal $d\n”

UL sS4

main()

struct sigaction act;
act.sa_handler = ouch;
gigemptyset (&act.sa mask);

act.sa flags = 0;

sigaction{SIGINT, &act, 0):

1g World!tinm"i

Running the program. we get a message when we type Ctrl-C because SIGINT 1s
handled repeated.y by sigaction.

Type Ctrl-\ to termunate the program.

LINUX PROGRAMMING

Sfotrlel
Bello Worlidgt
Hello Worl-dl

5 Warld!

I gobt Eignal 2
Poxrldl
o World!
- I gok
wWorldl

Worldl

How It Works

The program calls sigaction mstead of signal to set the signal handler for Ctrl-C
(SIGINT) to the function ouch.

Signal Sets

The header file signal.h defines the type sigset _t and functions used to manipulate
sets of signals.

finclude <signal.h>

int sigaddset(sigset t *set, int sigmol:
int sigemptyset(sigset_t *set);
int sigfillset(sigast t *get)j
int sigdelset{sigset t *zet, int signg);

The function sigismember determines whether the given signal 15 amember of a
signal set.

LINUX PROGRAMMING

#finclude <signal.hs

int sigismember(sigset t *set, int slgno)}

The process signal mask 15 set or exanuned by calling the function sigprocmask.

#include <sigmal.h>

int sigprocmask({int how, const sigsst_t *sek, sigsebt t “*oset);

sigprocmask can change the process signal mask 1 a number of ways according to
the how argument.

The how argument can be one of’

% SIG BLOCK The signals in set are added to the signal mask.
» S8IG_SETMASK The signal mask is st from set.

» EIG_UNMBLOCK The signals in set are removed from the signal ma

If a signal 15 blocked by a process, it won't be delivered, but will remain pending.

A program can determine which of 1ts blocked signals ar pending by calling the
function sigpending.

sinclude <sigpending>

int sigpending{sigset t ‘*zeat);

A process can suspend execution until the delivery of one of a set of signals by
calling sigsuspend.

Thus 15 a more general form of the pause function we met earlier.

LINUX PROGRAMMING

#include <gignal.h>

int sigsuspend{const sigset t *gigmask);

sigaction Flags

The sa_flags field of the sigaction structure used in sigaction mayv contain the
following values to modify signal behavior

SA_NOCLDSTOP Don't generate SIGCHLD when child processes stop.

SA_RESETHAND Reset signal action [0 SIG _DFL on receipt.

SA_RESTART Restart interruptible functions rather than errer with

82 NODEFER Don't add the signal to the signal mask when cau ot

Functions that are safe to call mside a signal handler, those guaranteed by the 3/'Open
specification etther to be re-entrant or not to raise signals themselves mclude:

Signal Name

Description

SIGALRM
SIGHUP

SIGINT

SIGKILL

S1IGPIPE
SICGTERM

SIGUSR
SIGUSR2

Generated by the timer set by the alarm function.

Sent fo the controlling process by a disconnecting terminal, or by
controlling process on termination to-each foreground process.
Typically raised from the terminal by typing Cri-C or the configu
interrupt character.

Typically used from the shell to forcibly terminate an errant proce
signal can’t be caught or ignored.

Generated if a pipe with no associated reader 15 written to.

Sent as a request for a process to finish. Used by UNIX when shu
to request that system services stop. This is the default signal sent
command.

May be used by processes to communicate with each other, possit
cause them to report status information.

The default action signals 15 abnormal termunation of the process.

LINUX PROGRAMMING

Signal Name Description

SIGFPE Generated by a floating point arithmetic exception.

SIGILL An illegal instruction has been executed by the processor. Usually ¢
corrupt program or invalid shared memory module,

SIGRUIT Typically raised from the terminal by typing Cirl-\ or the configure

SIGSEGV A segmentation violation, usually caused by reading or writing at
location in memory either by exceeding array bounds or de-referen
pointer. Qverwriting a local array variable and corrupting the stack
SIGSEGV to be raised when a function returns to an illegal address

By default, these signals also cause abnormal termination. Additionally,
mplementation-dependent actions, such as creation of a core file, mav occur.

Seznzl Name Description

Stop executing (can’t be cavght or ignored).
Terminal stop signal, often raised by typing Crrt-Z.

Used by the shell to indicate that background jobs have stopped be
tr read from the terminal or produce output.

A process 1s stopped by default on receipt of one of the above signals.

=nal Name Description

>

GCONT Continue executing, if stopped.

SIGCONT restarts a stopped process and 1s 1gnored if received by a process which 1s
not stopped.

Siznal Name Description

SISCHLD Raised when a child process stops or exits.

The SIGCHLD signal 1s 1ignored by default.

LINUX PROGRAMMING

UNIT-1V
Interprocess communication, Message
Queues and Semaphores

Interprocess Communication
IPC between processes on
a single computer system
IPC between processes on
different systems
Pipes- creation
IPC between related processes using unnamed pipes
FIFOs- creation, IPC between unrelated processes using FIFOs(named pipes)
Differences Between
Unnamed
And Named
Pipes popen
& pclose
library
functions.
Message Queues-
Kernel support for

messages

Semaphores-Kernel support for semaphores
APIs for semaphores

File locking with Semaphores

Introduction to IPC

Interprocess Communication- “Interprocess
communication(IPC) is the transfer of data among different
processes”.

LINUX PROGRAMMING

Interprocess communication (IPC) includes thread synchorization and
data exchange between threads beyond the process boundaries. If
threads belong to the same process, they execute in the same address
space, i.e. they can access global (static) data or heap directly, without
the help of

the operating system. However, if threads belong to different processes,
they cannot access each others address spaces without the help of the
operating system.

There are two fundamentally different approaches in IPC:

e processes are residing on the same computer
e processes are residing on different computers

The first case is easier to implement because processes can share
memory either in the user space or in the system space. This is equally
true for uniprocessors and multiprocessors.

In the second case the computers do not share physical memory, they
are connected via 1/0 device(for example serial communication or
Ethernet). Therefore the processes residing in different computers can
not use memory as a means for communication.

IPC between processes on a Single System

Most of this chapter is focused on IPC on a single computer system,
including four general approaches:

Shared memory
Messages

Pipes

Sockets

The synchronization objects considered in the previous chapter
normally work across the process boundaries (on a single computer
system). There is one addition necessary however: the synchronization
objects must be named. The handles are generally private to the
process, while the object names, like file names, are global and known
to all processes.

IPC between processes on different systems

IPC between processes on different systems

IPC is Inter Process Communication, more of a technique to share data across
different processes

LINUX PROGRAMMING

within one machine, in such a way that data passing binds the coupling of different
processes.

The first, is using memory mapping techniques, where a memory

map is created, andothers open the memory map for

reading/writing...

The second is, using sockets, to communicate with one
another...this has a high overhead, as each process would have to
open up the socket, communicate across... althougheffective

The third, is to use a pipe or a named pipe, a very good example
PIPES:

A pipe is a serial communication device (i.e., the data is read in the
order in which it was written),which allows a unidirectional
communication. The data written to end isreadbackfromtheotherend.

The pipe is mainly used to communicate between two threads in a
single process or between parent and child process. Pipes can only
connect the related process. In shell,
thesymbolcanbeusedtocreateapipe.

In pipes the capacity of data is limited. (i.e.) If the writing process is
faster than the reading process which consumes the data, the pipe
cannot store the data. In this situation the writer process will block
until more capacity becomes available. Also if the reading process tries
to read data when there is no data to read, it will be blocked until the
data becomes available. By this, pipes automatically synchronize the
two process.

Creatingpipes:
The pipe() function provides a means of passing data between two
programs and also allows to read and write the data.

#include<unistd.h>
int pipe(int file_descriptor[2]);

pipe()function is passed with an array of file descriptors. It will fill the
array with new file descriptors and returns zero. On error, returns -1 and
sets the errno to indicate the reason of

failure.

The file descriptors are connected in a way that is data written to file_
descriptor[1] can be read back from the file_descriptor[0].

(Note: As this uses file descriptors and not the file streams, we must use
read and write system calls to access the data.)

Pipes are originally used in UNIX and are made even more powerful in Windows
95/NT/2000.

LINUX PROGRAMMING

Pipes are implemented in file system. Pipes are basically files with
only two file offsets: one for reading another for writing. Writing to a
pipe and reading from a pipe is strictly in FIFO manner. (Therefore
pipes are also called FIFOs).

For efficiency, pipes are in-core files, i.e. they reside in memory
instead on disk, as any other global data structure. Therefore pipes
must be restricted in size, i.e. number of pipe blocks must be limited.
(In UNIX the limitation is that pipes use only direct blocks.)Since the
pipes have a limited size and the FIFO access discipline, the reading
and writing processes are synchronized in a similar manner as in case
of message buffers. The access functions for pipes are the same as for
files: WriteFile() and ReadFile().

Pipes used as standard input and output:

We can invoke the standard programs, ones that don’t expect a file

The purpose of dup call is to open a new file descriptor, which will
refer to the same file as an existing file descriptor. In case of dup, the
value of the new file descriptor is the lowest number available. In
dup? it is same as, or the first available descriptor greater than the
parameter file_descriptor_2.

We can pass data between process by first closing the file descriptor 0
and call is made to dup. By this the new file descriptor will have the
number 0.As the new descriptor is the duplicate of an existing one,
standard input is changed to have the access. So we have created two
file descriptors for same file or pipe, one of them will be the standard
input.

(Note: The same operation can be performed by using the fcntl()
function. But compared to this dup and dup2 are more efficient)

Named pipes (FIFOs)

Similar to pipes, but allows for communication
between unrelated processes. This is done by naming
the communication channel and making it permanent.

Like pipe, FIFO is the unidirectional data stream.
FIFO creation:

int mkfifo (const char *pathname, mode_t mode);
- makes a FIFO special file with name pathname.

LINUX PROGRAMMING

(mode specifies the FIFO's permissions,
as common in UNIX-like file systems).
- A FIFO special file is similar to a pipe, except that it is created in
a different way. Instead of being an anonymous
communications channel, a FIFO special file is
entered into the file system by calling mkfifo()

Once a FIFO special file has been created, any
process can open it for reading or writing, in
the same way as an ordinary file.

A First-in, first-out(FIFO) file is a pipe that has a name in the
filesystem. It is also called as named pipes.

Creation of FIFO:
We can create a FIFO from the command line and within a program.

To create from command line we can use either mknod or mkfifo commands.
$ mknod filename p

$ mkfifo filename

(Note: The mknod command is available only n older versions,

you can make use of mkfifo in new versions.)

To create FIFO within the program we can use two system
calls. They are, #include<sys/types.h>
#include<sys/stat.h>

int mkfifo(const char

*filename,mode_t mode);

int

mknod(const

char

*filename,

mode_t

mode|S_IFIF

O,(dev_t) 0);

Accessing FIFO:

Let us first discuss how to access FIFO in command line using file
commmands. The useful feature of named pipes is, as they appear in
the file system, we can use them in commands.

We can read from the FIFO(empty)

$ cat < tmp/my_fifo

Now, let us write to the FIFO.

$ echo "Simple!"!" > /tmp/my _fifo

(Note: These two commands should be executed in different terminals
because first command will be waiting for some data to appear in the
FIFO.)

Pipe processing:(popen &pclose library functions)

LINUX PROGRAMMING

The process of passing data between two programs can be done
with the help of popen() and pclose() functions.

#include<stdio.h>

FILE

*popen(co

nst char

*command

, const char

*open-

mode);

int pclose(FILE *stream_to_close);

popen():

The popen function allows a program to invoke another program as a
new process and either write the data to it or to read from it. The
parameter command is the name of the program to run. The
open_mode parameter specifies in which mode it is to be invoked, it
can be only either "r" or "w". On failure popen() returns a NULL
pointer. If you want to perform bi-directional communication you have
to use two pipes.

pclose():

By using pclose(), we can close the filestream associated with popen()
after the process started by it has been finished. The pclose() will
return the exit code of the process, which is to be closed. If the process
was already executed a wait statement before calling pclose, the exit
status will be lost because the process has been finished. After closing
the filestream, pclose() will wait for the child process to terminate.

Messagequeue:

This is an easy way of passing message between two process. It
provides a way of sending a block of data from one process to
another. The main advantage of using this is, each block of data is
considered to have a type, and a receiving process receives the blocks
of data having different type values independently.

Creation and accessing of a message queue:
You can create and access a message queue
using the msgget() function.
#include<sys/msg.h>

int msgget(key _t key,int msgflg);

The first parameter is the key value, which specifies the particular
message queue. The special constant IPC_PRIVATE will create a
private queue. But on some Linux systems the message queue may
not actually be private.

The second parameter is the flag value, which takes nine permission flags.

Adding a message:
LINUX PROGRAMMING

The msgsnd() function allows to add a message to a
message queue. #include<sys/msg.h>
int msgsnd(int msqid,const void *msg_ptr ,size_t msg_sz,int msgflg);

The first parameter is the message queue identifier returned from an msgget
function.

The second parameter is the pointer to the message to be sent. The third
parameter is the size of the message pointed to by msg_ptr. The fourth
parameter, is the flag value controls what happens if either the current
message queue is full or within the limit. On success, the function
returns 0 and a copy of the message data has been taken and placed on
the message queue, on failure -1 is returned.

Retrieving a message:

The smirch() function retrieves message from the message queue.

#include<sys/msg.h>
int msgsnd(int msgid,const void *msg_ptr
,Size_t msg_sz,long int msgtype ,int msgflg); The second parameter is a pofjter t

The fourth parameter allows a simple form of reception priority. If its
value is O,the first available message in the queue is retreived. If it is
greater than 0,the first message type is retrived. If it is less than 0,the
first message that has a type the same a or less than the absolute value
of msgtype is retrieved.

On success, msgrcv returns the number on bytes placed in the receive
buffer, the message is copied into the user-allocated buffer and the
data is deleted from the message queue. It returns -1 on error.

#include<sys/msg.h>
int

msgctl(i

nt

msgid,in

t

comman

d, struct

msqid_d

s *buf);

The second parameter takes the values as given below:

1.) IPC_STAT - Sets the data in the msgid_ds to reflect the values
associated with the message queue.

2.) IPC_SET - If the process has the permission to do so, this sets the
values associated with the message queue to those provided in the
msgid_ds data structure.

3.) IPC_RMID-Deletes the message queue.

LINUX PROGRAMMING

(Note: If the message queue is deleted while the process is
writing in a msgsnd or msgrcv function, the send or receive
function will fail.

LINUX PROGRAMMING

UNIT-V

Shared Memory:

Shared memory is a highly efficient way of data sharing between the running
programs. It allows two unrelated processes to access the same logical
memory. It is the fastest form of IPC because all processes share the same
piece of memory. It also avoidscopyingdataunnecessarily.

As kernel does not synchronize the processes, it should be handled by the user.
Semaphore can also be used to synchronize the access to shared memory.

Usageofsharedmemory:

To use the shared memory, first of all one process should allocate the segment,
and then each process desiring to access the segment should attach the
segment. After accessing the segment, each process should detach it. It is also
necessary to deallocate thesegmentwithoutfail.

Allocating the shared memory causes virtual pages to be created. It is
important to note that allocating the existing segment would not create new
pages, but will return theidentifierfortheexistingpages.

All the shared memory segments are allocated as the integral multiples of the
system'’s page size, which is the number of bytes in a page of memory.

Unix kernel support for shared memory

® There is a shared memory table in the kernel address space that keeps
track of all shared memory regions created in the system.
Each entry of the tables store the followingdata:

Name

Creator user ID and group ID.

Assigned owner user ID and group ID.

Read-write access permission of the region.

The time when the last process attached to the region.

The time when the last process detached from the region.

The time when the last process changed control data of the region.
The size, in no. of bytes of the region.

N R~WN

UNIX APIs for
shared memory
shmget
® Open and create a shared memory.

® Function prototype:

LINUX PROGRAMMING

#include<sys/types.h>
#include<sys/ipc.h> #include<sys/shm.h>

int shmget (key_t key, int size, int flag);
® Function returns a positive descriptor if it succeeds or -1 if it fails.
Shmat

® Attach a shared memory to a process virtual address space.
® Function prototype:

void * shmat (int shmid, void *addr, int flag);

Function returns the mapped virtual address of he shared memory if it
succeeds or -1 ifit fails.

Shmdt

® Detach a shared memory from the process virtual address space.
® Function prototype:

® [Function returns O if it succeeds or -1 if it fails.

Shmctl

® Query or change control data of a shared memory or delete thememory.

® Function prototype:
#inc
lude
int shmctl (int shmid, int cmd, struct shmid_ds *buf);

Function returns O if it succeeds or -1 if it fails.

Shared memory Example

/Ishmryl.c

TEXT
sz
2048

struct

LINUX PROGRAMMING

shared_
use_st

int written_by_you;
char some_text[TEXT_SZ];

}

int main()
£t

int running = 1;
void
*shared_memor
y = (void *)0;
struct
shared_use_st
*shared_stuff;
int shmid;
srand(
(unsigned
int)getpid());
shmid =
shmget(

(key _t)1234,
sizeof(struct
shared_use_st
), 0666
[IPC_CREAT
);

if (shmid == -1)

{
fprintf(stderr, "shmget failed\n™);

exit(EXIT_FAILURE);
}

shared_memory =
shmat(shmid,(void *)0, 0);
if (shared_memory ==
(void *)-1)

{

fprintf(stderr,

"shmat failed\n");
exit(EXIT_FAILU
RE);

}

printf("Memory
Attached at
%x\n",
(int)shared_mem

LINUX PROGRAMMING

ory);

shared_stuff =
(struct shared_use_st
*) shared_memory;
shared_stuff-
>written_by you =
0; while(running)

{
if(shared_stuff->written_by you)

printf("You Wrote: %s",
shared_stuff->some_text);

sleep(rand() %4);
shared_stuff->written_by you = 0;

if
(strncmp(shared_st
uff->some_text,
"end", 3)==0)

{

running = 0;

¥

¥
k

if (shmdt(shared_memory) == -1)

{
fprintf(stderr,

"shmdt

failed\n™);

exit(EXIT_F

AILURE);

}

if (shmctl(shmid, IPC_RMID, 0) == -1)
{

fprintf(stderr, "failed to delete\n");
exit(EXIT_FAILURE);

}

exit(E

XIT_

SucC

CESS
);

LINUX PROGRAMMING

h
>

#include<sys/shm.h>

#define

TEXT_

SZ

2048

struct

shared_

use_st

{

int written_by_you;

char some_text[TEXT_SZ];

}

int main()
{
int running =1
void *shared_memory = (void *)0; struct shared_use_st *shared_stuff;

int shmid;

shmid
=shmget((key_t)1234, sizeof(struct
shared_use_st),
0666 | IPC_CREAT);
if (shmid ==-1)
{
fprintf(stderr,
"shmget
failed\n™);
exit(EXIT_FA
ILURE);
}

shared_mem

ory=shmat(s

hmid, (void

*)0, 0);

if (shared_memory == (void *)-1)
{

fprintf(stderr,

"shmat failed\n");
exit(EXIT_FAILU

RE);

¥

LINUX PROGRAMMING

printf("Memory Attached at %x\n", (int)
shared_memory); shared_stuff = (struct
shared_use_st *)shared_memory;
while(running)

{

while(shared_stuff->written_by you==1)

{

sleep(1);

printf(“waiting for client... \n");
}

printf("Ent

er Some

Text: ");

fgets

(buffer,

BUFSIZ,

stdin);

strncpy(shared_stuff-
>some_text, buffer,
TEXT_SZ);
shared_stuff->written_by you = 1;
if(strncmp(buffer, "end", 3) == 0)
{

running = 0;

}

}

if (shmdt(shared_memory) == -1)
{

fprintf(stderr,

"shmdt

failed\n™);

exit(EXIT_F

AILURE);

}

exit(

EXIT

_SuU

CCE

SS);

}

The shmryl.c program will create the segment using shmget() function and
returns the identifier shmid. Then that segment is attached to its address space
using shmat() function.

The structure share_use_st consists of a flag written_by_you is set to 1 when data is
available. When it is set, program reads the text, prints it and clears it to show it has read the
data. The string end is used to quit from the loop. After this the segment is detached and
deleted.

The shmry2.c program gets and attaches to the same memory segment. This is possible

LINUX PROGRAMMING Page 100

with the

help of same key value 1234 used in the shmget() function. If the
written_by_you text is set, the process will wait until the previous process
reads it. When the flag is cleared, the data is written and sets the flag. This
program too will use the string "end" to terminate. Then the segment is
detached.

5.2 Sockets

A socket is a bidirectional communication device that can be used to
communicate withanother process on the same machine or with a process
running on other machines.Sockets are the only interprocess communication
we“ll discuss in this chapter thatpermit communication between processes on
different computers. Internet programs such as Telnet, rlogin, FTP, talk, and
the World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using
theTelnet program because they both wuse sockets for network
communications.To open a connection to a WWW server at
www.codesourcery.com, use telnet www.codesourcery.com 80.The magic
constant 80 specifies a connection to the Web server programming running
www.codesourcery.com instead of some other process.Try typing GET / after
the connection is established.This sends a message through the socket to the
Web server, which replies by sending the home page™s HTML source and then
closing the connection—for example:

% telnet

www.codesourcer

y.com 80 Trying

206.168.99.1...

Connected to
merlin.codesourcery.com
(206.168.99.1). Escape character is
B

GET/

<html>

<head>

<meta http-equiv="Content-Type” content="text/html; charset=is0-8859-1"">

3. Note that only Windows NT can create a named pipe;Windows 9x
programs can form only client connections.

4. Usually, you“d use telnet to connect a Telnet server for remote logins.
But you can also use telnet to connect to a server of a different kind and
then type comments directly at it.

Introduction to Berkeley sockets

Berkeley sockets (or BSD sockets) is a computing library with an application
programming interface (API) for internet sockets and Unix domain sockets,
used for inter-process communication (IPC).

LINUX PROGRAMMING Page 101

http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Internet_socket
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication

This list is a summary of functions or methods provided by the Berkeley
sockets API library:

e socket() creates a new socket of a certain socket type, identified by

an integer number, and allocates system resources to it.

bind() is typically used on the server side, and associates a socket

with a socketaddress structure, i.e. a specified local port number and

IP address.

listen() is used on the server side, and causes a bound TCP socket to enter

listening state.
connect() is used on the client side, and assigns a free local port number to a socket. In case of
a TCP socket, it causes an attempt to establish a new TCP connection.

e accept() is used on the server side. It accepts a received incoming
attempt to create a new TCP connection from the remote client, and
creates a new socket associated with the socket address pair of this
connection.
send() and recv(), or write() and read(), or sendto() and recvfrom(),
are used for sending and receiving data to/from a remote socket.
close() causes the system to release resources allocated to a socket.

In case of TCP, the connection is terminated.

gethostbyname() and gethostbyaddr() are used to resolve host names
and addresses. IPv4 only.

select() is used to pend, waiting for one or more of a provided list of
sockets to be ready to read, ready to write, or that have errors.

poll() is used to check on the state of a socket in a set of sockets. The
set can be testedto see if any socket can be written to, read from or if
an erroroccurred.

getsockopt() is used to retrieve the current value of a particular
socket option forthe specified socket.

setsockopt() is used to set a particular socket option for the specified socket.

IPC
over a
networ
k
Socket
Concep
ts
When you create a socket, you must specify three parameters:
e communication style,
e namespace,
e protocol.
A communication style controls how the socket treats transmitted data and specifies
the number of communication partners.When data is sent through a socket, it
is ackaged into chunks called packets.The communication style determines
how these
packets are handled and how they are addressed from the sender to the receiver.

Connection styles guarantee delivery of all packets in the order
they were sent. If packets are lost or reordered by problems in the

LINUX PROGRAMMING Page 102

network, the receiver automatically requests their retransmission

from the sender.

A connection-style socket is like a telephone call: The addresses of the sender
and receiver are fixed at the beginning of the communication

when the connection is established.

Datagram styles do not guarantee delivery or arrival order.
Packets may be lost or reordered in transit due to network

errors or other conditions. Each packet must be labeled with its
destination and is not guaranteed to be delivered.The system
guarantees only “best effort,” so packets may disappear or

arrive in a different order than shipping.

A datagram-style socket behaves more like postal mail. The sender
specifies the receiver®s address for each individual message.

A socket namespace specifies how socket addresses are written. A socket

address identifies one end of a socket connection. For example, socket

addresses in the “local namespace” are ordinary
filenames. In “Internet namespace,” a socket address is composed of the Internet address
(also known as an Internet Protocol address or IP address) of a host attached to the network
and a port number.The port number distinguishes among multiple sockets on the same host.A
protocol specifies how data is transmitted. Some protocols are TCP/IP, the primary
networking protocols used by the Internet; the AppleTalk network protocol; and the UNIX
local communication

Client-server datagram socket — example
To experiment with datagram sockets in the UNIX domain we will
write a client/server application where:
e the client takes a number of arguments on its command line and send
them to theserver using separate datagrams
o for each datagram received, the server converts it to uppercase and
send it back tothe client
e the client prints server replies to standard output
For this to work we will need to bind all involved sockets to pathnames.

Client-server datagram socket example — protocol

#includ
e
<ctype
.h>
#includ
e
<sys/un
.h>
#includ
e
<sys/so
cket .h>
#includ
e

LINUX PROGRAMMING Page 103

<unistd

.h>

#includ

"

helpers

"

#define SRV_SOCK_PATH "
/tmp/uc_srv_socket " #define
CLI_SOCK_PATH " /tmp/ uc_cl
i_socket .%Id " #define MSG_LEN 10
#include "uceproto .h"

int main(int argc ,

char *argv[]){

struct sockaddr_un

srv_addr , cl i_addr ;

intsrv fd,i;

S

char buf [MSG_LEN] ;

i f((srv_fd =socket (AF_UNIX,
SOCK_DGRAM, 0)) <0) err_sys (" socket
error™) ;

LINUX PROGRAMMING Page 104

memset(&srv_addr , 0, sizeof (
struct sockaddr_un)) ; srv_addr .
sun_family = AF_UNIX;
strncpy (srv_addr . sun_path ,
SRV_SOCK_PATH, sizeof (
srv_addr . sun_path) 1) ;

i T (access (srv_addr .

sun_path , F_OK) ==0)

unlink (srv_addr . sun_path

);

i f(bind (srv_fd, (struct
sockaddr *) &srv_addr , sizeof (
struct sockaddr_un)) <0)
err_sys (" bind error ") ;

for (5;) {

len = sizeof (struct sockaddr_un) ;
i T ((bytes =recvfrom(srv_fd,
buf, MSG_LEN, 0, (struct
sockaddr *) &cl i_addr, &len))
< 1) err_sys (" recvfromerror)

print f (" server received %ld
bytes from %s\n" , (long) bytes
, cli_addr . sun_path) ;

for (i=0;i<bytes;i++)
buf [i] = toupper ((
unsigned char) buf[i]);if
('sendto (srv_fd, buf, bytes

, 0,

('struct sockaddr *) &cl
i_addr, len) !'=bytes)
err_sys (" sendto error ") ;

#include "uceproto .h"
int main(int argc ,

char *argv[]) {

struct sockaddr_un
srv_addr, cl i_addr ;
intsrv fd,i;

S

i
z
e

LINUX PROGRAMMING Page 105

char

resp

[MS

G_LE

N] ;i

f(

argc

<2)

err_quit("Usage : ucgpc lient MSG. .. ") ;
i f((srv_fd=socket (AF_UNIX,
SOCK_DGRAM, 0)) <0) err_sys (" socket
error");

memset(&cl i_addr , 0, sizeof (

struct sockaddr_un)) ; cli_addr.
sun_family = AF_UNIX;

snprint f (¢l i_addr . sun_path , sizeof (cl
i_addr . sun_path), CLI_SOCK_PATH, (
long) getpid ()) ;

i f(bind (srv_fd, (struct

sockaddr *) &cl i_addr , sizeof (

struct sockaddr_un)) == @1)

err_sys (" bind error ") ;

Notes:

the server is persistent and processes one datagram at a time, no matter
the client rocess, i.e. there is no notion of connection messages larger
than 10 bytes are silently truncated

Socket address structures(UNIX domain &
Internet domain) UNIX domain Sockets:
We now want to give an example of stream sockets. To do so, we can

longer remain in the abstract of general sockets, but we need to pick a
domain. We pick the UNIX domain. In the UNIX domain, addresses are

LINUX PROGRAMMING Page 106

pathnames. The corresponding Cstructure is sockaddr_un: struct
sockaddr_un {
sa_fami ly_t sun_family ; /* = AF_UNIX */

char sun_path[108] ; /* socket
pathname, NULL@terminated */

The field sun_path contains a regular pathname, pointing to a special file of
type socket (. pipe) which will be created at bind time.

During communication the file will have no content, it is used only as a
rendez-vous point between processes.

Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two
processes on the same computer. Internet-domain sockets, on the other hand,
may be used to connect processes on different machines connected by a
network.
Sockets connecting processes through the Internet use the Internet namespace represented by
PF_INET.The most common protocols are TCP/IP.The Internet Protocol (IP), a low-level
protocol, moves packets through the Internet, splitting and rejoining the packets, if necessary.
It guarantees only “best-effort” delivery, so packets may vanish or be reordered during
transport. Every participating computer is specified using a unique IP number.

LINUX PROGRAMMING Page 107

The Transmission Control Protocol (TCP), layered on top of IP, provides reliable connection-
ordered transport. It permits telephone-like connections to be established between computers an
ensures that data is delivered reliably and inorder.

DNS Names

Because it is easier to remember names than numbers, the Domain Name Service (DNS
associates names such as www.codesourcery.com with computers™ unique IP numbers. DNS
implemented by a worldwide hierarchy of name servers, but you don“t need to understand DN
protocols to use Internet host names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This information i
stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET to indicate that thi
is an Internet namespace address.The sin_addr field stores the Internet address of the desire
machine as a 32-bit integer IP number.A port number distinguishes a given machine®s differe
sockets. Because different machines store multibyte values in different byte orders, use htons t
convert the port number to

network byte order. See the man page for ip for more information.To convert human-readabl
hostnames, either numbers in standard dot notation (such as 10.0.0.1) or DNS names (such
www.codesourcery.com) into 32-bit IP numbers, you can use gethostbyname.This returns
pointer to the struct hostent structure; the h_addr field contains the host™s IP number.

System Calls
Sockets are more flexible than previously discussed communication techniques. These
are the system calls involving sockets:
socket—Creates a socket
closes—Destroys a socket
connect—Creates a connection between two sockets
bind—Labels a server socket with an address

listen—Configures a socket to accept conditions
accept—Accepts a connection and creates a new socket for the connection
Sockets are represented by file descriptors.

Creating and Destroying Sockets

Sockets are IPC objects that allow to exchange data between processes running:

either on the same machine (host), or on different ones over a network.

The UNIX socket API first appeared in 1983 with BSD 4.2. It has been finally standardized fo
the first time in POSIX.1g (2000), but has been ubiquitous to every UNIX implementation sinc
the 80s.

The socket API is best discussed in a network programming course,which this one is not.
will only address enough general socketconcepts to describe how to use a specific socket famil
UNIXdomain sockets.

Connection Oriented Protocol

Client-server setup
Let™s consider a typical client-server application scenario — no matter if they are located on the
same or different hosts.
Sockets are used as follows:
each application: create a socket
idea: communication between the two applications will flow through an imaginary “pipe” that
will connect the two sockets together
server: bind its socket to a well-known address
we have done the same to set up rendez-vous points for other IPC objects.

LINUX PROGRAMMING Page 108

http://www.codesourcery.com/

e.g. FIFOs
client: locate server socket (via its well-known address) and “initiate communication”1 with the
Server.

Socket options:
In order to tell the socket to get the information about the packet destination, we should call
setsockopt().
setsockopt() and getsockopt() - set and get options on a
socket. Both methods return 0 on success and -1 on error.
Prototype: int setsockopt(int sockfd, int level, int optname,...
There are two levels of socket options:

To manipulate options at the sockets API level: SOL_SOCKET

To manipulate options at a protocol level, that protocol number should be used;
for example, for UDP it is IPPROTO_UDP or SOL_UDP (both are equal 17) ; see
include/linux/in.h and include/linux/socket.h

e SOL_IPisO.

e There are currently 19 Linux socket options and one another on option for BSD
compatibility.

e There is an option called IP_PKTINFO.

We will set the IP_PKTINFO option on a socket in the following example.
/[from /usr/include/bits/in.h

#define IP_PKTINFO 8 /* bool */

/* Structure used for IP_PKTINFO. */

+ $i-ciude <fcntl.h>

ot fontl(int fildes, int cmd);
izt fcntl(int fildes, int cmd, long arg):

returns a new file descriptor with a numerical value equal to or greater than the integer newfd.

The call,

fentl (£ildes, F _GETFD)
returns the file descriptor flags as defined in fcntl.h.

The call,
fcntl(fildes=, F SETFD, flags)

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

fcntl(fildes, F GETFL) b
fcntl(fildes, F. SETFL, flags)

LINUX PROGRAMMING Page 109

respectively get and set the file status flags and access modes.

5.9 Comparision of IPC mechanisms.

IPC mechanisms are mianly 5 types

1.pipes:it is related data only send from one pipe output is giving to another pipe input toshare
resouses pipe are used drawback:itis only related process onlycommunicated

2.message queues:message queues are un related process are also communicate with message
queues.

3.sockets:sockets also ipc it is comunicate clients and server

with socket system calls connection oriented and connection less also

4.PIPE: Only two related (eg: parent & child) processess can be communicated. Datareading
would be first in first out manner.

Named PIPE or FIFO : Only two processes (can be related or unrelated) can communicate. Data
read from FIFO is first in first out manner.

5.Message Queues: Any number of processes can read/write from/to the queue. Data can be
read selectively. (need not be in FIFO manner)

6.Shared Memory: Part of process's memory is shared to other processes. other processes ca
read or write into this shared memory area based on the permissions. Accessing Shared memor
is faster than any other IPC mechanism as this does not involve any kernel levd
switching(Shared memory resides on user memory area).

Semaphore: Semaphores are used for process synchronisation. This can't be used for bulk dgja tral
between processes.

LINUX PROGRAMMING Page 110

LINUX PROGRAMMING Page 111

LINUX PROGRAMMING Page 112

	DIGITAL NOTES
	ON
	LINUX PROGRAMMING
	B.TECH III- YEAR – I-SEM
	(2018-19)
	UNIX File Structure
	Directories
	Files and Devices
	There are two fundamentally different approaches in IPC:
	IPC between processes on a Single System
	PIPES:
	Creatingpipes:
	Pipes used as standard input and output:
	Named pipes (FIFOs)
	Creation of FIFO:
	Accessing FIFO:
	Pipe processing:(popen &pclose library functions)
	popen():
	pclose():
	Creation and accessing of a message queue:
	Adding a message:
	Retrieving a message:

