

WINTER-2017 EXAMINATION

Model Answer

Subject Code:

17543

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical spelling errors should not be given more Importance Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

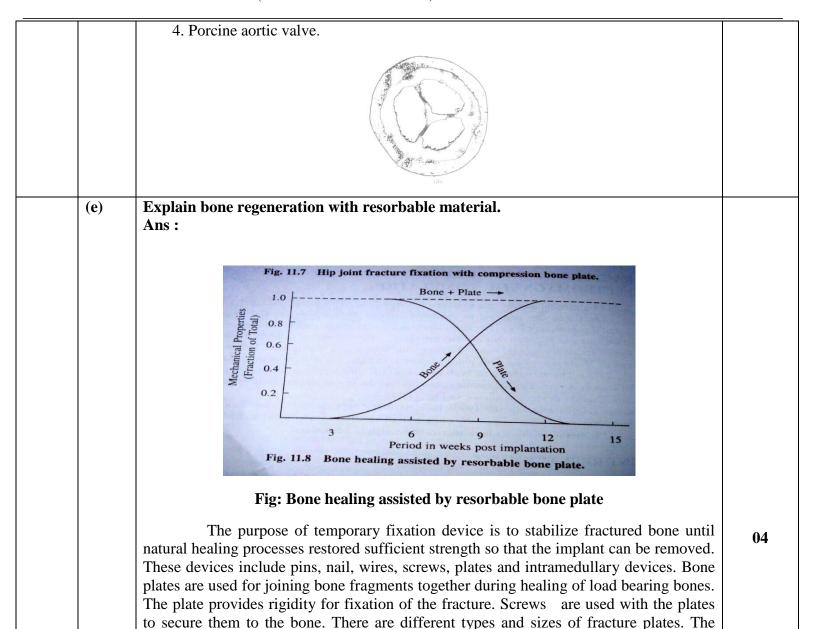
Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	(A)	Attempt any <u>THREE</u>	12
	(a)	Define biomaterial and classify ceramic biomaterial. Ans: Definition of biomaterials: A biomaterial is defined as any systemically, pharmacologically inert substance or combination of substances utilized for implantation within or incorporation with a living system to supplement or replace functions of living tissues or organs. In order to achieve that purpose, a biomaterial must be in contact with living tissues or body fluids resulting in an interface between living and non-living substances. OR	02
		It replaces a part or function of the body in safe reliable, economic and physiologically acceptable manner. Classification of Ceramic biomaterial: 1. Carbon 2. Alumina 3. Zirconia 4. Resorbable Ceramics.	02
	(b)	Give the four properties of Zirconia. Ans: Properties of Zirconia: (Any four) 1. Use temperatures up to 2400°C 2. High density 3. Low thermal conductivity (20% that of alumina). 4. Chemical inertness. 5. Resistance to molten metal's. 6. Ionic electrical conduction. 7. Wear resistance. 8. High fracture toughness. 9. High hardness. 10. High refractive index. 11. Excellent biocompatibility and wear properties. 12. Fine grain size, lack of surface roughness.	04
	(c)	Draw labelled structure of Lungs. Ans:	04

(d)	Give the c Ans:	omposition of Teeth.				
		Constituents ^a Den	tine Enamel			
		Ca ²⁺ 27	36.0			
	-	DO ³ D	3.0 17.7			
	1	Na ⁺ (0.3 0.5			
		< ⁺ (0.05 0.08			
			.1 0.44	04		
			.5 2.3			
			0.05 0.01			
			0.01 0.30			
		- /	0.08 0.022	2		
		Ash ^b 70				
		Organic 20				
	1	H ₂ O ^c 10	1.00			
			position of Teeth			
(B	· · · ·			06		
(a)	List mate	rials used for deep cavities and	l state the use of collagen in dentis	try.		
	Ans:					
	Materials	used for deep cavities:				
	1. Pla	stic (Cements, pastes) or solid p	ieces (Thin Cones)			
	2. Ma	iny of these cements contain sy	nthetic polymers such as polyethyle	ne, epoxy,		
		Polyacrylate, Polycarbonate, Silicones which contribute to the hardness of final				
		duct and also seal the internal p		03		
	-	 Gutta -percha mixed with cement is widely used as sealing materials. 				
	J. Uu	-				
		Material	Observation	_		
		Collagen	Collagen sponges decreased seepage of blood during periodontal mucoginvival surgery			
		Collagen	Collagen membranes have capacity to support regeneration of periodontal tissues	ı		
		Collagen gel-allogeneic bone	Collagen gel-allogeneic bone implant encouraged ingrowth of regenerative			
		Collagen tricalcium phosphate	tissue and new bone Collagen-tricalcium phosphate grafts resulted in less soft tissue recession	03		
		Collagen coated root implants	Long lasting retention of collagen coated acrylic root implants			
		Collagen solution	Collagen solution applied to root			
		Collagen graft	surface suppressed epithelial migration and new tissue formation Collagen graft promoted formation			
		Collagen allogenic bone	of normal mucous membrane Bone collagen grafts reduced probing			
		Collagen solution	depths and gained new attachment Application of collagen solution to			
			root surface suppressed epithelial migration and promoted new cementum formation			
		Collagen film + tetracycline	Topical administration of tetracycline on a collagen film remains active for two to three weeks			
		Table: Use of a	ollagen in dentistry			
	Evolain o		ollagen in dentistry			
(b)	-	ellular events in bone healing p	process.			
(b)	Ans: Cellu		process.			

