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UNIT-I 
DESIGN CONCEPTS 

 

Introduction 

 

In the design and analysis of reinforced concrete members, you are presented with a problem 

unfamiliar to most of you: ―The mechanics of members consisting of two materials.‖ To compound 

this problem, one of the materials (concrete) behaves differently in tension than in compression, and 

may be considered to be either elastic or inelastic, if it is not neglected entirely. 

 

Although we will encounter some peculiar aspects of behavior of concrete members, we will usually 

be close to a solution for most problems if we can apply the following three basic ideas: 

 

 

 • Geometry of deformation of sections will be consistent under given types of loading; i.e.,        

moment will always cause strain to vary linearly with distance from neutral axis, etc. 

            • Mechanics of materials will allow us to relate stresses to strains. 

• Sections will be in equilibrium: external moments will be resisted by internal moment,    

external axial load will be equal to the sum of internal axial forces. (Many new engineers 

overly impressed speed and apparent accuracy of modern structural analysis computational 

procedures think less about equilibrium and details). 

 

The overall goal is to be able to design reinforced concrete structures that are: 

• Safe 

• Economical 

• Efficient 

 

Reinforced concrete is one of the principal building materials used in engineered structures because: 

• Low cost 

           • Weathering and fire resistance 

• Good compressive strength 

• Formability            

 

Loads 

Loads that act on structures can be divided into three general categories: 

Dead Loads 

Dead loads are those that are constant in magnitude and fixed in location throughout the lifetime of 

the structure such as: floor fill, finish floor, and plastered ceiling for buildings and wearing surface, 

sidewalks, and curbing for bridges 

Live Loads 

Live loads are those that are either fully or partially in place or not present at all, may also change in 

location; the minimum live loads for which the floors and roof of a building should be designed are 

usually specified in building code that governs at the site of construction (see Table1 - ―Minimum 

Design Loads for Buildings and Other Structure.‖) 
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Environmental Loads 

   Environmental Loads consist of wind, earthquake, and snow loads. such as wind, 

earthquake, and snow loads. 

Serviceability 

Serviceability requires that 

• Deflections be adequately small; 

• Cracks if any be kept to a tolerable limits; 

• Vibrations be minimized 

 

Safety  

A structure must be safe against collapse; strength of the structure must be dequate for all 

loads that might act on it. If we could build buildings as designed, and if the loads and their internal 

effects can be predicted accurately, we do not have to worry about safety. But there are uncertainties 

in: 

• Actual loads; 

• Forces/loads might be distributed in a manner different from what we assumed; 

• The assumptions in analysis might not be exactly correct; 

• Actual behavior might be different from that assumed; 

• etc. 

Finally, we would like to have the structure safe against 

 

 

Concrete  

Concrete is a product obtained artificially by hardening of the mixture of cement, sand, gravel 

and water in predetermined proportions.  

Depending on the quality and proportions of the ingredients used in the mix the properties of concrete 

vary almost as widely as different kinds of stones.  

Concrete has enough strength in compression, but has little strength in tension. Due to this, concrete 

is weak in bending, shear and torsion. Hence the use of plain concrete is limited applications where 

great compressive strength and weight are the principal requirements and where tensile stresses are 

either totally absent or are extremely low.  

 

Properties of Concrete  

The important properties of concrete, which govern the design of concrete mix are as follows  

(i) Weight  

The unit weights of plain concrete and reinforced concrete made with sand, gravel of crushed natural 

stone aggregate may be taken as 24 KN/m3 and 25 KN/m3 respectively.  

 

(ii) Compressive Strength  

 



4 
 

 

 

 

 

With given properties of aggregate the compressive strength of concrete depends primarily on age, 

cement content and the water cement ratio are given Table 2 of IS 456:2000. Characteristic strength 

are based on the strength at 28 days. The strength at 7 days is about two-thirds of that at 28 days with 

ordinary portland cement and generally good indicator of strength likely to be obtained.  

(iii) Increase in strength with age   

There is normally gain of strength beyond 28 days. The quantum of increase depends upon the grade 

and type of cement curing and environmental conditions etc.  

 

(iv) Tensile strength of concrete  

The flexure and split tensile strengths of various concrete are given in IS 516:1959 and IS 5816:1970 

respectively when the designer wishes to use an estimate of the tensile strength from compressive 

strength, the following formula can be used  

Flexural strength, fcr=0.7√fck N/mm2  

 

(v) Elastic Deformation  

The modulus of elasticity is primarily influenced by the elastic properties of the aggregate and to 

lesser extent on the conditions of curing and age of the concrete, the mix proportions and the type of 

cement. The modulus of elasticity is normally related to the compressive characteristic strength of 

concrete  

Ec=5000√fck N/mm2  

Where Ec= the short-term static modulus of elasticity in N/mm2  

fck=characteristic cube strength of concrete in N/mm2  

 

(vi) Shrinkage of concrete  

Shrinkage is the time dependent deformation, generally compressive in nature. The constituents of 

concrete, size of the member and environmental conditions are the factors on which the total 

shrinkage of concrete depends. However, the total shrinkage of concrete is most influenced by the 

total amount of water present in the concrete at the time of mixing for a given humidity and 

temperature. The cement content, however, influences the total shrinkage of concrete to a lesser 

extent. The approximate value of the total shrinkage strain for design is taken as 0.0003 in the 

absence of test data (cl. 6.2.4.1).  

 

 

 

 

 

 

 

 

 

 

 



5 
 

(vii) Creep of concrete 
 
 

 
 

 

The effective modulus of Ece of concrete is used only in the calculation of creep deflection.  

It is seen that the value of creep coefficient θ is reducing with the age of concrete at loading. It may 

also be noted that the ultimate creep strain does not include short term strain.  

 

• Properties of concrete  

• Water/cement ratio  

• Humidity and temperature of curing  

• Humidity during the period of use  

• Age of concrete at first loading  

• Magnitude of stress and its duration  

• Surface-volume ratio of the member  
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Concrete has very good compressive strength and almost negligible tensile strength. 

Hence, steel reinforcement is used on the tensile side of concrete. Thus, singly reinforced beams 

reinforced on the tensile face are good both in compression and tension. However, these beams 

have their respective limiting moments of resistance with specified width, depth and grades of 

concrete and steel. The amount of steel reinforcement needed is known as Ast,lim. Problem will 

arise, therefore, if such a section is subjected to bending moment greater than its limiting moment 

of resistance as a singly reinforced section. 

 

There are two ways to solve the problem. First, we may increase the depth of the beam, 

which may not be feasible in many situations. In those cases, it is possible to increase both the 

compressive and tensile forces of the beam by providing steel reinforcement in compression face 

and additional reinforcement in tension face of the beam without increasing the depth (Fig. 4.8.1). 

The total compressive force of such beams comprises (i) force due to concrete in compression 

and (ii) force due to steel in compression. The tensile force also has two components: (i) the first 

provided by Ast,lim which is equal to the compressive force of concrete in compression. The 

second part is due to the additional steel in tension - its force will be equal to the compressive 

force of steel in compression. 

 

Such reinforced concrete beams having steel reinforcement both on tensile and compressive faces 

are known as doubly reinforced beams. 
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Doubly reinforced beams, therefore, have moment of resistance more than the singly 

reinforced beams of the same depth for particular grades of steel and concrete. In many practical 

situations, architectural or functional requirements may restrict the overall depth of the beams. 

However, other than in doubly reinforced beams compression steel reinforcement is provided 

when: 

 

(i) some sections of a continuous beam with moving loads undergo change of sign 

of the bending moment which makes compression zone as tension zone or vice 

versa. 

 

(ii) the ductility requirement has to be followed. 

 

(iii) the reduction of long term deflection is needed. 

 

It may be noted that even in so called singly reinforced beams there would be longitudinal hanger 

bars in compression zone for locating and fixing stirrups. 

 

Assumptions 

 

(i) The assumptions of sec. 3.4.2 of Lesson 4 are also applicable here. 

 

(ii) Provision of compression steel ensures ductile failure and hence, the limitations 

of x/d ratios need not be strictly followed here. 
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(iii) The stress-strain relationship of steel in compression is the same as that in 

tension. So, the yield stress of steel in compression is 0.87 fy. 

 

Basic Principle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned in sec. 4.8.1, the moment of resistance Mu of the doubly reinforced beam 

consists of (i) Mu,lim of singly reinforced beam and (ii) Mu2 because of equal and opposite 

compression and tension forces (C2 and T2) due to additional steel reinforcement on compression 

and tension faces of the beam 

 

(Figs. 4.8.1 and 2). Thus, the moment of resistance Mu of a doubly reinforced beam is 
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Mu = Mu,lim + Mu2      (4.1) 

The Mu,lim is as given in Eq. 3.24 of Lesson 5, i.e.,  

Mu,li

m = 0.36 ( 

x
u 

,max 

) (1 − 0.42  

x
u 

,max 

) b d 
2 f

ck (4.2)    

    d  d   

Also, Mu,lim can be written from Eq. 3.22 of Lesson 5, using xu = xu, max, i.e., 

Mu, lim= 0.87 Ast, lim fy (d - 0.42 xu, max)   

  

= 0.87pt, lim (1 - 0.42 

x
u , 

max 

) b d 
2 

f y (4.3)    

       d    
The additional moment Mu2 can be expressed in two ways (Fig. 4.8.2): considering (i) the 

compressive force C2 due to compression steel and (ii) the tensile force T2 due to additional steel 

on tension face. In both the equations, the lever arm is (d - d'). Thus, we have 

 

M
 u 2 = 

A
sc ( f sc− fcc ) (d − d ') (4.4) 

M
 u 2 = 

A
st 

2 ( 0.87f y ) (d − d ') (4.5) 

where Asc = area of compression steel reinforcement  

fsc = stress in compression steel reinforcement  

fcc  =compressivestressinconcreteatthelevelofcentroidof 

  compression steel reinforcement  

Ast2 = area of additional steel reinforcement  
 
Since the additional compressive force C2 is equal to the additional tensile force T2, we 
have 

Asc (fsc - fcc) = Ast2 (0.87 fy)  
(4.6) 

 
Any two of the three equations (Eqs. 4.4 - 4.6) can be employed to determine Asc and Ast2. 
 

The total tensile reinforcement Ast is then obtained from: 

A
st

= A
st 1  

+
 
A
st 2 (4.7) 
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whereAst1= 

p
t , 

lim 

b d 

= 

M
 u , lim 

(4.8) 100 0.87f y(d − 0.42 xu , max )  
Determination of fsc and  fcc 

 

It is seen that the values of fsc and fcc should be known before calculating Asc. The 

following procedure may be followed to determine the value of fsc and fcc for the design type of 

problems (and not for analysing a given section). For 

 

the design problem the depth of the neutral axis may be taken as xu,max as shown in Fig. 4.8.2. 

From Fig. 4.8.2, the strain at the level of compression steel 

reinforcement εsc may be written as 

 

ε sc=0.0035 (1− 

d ' 

) (4.9)  

 

x
u , 

max  
The stress in compression steel fsc is corresponding to the strain εsc of Eq. 4.9 and is determined 

for (a) mild steel and (b) cold worked bars Fe 415 and 500 as given below: 

 
(a) Mild steel Fe 250 

 

The strain at the design yield stress of 217.39 N/mm
2
 (fd = 0.87 fy ) is 

 

0.0010869 (= 217.39/Es). The fsc is determined from the idealized stress-strain diagram of mild 

steel (Fig. 1.2.3 of Lesson 2 or Fig. 23B of IS 456) after computing the value of εsc from Eq. 4.9 

as follows: 

 

(i) If the computed value of εsc  ≤ 0.0010869, fsc  = εsc Es  = 2 (10
5
) εsc 

 

(ii) If the computed value of εsc  > 0.0010869, fsc  = 217.39 N/mm
2
. 

 

(b) Cold worked bars Fe 415 and Fe 500 

 

The stress-strain diagram of these bars is given in Fig. 1.2.4 of Lesson 2 and in Fig. 23A 

of IS 456. It shows that stress is proportional to strain up to a stress of 0.8 fy. The stress-strain 

curve for the design purpose is obtained by 

substituting fyd for fy in the figure up to 0.8 fyd. Thereafter, from 0.8 fyd to fyd, Table A of SP-16 

gives the values of total strains and design stresses for Fe 415 

 

and Fe 500. Table 4.1 presents these values as a ready reference here. 
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Table 4.1Values offsc andεsc    

        

Stress level   Fe 415  Fe 500 

      

Strainεsc  

 

  Strain εsc  Stressfsc Stressfsc 

     (N/mm
2
) 

0.00174 

 (N/mm
2
) 

0.80 fyd 0.00144  288.7  347.8 

0.85 fyd 0.00163  306.7 0.00195  369.6 

0.90 fyd 0.00192  324.8 0.00226  391.3 

0.95 fyd 0.00241  342.8 0.00277  413.0 

0.975 fyd 0.00276  351.8 0.00312  423.9 

1.0 fyd 0.00380  360.9 0.00417  434.8 

Linear interpolation may be done for intermediate values.   

 

The above procedure has been much simplified for the cold worked bars by presenting the values 

of fsc of compression steel in doubly reinforced beams for different values of d'/d only taking the 

practical aspects into consideration. In most of the doubly reinforced beams, d'/d has been found 

to be between 0.05 and 0.2. Accordingly, values of fsc can be computed from Table 4.1 after 

determining the value of εsc from Eq. 4.9 for known values of d'/d as 0.05, 0.10, 0.15 and 0.2. 

Table F of SP-16 presents these values of fsc for four values of d'/d (0.05, 0.10, 0.15 and 0.2) of 

Fe 415 and Fe 500. Table 4.2 below, however, includes Fe 250 also whose fsc values are 

computed as laid down in sec. 

 

4.8.4(a) (i) and (ii) along with those of Fe 415 and Fe 500. This table is very 

useful and easy to determine the fsc from the given value of d'/d. The table also 

includes strain values at yield which are explained below: 

(i)The strain at yield of Fe 250=  

 Design YieldStress 

= 

 250 

= 0.0010869   

1.15 (200000)  Es  
 

Here, there is only elastic component of the strain without any inelastic strain. 

 

(ii)The strain at yield of Fe 415 = Inelastic Strain+ 

Design YieldStress 

  

Es        

  415    

= 

 

0.002+ 

  

= 0.0038043  1.15 (200000) 

(iii) The strain at yield of Fe 500 = 

500    

0.002+ 

 

= 0.0041739 1.15 (200000) 

Table 4.2 Values offsc for different values ofd'/d   
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fy     d'/d  Strain at 

(N/mm
2
) 

       

yield  0.05  0.10  0.15 0.20 

250  217.4  217.4  217.4 217.4 0.0010869 

415  355  353  342 329 0.0038043 

500  412  412  395 370 0.0041739 
 

 

Minimum and maximum steel 

 

Minimum and maximum steel in compression 

 

There is no stipulation in IS 456 regarding the minimum compression steel in doubly 

reinforced beams. However, hangers and other bars provided up to 0.2% of the whole area of 

cross section may be necessary for creep and shrinkage of concrete. Accordingly, these bars are 

not considered as compression reinforcement. From the practical aspects of consideration, 

therefore, the minimum steel as compression reinforcement should be at least 0.4% of the area of 

concrete in compression or 0.2% of the whole cross -sectional area of the beam so that the doubly 

reinforced beam can take care of the extra loads in addition to resisting the effects of creep and 

shrinkage of concrete. 

 

The maximum compression steel shall not exceed 4 per cent of the whole area of cross-

section of the beam as given in cl. 26.5.1.2 of IS 456. 
 

Minimum and maximum steel in tension 

 

As stipulated in cl. 26.5.1.1(a) and (b) of IS 456, the minimum amount of tensile 

reinforcement shall be at least (0.85 bd/fy) and the maximum area of tension reinforcement shall 

not exceed (0.04 bD). 

 

It has been discussed in sec. 3.6.2.3 of Lesson 6 that the singly reinforced 

 

beams shall have Ast normally not exceeding 75 to 80% of Ast,lim so that xu remains less than xu,max 

with a view to ensuring ductile failure. However, in the 

 

case of doubly reinforced beams, the ductile failure is ensured with the presence of compression 

steel. Thus, the depth of the neutral axis may be taken as xu, max if the beam is over-reinforced. 

Accordingly, the Ast1 part of tension steel can go 

 

up to Ast, lim and the additional tension steel Ast2 is provided for the additional moment M u - Mu, lim. 

The quantities of Ast1 and Ast2 together form the total Ast, which shall not exceed 0.04 bD. 
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Types of problems and steps of solution 

 

Similar to the singly reinforced beams, the doubly reinforced beams have two types of 

problems: (i) design type and (ii) analysis type. The different steps of solutions of these problems 

are taken up separately. 

 

Design type of problems 

 

In the design type of problems, the given data are b, d, D, grades of concrete and steel. 

The designer has to determine Asc and Ast of the beam from the given factored moment. These 

problems can be solved by two ways: (i) use of the equations developed for the doubly reinforced 

beams, named here as direct computation method, (ii) use of charts and tables of SP-16. 

 

(a) Direct computation method 
 

Step 1: To determine Mu, lim and Ast, lim from Eqs. 4.2 and 4.8, respectively. 

 

Step 2: To determine Mu2, Asc, Ast2 and Ast from Eqs. 4.1, 4.4, 4.6 and 

 

4.7, respectively. 

 

Step 3: To check for minimum and maximum reinforcement in compression and tension 

as explained in sec. 4.8.5. 

