
LINUX PROGRAMMING Page 1

DIGITAL NOTES

ON
LINUX PROGRAMMING

B.TECH III- YEAR – I-SEM
(2018-19)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

LINUX PROGRAMMING Page 2

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

III Year B.Tech. IT - I Sem L T/P/D C

 5 1/-/- 4

(R15A0527)LINUX PROGRAMMING

Objectives:

 To develop the skills necessary for Unix systems programming including file system
programming, process and signal management, and interprocess communication.

 To make effective use of Unix utilities and Shell scripting language such as bash.

 To develop the basic skills required to write network programs using Sockets.

UNIT I

Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities,
Networking commands, Filters, Text processing utilities and Backup utilities.
Sed-Scripts, Operation, Addresses, Commands, Applications, awk- Execution, Fields and Records,
Scripts, Operation, Patterns, Actions, Associative Arrays, String and Mathematical functions, System
commands in awk, Applications.
Shell programming with Bourne again shell(bash)- Introduction, shell responsibilities, pipes and
Redirection, here documents, running a shell script, the shell as a programming language, shell meta
characters, file name substitution, shell variables, command substitution, shell commands, the
environment, quoting, test command, control structures, arithmetic in shell, shell script examples,
interrupt processing, functions, debugging shell scripts.

UNIT II
Files and Directories- File Concept, File types, File System Structure, file metadata-Inodes, kernel
support for files, system calls for file I/O operations- open, create, read, write, close, lseek, dup2,file
status information-stat family, file and record locking-lockf and fcntl functions, file permissions -
chmod, fchmod, file ownership-chown, lchown, fchown, links-soft links and hard links – symlink, link,
unlink. Directories-Creating, removing and changing Directories-mkdir, rmdir, chdir, obtaining
current working directory-getcwd, Directory contents, Scanning Directories-opendir, readdir,
closedir, rewinddir, seekdir, telldir functions.

UNIT III
Process – Process concept, Kernel support for process, process identification, process hierarchy,
process states, process control - process creation, waiting for a process, process termination, zombie
process, orphan process, system call interface for process management-fork, vfork, exit, wait,
waitpid, exec family, system, I/O redirection
Signals – Introduction to signals, Signal generation and handling, Kernel support for signals, Signal
function, unreliable signals, reliable signals, kill, raise , alarm, pause, abort, sleep functions.

UNIT IV
Interprocess Communication - Introduction to IPC, IPC between processes on a single computer
system,IPC between processes on different systems, pipes-creation, IPC between related processes
using unnamed pipes, FIFOs-creation, IPC between unrelated processes using FIFOs (Named
pipes),differences between unnamed and named pipes, popen and pclose library functions.Message
Queues- Kernel support for messages, APIs for message queues, client/server example.Semaphores-
Kernel support for semaphores, APIs for semaphores, file locking with semaphores.

LINUX PROGRAMMING Page 3

UNIT V
Shared Memory- Kernel support for shared memory, APIs for shared memory, shared memory
example.
Sockets- Introduction to Berkeley Sockets, IPC over a network, Client-Server model, Socket address
structures (Unix domain and Internet domain),Socket system calls for connection oriented protocol
and connectionless protocol, example-client/server programs-Single Server-Client connection,
Multiple simultaneous clients, Comparison of IPC mechanisms.

TEXT BOOKS:
1. Unix System Programming using C++, T.Chan, PHI.
2. Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH,2006.
3. Unix Network Programming, W.R.Stevens, PHI

REFERENCE BOOKS:
1. Linux System Programming, Robert Love, O’Reilly, SPD, rp-2007.
2. Unix for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson2003,
3. Advanced Programming in the Unix environment, 2nd Edition, W.R.Stevens, Pearson .
4. System Programming with C and Unix, A.Hoover, Pearson.

Outcomes:

 Students will be able to use Linux environment efficiently

 Solve problems using bash for shell scripting

 Work confidently in Unix/Linux environment

LINUX PROGRAMMING Page 4

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

S. No

Unit
Topic Page no

1

I

Linux Utilities-File handling utilities, Security by file

permissions, Process utilities, Disk utilities,
7-12

2
Networking commands Filters, Text processing utilities and

Backup utilities.

13-18

3 Sed-Scripts, Operation, Addresses, Commands, Applications 19-21

4
awk- Execution, Fields and Records, Scripts, Operation,

Patterns, Actions, Associative Arrays
22-23

5
String and Mathematical functions, System commands in awk,

Applications.

24-43

6

Shell programming with Bourne again shell(bash)- Introduction,

shell responsibilities, pipes and

Redirection, here documents, running a shell script, the shell as

a programming language, shell meta characters, file name

substitution

44-49

shell variables, command substitution, shell commands, the

environment, quoting, test command, control structures
50-56

7
II

Files and Directories- File Concept, File types, File System

Structure, file metadata-Inodes,
57-59

8
kernel support for files, system calls for file I/O operations-

open, create, read, write, close, lseek, dup2
59-62

9
file and record locking-lockf and fcntl functions, file

permissions - chmod, fchmod, file ownership-chown, lchown,

fchown, links-soft links and hard links – symlink, link, unlink
63-65

Directories-Creating, removing and changing Directories-mkdir,

rmdir, chdir, obtaining current working directory-getcwd,

Directory contents

66-71

10

III

Process – Process concept, Kernel support for process, process
identification, process hierarchy, process states, process control