	<u></u>				<u></u>
		Fibroblastic: is a structural team v .Fibroblast are th the periosteum a fracture 1 or 2 da Chondroblastic: fracture by anot anywhere from 4 Osteoblastic: Os weeks a collagen between the mat calcium and pho increased rate of the replacement	work for animal tissue and p e most common cells of con nd surrounding tissues produ ys. Next, a soft callus made n her special group of cells c days to 3 weeks. teoblasts begin to form new matrix replaces the entire clo rix and advancing bone gro osphorous in to the wound a bone mined deposition. By the of chondroblasts by trabecul	npact bone. the extracellular matrix and collagen, the plays a critical role in the bone healing nective tissue in animals. Fibroblast from the cells energetically in to the region of mostly of collagen is created around the called chondroblasts. This stage can last trabecular bone in the marrow. After two of and chondroblasts are seen in the region wth. After a week or two the uptake of area increases which is attributed to the hird and fourth weeks the major activity is ar bone and after 5 -6 weeks the major th the deposition of compact bone.	06
2.		Attempt any FO		th the deposition of compact bone.	16
2.	(a)	Write any four h Ans: (Any four)	nistorical developments of bi		10
		Year	Author	Activity	
		600BC	Sushruta Samhita	Nose Reconstruction	
		1860 - 1870	J. Lister	Aseptic surgical techniques Developed.	
		1893 - 1912	W. A. Lane	Steel screws and plates for fracture fixation.	
		1912	W. D. Sherman	Vanadium steel plate, first alloy developed exclusively for medical use, less stress concentration and corrosion.	
		1926	E.W. Hey-Groves	Used carpenter's screw for femoral neck fracture fixation.	
		1931	M. N. Smith-Petersen	Designed first femoral neck fracture fixation nail made originally from stainless steel, later changed to vitallium.	
		1938	P. Wiles	First total hip replacement.	
		1940	M. J. Dorzee , Franceschetti	Acrylics for corneal replacement.	
		1944	W. J. Kolff	Hemodialyser.	
		1946	J. Judet and R. Judet	First biomechanically designed hip prosthesis. First plastics used in joint replacement.	04
		1952	A. B. Voorhees, A. Jaretzta, A.H. Blackmore		
		1953	A. Kantrowitz	Intraortic balloon pumping.	
		1958	J. Charnley	First use of acrylic bone cement in total hip replacements.	
		1958	S. Furman, G. Robinson	First successful direct stimulation of	