 

Step 4: To select the number and diameter of bars from known values of 

Asc and Ast. 

 

(b) Use of SP table 

 

Tables 45 to 56 present the pt and pc of doubly reinforced sections for d'/d = 0.05, 0.10, 

0.15 and 0.2 for different fck and fy values against Mu /bd
2
. The values of pt and pc are obtained 

directly selecting the proper table with known values of Mu/bd
2
 and d'/d. 

 

Analysis type of problems 

 

In the analysis type of problems, the data given are b, d, d', D, fck, fy, Asc and Ast . It is 

required to determine the moment of resistance Mu of such beams. 

 

These problems can be solved: (i) by direct computation method and (ii) by using tables of SP-16. 

 

(a) Direct computation method 

 
Step 1: To check if the beam is under-reinforced or over-reinforced. 

 
 
 

First, xu,max is determined assuming it has reached limiting stage using 

 
x
u,ma coefficients as given in cl. 38.1, Note of IS 456. The strain of tensile steel 
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x 

  

 d 

ε c  (d - xu, max ) 

  

εst is computed from ε st   = and is checked if εst  has reached the  
x
u,max       

yield strain of steel:     
 

ε
stat yield

= 

 f y  

+  0.002 

1.15 (E)   
 
The beam is under-reinforced or over-reinforced if εst is less than or more than the yield 

strain. 

 

Step 2: To determine Mu,lim from Eq. 4.2 and Ast,lim from the pt, lim given in Table 3.1 of 

Lesson 5. 

 

Step 3: To determine Ast2 and Asc from Eqs. 4.7 and 4.6, respectively. 

 

Step 4: To determine Mu2 and Mu from Eqs. 4.4 and 4.1, respectively. 

 

(b) Use of tables of SP-16 

 

As mentioned earlier Tables 45 to 56 are needed for the doubly reinforced beams. First, 

the needed parameters d'/d, pt and pc are calculated. Thereafter, Mu/bd
2
 is computed in two stages: 

first, using d'/d and pt and then using d'/d and pc . The lower value of Mu is the moment of 

resistance of the beam. 
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UNIT-II 

 

LIMIT STATE DESIGN  

 

Introduction: 

 

• identify the regions where the beam shall be designed as a flanged and where it will be 

rectangular in normal slab beam construction, 

 
• define the effective and actual widths of flanged beams, 

 

• state the requirements so that the slab part is effectively coupled with the flanged beam, 

 
• write the expressions of effective widths of T and L-beams both for continuous and 

isolated cases, 
 

• derive the expressions of C, T and Mu for four different cases depending on the location 

of the neutral axis and depth of the flange. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reinforced concrete slabs used in floors, roofs and decks are mostly cast monolithic from 

the bottom of the beam to the top of the slab. Such rectangular beams having slab on top are 

different from others having either no slab (bracings of elevated tanks, lintels etc.) or having 

disconnected slabs as in some pre-cast systems (Figs. 5.10.1 a, b and c). Due to monolithic 

casting, beams and a part of the slab act together. Under the action of positive bending moment, 

i.e., between the supports of a continuous beam, the slab, up to a certain width greater than the 

width of the beam, forms the top part of the beam. Such beams having slab on top of the 

rectangular rib are designated as the flanged beams - either T or L type depending on whether the 

slab is on both sides or on one side of the beam (Figs. 5.10.2 a to e) . Over the supports of a 

continuous beam, the bending moment is negative and the slab, therefore, is in tension while a 

part of the rectangular beam (rib) is in compression. The continuous beam at support is thus 

equivalent to a rectangular beam (Figs. 5.10.2 a, c, f and g). 
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The actual width of the flange is the spacing of the beam, which is the same as the 
distance between the middle points of the adjacent spans of the slab, as shown in Fig. 5.10.2 b. 
However, in a flanged beam, a part of the width less than the actual width, is effective to be 
considered as a part of the beam. This width of the slab is designated as the effective width of the 
flange. 
 

Effective Width 
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IS code requirements 

 
The following requirements (cl. 23.1.1 of IS 456) are to be satisfied to ensure the 

combined action of the part of the slab and the rib (rectangular part of the beam). 

 

4.8.3 The slab and the rectangular beam shall be cast integrally or they shall be effectively bonded 

in any other manner. 

 

4.8.4 Slabs must be provided with the transverse reinforcement of at least 60 per cent of the main 

reinforcement at the mid span of the slab if the main reinforcement of the slab is parallel to the 

transverse beam (Figs. 5.10.3 a and b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The variation of compressive stress (Fig. 5.10.4) along the actual width of the flange 

shows that the compressive stress is more in the flange just above the rib than the same at some 

distance away from it. The nature of variation is complex and, therefore, the concept of effective 

width has been introduced. The effective width is a convenient hypothetical width of the flange 

over which the compressive stress is assumed to be uniform to give the same compressive 
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force as it would have been in case of the actual width with the true variation of compressive 

stress. 

 

5.10.2.2 IS code specifications 

 

Clause 23.1.2 of IS 456 specifies the following effective widths of T and L-beams: 

 

(a) For T-beams, the lesser of 

 

(i) bf = lo/6 + bw + 6 Df 

 

(iv) bf=Actual width of the flange 

 

4.8.3 For isolated T-beams, the lesser of 

 

(i)bf = 

lo   

+ bw 

(lo /b) + 4    

 

 bf=Actual width of the flange 

 

(ii) ForL-beams, the lesser of 

 

(i) bf = lo/12 + bw + 3 Df 

 

 bf=Actual width of the flange 

 

(i) For isolated L-beams, the lesser of 

 

(i)bf = 

0.5 lo  

+ bw 

(lo /b) + 4    

 

(ii) bf = Actual width of the flange 

 

where bf = effective width of the flange, 

 

lo = distance between points of zero moments in the beam, which is the effective span for 

simply supported beams and 0.7 times the effective span for continuous beams and 

frames, 

 

bw = beadth of the web, 

 

Df = thickness of the flange, 

 

and b = actual width of the flange. 
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Four Different Cases 

 

The neutral axis of a flanged beam may be either in the flange or in the web depending on 

the physical dimensions of the effective width of flange bf, effective width of web bw, thickness of 

flange Df and effective depth of flanged beam d (Fig. 5.10.4). The flanged beam may be 

considered as a rectangular beam of width bf and effective depth d if the neutral axis is in the 

flange as the concrete in tension is ignored. However, if the neutral axis is in the web, the 

compression is taken by the flange and a part of the web. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

All the assumptions made in sec. 3.4.2 of Lesson 4 are also applicable for the flanged 

beams. As explained in Lesson 4, the compressive stress remains constant between the strains of 

0.002 and 0.0035. It is important to find the depth h of the beam where the strain is 0.002 (Fig. 

5.10.5 b). If it is located in the web, the whole of flange will be under the constant stress level of 

0.446 fck. The 
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following gives the relation of Df and d to facilitate the determination of the depth h where the 

strain will be 0.002. 

 

 From the strain diagram of Fig. 5.10.5 b:  

  0.002  

= 

 xu- h   

 

0.0035 

 

xu 

 

     

or 

 h  

=  

 3  

= 0.43 

 

 

x 7 

  

         

(5.1) 

 u          

            

when  xu= xu , max , we get  

 

h= 

 3  

xu , max= 0.227 d , 0.205 d  and 0.197 d , for Fe250,Fe415andFe  

7 

 

           

500, respectively. In general, we can adopt, say  

 h/d =  0.2   (5.2) 

 

The same relation is obtained below from the values of strains of concrete and steel of Fig. 5.10.5 

b. 

  
ε
 st 

= 

d - xu    

  

ε c xu 

 

      

or 

 d 

= 

 ε st  + ε c 

(5.3)  xu    ε c 

Dividing Eq. 5.1 by Eq. 5.3  

  h  

= 

  0.0015  

(5.4)   

d 

 

ε st  + 0.0035      

Using  
ε
st  = (0.87f y/ Es)+ 0.002  in Eq. 5.4, we get  h/d = 0.227, 0.205 and 

0.197 for Fe 250, Fe 415 and Fe 500 respectively, and we can adopt h/d = 0.2 

(as in Eq. 5.2).  

 Thus, we get the same Eq. 5.2 from Eq. 5.4,  
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 h/d= 0.2   (5.2) 

following gives the relation of Df and d to facilitate the determination of the depth h where the 

strain will be 0.002. 
 

 From the strain diagram of Fig. 5.10.5 b:  

  0.002  

= 

 xu- h   

 

0.0035 

 

xu 

 

     

or 

 h  

=  

 3  

= 0.43 

 

 

x 7 

  

         

(5.1) 

 u          

            

when  xu= xu , max , we get  

 

h= 

 3  

xu , max= 0.227 d , 0.205 d  and 0.197 d , for Fe250,Fe415andFe  

7 

 

           

500, respectively. In general, we can adopt, say  

 h/d =  0.2   (5.2) 
 
The same relation is obtained below from the values of strains of concrete and steel of Fig. 5.10.5 

b. 

  
ε
 st 

= 

d - xu    

  

ε c xu 

 

      

or 

 d 

= 

 ε st  + ε c 

(5.3)  xu    ε c 

Dividing Eq. 5.1 by Eq. 5.3  

  h  

= 

  0.0015  

(5.4)   

d 

 

ε st  + 0.0035      

Using  
ε
st  = (0.87f y/ Es)+ 0.002  in Eq. 5.4, we get  h/d = 0.227, 0.205 and 

0.197 for Fe 250, Fe 415 and Fe 500 respectively, and we can adopt h/d = 0.2 

(as in Eq. 5.2).  

 Thus, we get the same Eq. 5.2 from Eq. 5.4,  
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 h/d= 0.2   (5.2) 

 

It is now clear that the three values of h are around 0.2 d for the three grades of steel. The 

maximum value of h may be Df, at the bottom of the flange where the strain will be 0.002, if Df /d 

= 0.2. This reveals that the thickness of the flange may be considered small if Df /d does not 

exceed 0.2 and in that case, the position of the fibre of 0.002 strain will be in the web and the 

entire flange will be under a constant compressive stress of 0.446 fck . 

 

On the other hand, if Df is > 0.2 d, the position of the fibre of 0.002 strain will be in the 

flange. In that case, a part of the slab will have the constant stress of 0.446 fck where the strain 

will be more than 0.002. 

 

Thus, in the balanced and over-reinforced flanged beams (when xu = xu , max ), the ratio of 

Df /d is important to determine if the rectangular stress block is for the full depth of the flange 

(when Df /d does not exceed 0.2) of for a part of the flange (when Df /d > 0.2). Similarly, for the 

under-reinforced flanged beams, the ratio of Df /xu is considered in place of Df /d. If Df /xu does 

not exceed 

 

0.43 (see Eq. 5.1), the constant stress block is for the full depth of the flange. If Df /xu > 0.43, the 

constant stress block is for a part of the depth of the flange. 

 

Based on the above discussion, the four cases of flanged beams are as follows: 
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(i) Neutral axis is in the flange (xu < Df ), (Fig. 5.10.6 a to c) 
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1. Neutral axis is in the web and the section is balanced (xu = xu,max > Df), (Figs. 

5.10.7 and 8 a to e) 
 

It has two situations: (a) when Df /d does not exceed 0.2, the constant stress block 

is for the entire depth of the flange (Fig. 5.10.7), and 

(b) when Df /d > 0.2, the constant stress block is for a part of the depth of flange  
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14. Neutral axis is in the web and the section is under-reinforced (xu,max > xu > 

Df), (Figs. 5.10.9 and 10 a to e) 
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This has two situations: (a) when Df /xu does not exceed 0.43, the full depth of 

flange is having the constant stress (Fig. 5.10.9), and (b) when Df /xu > 0.43, the constant 

stress is for a part of the depth of flange 

 

(Fig. 5.10.10). 

 

(i) Neutral axis is in the web and the section is over-reinforced (xu > xu,max> Df), 

(Figs. 5.10.7 and 8 a to e) 

 

As mentioned earlier, the value of xu is then taken as xu,max when xu> xu,max. 

Therefore, this case also will have two situations depending on Df /d not exceeding 0.2 or 

> 0.2 as in (ii) above. The governing equations of the four different cases are now taken 

up. 

 

 Governing Equations 

 

The following equations are only for the singly reinforced T-beams. 

 

Additional terms involving Mu,lim, Mu2, Asc , Ast1 and Ast2 are to be included from Eqs. 4.1 to 4.8 of 

sec. 4.8.3 of Lesson 8 depending on the particular case. 

 

Applications of these terms are explained through the solutions of numerical problems of doubly 

reinforced T-beams in Lessons 11 and 12. 

 

Case (i): When the neutral axis is in the flange (xu < Df ), (Figs. 5.10.6 a to c) 

 

Concrete below the neutral axis is in tension and is ignored. The steel reinforcement takes 

the tensile force (Fig. 5.10.6). Therefore, T and L-beams are considered as rectangular beams of 

width bf and effective depth d. All the equations of singly and doubly reinforced rectangular 

beams derived in Lessons 4 to 5 and 8 respectively, are also applicable here. 

 

Case (ii): When the neutral axis is in the web and the section is balanced (xu,max > Df ), (Figs. 

5.10.7 and 8 a to e) 

 

(a) When Df /d does not exceed 0.2, (Figs. 5.10.7 a to e) 

 

 

As explained in sec. 5.10.3, the depth of the rectangular portion of the stress block (of 

constant stress = 0.446 fck) in this case is greater than Df (Figs. 5.10.7 a, b and c). The section is 

split into two parts: (i) rectangular web of width bw and effective depth d, and (ii) flange of width 

(bf - bw) and depth Df (Figs. 

5.10.7 d and e). 

 

Total compressive force = Compressive force of rectangular beam of width bw and depth d + 

Compressive force of rectangular flange of width (bf - bw) and depth Df . 
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Thus, total compressive force 

 

 

C=0.36 fckbwxu, max+0.45fck (bf - bw) Df (5.5) 

(Assuming the constant stress of concrete in the flange as0.45 fck in place of 

0.446 fck ,as per G-2.2 of IS 456), and the tensile force  

T=0.87fyAst (5.6) 

 

The lever arm of the rectangular beam (web part) is (d - 0.42 xu, max) and the same for the flanged 

part is (d - 0.5 Df ). 

 

So, the total moment = Moment due to rectangular web part + Moment due to rectangular flange 

part 

 

or Mu = 0.36fck bw xu, max (d - 0.42 xu, max ) + 0.45fck (bf - bw) Df (d - Df /2) 

or Mu = 0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d
2
 + 0.45fck(bf - bw) Df(d - Df 

/2)   

(5.7)    

Equation 5.7 is given in G-2.2 of IS 456. 

 

(b) When Df /d > 0.2, (Figs. 5.10.8 a to e) 

 

In this case, the depth of rectangular portion of stress block is within the flange (Figs. 

5.10.8 a, b and c). It is assumed that this depth of constant stress 

(0.45 fck) is yf, where 

 

yf = 0.15 xu, max + 0.65 Df, but not greater than Df 

 

(5.8) 

 

The above expression of yf is derived in sec. 5.10.4.5. 

 

As in the previous case (ii a), when Df /d does not exceed 0.2, equations of C, T and M u 

are obtained from Eqs. 5.5, 6 and 7 by changing Df to yf. Thus, we have (Figs. 5.10.8 d and e) 

 

 

 

 

C = 0.36 fck bw xu, max + 0.45 fck (bf - bw) yf 
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T = 0.87 fy A                                                 st (5.10) 

The lever arm of the rectangular beam (web part) is (d - 0.42 xu, max same for the flange part is (d - 

0.5 yf ). Accordingly, the expression of follows: 

 

 

Mu = 0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d
2
 + 0.45 fck(bf - bw) yf(d - yf 

 

/2) 

 

(5.11) 

 

Case (iii): When the neutral axis is in the web and the section is under-reinforced (xu > Df ), 

(Figs. 5.10.9 and 10 a to e) 

 

(a) When Df / xu does not exceed 0.43, (Figs. 5.10.9 a to e) 

 

Since Df does not exceed 0.43 xu and h (depth of fibre where the strain is 0.002) is at a 

depth of 0.43 xu, the entire flange will be under a constant stress of 0.45 fck (Figs. 5.10.9 a, b and 

c). The equations of C, T and Mu can be written in the same manner as in sec. 5.10.4.2, case (ii a). 

The final forms of the equations are obtained from Eqs. 5.5, 6 and 7 by replacing xu, max by xu. 