- process creation, waiting for a process, process termination,

zombie process

72-74

11
orphan process, system call interface for process management-

fork, vfork, exit, wait, waitpid, exec family, system, I/O

redirection
75-80

Signals – Introduction to signals, Signal generation and

handling, Kernel support for signals, Signal function, unreliable

signals, reliable signals, kill, raise , alarm, pause, abort, sleep

functions

81-86

12

IV

Interprocess Communication - Introduction to IPC, IPC between

processes on a single computer system,IPC between processes

on different systems, pipes-creation, IPC between related

processes using unnamed pipes

87-90

LINUX PROGRAMMING Page 5

FIFOs-creation, IPC between unrelated processes using FIFOs

(Named pipes),differences between unnamed and named pipes,

popen and pclose library functions.Message Queues- Kernel

support for messages, APIs for message queues

91-92

client/server example.Semaphores-Kernel support for

semaphores, APIs for semaphores, file locking with semaphores
93-94

13

V

Shared Memory- Kernel support for shared memory, APIs for

shared memory, shared memory example
95-99

14
Sockets- Introduction to Berkeley Sockets, IPC over a network,

Client-Server model, Socket address structures
100-107

Socket system calls for connection oriented protocol and

connectionless protocol, Multiple simultaneous clients,
Comparison of IPC mechanisms

108-110

LINUX PROGRAMMING Page 6

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT-1

LINUX PROGRAMMING Page 7

LINUX PROGRAMMING Page 8

LINUX PROGRAMMING Page 9

LINUX PROGRAMMING Page 10

LINUX PROGRAMMING Page 11

LINUX PROGRAMMING Page 12

LINUX PROGRAMMING Page 13

LINUX PROGRAMMING Page 14

LINUX PROGRAMMING Page 15

LINUX PROGRAMMING Page 16

LINUX PROGRAMMING Page 17

LINUX PROGRAMMING Page 18

LINUX PROGRAMMING Page 19

LINUX PROGRAMMING Page 20

LINUX PROGRAMMING Page 21

LINUX PROGRAMMING Page 22

LINUX PROGRAMMING Page 23

LINUX PROGRAMMING Page 24

LINUX PROGRAMMING Page 25

LINUX PROGRAMMING Page 26

LINUX PROGRAMMING Page 27

LINUX PROGRAMMING Page 28

LINUX PROGRAMMING Page 29

LINUX PROGRAMMING Page 30

LINUX PROGRAMMING Page 31

LINUX PROGRAMMING Page 32

LINUX PROGRAMMING Page 33

LINUX PROGRAMMING Page 34

LINUX PROGRAMMING Page 35

LINUX PROGRAMMING Page 36

LINUX PROGRAMMING Page 37

LINUX PROGRAMMING Page 38

LINUX PROGRAMMING Page 39

LINUX PROGRAMMING Page 40

LINUX PROGRAMMING Page 41

LINUX PROGRAMMING Page 42

LINUX PROGRAMMING Page 43

LINUX PROGRAMMING Page 44

LINUX PROGRAMMING Page 45

LINUX PROGRAMMING Page 46

LINUX PROGRAMMING Page 47

LINUX PROGRAMMING Page 48

LINUX PROGRAMMING Page 49

LINUX PROGRAMMING Page 50

LINUX PROGRAMMING Page 51

LINUX PROGRAMMING Page 52

LINUX PROGRAMMING Page 53

LINUX PROGRAMMING Page 54

LINUX PROGRAMMING Page 55

LINUX PROGRAMMING Page 56

Unit II – Files and Directories

Working with Files

In this chapter we learn how to create, open, read, write, and close files.

UNIX File Structure

In UNIX, everything is a file.

Programs can use disk files, serial ports, printers and other

devices in the exactly the same way as they would use a file.

Directories, too, are special sorts of files.

Directories

As well as its contents, a file has a name and 'administrative

information', i.e. the file's creation/modification date and its

permissions.

The permissions are stored in the inode, which also

contains the length of the file and where on the disc it's

stored.

A directory is a file that holds the inodes

and names of other files. Files are

arranged in directories, which also contain

subdirectories.

A user, neil, usually has his files stores in a 'home' directory, perhaps /home/neil.

LINUX PROGRAMMING Page 57

Files and Devices

Even hardware devices are represented (mapped) by files in UNIX. For

example, as

root, you mount a CD-ROM drive as a file,

$ mount -t iso9660 /dev/hdc /mnt/cd_rom

$ cd /mnt/cd_rom

Low-level File Access

Each running program, called a process, has associated with it a number of file
descriptors.

LINUX PROGRAMMING Page 58

When a program starts, it usually has three of these descriptors already

opened. These are: The write system call arranges for the first n bytes

bytes from buf to be written to the file associated with the file descriptor

files.

With this knowledge, let's write our first program, simple_write.c:

dup and dup2

The dup system calls provide a way of duplicating a file descriptor, giving

two or more, different descriptors that access the same file.

The Standard I/O Library

The standard I/O library and its header file stdio.h, provide a versatile

interface to low-level I/O system calls.

Three file streams are automatically opened when a program is

started. They are stdin, stdout, and stderr.

Now, let's look at:

fopen

LINUX PROGRAMMING Page 59

The fopen library function is the analog of the low level open system call.

fopen opens the file named by the filename parameter and associates a stream with it.

The mode

parameter specifies how the file is to be opened. It's one of the following strings:

If successful, fopen returns a non-null FILE * pointer.

fread

The fread library function is used to read data from a file stream. Data is read

into a data buffer given by ptr from the stream, stream.

Fwrite

The fwrite library call has a similar interface to fread. It takes data records from the

specified

data buffer and writes them to the output stream.

fclose

The fclose library function closes the specified stream, causing any unwritten data to be

written.

Fflush

The fflush library function causes all outpstanding data on a file stream to be written

immediately.

fseek

The fseek function is the file stream equivalent of the lseek system call.

It sets the position in the stream for the next read or write on that stream.

LINUX PROGRAMMING Page 60

fgetc, getc, getchar

The fgetc function returns the next byte, as a character, from a file

stream. When it reaches the end of file, it returns EOF.

The getc function is equivalent to fgetc, except that you can

implement it as a macro. The getchar function is equivalent to

getc(stdin) and reads the next character from the standard input.

fputc, putc, putchar

The fputc function writes a character to an output file stream. It returns the

value it has written, or EOF on failure.

The function putc is quivalent to fputc, but you may implement it as a macro.