			heart.	
	1960	A. Starr, M. I. Edwards	Heart valve.	
	1980	W. J. Kolff	Artificial heart.	
	1700	Table: Historical develo		
(b)	Describe the st	ess-strain curve for ductile		
	Ans: Description The x-ax cross-sectional material to with and shear tests constructed by H a solid can be regions. In the e whereas in the stress. Further y original shape b deformation. Th point is reached The peak the final stress Hardness is the of indention or withstand high s	on of the stress-strain curve is represent strain and y-axis area and strain is change in stand static load can be det s. From a load-displaceme mowing cross-sectional area demarcated by the yield po- lastic region, the strain increa- plastic region strain change when the applied stress is r ut will be permanently defor- te peak stress in fig. is often where the material ruptures. stress is called as the tensile where failure occurs is ca- measure of plastic deformat penetration and thus has the tresses and will undergo cor-		04
(c)	Ans: Applications of 1. The imp 2. High den 3. Dental in 4. Orthoper shaft, sh 5. Reconstr 6. Porous a Properties of A 1. Chemica 2. It is inso	Lic uses of alumina consist bulders, radius, vertebra, leg uctive maxillofacial surgery lumina is also used in teeth r lumina (Any two) lly stable and excellent corro luble in water & slightly solu	n purified alumina. bearing hip prostheses. of hip & knee joints, tibial plates, femur lengthening spacer & ankle joint prosthesis. to cover bone defects. oots.	02
	6. Good bio 7. High we	hardness. mechanical strength ocompatibility. ar resistance & reasonable st	•	02
(d)	Ans: Properties of C 1. The carb 2. In the qu and the p		lls. gree of perfection of the crystalline structure of the crystallites and pores are important in	02

	 3. All the carbons, curren crystalline turbostatic s 4. Carbon has good bioco 5. It also has high streng not suffer from fatigue 	structure. ompatibility with bo th and an elastic m	ne and other tiss	ues.	
	Property	Graphite	Glassy	Pyrolytic	
	Density (g/ml) Elastic modulus (GPa) Compressive strength (MPa)	1.5-1.9 24 138	1.5 24 172	1.5–2.0 28 517 (575ª)	
(e)	TablApplications of Carbon: (Am1. Carbon coatings find percutaneous devices blood.2. Percutaneous carbon of been used for the chr stimulation of the visu.3. LTI carbon deposited in restorative dentistry4. The ability of carbons	e: Mechanical pro by four) wide applications because of exception levices containing found onic stimulation of al cortex to aid the bound on preformed graph to absorb proteins buting to the blood tical surface tension activation is found to lives are most widel	perties of carbo in heart valves onal compatibilit high-density elect f the cochlea for olind. hite substrates or without alterati l compatibility of and blood adhes to be least with o	n s, blood vessel grafts, y with soft tissues and etrical connectors have r artificial hearing and r metal implant is used on is thought to be an f carbon surfaces. This sion.	02
	Ans: The rhythmic beating of area of specialized tissue in the arterial node. In abnormal se becomes unreliable or if the blocking by damaged tissues, gets disturbed. When monitore and changes in the ECG waves the heart muscle, it is possible electronic instrument called a	of the heart is due the right atrium of the ituation, if this nat triggering pulse do the natural and nor ed, this manifests it form. By giving exector regulate the heat	he heart. This ar atural pacemaker bes not reach he mal synchroniza self through a de ternal electrical s	ea known as the Sino- cases to function or eart muscle because of tion of the heart action ecrease in the heart rate stimulation impulses to	04
(f)	Draw any two self-tapping d	*			
	Ans: (Any two)	: Self-tapping den			04