Thus, we have (Figs. 5.10.9 d and e) 

 

C = 0.36 fck bw xu + 0.45 fck (bf - bw) Df 

 

(5.12) 

 

T = 0.87 fy Ast 

 

(5.13) 

 

Mu = 0.36(xu /d){1 - 0.42( xu /d)} fck bw d
2
 + 0.45 fck(bf - bw) Df (d - Df /2) 

 

(5.14) 

 

(b) When Df / xu > 0.43, (Figs. 5.10.10 a to e) 

 

Since Df > 0.43 xu and h (depth of fibre where the strain is 0.002) is at a depth of 0.43 xu, 

the part of the flange having the constant stress of 0.45 fck is assumed as yf (Fig. 5.10.10 a, b and 

c). The expressions of yf , C, T and Mu can be written from Eqs. 5.8, 9, 10 and 11 of sec. 5.10.4.2, 

case (ii b), by replacing xu,max by xu. Thus, we have (Fig. 5.10.10 d and e) 
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yf = 0.15 xu + 0.65 Df, but not greater than Df 

 

(5.15) 

 

C = 0.36 fck bw xu + 0.45 fck (bf - bw) yf 

 

(5.16) 

 

T = 0.87 fy Ast 

 

(5.17) 

 

Mu = 0.36(xu /d){1 - 0.42( xu /d)} fck bw d
2
 + 0.45 fck(bf - bw) yf (d - yf /2) 

 

(5.18) 

 

 

 

 

 

 

 

Case (iv): When the neutral axis is in the web and the section is over-reinforced (xu > Df ), 

(Figs. 5.10.7 and 8 a to e) 

 

For the over-reinforced beam, the depth of neutral axis xuis more than 

xu, maxas in rectangular beams. However, xu is restricted up to xu,max. Therefore, 

the corresponding expressions of C, Tand Mu for the two situations (a) when 

Df / d does not exceed 0.2and (b) when Df / d > 0.2are written from Eqs. 5.5 

to 5.7 and 5.9 to 5.11, respectively of sec. 5.10.4.2 (Figs. 5.10.7 and 8). The expression of yf for 

(b) is the same as that of Eq. 5.8. 
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(a) When Df /d does not exceed 0.2 (Figs. 5.10.7 a to e) 

 

The equations are:    

C= 0.36 fckbwxu, max + 0.45fck (bf - bw) Df (5.5) 

T=0.87fyAst   (5.6) 

Mu = 0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d
2
 + 0.45 fck(bf - bw) Df(d - Df 

/2)     

(5.7)      

(b)When Df /d>0.2 (Figs. 5.10.8 a to e)  

yf = 0.15 xu, max + 0.65 Df, but not greater thanDf  

(5.8)      

C = 0.36 fckbwxu, max + 0.45fck (bf - bw) yf (5.9) 

T=0.87fyAst    

(5.10)      

Mu = 0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d
2
 + 0.45 fck(bf - bw) yf(d - yf 

/2)      

(5.11)      

 

It is clear from the above that the over-reinforced beam will not have additional moment 

of resistance beyond that of the balanced one. Moreover, it will prevent steel failure. It is, 

therefore, recommended either to re-design or to go for doubly reinforced flanged beam than 

designing over-reinforced flanged beam. 
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Derivation of the equation to determine yf , Eq. 5.8, Fig. 5.10.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whitney's stress block has been considered to derive Eq. 5.8. Figure 

 

5.10.11 shows the two stress blocks of IS code and of Whitney. 

 

yf = Depth of constant portion of the stress block when Df /d > 0.2. As yf is a function of 

xu and Df and let us assume 

 

yf = A xu + B Df 

 

(5.19) 

 

where A and B are to be determined from the following two conditions: 

 

(i)yf=0.43xu , when Df = 0.43xu 

(5.20)     

(ii)yf=0.8 xu , when Df = xu 

(5.21)     

 

Using the conditions of Eqs. 5.20 and 21 in Eq. 5.19, we get A = 0.15 and B = 0.65. Thus, we 

have 

 

yf = 0.15 xu + 0.65 Df 

 

(5.8)
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DESIGN OF DOUBLY REINFORCED BEAMS 

 

Doubly Reinforced Beams 

 

• When beam depth is restricted and the moment the beam has to carry is greater 

than the moment capacity of the beam in concrete failure. 

 

• When B.M at the section can change sign. 

 

• When compression steel can substantially improve the ductility of beams and its 

use is therefore advisable in members when larger amount of tension steel 

becomes necessary for its strength. 

 

• Compression steel is always used in structures in earthquake regions to increase 

their ductility. 

 

• Compression reinforcement will also aid significantly in reducing the long-term 

deflections of beams. 

 

Doubly Reinforced Concrete Beam 
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Steel Beam Theory 
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Doubly Reinforced Beams 

 

 

(iv) A doubly reinforced concrete beam is reinforced in both compression and tension 

faces. 

 

4.8.5 When depth of beam is restricted, strength available from a singly reinforced beam is 

inadequate. 

 

4.8.6 At a support of a continuous beam, the bending moment changes sign, such a situation 

may also arise in design of a ring beam. 

 

 

 

2 Analysis of a doubly reinforced section involves determination of moment of resistance 

with given beam width, depth, area of tension and compression steels and their covers. 

 

3 In doubly reinforced concrete beams the compressive force consists of two parts; both in 

concrete and steel in compression. 

 

4 Stress in steel at the limit state of collapse may be equal to yield stress or less depending 

on position of the neutral axis. 

 

 

Design Steps 

 

 Determine the limiting moment of resistance Mum for the given cross-section using the 

equation for a singly reinforced beam 

 

Mlim = 0.87fy.Ast,1 [d - 0.42xm] = 0.36 fck.b.xm [d - 0.42xm] 

 

(ii) If the factored moment Mu exceeds Mlim, a doubly reinforced section is required (Mu - 

Mlim) = Mu2 

Additional area of tension steel Ast2 is obtained by considering the equilibrium of force 

of compression in comp. steel and force of tension T2 in the additional tension steel 
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Asc = compression steel. 

 

σcc = Comp. stress in conc at the level of comp. steel = 0.446fck. 

 
Reasons  

(iii) When beam section is shallow in depth, and the flexural strength obtained using 

balanced steel is insufficient i.e. the factored moment is more than the limiting 

ultimate moment of resistance of the beam section. Additional steel enhances the 

moment capacity. 
 
(iv) Steel bars in compression enhances ductility of beam at ultimate strength. 
 
(v) Compression steel reinforcement reduces deflection as moment of inertia of the 

beam section also increases. 
 
(vi) Long-term deflections of beam are reduced by compression steel. 

 

(vii) Curvature due to shrinkage of concrete are also reduced. 

 

(viii) Doubly reinforced beams are also used in reversal of external load
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 Examples 
  

(ii) A single reinforced rectangular beam is 400mm wide. The effective depth of the beam 

section is 560mm and its effective cover is 40mm. The steel reinforcement consists of 4 MS 

18mm diameter bars in the beam section. The grade of concrete is M20. Locate the neutral 

axis of the beam section. 

 

(iii) In example 1, the bending moment at a transverse section of beam is 105 kN-m. 

Determine the strains at the extreme fibre of concrete in compression and steel bars 

provided as reinforcement in tension. Also determine the stress in steel bars. 

 

(iv) In example 2, the strain in concrete at the extreme fibre in compression εcu is 0.00069 and 

the tensile stress in bending in steel is 199.55 N/mm
2
. Determine the depth of neutral axis 

and the moment of resistance of the beam section. 

 

(v) Determine the moment of resistance of a section 300mm wide and 450mm deep up to the 

centre of reinforcement. If it is reinforced with (i) 4-12mm fe415 grade bars, (ii) 6-18mm 

fe415 grade bars. 

 

(i) A rectangular beam section is 200mm wide and 400mm deep up to the centre of 

reinforcement. Determine the reinforcement required at the bottom if it has to resist a 

factored moment of 40kN-m. Use M20 grade concrete and fe415 grade steel. 

 

(ii) A rectangular beam section is 250mm wide and 500mm deep up to the centre of 

tension steel which consists of 4-22mm dia. bars. Find the position of the neutral axis, 

lever arm, forces of compression and tension and safe moment of resistance if concrete 

is M20 grade and steel is Fe500 grade. 

 

(iii) A rectangular beam is 200mm wide and 450 mm overall depth with an effective cover 

of 40mm. Find the reinforcement required if it has to resist a moment of 35 kN.m. 

Assume M20 concrete and Fe250 grade steel. 
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Limit State of Serviceability 

Limit State of Serviceabil 

 

• explain the need to check for the limit state of serviceability after designing the structures 

by limit state of collapse, 

 

• differentiate between short- and long-term deflections, 

 

• state the influencing factors to both short- and long-term deflections, 

 

• select the preliminary dimensions of structures to satisfy the requirements as per IS 456, 

 

• calculate the short- and long-term deflections of designed beams. 

 

Introduction 

 

Structures designed by limit state of collapse are of comparatively smaller sections than 

those designed employing working stress method. They, therefore, must be checked for deflection 

and width of cracks. Excessive deflection of a structure or part thereof adversely affects the 

appearance and efficiency of the structure, finishes or partitions. Excessive cracking of concrete 

also seriously affects the appearance and durability of the structure. Accordingly, cl. 35.1.1 of IS 

456 stipulates that the designer should consider all relevant limit states to ensure an adequate 

degree of safety and serviceability. Clause 35.3 of IS 456 refers to the limit state of serviceability 

comprising deflection in cl. 35.3.1 and cracking in cl. 35.3.2. Concrete is said to be durable when 

it performs satisfactorily in the working environment during its anticipated exposure conditions 

during service. Clause 8 of IS 456 refers to the durability aspects of concrete. Stability of the 

structure against overturning and sliding (cl. 20 of IS 

 

456), and fire resistance (cl. 21 of IS 456) are some of the other importance issues to be kept in 

mind while designing reinforced concrete structures. 

 

This lesson discusses about the different aspects of deflection of beams and the 

requirements as per IS 456. In addition, lateral stability of beams is also taken up while selecting 

the preliminary dimensions of beams. Other requirements, however, are beyond the scope of this 

lesson. 

 

Short- and Long-term Deflections 

 

As evident from the names, short-term deflection refers to the immediate deflection after 

casting and application of partial or full service loads, while the long-term deflection occurs over 

a long period of time largely due to shrinkage 
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and creep of the materials. The following factors influence the short-term deflection of structures: 

 

(v) magnitude and distribution of live loads, 

 

(vi) span and type of end supports, 

(vii) cross-sectional area of the members, 

(viii) amount of steel reinforcement and the stress developed in the reinforcement, 

(ix) characteristic strengths of concrete and steel, and 

(x) amount and extent of cracking. 

 

The long-term deflection is almost two to three times of the short-term deflection. The 

following are the major factors influencing the long-term deflection of the structures. 

 

4.8.7 humidity and temperature ranges during curing, 

 

4.8.8 age of concrete at the time of loading, and 

(c) type and size of aggregates, water-cement ratio, amount of compression reinforcement, size 

of members etc., which influence the creep and shrinkage of concrete. 

 

Control of Deflection 

 

Clause 23.2 of IS 456 stipulates the limiting deflections under two heads as given below: 

 

5 The maximum final deflection should not normally exceed span/250 due to all loads 

including the effects of temperatures, creep and shrinkage and measured from the as-cast level of the 

supports of floors, roof and all other horizontal members. 

 

6 The maximum deflection should not normally exceed the lesser of span/350 or 20 mm 

including the effects of temperature, creep and shrinkage occurring after erection of partitions and the 

application of finishes. 

 

It is essential that both the requirements are to be fulfilled for every structure. 

 

Selection of Preliminary Dimensions 

 

The two requirements of the deflection are checked after designing the members. However, the 

structural design has to be revised if it fails to satisfy any one of the two or both the requirements. In 

order to avoid this, IS 456 recommends the guidelines to assume the initial dimensions of the members 

which will generally satisfy the deflection limits. Clause 23.2.1 stipulates different span to effective 

depth ratios and cl. 23.3 recommends limiting slenderness of 
 
 

beams, a relation of b and d of the members, to ensure lateral stability. They are given below: 
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(A) For the deflection requirements 

 

Different basic values of span to effective depth ratios for three different support 

conditions are prescribed for spans up to 10 m, which should be modified under any or all of the 

four different situations: (i) for spans above 10 m, (ii) depending on the amount and the stress of 

tension steel reinforcement, (iii) depending on the amount of compression reinforcement, and (iv) 

for flanged beams. These are furnished in Table 7.1. 

 

(B) For lateral stability 

 

The lateral stability of beams depends upon the slenderness ratio and the support 

conditions. Accordingly cl. 23.3 of IS code stipulates the following: 

 

4.8.4 For simply supported and continuous beams, the clear distance between the lateral 

restraints shall not exceed the lesser of 60b or 250b
2
/d, where d is the effective depth and b is the 

breadth of the compression face midway between the lateral restraints. 

 

4.8.5 For cantilever beams, the clear distance from the free end of the cantilever to the 

lateral restraint shall not exceed the lesser of 25b or 100b
2
/d. 

 

Table 7.1 Span/depth ratios and modification factors 

 

Sl. Items Cantilever Simply  Continuous 

No.   supported   

1 Basic values of span to 7 20  26 
 effective depth ratio for     

 spans up to 10 m  
Multiply values of 

  

2 Modification factors for Not applicable row 1 by 
 spans > 10 m as deflection 10/span in metres.  

  calculations    

  are to be    

  done.    

3 Modification factors Multiply values of row 1 or 2 with the modification 
 depending on area and factor from Fig.4 of IS 456.  

 stress of steel     

4 Modification factors Further multiply the earlier respective value with 
 depending as area of that obtained from Fig.5 of IS 456.  

 compression steel     

5 Modification factors for (i)Modify values of row 1 or 2 as per Fig.6 of IS 
 flanged beams 456.    

  

(ii)Further modify as per row 3 and/or 4 where 
reinforcement percentage to be used on area of section 
equal to bf d. 
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Calculation of Short-Term Deflection 

 

Clause C-2 of Annex C of IS 456 prescribes the steps of calculating the short-term 

deflection. The code recommends the usual methods for elastic deflections using the short-term 

modulus of elasticity of concrete Ec and effective moment of inertia Ieff given by the following 

equation: 

 

I
eff

= 

 Ir  

;butI r 
≤I

eff 
≤I

gr 

1. 2 - (M r / M )( z / d )( 1 − x / d )( bw / b ) 

(7.1) 

   

      

where Ir  =moment of inertia of the cracked section,   

 

Mr = cracking moment equal to ( fcr Igr)/yt , where fcr is the modulus of rupture of 

concrete, Igr is the moment of inertia of the gross section about the centroidal axis 

neglecting the reinforcement, and yt is the distance from centroidal axis of gross 

section, neglecting the reinforcement, to extreme fibre in tension, 

 

M = maximum moment under service loads, 

 

z = lever arm, 

 

x = depth of neutral axis, 

 

d = effective depth, 

 

bw = breadth of web, and 

 

b = breadth of compression face. 

 

For continuous beams, however, the values of Ir, Igr and Mr are to be modified by the 

following equation: 

 

 X 

1 

+ X 

2 

  

X e= 
k
1 

  

 + (1- k1 ) X o   

2 

 

       

(7.2)        

where Xe = modified value ofX, 

X1, X2 = values of Xat the supports, 
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Xo = value of Xat mid span, 

k1 = coefficient given in Table 25 of IS 456 and in Table 7.2 here, and  

X = value of Ir,IgrorMras appropriate. 

 

Table 7.2 Values of coefficientk1         

              

k1 0.5 0.6  0.7 0.8 0.9 1.0 1.1  1.2 1.3  1.4 

 or             

 less             

k2 0  0.03  0.08 0.16 0.30 0.50 0.73  0.91 0.97  1.0 

               

Note: k2 is given by (M1 + M2)/(MF1 + MF2), where M1 and M2 = support 

moments, and MF1 and MF2 = fixed end moments. 

 

 

Deflection due to Shrinkage 

 

Clause C-3 of Annex C of IS 456 prescribes the method of calculating the deflection due 

to shrinkage α cs from the following equation: 

 

α cs   = k3 ψ cs l 
2 

 

(7.3) 

 

where k3 is a constant which is 0.5 for cantilevers, 0.125 for simply supported 

 

members, 0.086 for members continuous at one end, and 0.063 for fully 

continuous members;ψ cs is shrinkage curvature equal to k4 ε cs /Dwhere ε cs  is 

the ultimateshrinkagestrainofconcrete.Forε cs ,  cl. 6.2.4.1ofIS 456 

recommends an approximate value of 0.0003 in the absence of test data.  

 k4 = 0.72( pt  - pc ) / pt ≤ 1.0, for 0.25≤ pt  - pc  < 1.0   

  = 0.65( pt  - pc ) / pt ≤ 1.0, for pt  - pc ≥ 1.0   

(7.4)         

where pt =100Ast/bdand pc=100Asc/bd,D is the total depth of the section, 

and lis the length of span.      
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Deflection Due to Creep 

 
Clause C-4 of Annex C of IS 456 stipulates the following method of calculating 

deflection due to creep. The creep deflection due to permanent loads 

 

α cc( perm)  is obtained from the following equation: 

 
α
 cc( 

perm) 
=α

1cc( perm) 
-
 
α
1(perm) 

(7.5)   

whereα
1cc( perm)  =initial plus creep deflection due to permanent loads obtained 

  usinganelasticanalysiswithaneffectivemodulusof  

  elasticity, 

Ece= Ec /(1 + θ ), θbeing the creep coefficient, and 

α
1( perm 

) = short-term deflection due to permanent loads usingEc. 

 

(iii) Numerical Problems 
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Example Problem 1: 

 

Figures 7.17.1 and 2 present the cross-section and the tensile steel of a simply supported 

T-beam of 8 m span using M 20 and Fe 415 subjected to dead 

 

 

load of 9.3 kN/m and imposed loads of 10.7 kN/m at service. Calculate the short-and long-term 

deflections and check the requirements of IS 456. 

 

Solution 1: 

 

Step 1: Properties of plain concrete section 

 

Taking moment of the area about the bottom of the beam 

 

yt = (300)(600)(300) + (2234 - 300)(100)(550) = 429.48 mm (300)(600) 

+ (2234 - 300)(100) 

 

I
 gr = 

300(429.48)
3 

+ 

2234(170.52)
3 

- 

1934(70.52)
3 

= (11.384) (10)
9
  mm

4 

3 3  3      

 

This can also be computed from SP-16 as explained below: 

 

Here, bf /b w = 7.45, Df /D = 0.17. Using these values in chart 88 of SP-16, we get k1 = 

2.10. 

 

Igr = k1bw D
3
/12 = (2.10)(300)(600)

3
/12 = (11.384)(10)

9
 mm

4 

 

 

Step 2: Properties of the cracked section (Fig.7.17.2) 

 

 

 

 

Mr=fcr Igr /yt =3.13(11.384)(10)
9
/429.48=82.96kNm 

Es=200000N/mm
2 

Ec=5000 fck(cl. 6.2.3.1 of IS 456)=22360.68N/mm
2 

m=Es /Ec= 8.94 

 

Taking moment of the compressive concrete and tensile steel about the neutral axis, we have 

(Fig.7.17.2) 
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 bf x
2
/2 =m Ast (d – x) gives (2234)(x

2
/2)=(8.94)(1383)(550 – x) 

or x
2
 + 11.07 x – 6087.92 =0 .Solving the equation, we getx = 72.68 mm. 

 z =lever arm=d – x/3=525.77 mm  

 

I r = 

2234(72.68)
3 

+ 8.94(1383)(550 - 72.68)
2
  = 3.106(10)

9 mm
4 

    

3 

     

                            

 M= wl
2
/8 = (9.3 + 10.7)(8)(8)/8 = 160kNm  

 I
 

eff = 

       I r           

…. (Eq. 7.1) 

 

 

1.2 - 

M r   z 

(1- 

 x 

) ( 

bw 

) 

  

    

M 

               

         d   d  b      

 

= 

            I r          

= 0.875 I r . But I r 
≤I 

eff   
≤
 
I
 gr      

82.96 

  

525.77 

    

72.68 

 

300 

 

 

1.2 - ( ) ( ) (1- ) ( )  

 

 

160 

  

2234 

 

       550     550     

So, Ieff = Ir =3.106(10)
9 
 mm

4
.      

 
 
Step 3: Short-term deflection (sec. 7.17.5) 

 

Ec = 5000 fck (cl. 6.2.3.1 of IS 456) = 22360.68 N/mm
2 

 

Short-term deflection = (5/384) wl
4
/EcIeff 

 

= (5)(20)(8)
4
(10

12
)/(384)(22360.68)(3.106)(10

9
) = 15.358 mm 

(1) 

 

 

 
Step 4: Deflection due to shrinkage (sec. 7.17.6) 

 

k4 = 0.72( pt  - pc )/pt= 0.72(0.84)0.84= 0.6599 

ψ
 cs = k4 ε cs / D= (0.6599)(0.0003)/600 = 3.2995(10) 

-7 

k3 =0.125 (from sec. 7.17.6) 
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α
 cs = k3 ψ cs l 

2
   (Eq. 7.3) = (0.125)(3.2995)(10)

-7
(64)(10

6
) = 2.64 mm 

(2) 
 

 

Step 5:Deflection due to creep (sec. 7.17.7)   

Equation7.5revealsthatthedeflectionduetocreep 

α
 cc( perm 

) canbe 

obtained after calculating α1cc( perm)andα1( perm ) .  We calculate 

α
1cc( 

perm) in the 

next step.    

Step 5a:Calculation of 
α
1cc( perm )   

Assuming the age of concrete at loading as 28 days, cl. 6.2.5.1 of IS 456 gives θ = 1.6. 

So, Ecc = Ec /(1 + θ ) = 22360.68/(1 + 1.6) = 8600.2615 

N/mm
2
 and m = Es /Ecc = 200000/8600.2615 = 23.255 

 

Step 5b: Properties of cracked section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Taking moment of compressive concrete and tensile steel about the neutral axis 

(assuming at a distance of x from the bottom of the flange as shown in Fig.7.17.3): 

 

2234(100)(50 +x )= (23.255)(1383)(450 -x ) or x= 12.92 mm 

which givesx=112.92 mm. Accordingly, z=leverarm =d–x/3= 

512.36mm.     
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Ir=2234(100)
3
/12+ 2234(100)(62.92)

2
 + 23.255(1383)(550 – 112.92)

2 

+ 300(12.92)
3
/3 =7.214(10

9
)mm

4 
   

Mr = 82.96 kNm (see Step 2) 
 

M = wperm l
2
/8 = 9.3(8)(8)/8 = 74.4 kNm. 

 

I
 eff

= 

    I r      

= 0.918 I r 

 

 

82.96 

 

512.36 

  

112.92 

 

300 

  

(1.2) - ( ) ( ) (1- 

 

) ( )  

 

74.4 

 

550 2234 

 

    550      

However, to satisfy Ir≤ 

Ief

f ≤ Igr, Ieff  should be equal to Igr. So, Ieff  =  Igr  = 

11.384(10
9
). For the value of Igrplease see Step 1.  

Step 5c:Calculation of 

α
1cc( perm 

)        
α
1cc( perm)    =     5wl

4
/384(Ecc)(Ieff) = 

5(9.3)(8)
4
(10)

12
/384(8600.2615)(11.384)(10

9
)      

(3) 

=5.066mm        

             

Step 5d:Calculation of 
α
1( perm )        

α
1( perm ) =      5wl

4
/384(Ec)(Ieff) = 

5(9.3)(8)
4
(10)

12
/384(22360.68)(11.384)(10

9
) 

 
= 1.948 mm  

(4) 

 

Step 5e: Calculation of deflection due to creep 

 
α
 cc( perm ) 

=
 

α
1cc( perm )   

-
 
α
1( perm ) 
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= 5.066 – 1.948 = 3.118 mm 

 

(5) 

 

It is important to note that the deflection due to creep α cc( perm ) can be obtained even 

without computing α1cc( perm) . The relationship of α cc( perm) and 

 

is given below. 

 

α
 cc( perm)

= α
1cc( perm)

-α
1( perm ) 

= {5wl
4
/384(Ec)(Ieff)} {(Ec /Ecc) – 1}=α1( perm )  (θ ) 

 

Hence, the deflection due to creep, for this problem is: 

 

α cc( perm)   = α1( perm )  (θ ) = 1.948(1.6) = 3.116 mm 

 

 

 

Step 6: Checking of the requirements of IS 456 

 

The two requirements regarding the control of deflection are given in sec. 7.17.3. They 

are checked in the following: 

 

Step 6a: Checking of the first requirement 

 

The maximum allowable deflection = 8000/250 = 32 mm 

 

The actual final deflection due to all loads 

 

(ix) 15.358 (see Eq.1 of Step 3) + 2.64 (see Eq.2 of Step 4) 

 

+ 3.118 (see Eq.5 ofStep 5e) =21.116 mm<32mm. Hence, 

 

o.k. 

 

Step 6b: Checking of the second requirement 

 

The maximum allowable deflection is the lesser of span/350 or 20 mm. Here, span/350 = 

22.86 mm. So, the maximum allowable deflection = 20 mm. The actual final deflection = 1.948 

(see Eq.4 of Step 5d) + 2.64 (see Eq.2 of Step 

 

4) + 3.118 (see Eq.5 of step 5e) = 7.706 mm < 20 mm. Hence, o.k. 

 

Thus, both the requirements of cl.23.2 of IS 456 and as given in sec. 7.17.3 are satisfied.

 α

1
(
 
p
e
r
m
 
) 
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Calculation of deflection 

 

Step 1: Properties of concrete section 

 

yt = D/2 = 300 mm, Igr = bD
3
/12 = 300(600)

3
/12 = 5.4(10

9
) mm

4 

 

Step 2: Properties of cracked section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fcr = 0.720 (cl. 6.2.2 of IS 456)=3.13 N/mm
2 

yt =300 mm   

Mr = 

fcr Igr 

/yt =3.13(5.4)(10
9
)/300=5.634(10

7
)Nmm 

Es= 200000N/mm
2 

 

Ec = 5000 fck(cl. 6.2.3.1 of IS 456)= 22360.68N/mm
2 

m= Es /Ec= 8.94  

 

Taking moment of the compressive concrete and tensile steel about the neutral axis (Fig.7.17.5): 

 

300 x
2
/2 = (8.94)(1256)(550 – x) or x

2
 + 74.86 x – 41171.68 = 0 
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This gives x = 168.88 mm and z = d – x/3 = 550 – 168.88/3 = 493.71 mm. 

 

Ir= 300(168.88)
3
/3 + 8.94(1256)(550 – 168.88)

2
= 2.1126(10

9
)mm

4 

M=wl
2
/2=20(4)(4)/2=160kNm  

I
 eff = 

    I r    

= 1.02 I r = 2.1548 (10
9
 ) mm

4 
 

5.634 

 

493.71 

 

168.88 

 

 

(1.2) - ( ) ( ) (1- ) (1)  

 

     

 16   550 550    

This satisfiesIr≤ Ieff  ≤ Igr. So, Ieff = 2.1548(10
9
)mm

4
.  

 

 

Step 3: Short-term deflection (sec. 7.17.5) 

 

Ec = 22360.68 N/mm
2
 (cl. 6.2.3.1 of IS 456) Short-

term deflection = wl
4
/8EcIeff 

 

= 20(4
4
)(10

12
)/8(22360.68)(2.1548)(10

9
) = 13.283 mm 

 

So, short-term deflection = 13.283 mm              (1) 

 

 

Step 4: Deflection due to shrinkage (sec. 7.17.6) 

 

 

k4 = 0.72(0.761)/  0.761 = 0.664 

ψ
 cs = k4 ε cs / D = (0.664)(0.0003)/600 = 3.32(10) 

-7 

k3 =0.5 (from sec. 7.17.6) 

α
 cs = k3 ψ cs l 

2
   = (0.5)(3.32)(10)

-7
(16)(10

6
) = 2.656 mm 

(2) 

 

Step 5: Deflection due to creep (sec. 7.17.7) 

 

Step 5a: Calculation of α1cc( perm) 

 

Assuming the age of concrete at loading as 28 days, cl. 6.2.5.1 of IS 456 

 

gives 
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θ = 1.6 

 
So, Ecc = Ec /(1 + θ ) = 8600.2615 N/mm

2 

 
m = Es /Ecc = 200000/8600.2615 = 23.255 

 

 

Step 5b: Properties of cracked section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Fig.7.17.6, taking moment of compressive concrete and tensile steel about the 

neutral axis, we have: 

 

 300 x
2
/2=(23.255)(1256)(550 - x) 

or x
2
 + 194.72 x – 107097.03=0 

solving we getx=244.072 mm 

 z=d – x/3=468.643 mm 

 Ir=300(244.072)
3
/3+ (23.255)(1256)(550 – 468.643)

2 

 =1.6473(10)
9
mm

4 
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Mr = 5.634( 10
7
) Nmm (see Step 2) 

 

M = wperm l
2
/2 = 4.5(4

2
)/2 = 36 kNm 

 

 

I
 

eff = 

   I r    

= 2.1786 I r   = 3.5888(10
9
 ) mm

4 
 

5.634 

 

468.643 

  

244.072 

 

 

1.2 - ( ) ( ) (1- ) (1)    

550 550  3.6      

Since this satisfies Ir≤ Ieff ≤ Igr, we have, Ieff  = 3.5888(10
9
) mm

4
. For the value 

of Igrplease see Step 1.     

 

Step 5c: Calculation of α1cc( perm ) 

 

α1cc( perm)   = (wperm)( l
4
)/(8Ecc Ieff) = 4.5(4)

4
(10)

12
/8(8600.2615)(3.5888)(10

9
) 

 

= 4.665 mm 

 

(3) 

 

Step 5d: Calculation of α1( perm ) 

 

α1( perm )   = (wperm)( l
4
)/(8Ec Ieff) = 4.5(4)

4
(10)

12
/8(22360.68)(3.5888)(10

9
) 

 

= 1.794 mm 

 

(4) 

 

Step 5e: Calculation of deflection due to creep 

 
α
 cc( perm ) 

=
 

α
1cc( perm )   

-
 
α
1( perm ) 

 

= 4.665 – 1.794 = 2.871 mm 

 

(5) 

 

Moreover: α cc( perm)   = α1cc( perm)  (θ ) gives α cc( perm)   = 1.794(1.6) = 2.874 mm. 

 

 

 

Step 6: Checking of the two requirements of IS 456 

 

Step 6a: First requirement 
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Maximum allowable deflection = 4000/250 = 16 mm 

 

The actual deflection = 13.283 (Eq.1 of Step 3) + 2.656 (Eq.2 of Step 4) 
 
 

+ 2.871 (Eq.5 of Step 5e) = 18.81 > Allowable 16 mm. 

 

Step 6b: Second requirement 

 

The allowable deflection is lesser of span/350 or 20 mm. Here, span/350 = 

 

11.428 mm is the allowable deflection. The actual deflection = 1.794 (Eq.4 of Step 5d) + 2.656 

(Eq.2 of Step 4) + 2.871 (Eq.5 of step 5e) = 7.321 mm < 11.428 mm. 
 

 
 
 
 

 

Ex.3: Determine the moment of resistance of the beam of Fig. 5.11.4 when Ast = 2,591 mm
2
 (4- 

25 T and 2- 20 T). Other parameters are the same as those of Ex.1: bf = 1,000 mm, Df = 100 mm, 

bw = 300 mm, cover = 50 mm and d = 450 mm. Use M 20 and Fe 415. 

 

Step 1: To determine xu 

 

Assuming xu to be in the flange and the beam is under-reinforced, we have from Eq. 3.16 

of Lesson 5: 

 

 
x
u = 

0.87f yAst  

= 

0.87 (415) (2591) 

= 129.93 mm > 100 mm  

0.36 b ff ck 0.36 (1000) (20)      

Since xu > Df, the neutral axis is in web.Here, Df/d=100/450=0.222>0.2. 

So, we have to substitute the term yf from Eq. 5.15 of Lesson 10, assuming Df / 

xu> 0.43 in the equation ofC =Tfrom Eqs. 5.16 and 17 ofsec. 5.10.4.3 b of 

Lesson 10. Accordingly, we get:   

 0.36 fckbwxu+ 0.45fck (bf- bw) yf=0.87 fy Ast 

or 0.36 (20) (300) (xu) + 0.45 (20) (1000 - 300) {0.15 xu + 0.65 (100)} 

   =0.87 (415) (2591)   

or xu =169.398mm<216 mm (xu,max = 0.48 xu = 216 mm) 
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So, the section is under-reinforced. 

 

Step 2: To determine Mu 

 

Df /xu = 100/169.398 = 0.590 > 0.43 

 

This is the problem of case (iii b) of sec. 5.10.4.3 b. The corresponding equations are Eq. 5.15 of 

Lesson 10 for yf and Eqs. 5.16 to 18 of Lesson 10 for C, T and 

Mu, respectively. From Eq. 5.15 of Lesson 10, we have: 

 

yf = 0.15 xu + 0.65 Df = 0.15 (169.398) + 0.65 (100) = 90.409 mm 

 

From Eq. 5.18 of Lesson 10, we have 

 

Mu = 0.36(xu /d){1 - 0.42( xu /d)} fck bw d
2
 + 0.45 fck(bf - bw) yf (d - yf /2) 

 

or Mu = 0.36 (169.398/450) {1 - 0.42 (169.398/450)} (20) (300) (450) (450) 

 

(iii) 0.45 (20) (1000 - 300) (90.409) (450 - 90.409/2) 

 

7 138.62 + 230.56=369.18kNm. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ex.4: Determine the moment of resistance of the flanged beam of Fig. 5.11.5 with Ast = 4,825 

mm
2
 (6- 32 T). Other parameters and data are the same as those of Ex.1: bf = 1000 mm, Df = 100 

mm, bw = 300 mm, cover = 50 mm and d = 450 mm. Use M 20 and Fe 415. 
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Step 1: To determine xu 

 

Assuming xu in the flange of under-reinforced rectangular beam we have from Eq. 3.16 of 

Lesson 5: 

 

 
x
u = 

 0.87f yAst 

= 

 0.87 (415) (4825)  

= 241.95 mm > D f 

 

  

0.36 b f 
f
 ck 0.36 (1000) (20) 

  

        

Here, Df/d=100/450= 0.222> 0.2. So, we have to determine yffrom Eq. 

5.15 and equating C and  T from Eqs. 5.16 and 17 of Lesson 10.  

 yf = 0.15 xu +0.65Df   (5.15)  

 0.36 fckbwxu+  0.45fck (bf- bw) yf=0.87 fy Ast (5.16 and 

 5.17)            

or 0.36 (20) (300) (xu) + 0.45 (20) (1000 - 300) {0.15 xu + 0.65 (100)} 

   = 0.87 (415) (4825)     

or 2160 xu +945 xu =-409500+ 1742066  

or xu =1332566/3105=429.17 mm  

 

xu,ma

x  =0.48 (450)=216 mm   

Since xu >  xu,max, the beam is over-reinforced. Accordingly.  

 xu =xu, max =216 mm.     

Step 2:To determineMu     

 This problem belongs to case (iv b), explained in sec.5.10.4.4 b of Lesson 

10. So, we can determine Mufrom Eq. 5.11 of Lesson 10.  

/2) 

Mu =  0.36(xu, max /d){1 - 0.42(xu, max /d)} fck bw d
2
 + 0.45fck(bf - bw) yf (d - yf 

            

(5.11)              

where yf =0.15 xu, max+0.65Df =97.4mm  

(5.8) 

 

From Eq. 5.11, employing the value of yf = 97.4 mm, we get: 

 

Mu = 0.36 (0.48) {1 - 0.42 (0.48)} (20) (300) (450) (450) 
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+ 0.45 (20) (1000 - 300) (97.4) (450 - 97.4/2) 

 

= 167.63 + 246.24 = 413.87 kNm 

 

It is seen that this over-reinforced beam has the same Mu as that of the balanced beam of Example 

2. 

 

Summary of Results of Examples 1-4 

 

The results of four problems (Exs. 1-4) are given in Table 5.1 below. All the examples 

are having the common data except Ast. 

 

Table 5.1 Results of Examples 1-4 (Figs. 5.11.2 – 5.11.5) 

 

Ex. Ast Case Section Mu Remarks 

No. (mm
2
)  No. (kNm)  

1 1,963 (i) 5.10.4.1 290.06 xu = 98.44 mm < xu, max (= 216 

     mm), 

     xu<Df (= 100 mm), 

     Under-reinforced, (NA in the 

     flange). 

2 3,066 (ii b) 5.10.4.2 413.87 xu =xu, max= 216 mm, 

   (b)  Df /d = 0.222 > 0.2, 

     Balanced, (NA in web). 

3 2,591 (iii b) 5.10.4.3 369.18 xu = 169.398 mm < xu, max(= 216 

   (b)  mm), 

     Df /xu= 0.59 > 0.43, 

     Under-reinforced, (NA in the 

     web). 

4 4,825 (iv b) 5.10.4.4 413.87 xu =241.95 mm > xu, max (= 216 

   (b)  mm), 

     Df /d=0.222 > 0.2, 

     Over-reinforced, (NA in web). 

 
It is clear from the above table (Table 5.1), that Ex.4 is an over-reinforced flanged beam. 

The moment of resistance of this beam is the same as that of balanced beam of Ex.2. Additional 

reinforcement of 1,759 mm
2
 (= 4,825 mm

2
 – 3,066 mm

2
) does not improve the M u of the over-

reinforced beam. It rather prevents the beam from tension failure. That is why over-reinforced 

beams are to be avoided. However, if the Mu has to be increased beyond 413.87 kNm, the flanged 

beam may be doubly reinforced. 

 
Use of SP-16 for the Analysis Type of Problems 

 

Using the two governing parameters (bf /bw) and (Df /d), the Mu,lim of balanced flanged 

beams can be determined from Tables 57-59 of SP-16 for the 
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three grades of steel (250, 415 and 500). The value of the moment coefficient 

Mu,lim /bwd
2
fck of Ex.2, as obtained from SP-16, is presented in Table 5.2 making linear 

interpolation for both the parameters, wherever needed. Mu,lim is then 

calculated from the moment coefficient. 

 

Table 5.2 Mu,lim of Example 2 using Table 58 of SP-16 

 

Parameters:(i) bf /bw = 1000/300 =3.33  

(ii) Df /d = 100/450 = 0.222  

        

    (Mu,lim /bw d
2
 fck)inN/mm

2 
 

Df /d        bf /bw  

    3   4 3.33 

0.22    0.309  0.395  

0.23    0.314  0.402  

0.222    0.31*   0.3964* 0.339* 

*by linear interpolation       

So, from Table 5.2, 

  
M

 u, lim 

= 0.339 

 

  

bw  d 
2 f

ck 

 

        

Mu,lim= 0.339 bw d
2
 fck = 0.339 (300) (450) (450) (20) 10

-6
=411.88 

kNm          

 

Mu,lim as obtained from SP-16 is close to the earlier computed value of Mu,lim = 413.87 kNm 

(see Table 5.1). 

 

5.11.6 Practice Questions and Problems with Answers 
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Q.1: Determine the moment of resistance of the simply supported doubly reinforced flanged 

beam (isolated) of span 9 m as shown in Fig. 5.11.6. Assume M 30 concrete and Fe 500 

steel. 

A.1:Solution of Q.1:       

Effective widthbf= 

l
o 

+ bw = 

9000 

+ 300 = 1200 mm 

(lo /b) + 4 (9000/1500) + 4      

Step 1: To determine the depth of the neutral axis 

 

Assuming neutral axis to be in the flange and writing the equation C = T, we have: 

0.87 fy Ast = 0.36 fck bf xu + (fsc Asc – fcc Asc) 

 

Here, d 
'
 / d = 65/600 = 0.108 = 0.1 (say). We, therefore, have fsc = 353 N/mm

2
 . 

 

 

From the above equation, we have: 

 

xu= 0.87 (500) (6509) -{(353) (1030) - 0.446 (30) (1030)}  = 

  0.36 (30) (1200)   

So, the neutral axis is in web.  

 Df /d= 120/600=0.2  

AssumingDf /xu <0.43, andEquatingC = T  

 0.87 fy Ast =0.36 fck bw xu+ 0.446 fck (bf – bw) Df 

 

 

 

x= 0.87 (500) (6509) - 1030{353 - 0.446 (30)}- 0.446 (30) (1200 - 300) (120) 

u 

0. 36 ( 30 ) ( 300 )  

= 319.92> 276 mm (xu ,max   = 276 mm) 

So, xu = xu,max = 276 mm (over-reinforced beam). 

 

Df /xu = 120/276 = 0.4347 > 0.43 

 

Let us assume Df /xu > 0.43. Now, equating C = T with yf as the depth of flange having constant 

stress of 0.446 fck. So, we have: 

 

yf = 0.15 xu + 0.65 Df = 0.15 xu + 78 

 

0.36 fck bw xu + 0.446 fck (bf – bw) yf + Asc (fsc – fcc) = 0.87 fy Ast 
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0.36 (30) (300) xu + 0.446 (30) (900) (0.15 xu + 78) 

 

= 0.87 (500) (6509) – 1030 {353 – 0.446 (30)} 

  

or xu = 305.63 mm > xu,max. (xu,max = 276 mm) 

 

The beam is over-reinforced. Hence, xu = xu,max = 276 mm. This is a problem of case (iv), and we, 

therefore, consider the case (ii) to find out the moment of 

resistance in two parts: first for the balanced singly reinforced beam and then for the additional 

moment due to compression steel. 

 

Step 2: Determination of xu,lim for singly reinforced flanged beam 

 

Here, Df /d = 120/600 = 0.2, so yf is not needed. This is a problem of case (ii a) of sec. 5.10.4.2 of 

Lesson 10. Employing Eq. 5.7 of Lesson 10, we have: 

 

Mu,lim = 0.36 (xu,max /d) {1 – 0.42 (xu,max /d)} fck bw d
2 

 

i 0.45 fck (bf – bw) Df (d – Df /2) 

 

4.8.6 0.36(0.46) {1 – 0.42(0.46)} (30) (300) (600) (600) + 

0.45(30) (900) (120) (540) 

 

4.8.7 1,220.20kNm 

 

A
st 

,lim = 

 
M

 u ,lim    

 

0.87 f y  d {1 - 0.42 (xu,max  / d )} 

   

      

 

= 

(1220.20) (10
6
 )  

= 5,794.6152mm 

2 

 

( 0.87 ) ( 500 ) ( 600 ) ( 0.8068 ) 

  

      

Step 3:Determination ofMu2    

 TotalAst=6,509mm
2
,Ast,lim =5,794.62mm

2 
 

 

Ast2 = 714.38 mm
2
 and Asc = 1,030 mm

2 

 

It is important to find out how much of the total Asc and Ast2 are required effectively. From the 

equilibrium of C and T forces due to additional steel 

(compressive and tensile), we have: 

 

(Ast2) (0.87) (fy) = (Asc) (fsc) 

 

If we assume Asc = 1,030 mm
2 
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Ast 2 = 

1030
0.87 (500)

(353)
 = 835.84 mm

2
  > 714.38 mm

2
 , (714.38 mm

2
  is the total 

 

Ast2 provided). So, this is not possible. 

  

Now, using Ast2 = 714.38 mm
2
 , we get Asc from the above equation. 

 

A = 

(714.38) (0.87) (500)  

=  880.326 <  1,030 mm
2
 , (1,030 mm

2
is     

sc  

353 

      

        

the total Asc provided).       

M
 u 2 = Asc  f sc  (d - d ') = (880.326) (353) (600 - 60) = 167.807 kNm  

Total moment of resistance= Mu,lim + Mu2= 1,220.20 + 167.81= 1,388.01 

kNm          

TotalAst required=Ast,lim + Ast2 =5,794.62 + 714.38= 6,509.00mm
2
 , 

(provided Ast = 6,509 mm
2
)       

Asc required=880.326mm
2 

(provided 1,030mm
2
).   
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Flanged Beams – Theory and Numerical Problems 

 

 

 

Introduction 

 

Lesson 10 illustrates the governing equations of flanged beams. It is now necessary to 

apply them for the solution of numerical problems. Two types of numerical problems are 

possible: (i) Analysis and (ii) Design types. This lesson explains the application of the theory of 

flanged beams for the analysis type of problems. Moreover, use of tables of SP-16 has been 

illustrated to determine the limiting moment of resistance of sections quickly for the three grades 

of steel. 

 

Besides mentioning the different steps of the solution, numerical examples are also taken up to 

explain their step-by-step solutions. 

 

Analysis Type of Problems 

 

The dimensions of the beam bf, bw, Df, d, D, grades of concrete and steel and the amount 

of steel Ast are given. It is required to determine the moment of resistance of the beam. 

 

To determine the depth of the neutral axis xu 

 

The depth of the neutral axis is determined from the equation of equilibrium C = T. 

However, the expression of C depends on the location of neutral axis, Df /d and Df / xu 

parameters. Therefore, it is required to assume first that the xu is in the flange. If this is not the 

case, the next step is to assume xu in the web and the computed value of xu will indicate if the 

beam is under-reinforced, balanced or over-reinforced. 
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Other steps: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After knowing if the section is under-reinforced, balanced or over-reinforced, the 

respective parameter Df/d or Df/xu is computed for the under-reinforced, balanced or over-

reinforced beam. The respective expressions of C, 

T and Mu, as established in Lesson 10, are then employed to determine their values. Figure 5.11.1 

illustrates the steps to be followed. 
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4.8.9 Numerical Problems (Analysis Type) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex.1: Determine the moment of resistance of the T-beam of Fig. 5.11.2. Given data: bf = 1000 

mm, Df = 100 mm, bw = 300 mm, cover = 50 mm, d = 450 mm and Ast = 1963 mm
2
 (4- 25 T). Use 

M 20 and Fe 415. 

 

Step 1: To determine the depth of the neutral axis xu 

 

Assuming xu in the flange and equating total compressive and tensile forces from the 

expressions of C and T (Eq. 3.16 of Lesson 5) as the T-beam can be treated as rectangular beam 

of width bf and effective depth d, we get: 

 

xu = 

0.87f y 
A
st 

= 

0.87 (415) (1963) 

= 98.44 mm < 100 mm 

0.36 b f 

f
 

ck 0.36 (1000) (20)      

So, the assumption of xu in the flange is correct. 

 

xu, max for the balanced rectangular beam = 0.48 d = 0.48 (450) = 216 

 

mm. 

 

It is under-reinforced since xu < xu,max. 

 

Step 2: To determine C, T and Mu 

 

From Eqs. 3.9 (using b = bf) and 3.14 of Lesson 4 for C and T and Eq. 

3.23 of Lesson 5 for Mu, we have: 
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C=0.36bfxufck  
 

= 0.36 (1000) (98.44) (20) = 708.77 kN 
 

T = 0.87 fy Ast  
(3.14) 

 

= 0.87 (415) (1963) =  708.74 kN  

        A f 

y 

   

M 

 

= 0.87 f 

 

Ad(1 - 

 st  

) 

 

 
u y 

     

   st   
f
ck

b
f  

d 
  

          

  

= 0.87 (415) (1963) (450) {1- 

(1963) (415) 

} = 290.06 kNm   (20) (1000) (450) 

 

This problem belongs to the case (i) and is explained in sec. 5.10.4.1 of Lesson 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex.2: Determine Ast,lim and Mu,lim of the flanged beam of Fig. 5.11.3. Given data are: bf = 1000 

mm, Df = 100 mm, bw = 300 mm, cover = 50 mm and d 

 

= 450 mm. Use M 20 and Fe 415. 

 

Step 1: To determine Df/d ratio 

 

For the limiting case xu = xu,max = 0.48 (450) = 216 mm > Df. The ratio Df/d is computed. 
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Df/d = 100/450 = 0.222 > 0.2 

 

Hence, it is a problem of case (ii b) and discussed in sec. 5.10.4.2 b of Lesson 10. 

 

Step 2: Computations of yf , C and T 

 

First, we have to compute yf from Eq.5.8 of Lesson 10 and then employ Eqs. 5.9, 10 and 

11 of Lesson 10 to determine C, T and Mu, respectively. 

 

  yf  = 0.15 xu,max +0.65 Df = 0.15 (216) + 0.65 (100)=97.4 mm. (from 

Eq. 5.8)                

(5.9) 

C  = 0.36  fckbw xu,max+ 0.45fck (bf-bw) yf 

                

   = 0.36 (20) (300) (216) + 0.45 (20) (1000 - 300) (97.4) = 1,080.18 kN. 

(5.10) 

T= 0.87  fy Ast  =0.87 (415) Ast 

                

EquatingCandT, we have   

  

A 

 

= 

(1080.18) (1000) N 

= 2,991.77 mm
2 

       

  

s

t   

0.87 (415) N/mm 
2 

  

        

Provide 4-28 T (2463 mm
2
) +3-16 T (603mm

2
)=3,066mm

2 

Step 3:Computation ofMu   

M 

 

= 0.36( 

x
u, 

max 

) {1 - 0.42( 

x
u, 

max 

)} f bd
2 

   

u, 

lim      

d 

    

d 

c

k w 

             

+ 0.45 f (b - b ) y 

f 

(d - y 

f 

/2)     (5.11) 

  

c

k  f  w         

= 0.36 (0.48) {1 - 0.42 (0.48)} (20) (300) (450)
2 

 

+ 0.45 (20) (1000 - 300) (97.4) (450 - 97.4/2) = 413.87 kNm 
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Ex.3: Determine the moment of resistance of the beam of Fig. 5.11.4 when Ast = 2,591 mm
2
 (4- 

25 T and 2- 20 T). Other parameters are the same as those of Ex.1: bf = 1,000 mm, Df = 100 mm, 

bw = 300 mm, cover = 50 mm and d = 450 mm. Use M 20 and Fe 415. 

 

Step 1: To determine xu 

 

Assuming xu to be in the flange and the beam is under-reinforced, we have from Eq. 3.16 

of Lesson 5: 

 

 
x
u = 

0.87f yAst  

= 

0.87 (415) (2591) 

= 129.93 mm > 100 mm  

0.36 b ff ck 0.36 (1000) (20)      

Since xu > Df, the neutral axis is in web.Here, Df/d=100/450=0.222>0.2. 

So, we have to substitute the term yf from Eq. 5.15 of Lesson 10, assuming Df / 

xu> 0.43 in the equation ofC =Tfrom Eqs. 5.16 and 17 ofsec. 5.10.4.3 b of 

Lesson 10. Accordingly, we get:   

 0.36 fckbwxu+ 0.45fck (bf- bw) yf=0.87 fy Ast 

or 0.36 (20) (300) (xu) + 0.45 (20) (1000 - 300) {0.15 xu + 0.65 (100)} 

   =0.87 (415) (2591)   

or xu =169.398mm<216 mm (xu,max = 0.48 xu = 216 mm) 
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So, the section is under-reinforced. 

 

Step 2: To determine Mu 

 

Df /xu = 100/169.398 = 0.590 > 0.43 

 

This is the problem of case (iii b) of sec. 5.10.4.3 b. The corresponding equations are Eq. 5.15 of 

Lesson 10 for yf and Eqs. 5.16 to 18 of Lesson 10 for C, T and 

Mu, respectively. From Eq. 5.15 of Lesson 10, we have: 

 

yf = 0.15 xu + 0.65 Df = 0.15 (169.398) + 0.65 (100) = 90.409 mm 

 

From Eq. 5.18 of Lesson 10, we have 

 

Mu = 0.36(xu /d){1 - 0.42( xu /d)} fck bw d
2
 + 0.45 fck(bf - bw) yf (d - yf /2) 

 

or Mu = 0.36 (169.398/450) {1 - 0.42 (169.398/450)} (20) (300) (450) (450) 

 

(iii) 0.45 (20) (1000 - 300) (90.409) (450 - 90.409/2) 

 

8 138.62 + 230.56=369.18kNm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Ex.4: Determine the moment of resistance of the flanged beam of Fig. 5.11.5 with Ast = 4,825 

mm
2
 (6- 32 T). Other parameters and data are the same as those of Ex.1: bf = 1000 mm, Df = 100 

mm, bw = 300 mm, cover = 50 mm and d = 450 mm. Use M 20 and Fe 415. 
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Step 1: To determine xu 

 

Assuming xu in the flange of under-reinforced rectangular beam we have from Eq. 3.16 of 

Lesson 5: 

 

 
x
u = 

 0.87f yAst 

= 

 0.87 (415) (4825)  

= 241.95 mm > D f 

 

  

0.36 b f 
f
 ck 0.36 (1000) (20) 

  

        

Here, Df/d=100/450= 0.222> 0.2. So, we have to determine yffrom Eq. 