The putchar function is equivalent to putc(c,stdout), writing a single

character to the standard output.

fgets, gets

The fgets function reads a string from an input file stream. It writes characters to

the string pointed to by s until a newline is encountered, n-1 characters have been

transferred or the end of file is reached. Formatted Input and Output

There are library functions for producing output in a controlled fashion.

printf, fprintf and sprintf

The printf family of functions format and output a variable number of

arguments of different types. Ordinary characters are passed unchanged into

the output. Conversion specifiers cause printf to fetch and format additional

argumetns passed as parameters. They are start with a %.

For example

LINUX PROGRAMMING Page 61

which produces, on the standard output:

Some numbers: 1, 2, and 3

Here's another example:

This produces:

Hello Miss A Mathew, aged 6.5

Field specifiers are given as numbers immediatley after

the % character in a conversion specifier. They are used

to make things clearer.

The printf function returns an integer, the number of characters written.

scanf, fscanf and sscanf

LINUX PROGRAMMING Page 62

The scanf family of functions work in a similar way to the printf group,

except that thye read items from a stream and place vlaues into variables.

The format string for scanf and friends contains both

ordinary characters and conversion specifiers.

Here is a simple example:

The call to scanf will succeed and place 1234 into the variable num given either if the

following inputs

Other conversion specifiers are:

Given the input line,

this call to scanf will correctly scan four items:

LINUX PROGRAMMING Page 63

\

In general, scanf and friends are not highly regarded, for three reasons:

Other library functions use either stream paramters or the standard streams stdin,

stdout, stderr

LINUX PROGRAMMING Page 64

LINUX PROGRAMMING Page 65

LINUX PROGRAMMING Page 66

LINUX PROGRAMMING Page 67

LINUX PROGRAMMING Page 68

LINUX PROGRAMMING Page 69

LINUX PROGRAMMING Page 70

LINUX PROGRAMMING Page 71

LINUX PROGRAMMING Page 72

UNIT-III PROCESSES AND SIGNALS

 Viewing Processes

We can see what processes are running by using the ps command. Here is
some sample output:

LINUX PROGRAMMING Page 73

The PID column gives the PIDs, the TTY column shows which terminal

started the process, the STAT column shows the current status, TIME gives

the CPU time used so far and the COMMAND column shows the command

used to start the process.

Let's take a closer look at some of these:

The initial login was performed on virtual console number one (v01).

The shell is running bash. Its status is s, which means sleeping. Thiis is

because it's waiting for the X Windows sytem to finish.

X Windows was started by the command startx. It won't finished until we exit from

X. It too is sleeping.

The fvwm is a window manager for X, allowing other programs to be started and windows to

be arranged on t screen

This process represents a window in the X Windows system. The shell, bash, is running in

the new window. T window is running on a new pseudo terminal (/dev/ptyp0) abbreviated

pp0.

This is the EMACS editor session started from the shell mentioned above. It uses the pseudo

terminal

This is a clock program started by the window manager. It's in the

middle of a one- minute wait between updates of the clock hands.

System Processes

Let's look at some other processes running on this Linux system.

The output has been abbreviated for clarity:

LINUX PROGRAMMING Page 74

Here we can see one very important process indeed:

In general, each process is started by another, known as its parent process. A process so

started is known as a

child process.

When UNIX starts, it runs a single program, the prime ancestror and process

number one: init. One such example is the login procedure init starts the

getty program once for each terminal that we can use to long in.

These are shown in the ps output like this:

Process Scheduling

One further ps output example is the entry for the ps command itself:

This indicates that process 192 is in a run state (R) and is executing the command ps- ax.

We can set the process priority using nice and adjust it using renice, which

reduce the priority of a process by 10. High priority jobs have negative values.

Using the ps -l (forlong output), we can view the priority of processes. The

value we are interested in is shown in the NI (nice) column:

Here we can see that the oclock program is running with a default nice

value. If it had been stated with the command,

it would have been allocated a nice value of +10.

We can change the priority

How It Works

In the first example, the program calls system with the string "ps -

ax", which executes the ps program. Our program returns from the

call to system when the ps command is finished.

In the second example, the call to system returns as soon as the shell

command finishes. The shell returns as soon as the ps program is started,

just as would happen if we had typed,

LINUX PROGRAMMING Page 75

at a shell prompt.

Replacing a Process Image

There is a whole family of related functions grouped under the exec heading. They differ in

the way that they start processes and present program arguments.

LINUX PROGRAMMING Page 76

LINUX PROGRAMMING Page 77

LINUX PROGRAMMING Page 78

LINUX PROGRAMMING Page 79

LINUX PROGRAMMING Page 80

LINUX PROGRAMMING Page 81

LINUX PROGRAMMING Page 82

LINUX PROGRAMMING Page 83

LINUX PROGRAMMING Page 84

LINUX PROGRAMMING Page 85

LINUX PROGRAMMING Page 86

LINUX PROGRAMMING Page 87

UNIT-IV

Interprocess communication, Message

Queues and Semaphores

Interprocess Communication

IPC between processes on

a single computer system

IPC between processes on

different systems

Pipes- creation

IPC between related processes using unnamed pipes

FIFOs- creation, IPC between unrelated processes using FIFOs(named pipes)

Differences Between

Unnamed

And Named

Pipes popen

& pclose

library

functions.

Message Queues-

Kernel support for

messages

Semaphores-Kernel support for semaphores

APIs for semaphores

File locking with Semaphores

Introduction to IPC

Interprocess Communication- “Interprocess

communication(IPC) is the transfer of data among different

processes”.

LINUX PROGRAMMING Page 88

Interprocess communication (IPC) includes thread synchorization and

data exchange between threads beyond the process boundaries. If

threads belong to the same process, they execute in the same address

space, i.e. they can access global (static) data or heap directly, without

the help of

the operating system. However, if threads belong to different processes,

they cannot access each others address spaces without the help of the

operating system.

There are two fundamentally different approaches in IPC:

 processes are residing on the same computer
 processes are residing on different computers

The first case is easier to implement because processes can share

memory either in the user space or in the system space. This is equally

true for uniprocessors and multiprocessors.