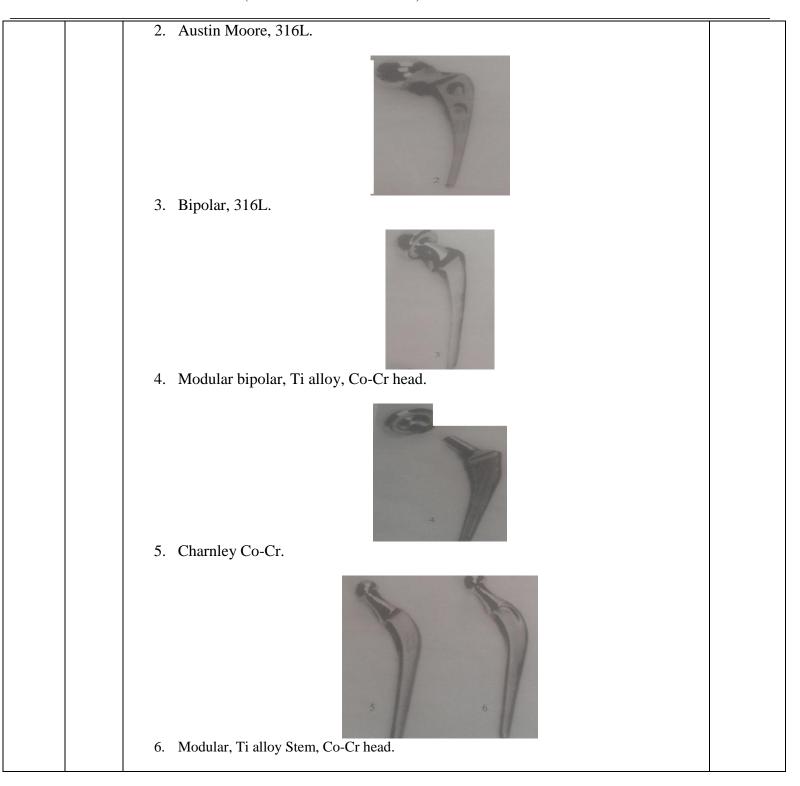
3.		Attempt any <u>FOUR :</u>	16
	(a)	Explain the contact angle method.Ans :When a liquid drop is placed onto a solid surface or another liquid surface two things may happen. The liquid may sit on the surface in the form of a droplet or it may spread out over the entire surface. Which event occurs depend on the interfacial free energies of the two substances. At equilibrium contact angle or Young-Dupree equation describes $\gamma s/g = \gamma s/l + \gamma l/g \cos \theta$ where $\gamma s/g$, $\gamma s/l$ and $\gamma l/g$ are the interfacial free energy between the solid and gas; solid and liquid, liquid and gas respectively and θ the contact angle.Yus Yus Fig. 2.8 Contact angleFig: Contact angle between the liquid and solid surface	04
	(b)	Give the meaning of thermal treatments and sterilization. Ans : Thermal Treatments: Process in which a metal is heated to a certain temperature and the cooled in a particular manner to alter its internal structure for obtaining desired degree of physical and mechanical properties such as brittleness, hardness, and softness.	02
		Sterilization:- Sterilization is a term referring to any process that eliminates or kill all forms of life, including transmissible agents such as fungus, bacteria, viruses, spare forms etc.present on a surface.	02
	(c)	 Give four application of collagen. Ans : Collagen is used for prevention of oral bleeding. It is used to support of regeneration of periodontal tissues. It is used for promotion of healing of mucosal lining. 	
		 4. It is also used for prevention of migration of epithelial cells. 5. Collagen has also been used as a carrier substance for immobilization of various active substances used in dentistry. 6. Dressing materials containing collagen have been employed effectively to promote of defects in oral mucous membrane. 	04

	Material	Observation	
	Collagen	Collagen sponges decreased seepage of blood during periodontal mucoginvival surgery	
	Collagen	Collagen membranes have capacity to support regeneration of periodontal	
	Collagen gel-allogeneic bone	tissues Collagen gel-allogeneic bone implant encouraged ingrowth of regenerative tissue and new bone	
	Collagen tricalcium phosphate	Collagen-tricalcium phosphate grafts resulted in less soft tissue recession	
	Collagen coated root implants	Long lasting retention of collagen coated acrylic root implants	
	Collagen solution	Collagen solution applied to root surface suppressed epithelial	
	Collagen graft	migration and new tissue formation Collagen graft promoted formation of normal mucous membrane	
	Collagen allogenic bone	Bone collagen grafts reduced probing depths and gained new attachment	
	Collagen solution	Application of collagen solution to root surface suppressed epithelial migration and promoted new	
	Collagen film + tetracycline	cementum formation Topical administration of tetracycline on a collagen film remains active for two to three weeks	
	Table: Use of co	llagen in dentistry	
(d)	List prosthetic heart valves and draw any	y two.	
	Ans : (List-02 Mark, Diagram-02 Mark)		
	1. Disk –in-cage prosthetic heart valve.		
		and the second sec	
			04
			04
	the set		
	2. Ball-in-cage prosthetic heart valve.		
	3. Tilting disk.		

force generated by the muscles in the limbs are very large ,femoral and tibial plates must be very strong. One major drawback of the healing by rigid plate fixation is the weakening of the underlying bone such that refracture may occur following removal of the plate. This is largely due to the stress shield effect. Therefore new material are being evaluated for fabrication of plates with a low axial stiffness and moderate bending and torsional stiffness to facilitate fracture healing without bone atrophy. Another approach is to use a resorbable material for bone plate. As the strength of the fracture site increases due to healing processes, the resorption of the implant begins to take place. The gradual reduction of strength of implant transfers an increasingly larger percent of the load to the healing bone .The degration products of such plates must be biocompatible .the design aspect must involve producing the appropriate combination of initial strength and time dependent performance through the variation in absorption rate and microstructure.

There is no need for second operation in removing these plates.

4.	(A)	Attempt any <u>THREE</u>	12
	(a)	Explain the crystal structure of solids. Ans :	
		There are three basic crystal structures.	
		1. Simple cubic has an atom located at each corner.	
		2. Body contend which has an additional store at the Conten of which	04
		2. Body centered cubic has an additional atom at the Centre of cubic.	
		Cubic body centered (bcc)	
		3. Face centered cubic has an additional atoms on each centre of face plane.	
		Cubic face centered (fcc)	
	(b)	Give four applications of acrylic polymer.	
		Ans:	
		Applications of acrylic polymers :1. It is used extensively in medico-surgical application as contact lenses.	
		 Implantable ocular lenses. 	
		3. Bone cement for joint fixation.	04
		4. Dentures and maxillofacial prostheses.	
		5. It is used for treatment for coxarthropathy & in hip arthroplasties.	
		6. It is suitable for the repairs of cranial defects.	
	(c)	Describe the structure of Heart.	
		Ans:	
		right atrium	
		pulmonary valve tricuspid valve right ventricle right ventricle HEART CROSS SECTION	
		Fig: Structure of beart	
		Fig: Structure of heart	

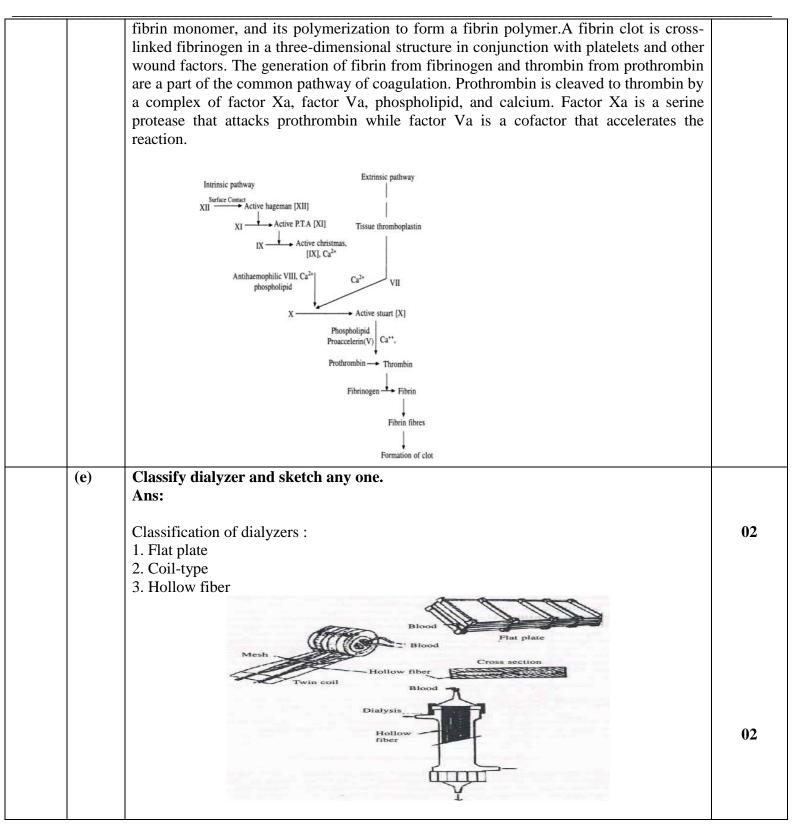


	through the he example by a c heart's ability	eart that repeats i disturbance in the to pump properly	gs. The pumping actions tself in a cycle. If this he heart's rhythm known y. The heart has four tricles). The normal t	s electrical activity on as an 'arrhythm chambers - two	ity is disrupted - for nia'- it can affect th at the top (the atria	e e
(d)	from the heart diagram, right contract and impulse then p (atrio-ventricu muscle to cont	t's natural pacem). The SA node s to pump blood basses to the vent lar node). This e	aker, the SA node, we sends out regular elec- into the bottom chan ricles through a form electrical impulse spre- blood to the lungs an	which is in the to trical impulses c mber (the ventri of 'junction box' eads into the ven	op chamber (see the ausing the atrium to cle). The electricate called the AV nod	e o ll e
(4)	Ans :	Fire Proj				
		Direction of	test Modulus of elasticity (Gpa)	Tensile strength (Mpa)	Compressive strength (Mpa)	
	Leg bones Femur Tibia	Longitudin	al 17.2 18.1	121 140	167 159	04
	Fibula Arm bones Humerus	Longitudin	17.2	146 130	123 132	
	Radius Ulna Vertebrae	Longitudin	18.6 18.0 al 0.23	149 148	114 117	
	Cervical Lumbar Spongy bon Skull	e Tangential	0.25 0.16 0.09 -	3.1 3.7 1.2	10 5 1.9	
		Radial	: Mechanical proper	ties of bone	97	
(B)	Attempt any	ONE.				00
(a)	restoration. Ans : Enamel and de	entine forms the 1	and dentine and li major part of the teeth el and dentin are : Compressive Strength (MPa)		sed for filling and Thermal conductivity	
					(W/mk)	02
	Enamel Dentin	2.2 1.9	241 138	48 13.5	0.82 0.59	

	Dental filling material :	02
	1) Gold foil.	
	2) Platinum	
	3) Aluminum:	
	4) Tin and iron.	
	5) Lead and tungsten.	
	Dental restoration material:	
	1) Amalgam: is a metallic filling material composed from a mixture of mercury (from	02
	43% to 54%) and powdered alloy made mostly of silver, tin, zinc and copper, commonly	
	called the amalgam alloy.	
	2) composite resin : (also called white fillings)	
	3) Glass Ionomer Cement.	
	4) Resin modified Glass-Ionomer Cement (RMGIC)	
(b)	Explain total hip replacement and draw any two total hip replacement devices.	
	Ans:	
	Explanation :	
	A hip replacement consists of femoral component that is a ball mounted on a	
	shaft & an acetabular component having a socket into which ball is placed. Cobalt -	
	Chromium & Titanium-Aluminum-Vanadium alloys or alpha alumina are used by different manufacturer for the femoral component & high molecular weight polyethylene	
	to cover the socket. Several design types with different stem lengths are available.	02
	Boutin (1974) had reported several hundred successful clinical cases using a ceramic ball	
	on a metallic stem femoral component & a matching alumina acetabular component.	
	Boutins devices were all fixed in the bony tissues with standard PMMA cement.	
	Subsequently the HDHMW polyethylene cups were introduced along with ceramic balls	
	attached to metallic stem. The number of alternative combinations of materials use in	
	total hip replacement include Metal- Metal, Metal- HDHMW polyethylene, Ceramic-	
	HDHMW polyethylene, Ceramic- Ceramic.	
	Types of total hip replacement devices. (any 2)	
	1 Thompson 2161	
	1. Thompson, 316L.	
		02
		marks
		each

Attempt any FOUR 16 (a) List molecular bonds and sketch any two. Ans:-(List -02 Marks , Sketch-02 Marks) i) Octament bonds iii) Covalent bonds iii) Covalent bonds iii) Van der waals iv) Hydrogen v) 00 v) Ionic Image: Covalent bonds iii) Covalent bonds ii				7	>			
$(b) \begin{array}{ c c c c } \textbf{Ans:-}(List -02 Marks, Sketch-02 Marks) \\ i) Metallic bonds \\ ii) Covalent bonds \\ iii) Van der waals \\ iv) Hydrogen \\ v) Ionic \\ \hline \\ $	5.	Attempt any <u>FOU</u>	<u>JR</u>					1
(b) State composition of stainless steel and give its two applications. Atom - A Atom - B A	(a)	Ans:-(List -02 Ma i) Metallic bo ii) Covalent bo iii) Van der wa iv) Hydrogen	arks , Sketch-02 onds onds	-				0
$\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $		Covalu		Metallic		(++ (+) 10	(-++) (-++) onic	
Ans:- Composition of stainless steel: Table 3.2 Composition of austenitic stainless steels (balance % iron)* AISI %C %Cr %Ni %Mn % other elements Of 301 0.15 16-18 6-8 2.0 1.0 Si 304 0.07 17-19 8-11 2.0 1-Si 316, 18-8sMo 0.07 16-18 10-14 2.0 2-3 Mo, 1.0 Si 316L 0.03 16-18 10-14 2.0 2-3 Mo, 0.75 Si, 430 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo Applications of stainless steel : 400 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo 400 F 400 F 1.0 Si, 0-6 Mo 400 F 400 F 1.0 Si, 0-6 Mo 400 F 400 F 1.0 Si, 0-6 Mo 400 F 400 F 1.0 Si 1.0 Si 1.0 Si		+ - Attract High density clouds	tion High densi	ity		— Hydroger	1 Bond	
301 0.15 16-18 6-8 2.0 1.0 Si 304 0.07 17-19 8-11 2.0 1-Si 316, 18-8sMo 0.07 16-18 10-14 2.0 2-3 Mo, 1.0 Si 316L 0.03 16-18 10-14 2.0 2-3 Mo, 0.75 Si, 430 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo	(b)	Ans:-	ainless steel:	_		_		
301 0.15 16-18 6-8 2.0 1.0 Si 304 0.07 17-19 8-11 2.0 1-Si 316, 18-8sMo 0.07 16-18 10-14 2.0 2-3 Mo, 1.0 Si 316L 0.03 16-18 10-14 2.0 2-3 Mo, 0.75 Si, 430 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo		AISI	%C	%Cr	%Ni	%Mn	% other elements	
304 0.07 17-19 8-11 2.0 1-Si 316, 18-8sMo 0.07 16-18 10-14 2.0 2-3 Mo, 1.0 Si 316L 0.03 16-18 10-14 2.0 2-3 Mo, 0.75 Si, 430 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo		301	0.15	16-18	6-8	2.0	1.0 Si	0
316L 0.03 16-18 10-14 2.0 2-3 Mo, 0.75 Si, 430 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo			0.07	17-19		2.0	1-Si	
430 F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo Applications of stainless steel :			0.07					
Applications of stainless steel :		316, 18-8sMo	0.02	10-10				
1. Stainless steel ate basically used in orthopedic implants, the major uses include		316, 18–8sMo 316L			1.0-1.5	1.5	1.0 S1, 0-6 MO	
fracture fixation and joint replacement		316, 18-8sMo 316L 430 F Applications of st	0.08 ainless steel :	16-18				

	2. They are used in replacement of hip joints, ankle joints, knee joints, leg lengthening	
	spacers, intramedullary pins, femur shafts, bone plate etc.	
	3. The uses of these alloys for fabrication of mandibular staple bone plates, heart valves	
	and many devices with neurosurgical application have been investigated.	
(c)	Give four properties of Titanium based alloy.	
	Ans:	
	1. Titanium alloy is a light metal.	
	2. Density 4.505 g/cm cube at 25 Degree Celsius.	
	 Melting point of titanium is about 1665 Degree Celsius. 	04
	4. Commercially alloyed titanium grades can range from a tensile strength as low as	U-I
	600 MPa (such as Ti-3A1-2.5V) to a tensile strength as high as 1250 MPa.	
	5. They have extraordinary corrosion resistance and the ability to withstand	
	extreme temperatures.	
(d)	Write meaning of temperary fixation devices using two examples	
(d)	Write meaning of temporary fixation devices using two examples. Ans: Temporary fixation of joints can be achieves by implementing temporary fixation	
	devices. The purpose of temporary fixation devices is to stabilize fractured bone until	
	natural healing processes have restored sufficient strength so that the implant can be	02
	removed.	
	Examples:	
	These devices include pins, nails, wires, screws, plates, and intramedullary devices.	
	1. Bone plates are used for joining bone fragments together during healing of load-	
	bearing bones. The plate provides rigidity for the fixation of the fracture.	02
	2. Screws are used with the plates to secure them to the bone.	
(e)	Explain process of metallic corrosion.	
	Ans: Metallic implants fail due to corrosion, releasing significant concentration of	
	corrosion product into solution. Reactions of metals with aqueous environments are	
	electrochemical in nature involving the movement of electron to the cathode. For	
	implanted metals in aqueous environment with dissolved oxygen the primary anodic and	
		04
	cathodic reactions are represented by equations (1) and (2) respectively. $M \rightarrow M^{n+} + ne^{-}$ (1)	04
	$M \longrightarrow M^{n+} + ne^{-}$ (1)	
	$\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$ (2)	
	These primary corrosion products react with tissue fluids, dissolved gases, inorganic and	
	organic ions.	
	The cervices between components ,wounds etc, can have extremely low oxygen	
	concentration leading to cathodiac reaction of water as given in equation (3)	
	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (3)	
	Thus most corrosion in metals occurs through the oxidation process at anode.	
	The metals with the positive potential are the noble metals which are least reactive	
	- I (callodiac). The corrosion rate is directly related to the current now between the anote it	
	(cathodiac). The corrosion rate is directly related to the current flow between the anode and cathode. The variation in the oxygen concentration over the surface in the	
	and cathode. The variation in the oxygen concentration over the surface in the	



		Anode Fe ⁺⁺ Cathode OH ⁻ e ⁻ + 0 ¹ / ₂ + H ₂ O Iron Fig. 3.3 Schematic illustration of electrochemical cell set up between anodic and cathodic sites on an iron surface undergoing corrosion.	
		Give four materials used for joint replacement. Ans: The following biomaterials used in total joint replacement :	04 01 mark each
6.		Polycarbonate-carbon Polysulfone-Kevlar Polycarbonate-Kevlar	16
(a	ı)	Sketch labeled structure of typical bone. Ans:	
		Endosteum Cancellous bone Or Cortical bone Alveolar	04

(b)	State the importance of eye shield.		
(0)	Ans:		
	These are used in the treatment of basement membrane associated diseases, corneal		
	abrasion and erosion, epithelial defects, cataract extraction, penetrating keratroplasty	04	
	and other diseases that cause eye inflammation.	04	
(c)	Give four materials and two applications of contact lenses.		
(0)	Ans:		
	(Any four materials of the following)		
	The materials used for construction of contact lenses can be classified as rigid ,		
	elastomeric and hydro gel.		
	- Rigid lenses can be subdivided into non oxygen-permeable polymethyl methacrylate		
	lenses and oxygen permeable lenses which include five types; cellulose acetatelbutyrate,		
	siloxanyl alkyl methacrylate, silicone resin, alkyl styrene and fluorocarbon polymers.	02	
	Of the oxygen-permeable rigid contact lens materials, the lenses with the widest		
	distribution are those made of siloxanyl- alkyl methacrylate copolymers with methyl		
	methacrylate. Methacryloyl oxypropyl-tris (trimethylsilyl)-siloxane (TRIS) is a typical		
	siloxanyl alkyl methacrylate used in the manufacture of oxygen-permeable rigid lenses		
	as a comonomer with methyl methacrylate and other minor ingredients.		
	- Elastomeric lenses are of two types, silicone rubber and acrylic rubber. Most silicone		
	rubber contact lenses are made of crosslinked poly (methyl-phenyl-vinyl siloxanes)		
	which has highest oxygen permeability of all contact lens materials. The acrylic rubber		
	contact lenses are usually made of crosslinked copolymers of n-butyl acrylate with n-		
	butyl methacrylate.		
	- Hydrogel lenses, also known as soft contact lenses, can be classified as of low,		
	medium and high water content. Most low water-content hydrogel contact lenses are		
	made from cross linked 2-hydroxyethyl methacrylate polymer. Other type of low-water		
	content hydrogen contact lenses, which are most resistant to surface contamination than		
	other hydrogel lenses, are made of crosslinked copolymers of glyceryl methacrylate and		
	methyl methacrylate. Medium and high-water-content hydrogel lenses usually consist of		
	copolymers of vinyl pyrrolidine with 2-hydroxyethyl methacrylate or methyl		
	methacrylate. Another comonomer used in low and medium water content hydrogel		
	contact lens materials is dialkyl-acrylamide.		
	Application:	03	
	i) Contact lenses used for correction of ametropias.	02	
	ii) Contact lenses used to improve the appearance of damaged eyes.		
	iii) Contact lenses used to change or enhance color.		
(d)	Explain mechanism of blood clot.		
(u)	Ans:- A clot that has formed inside a blood vessel is referred as a thrombus or an		
	embolus depending on whether the clot is fixed or floating, respectively. Two separate		
	routes for activation of the cofactors leading to blood clotting are known as the extrinsic		
	and intrinsic pathways. The extrinsic pathway is so named because it requires a		
	substance not normally present in the blood for activation. Tissue factor is a lipoprotein		
	found in the endothelial cells that line the vascular system and other organs. Damage to		
	tissues or vessels releases tissue factor, which activates factor VII to VIIa in the presence		
	of calcium. Factor VIIa is a protease that converts factor X to Xa. All the factors in the		
	intrinsic pathway are available in circulation. Factor XII undergoes a conformational		
	change when exposed to collagen, basement membrane or a variety of other foreign		
	surfaces. Once activated XIIa initiates a series of reactions. The central event in clotting		
	is the cleavage of fibrinogen in the presence of the proteolytic enzyme thrombin to a	04	