5.15 and equating C and  T from Eqs. 5.16 and 17 of Lesson 10.  

 yf = 0.15 xu +0.65Df   (5.15)  

 0.36 fckbwxu+  0.45fck (bf- bw) yf=0.87 fy Ast (5.16 and 

 5.17)            

or 0.36 (20) (300) (xu) + 0.45 (20) (1000 - 300) {0.15 xu + 0.65 (100)} 

   = 0.87 (415) (4825)     

or 2160 xu +945 xu =-409500+ 1742066  

or xu =1332566/3105=429.17 mm  

 

xu,ma

x  =0.48 (450)=216 mm   

Since xu >  xu,max, the beam is over-reinforced. Accordingly.  

 xu =xu, max =216 mm.     

Step 2:To determineMu     

 This problem belongs to case (iv b), explained in sec.5.10.4.4 b of Lesson 

10. So, we can determine Mufrom Eq. 5.11 of Lesson 10.  

/2) 

Mu =  0.36(xu, max /d){1 - 0.42(xu, max /d)} fck bw d
2
 + 0.45fck(bf - bw) yf (d - yf 

            

(5.11)              

where yf =0.15 xu, max+0.65Df =97.4mm  

(5.8) 

 

From Eq. 5.11, employing the value of yf = 97.4 mm, we get: 

 

Mu = 0.36 (0.48) {1 - 0.42 (0.48)} (20) (300) (450) (450) 

 

 



72 
 

+ 0.45 (20) (1000 - 300) (97.4) (450 - 97.4/2) 

 

= 167.63 + 246.24 = 413.87 kNm 

 

It is seen that this over-reinforced beam has the same Mu as that of the balanced beam of Example 

2. 

 

5.11.4 Summary of Results of Examples 1-4 

 

The results of four problems (Exs. 1-4) are given in Table 5.1 below. All the examples 

are having the common data except Ast. 

 

Table 5.1 Results of Examples 1-4 (Figs. 5.11.2 – 5.11.5) 

 

Ex. Ast Case Section Mu Remarks 

No. (mm
2
)  No. (kNm)  

1 1,963 (i) 5.10.4.1 290.06 xu = 98.44 mm < xu, max (= 216 
     mm), 

     xu<Df (= 100 mm), 

     Under-reinforced, (NA in the 

     flange). 

2 3,066 (ii b) 5.10.4.2 413.87 xu =xu, max= 216 mm, 
   (b)  Df /d = 0.222 > 0.2, 

     Balanced, (NA in web). 

3 2,591 (iii b) 5.10.4.3 369.18 xu = 169.398 mm < xu, max(= 216 
   (b)  mm), 

     Df /xu= 0.59 > 0.43, 

     Under-reinforced, (NA in the 

     web). 

4 4,825 (iv b) 5.10.4.4 413.87 xu =241.95 mm > xu, max (= 216 
   (b)  mm), 

     Df /d=0.222 > 0.2, 

     Over-reinforced, (NA in web). 

 
It is clear from the above table (Table 5.1), that Ex.4 is an over-reinforced flanged beam. 

The moment of resistance of this beam is the same as that of balanced beam of Ex.2. Additional 

reinforcement of 1,759 mm
2
 (= 4,825 mm

2
 – 3,066 mm

2
) does not improve the M u of the over-

reinforced beam. It rather prevents the beam from tension failure. That is why over-reinforced 

beams are to be avoided. However, if the Mu has to be increased beyond 413.87 kNm, the flanged 

beam may be doubly reinforced. 

 

Use of SP-16 for the Analysis Type of Problems 

 

Using the two governing parameters (bf /bw) and (Df /d), the Mu,lim of balanced flanged 

beams can be determined from Tables 57-59 of SP-16 for the 
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three grades of steel (250, 415 and 500). The value of the moment coefficient 

Mu,lim /bwd
2
fck of Ex.2, as obtained from SP-16, is presented in Table 5.2 making linear 

interpolation for both the parameters, wherever needed. Mu,lim is then 

calculated from the moment coefficient. 

 

Table 5.2 Mu,lim of Example 2 using Table 58 of SP-16 

 

Parameters:(i) bf /bw = 1000/300 =3.33  

(ii) Df /d = 100/450 = 0.222  

        

    (Mu,lim /bw d
2
 fck)inN/mm

2 
 

Df /d        bf /bw  

    3   4 3.33 

0.22    0.309  0.395  

0.23    0.314  0.402  

0.222    0.31*   0.3964* 0.339* 

*by linear interpolation       

So, from Table 5.2, 

  
M

 u, lim 

= 0.339 

 

  

bw  d 
2 f

ck 

 

        

Mu,lim= 0.339 bw d
2
 fck = 0.339 (300) (450) (450) (20) 10

-6
=411.88 

kNm          

 

Mu,lim as obtained from SP-16 is close to the earlier computed value of Mu,lim = 413.87 kNm (see 

Table 5.1). 

 

5.11.6 Practice Questions and Problems with Answers 
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Q.1: Determine the moment of resistance of the simply supported doubly reinforced flanged 

beam (isolated) of span 9 m as shown in Fig. 5.11.6. Assume M 30 concrete and Fe 500 

steel. 

A.1:Solution of Q.1:       

Effective widthbf= 

l
o 

+ bw = 

9000 

+ 300 = 1200 mm 

(lo /b) + 4 (9000/1500) + 4      

 

Step 1: To determine the depth of the neutral axis 

 

Assuming neutral axis to be in the flange and writing the equation C = T, we have: 

0.87 fy Ast = 0.36 fck bf xu + (fsc Asc – fcc Asc) 

 

Here, d 
'
 / d = 65/600 = 0.108 = 0.1 (say). We, therefore, have fsc = 353 N/mm

2
 . 

 

 

From the above equation, we have: 

 

xu= 0.87 (500) (6509) -{(353) (1030) - 0.446 (30) (1030)}  = 

  0.36 (30) (1200)   

So, the neutral axis is in web.  

 Df /d= 120/600=0.2  

AssumingDf /xu <0.43, andEquatingC = T  

 0.87 fy Ast =0.36 fck bw xu+ 0.446 fck (bf – bw) Df 

 

 

191.48 mm >120 mm 

 

 

 

 

 

 

 

 

+ (fsc – fcc) Asc 

 

x= 0.87 (500) (6509) - 1030{353 - 0.446 (30)}- 0.446 (30) (1200 - 300) (120) 

u 

0. 36 ( 30 ) ( 300 )  

= 319.92> 276 mm (xu ,max   = 276 mm) 

 

So, xu = xu,max = 276 mm (over-reinforced beam). 

 

Df /xu = 120/276 = 0.4347 > 0.43 

 

Let us assume Df /xu > 0.43. Now, equating C = T with yf as the depth of flange having constant 

stress of 0.446 fck. So, we have: 

 

yf = 0.15 xu + 0.65 Df = 0.15 xu + 78 

 

0.36 fck bw xu + 0.446 fck (bf – bw) yf + Asc (fsc – fcc) = 0.87 fy Ast 
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0.36 (30) (300) xu + 0.446 (30) (900) (0.15 xu + 78) 

 

= 0.87 (500) (6509) – 1030 {353 – 0.446 (30)} 

 

or xu = 305.63 mm > xu,max. (xu,max = 276 mm) 

 

The beam is over-reinforced. Hence, xu = xu,max = 276 mm. This is a problem of case (iv), and we, 

therefore, consider the case (ii) to find out the moment of 

resistance in two parts: first for the balanced singly reinforced beam and then for the additional 

moment due to compression steel. 

 

Step 2: Determination of xu,lim for singly reinforced flanged beam 

 

Here, Df /d = 120/600 = 0.2, so yf is not needed. This is a problem of case (ii a) of sec. 5.10.4.2 of 

Lesson 10. Employing Eq. 5.7 of Lesson 10, we have: 

 

Mu,lim = 0.36 (xu,max /d) {1 – 0.42 (xu,max /d)} fck bw d
2 

 

i 0.45 fck (bf – bw) Df (d – Df /2) 

 

4.8.8 0.36(0.46) {1 – 0.42(0.46)} (30) (300) (600) (600) + 

0.45(30) (900) (120) (540) 

 

4.8.9 1,220.20kNm 

A
st 

,lim = 

 
M

 u ,lim    

 

0.87 f y  d {1 - 0.42 (xu,max  / d )} 

   

      

 

= 

(1220.20) (10
6
 )  

= 5,794.6152mm 

2 

 

( 0.87 ) ( 500 ) ( 600 ) ( 0.8068 ) 

  

      

Step 3:Determination ofMu2    

 TotalAst=6,509mm
2
,Ast,lim =5,794.62mm

2 
 

 

Ast2 = 714.38 mm
2
 and Asc = 1,030 mm

2 

 

It is important to find out how much of the total Asc and Ast2 are required effectively. From the 

equilibrium of C and T forces due to additional steel 

(compressive and tensile), we have: 

 

(Ast2) (0.87) (fy) = (Asc) (fsc) 

 

If we assume Asc = 1,030 mm
2
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Ast 2 = 
1030

0.87 (500)
(353)

 = 835.84 mm
2
  > 714.38 mm

2
 , (714.38 mm

2
  is the total 

 
Ast2 provided). So, this is not possible. 
 
Now, using Ast2 = 714.38 mm

2
 , we get Asc from the above equation. 

 

A = 

(714.38) (0.87) (500)  

=  880.326 <  1,030 mm
2
 , (1,030 mm

2
is     

sc  

353 

      

        

the total Asc provided).       

M
 u 2 = Asc  f sc  (d - d ') = (880.326) (353) (600 - 60) = 167.807 kNm  

Total moment of resistance= Mu,lim + Mu2= 1,220.20 + 167.81= 1,388.01 

kNm          

TotalAst required=Ast,lim + Ast2 =5,794.62 + 714.38= 6,509.00mm
2
 , 

(provided Ast = 6,509 mm
2
)       

Asc required=880.326mm
2 

(provided 1,030mm
2
).   
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Test 11 with Solutions 

 

Maximum Marks = 50, Maximum Time = 30 minutes 

 

Answer all questions. 

 

TQ.1: Determine Mu,lim of the flanged beam of Ex. 2 (Fig. 5.11.3) with the help of SP-16 using 

(a) M 20 and Fe 250, (b) M 20 and Fe 500 and (c) compare the results with the Mu,lim of Ex. 2 

from Table 5.2 when grades of concrete and steel are M 20 and Fe 415, respectively. Other data 

are: bf = 1000 mm, Df = 100 mm, bw = 300 mm, cover = 50 mm and d = 450 mm. 

 

(10 X 3 = 30 marks) 

A.TQ.1: From the results of Ex. 2 of sec. 5.11.5 (Table 5.2), we have: 

 

Parameters:(i)bf /bw = 1000/300 =3.33 

(ii) Df /d = 100/450= 0.222 

 

For part (a): When Fe 250 is used, the corresponding table is Table 57 of SP-16. The 

computations are presented in Table 5.3 below: 

 

Table 5.3(Mu,lim /bw d
2
 fck)inN/mm

2 
Of TQ.1 (PART a for M 20 and Fe 250) 

    

 (Mu,lim /bw d
2
 fck)inN/mm

2 
 

Df /d   bf /bw  

 3  4 3.33 

0.22 0.324  0.411  

0.23 0.330  0.421  

0.222 0.3252*  0.413* 0.354174* 

(vi) by linear interpolation 

 

Mu,lim /bw d
2
 fck = 0.354174 = 0.354 (say) 
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So, Mu,lim = (0.354) (300) (450) (450) (20) N mm = 430.11 kNm 

 

For part (b): When Fe 500 is used, the corresponding table is Table 59 of SP- 

 

16. The computations are presented in Table 5.4 below: 

 

Table 5.4 (Mu,lim /bw d
2
 fck) in N/mm

2
 Of TQ.1 (PART b for M 20 and Fe 500) 

(Mu,lim /bw d
2
 fck) in N/mm

2 

 
      

Df /d    bf /bw  

  3  4 3.33 

0.22  0.302  0.386  

0.23  0.306  0.393  

0.222  0.3028*  0.3874* 0.330718* 

* by linear interpolation   

Mu,lim /bw d
2
 fck= 0.330718 = 0.3307 (say)   

So, Mu,lim =(0.3307) (300) (450) (450) (20) mm= 401.8kNm 

 

For part (c): Comparison of results of this problem with that of Table 5.2 (M 20 and Fe 

 

415) is given below in Table 5.5. 

 

Table 5.5 Comparison of results of Mu,lim 

 

Sl. Grade of Steel Mu,lim(kNm) 

No.   

1 Fe 250 430.11 

2 Fe 415 411.88 

3 Fe 500 401.80 
 

It is seen that Mu,lim of the beam decreases with higher grade of steel for a particular grade 

of concrete. 

TQ.2: With the aid of SP-16, determine separately the limiting moments of resistance and the 

limiting areas of steel of the simply supported isolated, singly reinforced and balanced 

flanged beam of Q.1 as shown in Fig. 5.11.6 if the span = 9 m. Use M 30 concrete and 

three grades of steel, Fe 

 

250, Fe 415 and Fe 500, respectively. Compare the results obtained above with that of 

Q.1 of sec. 5.11.6, when balanced. 

(15 + 5 = 20 marks) 

 

A.TQ.2: From the results of Q.1 sec. 5.11.6, we have: 

 

Parameters:(i)bf /bw = 1200/300 = 4.0 

(ii) Df /d = 120/600      =  0.2 
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For Fe 250, Fe 415 and Fe 500, corresponding tables are Table 57, 58 and 59, respectively of 

SP-16. The computations are done accordingly. After computing the limiting moments of 

resistance, the limiting areas of steel are determined as explained below. Finally, the results are 

presented in Table 5.6 below: 

 

A
st 

,lim = 

  
M

u ,lim 

0.87 f y d {1 - 0.42 (xu,max  / d )}   

 

 

 

Table 5.6 Values of Mu,lim inN/mm
2 

Of TQ.2  

     

GradeofFe/Q.1of 
(Mu,lim/b
w d

2
fck) Mu,lim (kNm) Ast,lim (mm

2
) 

sec. 5.11.6 (N/mm
2
 )    

Fe 250 0.39  1, 263.60 12,455.32 

Fe 415 0.379  1, 227.96 7,099.78 

Fe 500 0.372  1, 205.28 5,723.76 

Q.1ofsec.5.11.6(Fe   1, 220.20 5,794.62 

415)     

 
The maximum area of steel allowed is .04 b D = (.04) (300) (660) = 7,920 mm

2
 . 

Hence, Fe 250 is not possible in this case. 

 

(iv) Summary of this Lesson 

 

This lesson mentions about the two types of numerical problems (i) analysis and (ii) 

design types. In addition to explaining the steps involved in solving the analysis type of 

numerical problems, several examples of analysis type of problems are illustrated explaining all 

steps of the solutions both by direct computation method and employing SP- 16. Solutions of 

practice and test problems will give readers the confidence in applying the theory explained in 

Lesson 10 in solving the numerical problems. 
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UNIT-III 

 

DESIGN OF SLAB 

 
 
 
One-way and Two-way Slabs 
 
 
 

Figures 2.1a and b explain the share of loads on beams supporting solid slabs along four 

edges when vertical loads are uniformly distributed. It is evident from the figures that the share of 

loads on beams in two perpendicular directions depends upon the aspect ratio ly /lx of the slab, lx 

being the shorter span. For large values of ly, the triangular area is much less than the trapezoidal 

area (Fig. 2.1a). Hence, the share of loads on beams along shorter span will gradually reduce with 

increasing ratio of ly /lx. In such cases, it may be said that the loads are primarily taken by beams 

along longer span. The deflection profiles of the slab along both directions are also shown in the 

figure. The deflection profile is found to be constant along the longer span except near the edges 

for the slab panel of Fig. 2.1a. These slabs are designated as one-way slabs as they span in one 

direction (shorter one) only for a large part of the slab when ly /lx > 2. 

On the other hand, for square slabs of ly /lx = 1 and rectangular slabs of ly /lx up to 2, the 

deflection profiles in the two directions are parabolic (Fig. 2.1b). Thus, they are spanning in  
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two directions and these slabs with ly /lx up to 2 are designated as two-way slabs, when supported 

on all edges.  

It would be noted that an entirely one-way slab would need lack of support on short edges. Also, 

even for ly /lx < 2, absence of supports in two parallel edges will render the slab one-way. In Fig. 

2.1b, the separating line at 45 degree is tentative serving purpose of design. Actually, this angle is 

a function of ly /lx 

 

 

 
 
 
 

 

 
 

 

 

 
Design of One-way Slabs  

 

The procedure of the design of one-way slab is the same as that of beams. However, the 

amounts of reinforcing bars are for one metre width of the slab as to be determined from either 

the governing design moments (positive or negative) or from the requirement of minimum 

reinforcement. The different steps of the design are explained below.  

Step 1: Selection of preliminary depth of slab  
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The depth of the slab shall be assumed from the span to effective depth ratios.  

 

Step 2: Design loads, bending moments and shear forces  

The total factored (design) loads are to be determined adding the estimated dead load of 

the slab, load of the floor finish, given or assumed live loads etc. after multiplying each of them 

with the respective partial safety factors. Thereafter, the design positive and negative bending 

moments and shear forces are to be determined using the respective coefficients given in Tables 

12 and 13 of IS 456.  

 

Step 3: Determination/checking of the effective and total depths of slabs  

The effective depth of the slab shall be determined employing.  

Mu,lim = R,lim bd2  

The total depth of the slab shall then be determined adding appropriate nominal cover (Table 16 

and 16A of cl.26.4 of IS 456) and half of the diameter of the larger bar if the bars are of different 

sizes. Normally, the computed depth of the slab comes out to be much less than the assumed 

depth in Step 1. However, final selection of the depth shall be done after checking the depth for 

shear force. 

 

Step 4: Depth of the slab for shear force  

Theoretically, the depth of the slab can be checked for shear force if the design shear 

strength of concrete is known. Since this depends upon the percentage of tensile reinforcement, 

the design  shear strength shall be assumed considering the lowest percentage of steel. The value 

of shall be modified after knowing the multiplying factor k from the depth tentatively selected for 

the slab in Step 3. If necessary, the depth of the slab shall be modified. c   

 

Step 5: Determination of areas of steel  

Area of steel reinforcement along the direction of one-way slab should be determined 

employing the following Eq.  

Mu = 0.87 fy Ast d {1 – (Ast)(fy)/(fck)(bd)}  

The above equation is applicable as the slab in most of the cases is under-reinforced due to the 

selection of depth larger than the computed value in Step 3. The area of steel so determined 

should be checked whether it is at least the minimum area of steel as mentioned in cl.26.5.2.1 of 

IS 456. 

 

Step 6: Selection of diameters and spacings of reinforcing bars (cls.26.5.2.2 and 26.3.3 of IS 

456)  

The diameter and spacing of bars are to be determined as per cls.26.5.2.2 and 26.3.3 of IS 

456. As mentioned in Step 5, this step may be avoided when using the tables and charts of SP-16.  

Design the one-way continuous slab of Fig.8.18.6 subjected to uniformly distributed imposed 

loads of 5 kN/m2 using M 20 and Fe 415. The load of floor finish is 1 kN/m2. The span 

dimensions shown in the figure are effective spans. The width of beams at the support = 300 mm. 
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Step 1: Selection of preliminary depth of slab  

 

The basic value of span to effective depth ratio for the slab having simple support at the 

end and continuous at the intermediate is (20+26)/2 = 23 (cl.23.2.1 of IS 456). 

Modification factor with assumed p = 0.5 and fs = 240 N/mm2 is obtained as 1.18 from Fig.4 of 

IS 456.  

Therefore, the minimum effective depth = 3000/23(1.18) = 110.54 mm. Let us take the effective 

depth d = 115 mm and with 25 mm cover, the total depth D = 140 mm. 

  

Step 2: Design loads, bending moment and shear force  

 

Dead loads of slab of 1 m width = 0.14(25) = 3.5 kN/m  

Dead load of floor finish =1.0 kN/m  

Factored dead load = 1.5(4.5) = 6.75 kN/m  

Factored live load = 1.5(5.0) = 7.50 kN/m  

Total factored load = 14.25 kN/m  

Maximum moments and shear are determined from the coefficients given in Tables 12 and 13 of 

IS 456.  

Maximum positive moment = 14.25(3)(3)/12 = 10.6875 kNm/m  

Maximum negative moment = 14.25(3)(3)/10 = 12.825 kNm/m  

Maximum shear Vu = 14.25(3)(0.4) = 17.1 Kn 

 

Step 3: Determination of effective and total depths of slab  

From Eq. Mu,lim = R,lim bd2 where R,lim is 2.76 N/mm2. So, d = 

{12.825(106)/(2.76)(1000)}0.5 = 68.17 mm  

Since, the computed depth is much less than that determined in Step 1, let us keep D = 140 mm 

and d = 115 mm.  

 

Step 4: Depth of slab for shear force  

 

Table 19 of IS 456 gives = 0.28 N/mm2 for the lowest percentage of steel in the slab. 

Further for the total depth of 140 mm, let us use the coefficient k of cl. 40.2.1.1 of IS 456 as 1.3 to 

get = 1.3(0.28) = 0.364 N/mm2. c  c c k    

Table 20 of IS 456 gives = 2.8 N/mm2. For this problem bdVuv/ =η = 17.1/115 = 0.148 N/mm2. 

Since, , the effective depth d = 115 mm is acceptable. ,max c u v Vbd   ,max v c c   

 

Step 5: Determination of areas of steel 
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It is known that  

Mu = 0.87 fy Ast d {1 – (Ast)(fy)/(fck)(bd)}  

(i) For the maximum negative bending moment  

12825000 = 0.87(415)(Ast)(115){1 – (Ast)(415)/(1000)(115)(20)}  

or - 5542.16 A2stAst + 1711871.646 = 0  

Solving the quadratic equation, we have the negative Ast = 328.34 mm2  

(ii) For the maximum positive bending moment  

10687500 = 0.87(415) Ast(115) {1 – (Ast)(415)/(1000)(115)(20)}  

or - 5542.16 A2stAst + 1426559.705 = 0  

Solving the quadratic equation, we have the positive Ast = 270.615 mm2  

Distribution steel bars along longer span ly  

Distribution steel area = Minimum steel area = 0.12(1000)(140)/100 = 168 mm2. Since, both 

positive and negative areas of steel are higher than the minimum area, we provide:  

(a)     For negative steel: 10 mm diameter bars @ 230 mm c/c for which Ast = 341 mm2 giving ps 

= 0.2965.  

(b) For positive steel: 8 mm diameter bars @ 180 mm c/c for which Ast = 279 mm2 giving ps = 

0.2426  

(c) For distribution steel: Provide 8 mm diameter bars @ 250 mm c/c for which Ast (minimum) = 

201 mm2. 

Step 6: Selection of diameter and spacing of reinforcing bars  

The diameter and spacing already selected in step 5 for main and distribution bars are checked 

below:  

For main bars (cl. 26.3.3.b.1 of IS 456), the maximum spacing is the lesser of 3d and 300 mm i.e., 

300 mm. For distribution bars (cl. 26.3.3.b.2 of IS 456), the maximum spacing is the lesser of 5d 

or 450 mm i.e., 450 mm. Provided spacings, therefore, satisfy the requirements.  

Maximum diameter of the bars (cl. 26.5.2.2 of IS 456) shall not exceed 140/8 = 17 mm is also 

satisfied with the bar diameters selected here. 
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UNIT-IV 
 

DESIGN OF COLUMNS 

 

 

 

Compression members are structural elements primarily subjected to axial compressive 

forces and hence, their design is guided by considerations of strength and buckling. Examples of 

compression member pedestal, column, wall and strut 

 

Definitions  

(a) Effective length: The vertical distance between the points of inflection of the compression 

member in the buckled configuration in a plane is termed as effective length le of that 

compression member in that plane. The effective length is different from the unsupported length l 

of the member, though it depends on the unsupported length and the type of end restraints. The 

relation between the effective and unsupported lengths of any compression member is  

le = k l (1)  

Where k is the ratio of effective to the unsupported lengths. Clause 25.2 of IS 456 stipulates the 

effective lengths of compression members (vide Annex E of IS 456). This parameter is needed in 

classifying and designing the compression members. 

 

(b) Pedestal: Pedestal is a vertical compression member whose effective length le does not exceed 

three times of its least horizontal dimension b (cl. 26.5.3.1h, Note). The other horizontal 

dimension D shall not exceed four times of b.  

 

(c) Column: Column is a vertical compression member whose unsupported length l shall not 

exceed sixty times of b (least lateral dimension), if restrained at the two ends. Further, its 

unsupported length of a cantilever column shall not exceed 100b2/D, where D is the larger lateral 

dimension which is also restricted up to four times of b (vide cl. 25.3 of IS 456). 

  

(d) Wall: Wall is a vertical compression member whose effective height Hwe to thickness t (least 

lateral dimension) shall not exceed 30 (cl. 32.2.3 of IS 456). The larger horizontal dimension i.e., 

the length of the wall L is more than 4t. 

 

Classification of Columns Based on Types of Reinforcement 
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Based on the types of reinforcement, the reinforced concrete columns are classified into three 

groups:  
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Based on the types of reinforcement, the reinforced concrete columns are classified into three 

groups:  

 

(i) Tied columns: The main longitudinal reinforcement bars are enclosed within closely spaced 

lateral ties (Fig.3.1a).  

(ii) Columns with helical reinforcement: The main longitudinal reinforcement bars are enclosed 

within closely spaced and continuously wound spiral reinforcement. Circular and octagonal 

columns are mostly of this type (Fig. 3.1b).  

(iii) Composite columns: The main longitudinal reinforcement of the composite columns consists 

of structural steel sections or pipes with or without longitudinal bars (Fig. 3.1c and d).  

Out of the three types of columns, the tied columns are mostly common with different shapes of 

the cross-sections viz. square, rectangular etc. Helically bound columns are also used for circular 

or octagonal shapes of cross-sections. 
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Columns are classified into the three following types based on the loadings:  

(i) Columns subjected to axial loads only (concentric), as shown in Fig. 3.2a.  

(ii) Columns subjected to combined axial load and uniaxial bending, as shown in Fig. 3.2b.  

(iii) Columns subjected to combined axial load and bi-axial bending, as shown in Fig. 3.2c.  

 

Classification of Columns Based on Slenderness Ratios  

 

  Columns are classified into the following two types based on the slenderness ratios:  

(i) Short columns  
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(ii) Slender or long columns 

 

                                          
 

 

 

Figure 3.3 presents the three modes of failure of columns with different slenderness ratios when 

loaded axially. In the mode 1, column does not undergo any lateral deformation and collapses due 

to material failure. This is known as compression failure. Due to the combined effects of axial 

load and moment a short column may have material failure of mode 2. On the other hand, a 

slender column subjected to axial load only undergoes deflection due to beam-column effect and 

may have material failure under the combined action of direct load and bending moment. Such 

failure is called combined compression and bending failure of mode 2. Mode 3 failure is by 

elastic instability of very long column even under small load much before the material reaches the 

yield stresses. This type of failure is known as elastic buckling.  

The slenderness ratio of steel column is the ratio of its effective length le to its least radius of 

gyration r. In case of reinforced concrete column, however, IS 456 stipulates the slenderness ratio 

as the ratio of its effective length le to its least lateral dimension. As mentioned earlier in sec. 

3.1(a), the effective length le is different from the unsupported length, the rectangular reinforced 

concrete column of cross-sectional dimensions b and D shall have two effective lengths in the 

two directions of b and D. Accordingly, the column may have the possibility of buckling 

depending on the two values of slenderness ratios as given below:  

Slenderness ratio about the major axis = lex/D  

Slenderness ratio about the minor axis = ley/b 

 

Based on the discussion above, cl. 25.1.2 of IS 456 stipulates the following:  

A compression member may be considered as short when both the slenderness ratios lex/D and 

ley/b are less than 12 where lex = effective length in respect of the major axis, D = depth in 

respect of the major axis, ley = effective length in respect of the minor axis, and b = width of the 

member. It shall otherwise be considered as a slender compression member.  

Further, it is essential to avoid the mode 3 type of failure of columns so that all columns should 

have material failure (modes 1 and 2) only. Accordingly, cl. 25.3.1 of IS 456 stipulates the 

maximum unsupported length between two restraints of a column to sixty times its least lateral 

dimension. For cantilever columns, when one end of the column is unrestrained, the unsupported 

length is restricted to 100b2/D where b and D are as defined earlier. 
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Longitudinal Reinforcement  

 

The longitudinal reinforcing bars carry the compressive loads along with the concrete. 

Clause 26.5.3.1 stipulates the guidelines regarding the minimum and maximum amount, number 

of bars, minimum diameter of bars, spacing of bars etc. The following are the salient points:  

(a) The minimum amount of steel should be at least 0.8 per cent of the gross cross-sectional area 

of the column required if for any reason the provided area is more than the required area.  

(b) The maximum amount of steel should be 4 per cent of the gross cross-sectional area of the 

column so that it does not exceed 6 per cent when bars from column below have to be lapped 

with those in the column under consideration.  

(c) Four and six are the minimum number of longitudinal bars in rectangular and circular 

columns, respectively.  

(d) The diameter of the longitudinal bars should be at least 12 mm.  

(e) Columns having helical reinforcement shall have at least six longitudinal bars within and in 

contact with the helical reinforcement. The bars shall be placed equidistant around its inner 

circumference.  

(f) The bars shall be spaced not exceeding 300 mm along the periphery of the column.  

(g) The amount of reinforcement for pedestal shall be at least 0.15 per cent of the cross-sectional 

area provided. 

 

Transverse Reinforcement  

 

Transverse reinforcing bars are provided in forms of circular rings, polygonal links 

(lateral ties) with internal angles not exceeding 135o or helical reinforcement. The transverse 

reinforcing bars are provided to ensure that every longitudinal bar nearest to the compression face 

has effective lateral support against buckling. Clause 26.5.3.2 stipulates the guidelines of the 

arrangement of transverse reinforcement. The salient points are: 

 

 

 

                                               
 

(a) Transverse reinforcement shall only go round corner and alternate bars if the longitudinal bars 

are not spaced more than 75 mm on either side (Fig.3.4). 
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(b) Longitudinal bars spaced at a maximum distance of 48 times the diameter of the tie shall be 

tied by single tie and additional open ties for in between longitudinal bars (Fig.3.5). 

 

                                          
 

 

 

(c) For longitudinal bars placed in more than one row (Fig.10.21.9): (i) transverse reinforcement 

is provided for the outer-most row in accordance with (a) above, and (ii) no bar of the inner 

row is closer to the nearest compression face than three times the diameter of the largest bar in 

the inner row. 
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Pitch and Diameter of Lateral Ties  

 

(a) Pitch: The maximum pitch of transverse reinforcement shall be the least of the following:  

(i) the least lateral dimension of the compression members;  

(ii) sixteen times the smallest diameter of the longitudinal reinforcement bar to be tied; and  

(iii) 300 mm.  

(b) Diameter: The diameter of the polygonal links or lateral ties shall be not less than one-fourth 

of the diameter of the largest longitudinal bar, and in no case less than 6 mm.  

 

Assumptions in the Design of Compression Members by Limit State of Collapse  

 

 

The following are the assumptions in addition to given in 38.1 (a) to (e) for flexure for 

the design of compression members (cl. 39.1 of IS 456).  

(i) The maximum compressive strain in concrete in axial compression is taken as 0.002.  

(ii) The maximum compressive strain at the highly compressed extreme fibre in concrete 

subjected to axial compression and bending and when there is no tension on the section shall 

be 0.0035 minus 0.75 times the strain at the least compressed extreme fibre.  

 

Minimum Eccentricity  

 

In practical construction, columns are rarely truly concentric. Even a theoretical column 

loaded axially will have accidental eccentricity due to inaccuracy in construction or variation of 

materials etc. Accordingly, all axially loaded columns should be designed considering the 

minimum eccentricity as stipulated in cl. 25.4 of IS 456 and given below (Fig.3.2c)  

ex min ≥ greater of (l/500 + D/30) or 20 mm  

ey min ≥ greater of (l/500 + b/30) or 20 mm  

where l, D and b are the unsupported length, larger lateral dimension and least lateral dimension, 

respectively. 

 

Governing Equation for Short Axially Loaded Tied Columns 

  

Factored concentric load applied on short tied columns is resisted by concrete of area Ac 

and longitudinal steel of areas Asc effectively held by lateral ties at intervals. Assuming the 

design strengths of concrete and steel are 0.4fck and 0.67fy, respectively, we can write  

Pu = 0.4fck Ac + 0.67fy Asc (1)  
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Where Pu = factored axial load on the member, 

fck = characteristic compressive strength of the concrete,  

Ac = area of concrete,  

fy = characteristic strength of the compression reinforcement, and  

Asc = area of longitudinal reinforcement for columns.  

The above equation, given in cl. 39.3 of IS 456, has two unknowns Ac and Asc to be determined 

from one equation. The equation is recast in terms of Ag, the gross area of concrete and p, the 

percentage of compression reinforcement employing  

Asc = pAg/100 (2)  

Ac = Ag(1 – p/100) (3)  

Accordingly, we can write  

Pu/Ag = 0.4fck + (p/100) (0.67fy – 0.4fck) (4)  

Equation 4 can be used for direct computation of Ag when Pu, fck and fy are known by assuming 

p ranging from 0.8 to 4 as the minimum and maximum percentages of longitudinal reinforcement. 

Equation 10.4 also can be employed to determine Ag and p in a similar manner by assuming p. 
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UNIT-V 
 

DESIGN OF FOOTING AND STAIR CASE 

 

The superstructure is placed on the top of the foundation structure, designated as 

substructure as they are placed below the ground level. The elements of the superstructure 

transfer the loads and moments to its adjacent element below it and finally all loads and moments 

come to the foundation structure, which in turn, transfers them to the underlying soil or rock. 

Thus, the foundation structure effectively supports the superstructure. However, all types of soil 

get compressed significantly and cause the structure to settle. Accordingly, the major 

requirements of the design of foundation structures are the two as given below (see cl.34.1 of IS 

456) 

:  

1. Foundation structures should be able to sustain the applied loads, moments, forces and induced 

reactions without exceeding the safe bearing capacity of the soil.  

 

2. The settlement of the structure should be as uniform as possible and it should be within the 

tolerable limits. It is well known from the structural analysis that differential settlement of 

supports causes additional moments in statically indeterminate structures. Therefore, avoiding the 

differential settlement is considered as more important than maintaining uniform overall 

settlement of the structure. 

 

Types of Foundation Structures 

  

1. Shallow Foundation  

 

Shallow foundations are used when the soil has sufficient strength within a short depth 

below the ground level. They need sufficient plan area to transfer the heavy loads to the base soil. 

These heavy loads are sustained by the reinforced concrete columns or walls (either of bricks or 

reinforced concrete) of much less areas of cross-section due to high strength of bricks or 

reinforced concrete when compared to that of soil. The strength of the soil, expressed as the safe 

bearing capacity of the soil is normally supplied by the geotechnical experts to the structural 

engineer. Shallow foundations are also designated as footings. The different types of shallow 

foundations or footings are discussed below.  

 

(i) Plain concrete pedestal footings  

(ii) Isolated footings  

(iii) Combined footings  

(iv) Strap footings  

(v) Strip foundation or wall footings  

(vi) Raft or mat foundation 
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2. Deep foundations  

 

As mentioned earlier, the shallow foundations need more plan areas due to the low 

strength of soil compared to that of masonry or reinforced concrete. However, shallow 

foundations are selected when the soil has moderately good strength, except the raft foundation 

which is good in poor condition of soil also. Raft foundations are under the category of shallow 

foundation as they have comparatively shallow depth than that of deep foundation. It is worth 

mentioning that the depth of raft foundation is much larger than those of other types of shallow 

foundations.  

 

However, for poor condition of soil near to the surface, the bearing capacity is very less and 

foundation needed in such situation is the pile foundation. Piles are, in fact, small diameter 

columns which are driven or cast into the ground by suitable means. Precast piles are driven and 

cast-in-situ are cast. These piles support the structure by the skin friction between the pile surface 

and the surrounding soil and end bearing force, if such resistance is available to provide the 

bearing force. Accordingly, they are designated as frictional and end bearing piles. They are 

normally provided in a group with a pile cap at the top through which the loads of the 

superstructure are transferred to the piles.  

 

Piles are very useful in marshy land where other types of foundation are impossible to construct. 

The length of the pile which is driven into the ground depends on the availability of hard soil/rock 

or the actual load test. Another advantage of the pile foundations is that they can resist uplift also 

in the same manner as they take the compression forces just by the skin friction in the opposite 

direction.  

 

However, driving of pile is not an easy job and needs equipment and specially trained persons or 

agencies. Moreover, one has to select pile foundation in such a situation where the adjacent 

buildings are not likely to be damaged due to the driving of piles. The choice of driven or bored 

piles, in this regard, is critical.  

Exhaustive designs of all types of foundations mentioned above are beyond the scope of this 

course. Accordingly, this module is restricted to the design of some of the shallow footings, 

frequently used for normal low rise buildings only. 
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Isolated Footing 

                            
 

 

Design Considerations   

 

(a) Minimum nominal cover (cl. 26.4.2.2 of IS 456)  

The minimum nominal cover for the footings should be more than that of other structural 

elements of the superstructure as the footings are in direct contact with the soil. Clause 26.4.2.2 of 

IS 456 prescribes a minimum cover of 50 mm for footings. However, the actual cover may be 

even more depending on the presence of harmful chemicals or minerals, water table etc.  

 

(b) Thickness at the edge of footings (cls. 34.1.2 and 34.1.3 of IS 456)  

The minimum thickness at the edge of reinforced and plain concrete footings shall be at least 150 

mm for footings on soils and at least 300 mm above the top of piles for footings on piles, as per 

the stipulation in cl.34.1.2 of IS 456. 

 

For plain concrete pedestals, the angle α (see Fig.11.28.1) between the plane passing through the 

bottom edge of the pedestal and the corresponding junction edge of the column with pedestal and 

the horizontal plane shall be determined from the following expression (cl.34.1.3 of IS 456)  

0.5 tan0.9{(100/ ) 1} a ck qf   
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where qa = calculated maximum bearing pressure at the base of pedestal in N/mm2, and  

fck = characteristic strength of concrete at 28 days in N/mm2. 

 

 

 

(c) Bending moments (cl. 34.2 of IS 456)  

 

1. It may be necessary to compute the bending moment at several sections of the footing 

depending on the type of footing, nature of loads and the distribution of pressure at the base of the 

footing. However, bending moment at any section shall be determined taking all forces acting 

over the entire area on one side of the section of the footing, which is obtained by passing a 

vertical plane at that section extending across the footing (cl.34.2.3.1 of IS 456).  

 

2. The critical section of maximum bending moment for the purpose of designing an isolated 

concrete footing which supports a column, pedestal or wall shall be:  

(i) at the face of the column, pedestal or wall for footing supporting a concrete column, pedestal 

or reinforced concrete wall, and  

(ii) halfway between the centre-line and the edge of the wall, for footing under masonry wall. 

This is stipulated in cl.34.2.3.2 of IS 456.  

The maximum moment at the critical section shall be determined as mentioned in 1 above.  

For round or octagonal concrete column or pedestal, the face of the column or pedestal shall be 

taken as the side of a square inscribed within the perimeter of the round or octagonal column or 

pedestal (see cl.34.2.2 of IS 456 and Figs.11.28.13a and b).  

 

(d) Shear force (cl. 31.6 and 34.2.4 of IS 456)  

Footing slabs shall be checked in one-way or two-way shears depending on the nature of 

bending. If the slab bends primarily in one-way, the footing slab shall be checked in one-way 

vertical shear. On the other hand, when the bending is primarily two-way, the footing slab shall 

be checked in two-way shear or punching shear. The respective critical sections and design shear 

strengths are given below: 

 

1. One-way shear (cl. 34.2.4 of IS 456)  
One-way shear has to be checked across the full width of the base slab on a vertical section 
located from the face of the column, pedestal or wall at a distance equal to  

(i) effective depth of the footing slab in case of footing slab on soil, and  

(ii) half the effective depth of the footing slab if the footing slab is on piles.  
The design shear strength of concrete without shear reinforcement is given in Table 19 of cl.40.2 

of IS 456. 

 

2. Two-way or punching shear (cls.31.6 and 34.2.4)  
Two-way or punching shear shall be checked around the column on a perimeter half the effective 

depth of the footing slab away from the face of the column or pedestal.  

The permissible shear stress, when shear reinforcement is not provided, shall not exceed , where 
ks = (0.5 + cβ), but not greater than one, cβ being the ratio of short side to long side of the 

column, and = 0.25(fck)1/2 in limit state method of design, as stipulated in cl.31.6.3 of IS 456. sc 

k c   
Normally, the thickness of the base slab is governed by shear. Hence, the necessary thickness of 

the slab has to be provided to avoid shear reinforcement. 
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(e) Bond (cl.34.2.4.3 of IS 456)  

The critical section for checking the development length in a footing slab shall be the 

same planes as those of bending moments in part (c) of this section. Moreover, development 

length shall be checked at all other sections where they change abruptly. The critical sections for 

checking the development length are given in cl.34.2.4.3 of IS 456, which further recommends to 

check the anchorage requirements if the reinforcement is curtailed, which shall be done in 

accordance with cl.26.2.3 of IS 456  

.  

(f) Tensile reinforcement (cl.34.3 of IS 456)  

The distribution of the total tensile reinforcement, calculated in accordance with the moment at 

critical sections, as specified in part (c) of this section, shall be done as given below for one-way 

and two-way footing slabs separately.  

(i) In one-way reinforced footing slabs like wall footings, the reinforcement shall be distributed 

uniformly across the full width of the footing i.e., perpendicular to the direction of wall. Nominal 

distribution reinforcement shall be provided as per cl. 34.5 of IS 456 along the length of the wall 

to take care of the secondary moment, differential settlement, shrinkage and temperature effects.  

(ii) In two-way reinforced square footing slabs, the reinforcement extending in each direction 

shall be distributed uniformly across the full width/length of the footing. 

 

iii) In two-way reinforced rectangular footing slabs, the reinforcement in the long direction shall 

be distributed uniformly across the full width of the footing slab. In the short direction, a central 

band equal to the width of the footing shall be marked along the length of the footing, where the 

portion of the reinforcement shall be determined as given in the equation below. This portion of 

the reinforcement shall be distributed across the central band 
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Reinforcement in the central band = {2/(β+1)} (Total reinforcement in the short 

direction) 

Where β is the ratio of longer dimension to shorter dimension of the footing slab 

(Fig.3.10). 
Each of the two end bands shall be provided with half of the remaining reinforcement, 

distributed 

uniformly across the respective end band. 

 

(g) Transfer of load at the base of column (cl.34.4 of IS 456) 

All forces and moments acting at the base of the column must be transferred to the 

pedestal, 

if any, and then from the base of the pedestal to the footing, (or directly from the base of the 

column to the footing if there is no pedestal) by compression in concrete and steel and tension 

in steel. Compression forces are transferred through direct bearing while tension forces are 

transferred through developed reinforcement. The permissible bearing stresses on full area of 

concrete shall be taken as given below from cl.34.4 of IS 456: 

 br = 0.25fck , in working stress method, and 

 br = 0.45fck , in limit state method 

The stress of concrete is taken as 0.45fck 

while designing the column. Since the area of 

footing is much larger, this bearing stress of concrete in column may be increased 

considering the dispersion of the concentrated load of column to footing. Accordingly, the 

permissible bearing stress of concrete in footing is given by (cl.34.4 of IS 456): 

 br = 0.45fck(A1/A2)1/2 

with a condition that 

(A1/A2)1/22.0 (11.8) ≤ 2 

where A1= maximum supporting area of footing for bearing which is geometrically imilar to and 

concentric with the loaded area A2 

.A2= loaded area at the base of the column. 

 

The above clause further stipulates that in sloped or stepped footings, A1 may be taken as the area 

of the lower base of the largest frustum of a pyramid or cone contained wholly within the footing 

and having for its upper base, the area actually loaded and having side slope of one vertical to two 

horizontal.  

If the permissible bearing stress on concrete in column or in footing is exceeded, reinforcement 

shall be provided for developing the excess force (cl.34.4.1 of IS 456), either by extending the 

longitudinal bars of columns into the footing (cl.34.4.2 of IS 456) or by providing dowels as 

stipulated in cl.34.4.3 of IS 456 and given below: 

 

 

 

(i) Sufficient development length of the reinforcement shall be provided to transfer the 

compression or tension to the supporting member in accordance with cl.26.2 of IS 456, when 

transfer of force is accomplished by reinforcement of column (cl.34.4.2 of IS 456).  

(ii) Minimum area of extended longitudinal bars or dowels shall be 0.5 per cent of the cross-

sectional area of the supported column or pedestal (cl.34.4.3 of IS 456).  
(iii) A minimum of four bars shall be provided (cl.34.4.3 of IS 456).  

(iv) The diameter of dowels shall not exceed the diameter of column bars by more than 3 mm.  
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(v) Column bars of diameter larger than 36 mm, in compression only can be doweled at the 

footings with bars of smaller size of the necessary area. The dowel shall extend into the column, a 

distance equal to the development length of the column bar and into the footing, a distance equal 

to the development length of the dowel, as stipulated in cl.34.4.4 of IS 456. 

 

(h) Nominal reinforcement (cl. 34.5 of IS 456) 

Clause 34.5.1 of IS 456 stipulates the minimum reinforcement and spacing of the bars in footing 

slabs as per the requirements of solid slab (cls.26.5.2.1 and 26.3.3b(2) of IS 456, respectively). 

 

 

 

Design of Staircase 

 

 

The staircase is an important component of a building, and often the only means of access 

between the various floors in the building. It consists of a flight of steps, usually with one or more 

intermediate landings (horizontal slab platforms) provided between the floor levels. The 

horizontal top portion of a step (where the foot rests) is termed tread and the vertical projection of 

the step (i.e., the vertical distance between two neighbouring steps) is called riser [Fig. 2.10]. 

Values of 300 mm and 150 mm are ideally assigned to the tread and riser respectively — 

particularly in public buildings. However, lower values of tread (up to 250 mm) combined with 

higher values of riser (up to 190 mm) are resorted to in residential and factory buildings. The 

width of the stair is generally around 1.1 – 1.6m, and in any case, should normally not be less than 

850 mm; large stair widths are encountered in entrances to public buildings. The horizontal 

projection (plan) of an inclined flight of steps, between the first and last risers, is termed going. A 

typical flight of steps consists of two landings and one going, as depicted in Fig. 2.10(a). 

Generally, risers in a flight should not exceed about 12 in number. The steps in the flight can be 

designed in a number of ways: with waist slab, with tread-riser arrangement (without waist slab) 

or with isolated tread slabs — as shown in Fig. 2.10(b), (c), (d) respectively. 
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TYPES OF STAIRCASES  

 

Geometrical Configurations  

A wide variety of staircases are met with in practice. Some of the more common geometrical 

configurations are depicted in Fig. 2.11. These include:  

• straight stairs (with or without intermediate landing) [Fig. 2.11 (a)]  

• quarter-turn stairs [Fig. 2.11 (b)]  

• dog-legged stairs [Fig. 2.11 (c)]  

open well stairs [Fig. 2.11 (d)]  

• spiral stairs [Fig. 2.11 (e)]  

• helicoidal stairs [Fig. 2.11 (f)] 
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Structural Classification  

 

Structurally, staircases may be classified largely into two categories, depending on the 

predominant direction in which the slab component of the stair undergoes flexure:  

1. Stair slab spanning transversely (stair widthwise);  

2. Stair slab spanning longitudinally (along the incline).  

 

Stair Slab Spanning Transversely  

The slab component of the stair (whether comprising an isolated tread slab, a tread-riser unit or a 

waist slab) is supported on its side(s) or cantilevers laterally from a central support. The slab 

supports gravity loads by bending essentially in a transverse vertical plane, with the span along 

the width of the stair. 

 

In the case of the cantilevered slabs, it is economical to provide isolated treads (without risers). 

However, the tread-riser type of arrangement and the waist slab type are also sometimes 

employed in practice, as cantilevers. The spandrel beam is subjected to torsion (‗equilibrium 

torsion‗), in addition to flexure and shear. 
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When the slab is supported at the two sides by means of ‗stringer beams‗ or masonry walls, it 

may be designed as simply supported, but reinforcement at the top should be provided near the 

supports to resist the ‗negative‗ moments that may arise on account of possible partial fixity.  

 

Stair Slab Spanning Longitudinally  

In this case, the supports to the stair slab are provided parallel to the riser at two or more 

locations, causing the slab to bend longitudinally between the supports. It may be noted that 

longitudinal bending can occur in configurations other than the straight stair configuration, such 

as quarter-turn stairs, dog-legged stairs, open well stairs and helicoidal stairs .  

The slab arrangement may either be the conventional ‗waist slab‗ type or the ‗tread-riser‗ type. 

The slab thickness depends on the ‗effective span‗, which should be taken as the centre-to-centre 

distance between the beam/wall supports, according to the Code (Cl. 33.1a, c).In certain 

situations, beam or wall supports may not be available parallel to the riser at the landing. Instead, 

the flight is supported between the landings, which span transversely, parallel to the risers. In 

such cases, the Code(Cl. 33.1b) specifies that the effective span for the flight (spanning 

longitudinally) should be taken as the going of the stairs plus at each end either half the width of 

the landing or one metre, whichever is smaller.  

 

Numerical Problem  

 

Design a (‗waist slab‗ type) dog-legged staircase for an office building, given the following data:  

• Height between floor = 3.2 m;  

• Riser = 160 mm, tread = 270 mm;  

• Width of flight = landing width = 1.25 m  

• Live load = 5.0 kN/m2  

• Finishes load = 0.6 kN/m2  

Assume the stairs to be supported on 230 mm thick masonry walls at the outer edges of the 

landing, parallel to the risers [Fig. 12.13(a)]. Use M 20 concrete and Fe 415 steel. Assume mild 

exposure conditions. 

 
Solution  
 

Given: R = 160 mm, T = 270 mm ⇒+RT22  

= 314 mm Effective span = c/c distance between supports = 5.16 m [Fig below].  

• Assume a waist slab thickness ≈l20 = 5160/20 = 258 →260 mm.  

Assuming 20 mm clear cover (mild exposure) and 12 θ main bars,  

effective depth d = 260 – 20 – 12/2 = 234 mm.  

The slab thickness in the landing regions may be taken as 200 mm, as the bending moments are 

relatively low here. 

 

Loads on going [fig. below] on projected plan area:  

(1) self-weight of waist slab @ 25 × 0.26 × 314/270 = 7.56 kN/m2  

(2) self-weight of steps @ 25 × (0.5x0.16) = 2.00 kN/m2  

(3) finishes (given) = 0.60 kN/m2  

(4) live load (given) = 5.00 kN/m2  

Total =15.16 kN/m2  

⇒Factored load = 15.16 × 1.5 = 22.74 kN/m2  
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• Loads on landing  

(1) self-weight of slab @ 25 × 0.20 = 5.00 kN/m2  

(2) finishes @ 0.6 kN/m2  

(3) live loads @ 5.0 kN/m2  

Total =10.60 kN/m2  

⇒Factored load = 10.60 × 1.5 = 15.90 kN/m2  

• Design Moment [Fig. below]  

Reaction R= (15.90x1.365)+(22.74x2.43)/2 = 49.33 kN/m  

Maximum moment at midspan:  

Mu = (49.33 × 2.58) – (15.90 × 1.365) × (2.58 – 1.365/2)  

– (22.74) × (2.58 – 1.365)2/2  

= 69.30 kNm/m 

 

 

• Maiinforcement   

 

= 1.265 MPa R bd   

Assuming fck = 20 MPa, fy = 415 MPa,  

2 0.381 10 100 100 t st pAx     

⇒ 2 3 2 ()(0.38110 )10 234 892/ st req Axxxmm m     

Required spacing of 12 θ bars = 127 mm  

Required spacing of 16 θ bars = 225 mm  

Provide 16 θ @ 220c/c 

 

• Distributors  

2 ()0.0012312/ st req Abt mm m    

spacing 10 θ bars = 251 mm  

Provide 10 θ @ 250c/c as distributors. 
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