In the second case the computers do not share physical memory, they

are connected via I/O device(for example serial communication or

Ethernet). Therefore the processes residing in different computers can

not use memory as a means for communication.

IPC between processes on a Single System

Most of this chapter is focused on IPC on a single computer system,

including four general approaches:

 Shared memory

 Messages
 Pipes
 Sockets

The synchronization objects considered in the previous chapter

normally work across the process boundaries (on a single computer

system). There is one addition necessary however: the synchronization

objects must be named. The handles are generally private to the

process, while the object names, like file names, are global and known

to all processes.

IPC between processes on different systems

IPC between processes on different systems

IPC is Inter Process Communication, more of a technique to share data across

different processes

LINUX PROGRAMMING Page 89

within one machine, in such a way that data passing binds the coupling of different

processes.

 The first, is using memory mapping techniques, where a memory

map is created, and others open the memory map for

reading/writing...

 The second is, using sockets, to communicate with one

another...this has a high overhead, as each process would have to

open up the socket, communicate across... althougheffective

 The third, is to use a pipe or a named pipe, a very good example

PIPES:

A pipe is a serial communication device (i.e., the data is read in the

order in which it was written),which allows a unidirectional

communication. The data written to end isreadbackfromtheotherend.

The pipe is mainly used to communicate between two threads in a

single process or between parent and child process. Pipes can only

connect the related process. In shell,

thesymbolcanbeusedtocreateapipe.

In pipes the capacity of data is limited. (i.e.) If the writing process is

faster than the reading process which consumes the data, the pipe

cannot store the data. In this situation the writer process will block

until more capacity becomes available. Also if the reading process tries

to read data when there is no data to read, it will be blocked until the

data becomes available. By this, pipes automatically synchronize the

two process.

Creatingpipes:

The pipe() function provides a means of passing data between two

programs and also allows to read and write the data.

#include<unistd.h>

int pipe(int file_descriptor[2]);

pipe()function is passed with an array of file descriptors. It will fill the

array with new file descriptors and returns zero. On error, returns -1 and

sets the errno to indicate the reason of

failure.

The file descriptors are connected in a way that is data written to file_

descriptor[1] can be read back from the file_descriptor[0].

(Note: As this uses file descriptors and not the file streams, we must use

read and write system calls to access the data.)

Pipes are originally used in UNIX and are made even more powerful in Windows

95/NT/2000.

LINUX PROGRAMMING Page 90

Pipes are implemented in file system. Pipes are basically files with

only two file offsets: one for reading another for writing. Writing to a

pipe and reading from a pipe is strictly in FIFO manner. (Therefore

pipes are also called FIFOs).

For efficiency, pipes are in-core files, i.e. they reside in memory

instead on disk, as any other global data structure. Therefore pipes

must be restricted in size, i.e. number of pipe blocks must be limited.

(In UNIX the limitation is that pipes use only direct blocks.)Since the

pipes have a limited size and the FIFO access discipline, the reading

and writing processes are synchronized in a similar manner as in case

of message buffers. The access functions for pipes are the same as for

files: WriteFile() and ReadFile().

Pipes used as standard input and output:

We can invoke the standard programs, ones that don’t expect a file

The purpose of dup call is to open a new file descriptor, which will

refer to the same file as an existing file descriptor. In case of dup, the

value of the new file descriptor is the lowest number available. In

dup2 it is same as, or the first available descriptor greater than the

parameter file_descriptor_2.

We can pass data between process by first closing the file descriptor 0

and call is made to dup. By this the new file descriptor will have the

number 0.As the new descriptor is the duplicate of an existing one,

standard input is changed to have the access. So we have created two

file descriptors for same file or pipe, one of them will be the standard

input.

(Note: The same operation can be performed by using the fcntl()

function. But compared to this dup and dup2 are more efficient)

 Named pipes (FIFOs)

Similar to pipes, but allows for communication

between unrelated processes. This is done by naming

the communication channel and making it permanent.

Like pipe, FIFO is the unidirectional data stream.

FIFO creation:

int mkfifo (const char *pathname, mode_t mode);

- makes a FIFO special file with name pathname.

LINUX PROGRAMMING Page 91

(mode specifies the FIFO's permissions,

as common in UNIX-like file systems).

- A FIFO special file is similar to a pipe, except that it is created in

a different way. Instead of being an anonymous

communications channel, a FIFO special file is

entered into the file system by calling mkfifo()

Once a FIFO special file has been created, any

process can open it for reading or writing, in
the same way as an ordinary file.

A First-in, first-out(FIFO) file is a pipe that has a name in the

filesystem. It is also called as named pipes.

Creation of FIFO:

We can create a FIFO from the command line and within a program.

To create from command line we can use either mknod or mkfifo commands.

$ mknod filename p

$ mkfifo filename

(Note: The mknod command is available only n older versions,

you can make use of mkfifo in new versions.)

To create FIFO within the program we can use two system

calls. They are, #include<sys/types.h>

#include<sys/stat.h>

int mkfifo(const char

*filename,mode_t mode);
int

mknod(const

char

*filename,

mode_t

mode|S_IFIF

O,(dev_t) 0);

Accessing FIFO:

Let us first discuss how to access FIFO in command line using file

commmands. The useful feature of named pipes is, as they appear in

the file system, we can use them in commands.

We can read from the FIFO(empty)

$ cat < /tmp/my_fifo

Now, let us write to the FIFO.

$ echo "Simple!!!" > /tmp/my_fifo
(Note: These two commands should be executed in different terminals

because first command will be waiting for some data to appear in the

FIFO.)

Pipe processing:(popen &pclose library functions)

LINUX PROGRAMMING Page 92

The process of passing data between two programs can be done
with the help of popen() and pclose() functions.

