11718 3 Hours / 100 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE:

 $5 \times 4 = 20$

- (a) Explain hysteresis and dead zone effect on a measuring instrument.
- (b) State and explain working principle of potentiometer.
- (c) What are the laws of thermocouple? State & explain any two laws.
- (d) Explain working of Rotameter with neat sketch.
- (e) State the different materials used for strain gauge. Define gauge factor.
- (f) Compare hydraulic and electronic control systems.
- (g) What is transducer? Classify the transducer.

[1 of 4] P.T.O.

17528 [2 of 4]

2. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) Differentiate between accuracy and precision.
- (b) State and explain observation errors and operational errors in measurement.
- (c) Explain construction and working principle of Mcleod Gauge.
- (d) State and explain with neat sketch working of LVDT.
- (e) Explain working of bimetallic thermometer and state its two applications.
- (f) Explain working principle of temperature measuring instrument for temperature upto 2200 °C.

3. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) State and explain significance of overshoot and Fidelity for measuring instrument.
- (b) Explain capacitive transducer with one application.
- (c) Explain pressure measurement using thermal conductivity gauge with neat sketch.
- (d) Explain construction and working of photo-electric pressure transducer.
- (e) Explain working principle of pressure thermometer with neat sketch.
- (f) Explain construction and working of RTD.

17528 [3 of 4]

4. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) Explain with neat sketch pressure measurement using Bourdan tube.
- (b) Explain temperature measurement using thermistor.
- (c) Explain flow measurement using electromagnetic flow meter with neat sketch.
- (d) State and explain construction and working of hot wire anemometer.
- (e) Explain the instrument used for the measurement of humidity.
- (f) Explain float and resistance type instrument used for liquid level measurement.

5. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) State and explain working of turbine meter.
- (b) Explain working of ultrasonic flow meter.
- (c) Explain with neat sketch eddy current dynamometer.
- (d) Explain bonded type of strain gauge with neat sketch.
- (e) Explain feed back control system and state its two examples.
- (f) Explain control system used for motor speed control.

6. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) Explain servo motor mechanism with neat sketch. State its application.
- (b) Explain with suitable example and with block diagram feed forward control system.
- (c) What are the different control actions? State its significance.

P.T.O.

17528 [4 of 4]

- (d) Differentiate between open loop and close loop control system.
- (e) Explain with necessary sketch inductive type pick up tachometer used for speed measurement.
- (f) A pressure gauge having a range of 500 kN/m^2 has a guaranteed accuracy of 1.5% of full scale deflection. What would be the possible readings for a true value of 95 kN/m^2 ?