#include<stdio.h>

FILE
*popen(co

nst char

*command

, const char
*open-

mode);

int pclose(FILE *stream_to_close);

popen():
The popen function allows a program to invoke another program as a

new process and either write the data to it or to read from it. The

parameter command is the name of the program to run. The

open_mode parameter specifies in which mode it is to be invoked, it

can be only either "r" or "w". On failure popen() returns a NULL

pointer. If you want to perform bi-directional communication you have

to use two pipes.

pclose():
By using pclose(), we can close the filestream associated with popen()

after the process started by it has been finished. The pclose() will

return the exit code of the process, which is to be closed. If the process

was already executed a wait statement before calling pclose, the exit

status will be lost because the process has been finished. After closing

the filestream, pclose() will wait for the child process to terminate.

Messagequeue:

This is an easy way of passing message between two process. It

provides a way of sending a block of data from one process to

another. The main advantage of using this is, each block of data is

considered to have a type, and a receiving process receives the blocks

of data having different type values independently.

Creation and accessing of a message queue:
You can create and access a message queue
using the msgget() function.
#include<sys/msg.h>

int msgget(key_t key,int msgflg);

The first parameter is the key value, which specifies the particular

message queue. The special constant IPC_PRIVATE will create a

private queue. But on some Linux systems the message queue may

not actually be private.

The second parameter is the flag value, which takes nine permission flags.

Adding a message:

LINUX PROGRAMMING Page 93

The msgsnd() function allows to add a message to a
message queue. #include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr ,size_t msg_sz,int msgflg);

The first parameter is the message queue identifier returned from an msgget

function.

The second parameter is the pointer to the message to be sent. The third

parameter is the size of the message pointed to by msg_ptr. The fourth

parameter, is the flag value controls what happens if either the current

message queue is full or within the limit. On success, the function

returns 0 and a copy of the message data has been taken and placed on

the message queue, on failure -1 is returned.

Retrieving a message:

The smirch() function retrieves message from the message queue.

#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr

,size_t msg_sz,long int msgtype ,int msgflg); The second parameter is a pointer to the message to bereceived.

The fourth parameter allows a simple form of reception priority. If its

value is 0,the first available message in the queue is retreived. If it is

greater than 0,the first message type is retrived. If it is less than 0,the

first message that has a type the same a or less than the absolute value

of msgtype is retrieved.

On success, msgrcv returns the number on bytes placed in the receive

buffer, the message is copied into the user-allocated buffer and the

data is deleted from the message queue. It returns -1 on error.

#include<sys/msg.h>

int

msgctl(i

nt

msgid,in

t

comman

d, struct

msqid_d

s *buf);

The second parameter takes the values as given below:

1.) IPC_STAT - Sets the data in the msqid_ds to reflect the values

associated with the message queue.

2.) IPC_SET - If the process has the permission to do so, this sets the

values associated with the message queue to those provided in the

msgid_ds data structure.

3.) IPC_RMID-Deletes the message queue.

LINUX PROGRAMMING Page 94

(Note: If the message queue is deleted while the process is

writing in a msgsnd or msgrcv function, the send or receive

function will fail.

LINUX PROGRAMMING Page 95

UNIT-V

 Shared Memory:

Shared memory is a highly efficient way of data sharing between the running

programs. It allows two unrelated processes to access the same logical

memory. It is the fastest form of IPC because all processes share the same

piece of memory. It also avoidscopyingdataunnecessarily.

As kernel does not synchronize the processes, it should be handled by the user.

Semaphore can also be used to synchronize the access to shared memory.

Usageofsharedmemory:

To use the shared memory, first of all one process should allocate the segment,

and then each process desiring to access the segment should attach the

segment. After accessing the segment, each process should detach it. It is also

necessary to deallocate thesegmentwithoutfail.

Allocating the shared memory causes virtual pages to be created. It is

important to note that allocating the existing segment would not create new

pages, but will return theidentifierfortheexistingpages.

All the shared memory segments are allocated as the integral multiples of the

system's page size, which is the number of bytes in a page of memory.

Unix kernel support for shared memory

 There is a shared memory table in the kernel address space that keeps

track of all shared memory regions created in the system.

 Each entry of the tables store the followingdata:

1. Name

2. Creator user ID and group ID.

3. Assigned owner user ID and group ID.

4. Read-write access permission of the region.

5. The time when the last process attached to the region.

6. The time when the last process detached from the region.

7. The time when the last process changed control data of the region.

8. The size, in no. of bytes of the region.

UNIX APIs for

shared memory

shmget

 Open and create a shared memory.

 Function prototype:

LINUX PROGRAMMING Page 96

#include<sys/types.h>

#include<sys/ipc.h> #include<sys/shm.h>

int shmget (key_t key, int size, int flag);

 Function returns a positive descriptor if it succeeds or -1 if it fails.

Shmat

 Attach a shared memory to a process virtual address space.

 Function prototype:

void * shmat (int shmid, void *addr, int flag);

 Function returns the mapped virtual address of he shared memory if it

succeeds or -1 ifit fails.

Shmdt

 Detach a shared memory from the process virtual address space.

 Function prototype:

 Function returns 0 if it succeeds or -1 if it fails.

Shmctl

 Query or change control data of a shared memory or delete thememory.

 Function prototype:

#inc

lude

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

Function returns 0 if it succeeds or -1 if it fails.

Shared memory Example

//shmry1.c

TEXT_

SZ

2048

struct

LINUX PROGRAMMING Page 97

shared_

use_st

{
int written_by_you;

char some_text[TEXT_SZ];

};

int main()

{

int running = 1;
void

*shared_memor

y = (void *)0;

struct

shared_use_st

*shared_stuff;

int shmid;

srand(

(unsigned

int)getpid());

shmid =

shmget(

(key_t)1234,

sizeof(struct

shared_use_st

), 0666

|IPC_CREAT

);

if (shmid == -1)

{

fprintf(stderr, "shmget failed\n");

exit(EXIT_FAILURE);

}

shared_memory =

shmat(shmid,(void *)0, 0);

if (shared_memory ==
(void *)-1)

{

fprintf(stderr,

"shmat failed\n");

exit(EXIT_FAILU

RE);

}

printf("Memory

Attached at

%x\n",

(int)shared_mem

LINUX PROGRAMMING Page 98

ory);

shared_stuff =

(struct shared_use_st

*) shared_memory;

shared_stuff-

>written_by_you =

0; while(running)

{

if(shared_stuff->written_by_you)
{

printf("You Wrote: %s",
shared_stuff->some_text);

sleep(rand() %4);

shared_stuff->written_by_you = 0;

if

(strncmp(shared_st

uff->some_text,

"end", 3)== 0)

{

running = 0;
}

}

}

if (shmdt(shared_memory) == -1)

{

fprintf(stderr,

"shmdt

failed\n");

exit(EXIT_F

AILURE);

}

if (shmctl(shmid, IPC_RMID, 0) == -1)

{

fprintf(stderr, "failed to delete\n");

exit(EXIT_FAILURE);

}

exit(E

XIT_

SUC

CESS

);

LINUX PROGRAMMING Page 99

}

.

h

>

#include<sys/shm.h>

#define
TEXT_

SZ

2048

struct

shared_
use_st

{
int written_by_you;

char some_text[TEXT_SZ];
};

int main()

{

int running =1
void *shared_memory = (void *)0; struct shared_use_st *shared_stuff;

int shmid;

shmid

=shmget((key_t)1234, sizeof(struct

shared_use_st),

0666 | IPC_CREAT);

if (shmid == -1)
{

fprintf(stderr,

"shmget

failed\n");

exit(EXIT_FA

ILURE);

}

shared_mem

ory=shmat(s
hmid, (void

*)0, 0);

if (shared_memory == (void *)-1)
{

fprintf(stderr,

"shmat failed\n");

exit(EXIT_FAILU

RE);

}

LINUX PROGRAMMING Page 100

printf("Memory Attached at %x\n", (int)

shared_memory); shared_stuff = (struct

shared_use_st *)shared_memory;

while(running)

{

while(shared_stuff->written_by_you== 1)

{
sleep(1);

printf("waiting for client. .. \n");

}

printf("Ent

er Some

Text: ");

fgets

(buffer,

BUFSIZ,

stdin);

strncpy(shared_stuff-

>some_text, buffer,

TEXT_SZ);

shared_stuff->written_by_you = 1;

if(strncmp(buffer, "end", 3) == 0)

{

running = 0;

}

}

if (shmdt(shared_memory) == -1)

{

fprintf(stderr,

"shmdt

failed\n");

exit(EXIT_F

AILURE);

}

exit(

EXIT

_SU

CCE

SS);

}

The shmry1.c program will create the segment using shmget() function and

returns the identifier shmid. Then that segment is attached to its address space

using shmat() function.

The structure share_use_st consists of a flag written_by_you is set to 1 when data is

available. When it is set, program reads the text, prints it and clears it to show it has read the

data. The string end is used to quit from the loop. After this the segment is detached and

deleted.

The shmry2.c program gets and attaches to the same memory segment. This is possible

LINUX PROGRAMMING Page 101

with the

help of same key value 1234 used in the shmget() function. If the

written_by_you text is set, the process will wait until the previous process

reads it. When the flag is cleared, the data is written and sets the flag. This

program too will use the string "end" to terminate. Then the segment is

detached.

5.2 Sockets

A socket is a bidirectional communication device that can be used to

communicate withanother process on the same machine or with a process

running on other machines.Sockets are the only interprocess communication

we‟ll discuss in this chapter thatpermit communication between processes on

different computers. Internet programs such as Telnet, rlogin, FTP, talk, and

the World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using

theTelnet program because they both use sockets for network

communications.To open a connection to a WWW server at

www.codesourcery.com, use telnet www.codesourcery.com 80.The magic

constant 80 specifies a connection to the Web server programming running

www.codesourcery.com instead of some other process.Try typing GET / after

the connection is established.This sends a message through the socket to the

Web server, which replies by sending the home page‟s HTML source and then

closing the connection—for example:

% telnet

www.codesourcer

y.com 80 Trying

206.168.99.1...

Connected to

merlin.codesourcery.com

(206.168.99.1). Escape character is

„^]‟.

GET /

<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

...

3. Note that only Windows NT can create a named pipe;Windows 9x

programs can form only client connections.

4. Usually, you‟d use telnet to connect a Telnet server for remote logins.

But you can also use telnet to connect to a server of a different kind and

then type comments directly at it.

Introduction to Berkeley sockets

Berkeley sockets (or BSD sockets) is a computing library with an application

programming interface (API) for internet sockets and Unix domain sockets,

used for inter-process communication (IPC).

http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Internet_socket
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication

LINUX PROGRAMMING Page 102

This list is a summary of functions or methods provided by the Berkeley

sockets API library:

 socket() creates a new socket of a certain socket type, identified by

an integer number, and allocates system resources to it.

 bind() is typically used on the server side, and associates a socket

with a socket address structure, i.e. a specified local port number and

IP address.

 listen() is used on the server side, and causes a bound TCP socket to enter

listening state.

connect() is used on the client side, and assigns a free local port number to a socket. In case of

a TCP socket, it causes an attempt to establish a new TCP connection.

 accept() is used on the server side. It accepts a received incoming

attempt to create a new TCP connection from the remote client, and

creates a new socket associated with the socket address pair of this

connection.

 send() and recv(), or write() and read(), or sendto() and recvfrom(),
are used for sending and receiving data to/from a remote socket.

 close() causes the system to release resources allocated to a socket.
In case of TCP, the connection is terminated.

 gethostbyname() and gethostbyaddr() are used to resolve host names
and addresses. IPv4 only.

 select() is used to pend, waiting for one or more of a provided list of
sockets to be ready to read, ready to write, or that have errors.

 poll() is used to check on the state of a socket in a set of sockets. The

set can be tested to see if any socket can be written to, read from or if

an error occurred.

 getsockopt() is used to retrieve the current value of a particular

socket option for the specified socket.

 setsockopt() is used to set a particular socket option for the specified socket.

IPC

over a

networ

k

Socket

Concep

ts

When you create a socket, you must specify three parameters:

 communication style,

 namespace,

 protocol.

A communication style controls how the socket treats transmitted data and specifies

the number of communication partners.When data is sent through a socket, it

is ackaged into chunks called packets.The communication style determines
how these

packets are handled and how they are addressed from the sender to the receiver.

Connection styles guarantee delivery of all packets in the order

they were sent. If packets are lost or reordered by problems in the

LINUX PROGRAMMING Page 103

network, the receiver automatically requests their retransmission

from the sender.

A connection-style socket is like a telephone call:The addresses of the sender

and receiver are fixed at the beginning of the communication
when the connection is established.

Datagram styles do not guarantee delivery or arrival order.

Packets may be lost or reordered in transit due to network

errors or other conditions. Each packet must be labeled with its

destination and is not guaranteed to be delivered.The system

guarantees only “best effort,” so packets may disappear or

arrive in a different order than shipping.

A datagram-style socket behaves more like postal mail.The sender
specifies the receiver‟s address for each individual message.

A socket namespace specifies how socket addresses are written. A socket

address identifies one end of a socket connection. For example, socket

addresses in the “local namespace” are ordinary

filenames. In “Internet namespace,” a socket address is composed of the Internet address

(also known as an Internet Protocol address or IP address) of a host attached to the network

and a port number.The port number distinguishes among multiple sockets on the same host.A

protocol specifies how data is transmitted. Some protocols are TCP/IP, the primary

networking protocols used by the Internet; the AppleTalk network protocol; and the UNIX

local communication

Client-server datagram socket — example

To experiment with datagram sockets in the UNIX domain we will

write a client/server application where:

 the client takes a number of arguments on its command line and send

them to the server using separate datagrams

 for each datagram received, the server converts it to uppercase and
send it back to the client

 the client prints server replies to standard output

For this to work we will need to bind all involved sockets to pathnames.

Client-server datagram socket example — protocol

#includ

e

<ctype

.h>

#includ

e

<sys/un

.h>

#includ

e

<sys/so

cket .h>

#includ

e

LINUX PROGRAMMING Page 104

<unistd

.h>

#includ

e "

helpers

.h"

#define SRV_SOCK_PATH "

/tmp/uc_srv_socket " #define

CLI_SOCK_PATH " /tmp/ uc_cl
i_socket .%ld " #define MSG_LEN 10

#include "uc�proto .h"
int main(int argc ,

char *argv []) {

struct sockaddr_un

srv_addr , cl i_addr ;

int srv_fd , i ;

s

s

i

z

e

_

t

b

y

t

e

s

;

s

o

c

k

l

e

n

_

t

l

e

n

;

char buf [MSG_LEN] ;

i f ((srv_fd = socket (AF_UNIX ,

SOCK_DGRAM, 0)) < 0) err_sys (" socket

error ") ;

LINUX PROGRAMMING Page 105

memset(&srv_addr , 0, sizeof (

struct sockaddr_un)) ; srv_addr .

sun_family = AF_UNIX ;

strncpy (srv_addr . sun_path ,
SRV_SOCK_PATH, sizeof (

srv_addr . sun_path) �1) ;

i f (access (srv_addr .

sun_path , F_OK) == 0)

unlink (srv_addr . sun_path

) ;

i f (bind (srv_fd , (struct

sockaddr *) &srv_addr , sizeof (

struct sockaddr_un)) < 0)

err_sys (" bind error ") ;

for (; ;) {

len = sizeof (struct sockaddr_un) ;
i f ((bytes = recvfrom(srv_fd ,

buf , MSG_LEN, 0, (struct

sockaddr *) &cl i_addr , &len))

< 1) err_sys (" recvfrom error ")

;

pr int f (" server received %ld

bytes from %s\n" , (long) bytes

, cl i_addr . sun_path) ;

for (i = 0; i < bytes ; i ++)

buf [i] = toupper ((

unsigned char) buf [i]) ; i f

(sendto (srv_fd , buf , bytes

, 0,

(struct sockaddr *) &cl
i_addr , len) != bytes)
err_sys (" sendto error ") ;

#include "uc�proto .h"
int main(int argc ,

char *argv []) {

struct sockaddr_un

srv_addr , cl i_addr ;

int srv_fd , i ;

s

i

z

e

_

t

l

e

n

;

LINUX PROGRAMMING Page 106

s

s

i

z

e

_

t

b

y

t

e

s

;

char

resp

[MS

G_LE

N] ; i

f (

argc

< 2)

er r_qui t ("Usage : uc�c l ient MSG. . . ") ;
i f ((srv_fd = socket (AF_UNIX ,

SOCK_DGRAM, 0)) < 0) err_sys (" socket

error ") ;

memset(&cl i_addr , 0, sizeof (

struct sockaddr_un)) ; cl i_addr .

sun_family = AF_UNIX ;

snpr int f (cl i_addr . sun_path , sizeof (cl

i_addr . sun_path) , CLI_SOCK_PATH, (

long) getpid ()) ;

i f (bind (srv_fd , (struct
sockaddr *) &cl i_addr , sizeof (

struct sockaddr_un)) == �1)

err_sys (" bind error ") ;

Notes:

the server is persistent and processes one datagram at a time, no matter
the client rocess, i.e. there is no notion of connection messages larger
than 10 bytes are silently truncated

Socket address structures(UNIX domain &

Internet domain) UNIX domain Sockets:

We now want to give an example of stream sockets. To do so, we can

longer remain in the abstract of general sockets, but we need to pick a

domain. We pick the UNIX domain. In the UNIX domain, addresses are

LINUX PROGRAMMING Page 107

pathnames. The corresponding Cstructure is sockaddr_un: struct

sockaddr_un {

sa_fami ly_t sun_family ; /* = AF_UNIX */

char sun_path[108] ; /* socket

pathname, NULL�terminated */

}
The field sun_path contains a regular pathname, pointing to a special file of

type socket (. pipe) which will be created at bind time.

During communication the file will have no content, it is used only as a

rendez-vous point between processes.

Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two

processes on the same computer. Internet-domain sockets, on the other hand,

may be used to connect processes on different machines connected by a

network.

Sockets connecting processes through the Internet use the Internet namespace represented by

PF_INET.The most common protocols are TCP/IP.The Internet Protocol (IP), a low-level

protocol, moves packets through the Internet, splitting and rejoining the packets, if necessary.

It guarantees only “best-effort” delivery, so packets may vanish or be reordered during

transport. Every participating computer is specified using a unique IP number.

LINUX PROGRAMMING Page 108

The Transmission Control Protocol (TCP), layered on top of IP, provides reliable connection-
ordered transport. It permits telephone-like connections to be established between computers and

ensures that data is delivered reliably and inorder.

DNS Names

Because it is easier to remember names than numbers, the Domain Name Service (DNS)

associates names such as www.codesourcery.com with computers‟ unique IP numbers. DNS is

implemented by a worldwide hierarchy of name servers, but you don‟t need to understand DNS

protocols to use Internet host names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This information is

stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET to indicate that this

is an Internet namespace address.The sin_addr field stores the Internet address of the desired

machine as a 32-bit integer IP number.A port number distinguishes a given machine‟s different

sockets. Because different machines store multibyte values in different byte orders, use htons to

convert the port number to

network byte order. See the man page for ip for more information.To convert human-readable

hostnames, either numbers in standard dot notation (such as 10.0.0.1) or DNS names (such as

www.codesourcery.com) into 32-bit IP numbers, you can use gethostbyname.This returns a

pointer to the struct hostent structure; the h_addr field contains the host‟s IP number.

System Calls

Sockets are more flexible than previously discussed communication techniques.These

are the system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets

bind—Labels a server socket with an address

listen—Configures a socket to accept conditions

accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.

Creating and Destroying Sockets
Sockets are IPC objects that allow to exchange data between processes running:

either on the same machine (host), or on different ones over a network.

The UNIX socket API first appeared in 1983 with BSD 4.2. It has been finally standardized for

the first time in POSIX.1g (2000), but has been ubiquitous to every UNIX implementation since

the 80s.

The socket API is best discussed in a network programming course,which this one is not. We

will only address enough general socketconcepts to describe how to use a specific socket family:

UNIXdomain sockets.

Connection Oriented Protocol

Client-server setup

Let‟s consider a typical client-server application scenario — no matter if they are located on the

same or different hosts.

Sockets are used as follows:

each application: create a socket

idea: communication between the two applications will flow through an imaginary “pipe” that

will connect the two sockets together

server: bind its socket to a well-known address

we have done the same to set up rendez-vous points for other IPC objects.

http://www.codesourcery.com/

LINUX PROGRAMMING Page 109

e.g. FIFOs

client: locate server socket (via its well-known address) and “initiate communication”1 with the

server.

Socket options:

In order to tell the socket to get the information about the packet destination, we should call

setsockopt().

setsockopt() and getsockopt() - set and get options on a

socket. Both methods return 0 on success and -1 on error.

Prototype: int setsockopt(int sockfd, int level, int optname,...

There are two levels of socket options:

To manipulate options at the sockets API level: SOL_SOCKET

To manipulate options at a protocol level, that protocol number should be used;

for example, for UDP it is IPPROTO_UDP or SOL_UDP (both are equal 17) ; see

include/linux/in.h and include/linux/socket.h

● SOL_IP is 0.
● There are currently 19 Linux socket options and one another on option for BSD

compatibility.

● There is an option called IP_PKTINFO.

We will set the IP_PKTINFO option on a socket in the following example.

// from /usr/include/bits/in.h
#define IP_PKTINFO 8 /* bool */

/* Structure used for IP_PKTINFO. */

returns a new file descriptor with a numerical value equal to or greater than the integer newfd.

The call,

returns the file descriptor flags as defined in fcntl.h.

The call,

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

LINUX PROGRAMMING Page 110

respectively get and set the file status flags and access modes.

5.9 Comparision of IPC mechanisms.

IPC mechanisms are mianly 5 types

1. pipes:it is related data only send from one pipe output is giving to another pipe input toshare
resouses pipe are used drawback:itis only related process onlycommunicated

2. message queues:message queues are un related process are also communicate with message
queues.

3. sockets:sockets also ipc it is comunicate clients and server
with socket system calls connection oriented and connection less also

4. PIPE: Only two related (eg: parent & child) processess can be communicated. Data reading

would be first in first out manner.

Named PIPE or FIFO : Only two processes (can be related or unrelated) can communicate. Data

read from FIFO is first in first out manner.

5. Message Queues: Any number of processes can read/write from/to the queue. Data can be

read selectively. (need not be in FIFO manner)

6. Shared Memory: Part of process's memory is shared to other processes. other processes can

read or write into this shared memory area based on the permissions. Accessing Shared memory

is faster than any other IPC mechanism as this does not involve any kernel level

switching(Shared memory resides on user memory area).

Semaphore: Semaphores are used for process synchronisation. This can't be used for bulk data transfer

between processes.

LINUX PROGRAMMING Page 111

LINUX PROGRAMMING Page 112

	DIGITAL NOTES
	ON
	LINUX PROGRAMMING
	B.TECH III- YEAR – I-SEM
	(2018-19)
	UNIX File Structure
	Directories
	Files and Devices
	There are two fundamentally different approaches in IPC:
	IPC between processes on a Single System
	PIPES:
	Creatingpipes:
	Pipes used as standard input and output:
	Named pipes (FIFOs)
	Creation of FIFO:
	Accessing FIFO:
	Pipe processing:(popen &pclose library functions)
	popen():
	pclose():
	Creation and accessing of a message queue:
	Adding a message:
	Retrieving a message:

