GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: METROLOGY & INSTRUMENTATION (Code: 3341905)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering,	4 th Semester
Mechatronics Engineering	

1. RATIONALE

The students of Mechanical Engineering branch are basically concerned with manufacturing various machine components in shops as per given drawing. Today the industrial processing and manufacturing techniques have become complex and complicated and their control is very much difficult by human judgment only. Therefore, the exact and precise measurements are the basic need of the industries. This course of Metrology & Instrumentation, therefore, provides required knowledge and skills and creates self confidence in students so that they can work on shop floor independently for accurate and precise measurements and manufacturing.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Select and use appropriate analog and digital measuring and gauging instruments for a given manufacturing situation

3. COURSE OUTCOMEs (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Measure the given mechanical elements and assemblies using linear and angular analog /digital measuring instruments.
- ii. Check geometrical accuracy of given application.
- iii. Explain surface roughness checking instruments.
- iv. Measure and derive important dimensions of various thread forms and gears.
- v. Select and use non destructive testing methods.
- vi. Check the dimensions using the gauges.
- vii. Select and measure variables using appropriate sensors and transducers.

4. **TEACHING AND EXAMINATION SCHEME:**

	Examination Scheme				Total Credits	cheme	ching S	Teac
Total Marks	Marks	Theory Marks Practical M		(L+T+P)	rs)	In Hou	(
	PA	ESE	PA	ESE	С	Р	Т	L
200	60	40	30	70	8	4	0	4

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in	
	cognitive domain)	
Unit – I	1a. Distinguish between accuracy,	1.1 Inspection, quality and quality control-definitions and differences.
	precision and	1.2 Define accuracy, precision and error.
Linear and	error.	1.3 Principle of vernier scale and least
angular	1b.Determine least	count.
measurement	count of given	1.4 Surface plates-types, important
	measuring	features, standards/important sizes,
	instrument	applications and precautions in use.
	1c. Select suitable	1.5 Types, constructional sketch, major
	linear measurement	parts and their functions, least count,
	instrument and	measuring methods and measurement
	measure the linear	illustration (for e.g. 12.48mm)of:
	dimension of given	i. Vernier caliper.
	component.	ii. Micrometer.
		iii. Telescopic gauge.
		iv. Height gauge.
		v. Depth gauge.
	1d. Describe the	1.6 Slip gauge-types, applications, and
	procedure for	wringing method.
	wring the slip	
	gauge and set given dimension.	
	1e.Select suitable	1.7 Sketch, major parts and their
	angular	functions, least count, measuring
	measurement	methods and measurement illustration
	instrument	of:
	1f. Describe the	i. Bevel Protector.
	measurement	ii. Sine bar.
	procedure for the	iii. Angle gauges.
	angular dimension	iv. Angle Dekkor.
	of given	v. Spirit level.
	component.	vi. Clinometers.
		vii. Auto collimator.
		1.8 Calibration – concept and need.
	2a. Explain working	2.1 Dial indicators/gauge-types,
Unit – II	of dial indicators.	constructional sketch and
		applications.

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in	Topics and Sub topics
	cognitive domain)	
Measurement of	2b.Select the	2.2 Definition, symbol and measuring
geometrical	measuring method	methods of:
tolerances	and describe the	i. Straightness.
	measurement	ii. Flatness.
	procedure for	iii. Squareness.
	geometrical	iv. Parallism.
	tolerance of given	v. Perpendicularity.
	part/assembly.	vi. Roundness.
	F	vii. Concentricity.
		viii. Cylindricity.
		ix. Run out and ovality.
	3a. Define various	3.1 Terminology used in connection with
Unit – III	terminology used	surface finish.
	for surface	3.2 Comparison methods to inspect
Measurement of	roughness.	surface finish-concept and
surface	3b. Explain working	applications.
roughness	of direct	3.3 Direct instrument measurement
	instrument	methods-types and concepts.
	methods.	3.4 Construction, working and
		applications of Talysurf surface
		roughness tester and Tomlinson
		tester.
	3c. Determine surface	3.5 Centre line average and Root Mean
	roughness of given	Square systems of surface texture
	data.	evaluation-terminology used,
		concept, equations and numerical
		examples.
		3.6 Indication of various surface
		roughness characteristics with surface
		roughness symbols-interpretation.
	4a. Define various	4.1 Types of gears.
Unit – IV	terms used for gear	4.2 Forms of gear teeth-types and
	nomenclature.	concept.
Gear and thread	4b.Use gear tooth	4.3 Gear tooth Terminology.
measurement	vernier to measure	4.4 Sketch, major parts and their
	gear tooth	functions, least count, measuring
	thickness.	methods and measurement illustration
		of gear tooth vernier.
		4.5 Derivation and numerical example to
		measure gear tooth thickness using:
		i Gear tooth vernier.
		ii Constant chord method.
		iii Base tangent method.
	4c. Explain working	4.6 Gear tooth profile measurement.
	of profile projector.	

	Major Learning		Topics and Sub-topics
Unit	Outcomes (in		Topics and Sub-topics
	cognitive domain)		
	4d. Define various	4.7	Threads-classification, elements,
	terms used for		specifications and forms.
	thread	4.8	Measurement of major and minor
	nomenclature.		diameters.
	4e.Determine best	4.9	Three and two wire method of
	wire size.		measuring effective diameter of
	4f. Use two and three		external thread-concept, terminology
	wire methods to		used, best wire size, derivation of
	determine effective		equation and numerical example.
	diameter of thread.	4.10	Thread micrometer-sketch, method
	4g.Describe method		to use and determination of
	for measuring the		dimension.
	pitch of given	4.11	Pitch measurement methods.
	thread.		
	5a. Select and check	5.1	Limit gauges-classification, sketch
Unit – V	the given		and applications.
.	dimension using	5.2	Comparators-concept, types and
Limit gauges,	limit gauge.		applications.
Transducers and	5b. Define static	5.3	Instrumentation-introduction,
sensors	characteristics of	5 4	performance characteristics.
	instruments.	5.4	Static characteristics of instruments.
	5c. Explain various	5.5	Transducers-concept, classifications,
	transducers and		physical quantities which can be
	sensors.		measured, advantages and
			disadvantages.
		5.6	Electrical transducers-types,
			working principles and applications.
			i Linear Variable Differential
			Transformer (LVDT) type
			pressure gauge.
			ii Resistance type.
			iii Capacitance type.
			iv Inductance type (LVDT).
			v Piezo-electric.
		5.7	Sensors- classification and
	Co Evaloia	<u>(1</u>	applications.
TT	6a. Explain various	6.1	Non destructive testing (NDT) -
Unit – VI	non destructive	60	concept, need and advantages.
Non destructive	testing methods.	6.2	NDT- important methods, working
			with sketch and applications.
testing			

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Unit – VII Temperature, pressure and flow measurement	7a. Select and describe the method for using appropriate temperature measuring device to measure temperature of given hot body.	 7.1 Introduction. 7.2 Classification, working principle, construction, working, advantages, limitations and applications of temperature measuring devices: Mercury in glass Mercury in glass thermometer. Bimetallic thermometer. Resistance thermometer. Thermister. Thermocouple. Radiation pyrometers.
	7b.Select and describe the method for using appropriate pressure and flow measuring device to measure pressure/flow.	 7.3 Pressure measurement scales. 7.4 Types and applications of manometers (only list and applications). 7.5 Working principle, construction, working, advantages, limitations and applications of pressure measuring devices: i. Bellows type pressure gauge. ii. Diaphragm type pressure gauge. iii. Bourdon tube pressure gauge. iv. Dead weight piston gauge. 7.6 Concept of transducer based pressure measuring devices-resistance type, capacitance type and inductance type. 7.7 Classification of flow measuring devices. 7.8 Working principle, construction, working, advantages, limitations and applications of volumetric flow measuring devices: i. Bellows type. ii. Rotating impeller. iii. Rotating lobs. iv. Nutating Disc. v. Reciprocating piston. vi. Obstruction.

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
		devices: i. Pitot tube. ii. Orifice meter. iii. Rota meter.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distri	bution of I	Theory M	arks
		Teaching Hours	R Level	U Level	A Level	Total Marks
Ι	Linear and angular measurement	10	06	04	04	14
II	Measurement of geometrical tolerances	06	02	02	03	07
III	Measurement of surface roughness	06	02	02	03	07
IV	Gear and Thread measurement	12	04	04	06	14
V	Limit gauges, transducers and sensors	08	02	04	05	11
VI	Non destructive testing	06	02	02	03	07
VII	Temperature, pressure and flow measurement	08	03	03	04	10
Total		56	21	21	28	70

Legends: R = Remembrance; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- **a.** If midsem test is part of continuous evaluation, unit numbers I (Up to 1.6 only), II, III and VII (Up to point number 7.6 only) are to be considered.
- **b.** Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of

certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Hrs. requi red
1	I	 Preperatory Activity: a. S.I. basic, supplementary and derived units and their conversions. Convert given length, area and volume from one unit to another. (From mm to cm and m, from mm to inch, from m to yard and foot, from mm² to inch² and vice-versa, mm³ to inch³ and vice-versa ,etc.). b. Convert given degree to radian and vice-versa. c. Various drafting, surface finish and geometrical symbols. d. Define axis, axes, centre, angles, plane, solid angle. 	02
2	Ι	 Linear And Angular Measurement: Each student will select and bring at least such five mechanical components which will have use of instruments specified below. Same are to be approved by teacher. After approval, student will: a. Sketch each component. b. Sketch and label main parts of instruments to be used. c. Calculate least count of the instrument/s to be used. d. Measure and record applicable dimensions of each component using: i. Vernier calliper. ii. Inside micrometer. iv. Telescopic gauge. v. Height gauge. vi. Depth gauge. vii. Bevel protector. 	14
3	Ι	Sine Bar: Measure angle between two planes with the help of sine bar and slip gauges.	02
4	Π	 Straightness: a. Sketch the part and setup, list the instruments used, list the steps followed and record the observations for checking straightness. b. Plot straightness observations on graph paper. 	02
5	II	Flatness: Sketch the part and setup, list the instruments used, list the steps followed and record the observations for checking flatness.	02

6IISquareness, Perpendicularity And Parallity: Sketch the part and setup, list the instruments used, list the steps followed and record the observations for checking following. a. Squareness. h Demendicularity and Demelling	
6 II followed and record the observations for checking following. a. Squareness.	0.5
a. Squareness.	
-	02
b.Perpendicularity and Parallity.	
Roundness, Cylindricity, Concentricity, Run Out And Ovality:	
a. Sketch the part and setup, list the instruments used, list the	
7 II steps followed and record the observations for checking	02
roundness, cylindricity, concentricity, run out and ovality.	
b. Prepare polar graph for roundness observations.	
Surface Roughness:	
a. Tabulate machining processes, and roughness values (Ra,	
mm), roughness grade number and roughness symbol.	
b. Demonstrate various surfaces having different roughness	
8 III values.	04
c. For given component, sketch the component, judge the	
roughness of surfaces and show surface roughness symbols	
on applicable surfaces.	
d. Measure surface roughness value of given machined surface.	
Gear Measurement:	
a. Sketch gear tooth nomenclature.	
b. Sketch gear tooth vernier and label each part.	
9 IV c. Calculate chordal thickness and height of given gear.	02
d. Determine tooth height.	
e. Measure and compare chordal thickness of given spurs gear	
using gear tooth vernier.	
Thread Measurement:	
For given external threaded part:	
a. Draw nomenclature for ISO screw threads (Internal and	
external both).	
b. Explain and derive best wire size.	
10 IV c. Sketch the part and show the dimensions to be measured.	04
d. Sketch the set up and instruments used to measure/derive	04
major diameter, minor diameter and effective diameter using	
two wire and three wire methods.	
e. Measure the pitch.	
f. Use threaded ring gauge.	
g. Record observations.	
Limit Gauges:	
a. Demonstrate use of various limit gauges.	
11 V b. Select appropriate limit gauge for given dimension/part and	02
check the dimension with gauge.	
c. Record your observations.	
Demonstration of Transducers and Sensors:	
a. Demonstrate electrical (LVDT type, resistance type,	
capacitance type, inductance type and piezo-electric.)	
12 V transducers and various sensors.	04
b. Sketch each demonstrated transducers and sensors and	
tabulate specifications, range, resolution and applications of	
each.	
each.	

	[
10		Non Destructive Testing:	
13	VI	a. Demonstrate ultrasonic testing of NDT.	02
		b. Observe and interpret X ray test of any weld joint.	
		Temperature Measurement:	
		a. Sketch the set up and constructional sketch of thermocouple	
14	VII	used to measure temperature.	02
	V 11	b. Measure the temperature of hot body/hot liquid with	02
		thermocouple.	
		c. Record the observation.	
		Pressure Measurement:	
		a. Sketch the set up and constructional sketch of pressure gauge	
15	VII	used to measure pressure.	02
		b. Measure the pressure with pressure gauge.	
		c. Record the observation.	
		Flow Measurement:	
16	VII	a. Sketch the set up and venture meter used to measure flow.	02
10		b. Measure the flow with venture meter.	02
		c. Record the observation.	
		Mini Project and Presentation:	
		a. Select actual mechanical assembly from industry/real	
		life/scrap shop/garage/etc. (made up of at least 4 to 5	
		mechanical components) and get it approved by teacher.	
		b. Measure geometrical tolerances. Sketch setup drawing to	
17	ALL	measure geometrical tolerances. Measure geometrical	06
		tolerances and record the observations.	
		c. Dismantle the assembly, sketch the parts and measure	
		dimensions. Record your observations.	
		d. Present the work including photographs and movies of actual	
		project work.	
		TOTAL	56

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. Photographs/movies of group members actually working on mini project should be allowed.
- c. Term work report content of each experience should also include following.
 - i. Reports.
 - ii. Student activities.
- d. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 2 to 3 students.
- e. For 40 marks ESE, students are to be assessed for competencies achieved. They should be given following tasks. (i and any one from ii, iii and iv.)
 - i. Measure the linear/angular dimensions and geometrical tolerances of given part/assembly.
 - ii. Measure tooth thickness using gear tooth vernier.
 - iii. Measure effective diameter of given thread.
 - iv. Explain working of transducers and sensors.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

SR.NO.	ACTIVITY
1	Visit the workshop and identify the machines and arrangements which require
1	geometrical tolerances.
2	Visit any industry / tool room and observe the working of inspection and testing
Δ	department. Also prepare the report.

9. SPECIAL INSTRUCTIONAL STRATEGIES

Sr.	Unit	Unit Title	Strategies	
No.	No.			
1	Ι	Linear and angular	Demonstrate actual instrument, video movies of	
		measurement	measuring methods.	
		Measurement of	Show actual accomplian require geometrical	
2	II	geometrical	Show actual assemblies require geometrical tolerance, show measuring methods movies.	
		tolerances		
3	III	Measurement of	Show various samples of surface textures, videos,	
3		surface roughness		
4	IV	Gear and thread	Demonstrate use of gear tooth vernier, videos.	
		measurement	Show various forms of threads, show measuring	
		mousurement	methods movies	
		Limit gauges,	Demonstrate limit gauges usage.	
5	V	Transducers and	Demonstrate actual transducers and sensors,	
5		Sensors	movies, industrial visits.	
6	VI	Non destructive	Videos, PPTs, industrial visits.	
		testing		
	VII	Temperature,	Demonstrate actual instruments, movies, industrial visits.	
7		pressure and flow		
		measurement		

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr no.	Title of Books	Author	Publication
1	Mechanical measurements	R.K.Rajput	KATSON
	and instrumentation		
2	Metrology and	Tahir	
	Instrumentation		
3	Mechanical Measurement	Sirohi R.S.,	New Age International
		Radha Krishnan H.C.	
4	Practical Engineering	K.W.B.Sdarp	Pitman
	Metrology		
5	Engineering Metrology	R.K.Jain	Khanna Publications.
6	Industrial Instrumentation	Donald A. Eckman	
7	Industrial Instrumentation	S K Singh	Tata McGrawHill
	& Control		

8	Mechanical Measurement	Beckwith & Buck	Narosa publishing
			House
9	Mechanical Measurement	D.S.Kumar	Metropolitan Book
	and Control		Pub.
10	Practical Engineering	K.W.B.Sdarp	Pitman
	Metrology		
11	Mechatronics	W.Bolten	PEARSON
12	Gear Metrology	C.A.Scoks	

(B) List of equipments:

- 1. Surface plate, 500 x 500 mm.
- 2. Vernier calliper, 100 to 200mm, least count 0.01mm.
- 3. Vernier calliper, 100 to 200mm, least count 0.01mm, digital.
- 4. Inside micrometers, least count 0.01mm, 0-25mm, 25-50mm, 50-75mm.
- 5. Outside micrometer, least count 0.01mm, 0-25mm, 25-50mm, 50-75mm.
- 6. Outside micrometer, least count 0.001mm, 0-25mm.
- 7. Telescopic gauge- 10-100mm.
- 8. Height gauge- 300mm with least count 0.01mm.
- 9. Depth gauge- 100 mm with least count 0.01mm.
- 10. Bevel protector with least count 5'.
- 11. Clinometers.
- 12. Slip gauge box-
- 13. Sine bar- 150mm, 200mm.
- 14. Straight edge, 500mm.
- 15. Feeler gauge, radius gauge, thread pitch gauge.
- 16. Dial indicators magnetic stand.
- 17. Dial indicators, least count 0.01mm.
- 18. V blocks.
- 19. Samples of various surface textures and different surface roughness.
- 20. Microprocessor- stylus-probe based surface roughness testing machine.
- 21. Microscope to compare various textures and surface roughness.
- 22. Gear tooth vernier.
- 23. Profile projector.
- 24. Set of best wires to measure thread dimensions.
- 25. Thread micrometers.
- 26. Thread pitch measuring machine.
- 27. Thread
- 28. Set of limit gauges- sorted sizes, plug gauges, thread ring gauges and snap gauges.
- 29. LVDT type, resistance type, capacitance type, inductance type and piezoelectric type transducers.
- 30. Sensors, position, proximate, velocity, force/strain,
- 31. Thermocouple.
- 32. Bourdon pressure gauge.
- 33. Venturimeter.

(C) List of softwares/ learning websites:

- a. http://en.wikipedia.org/wiki/Metrology (metrology).
- b. https://www.youtube.com/watch?v=4hlNi0jdoeQ (vernier).
- c. https://www.youtube.com/watch?v=FNdkYIVJ3Vc(vernier).
- d. https://www.youtube.com/watch?v=O8vMFFYNIfo (micrometer)
- e. https://www.youtube.com/watch?v=h98HPVuWjLA (depth micrometer)
- f. https://www.youtube.com/watch?v=SmXfGan_NXQ (telescopic gauge)
- g. http://www.authorstream.com/Presentation/007sandeepks-1858141-angularmeasurment/ (angular measurement).
- h. http://askguru.net/t-Angular-Measurement-ppt
- i. https://www.youtube.com/watch?v=aBzh6i5fQ70 (surface roughness)
- j. https://www.youtube.com/watch?v=S7SXD6sKQ-I(surface roughness)
- k. https://www.youtube.com/watch?v=eVpoJzLJa0U(surface roughness)
- 1. https://www.youtube.com/watch?v=3Od7vnoMwGg(surface roughness)
- m. https://www.youtube.com/watch?v=XnLiTPGE6pk (three wire thread measurement)
- n. https://www.youtube.com/watch?v=Gdvtw0pTAOs (thread pitch).
- o. https://www.youtube.com/watch?v=qMgXGedDffw (dial indicator)
- p. http://www.authorstream.com/Presentation/donzvasanth-1501139-unit-2linear-angular-measurement/
- q. http://en.wikipedia.org/wiki/List_of_gear_nomenclature#Addendum (gear nomenclature).
- r. https://www.google.co.in/search?q=gear+tooth+vernier+caliper&tbm=isch &tbo=u&source=univ&sa=X&ei=MIuEUsqSOsiKrQeywIFQ&ved=0CCgQ sAQ&biw=1600&bih=804 (gear tooth vernier).
- s. http://www.youtube.com/watch?v=lc4dsNvm2Ks (principle of mech. meas).
- t. http://www.youtube.com/watch?v=nv3GuJArjNU (Transducers).
- u. http://www.youtube.com/watch?v=iMIzApq1CQ0 (pressure measurement).
- v. http://www.youtube.com/watch?v=JKuoQ5FV2c8 (temperature meas.).
- w. http://www.youtube.com/watch?v=GNOI_7ftbQ0(temperature meas.).
- x. http://www.youtube.com/watch?v=7xUdPVpafyI (flow measurement).
- y. http://www.ignou.ac.in/upload/Unit-4-62.pdf (limit gauges).
- z. http://www.scribd.com/doc/55242715/8/Types-of-limit-gauges
- aa. http://www.youtube.com/watch?v=v25PCV_IJCw (sensors)
- bb. http://www.youtube.com/watch?v=QItuf6lNvmI(sensors)
- cc. http://www.youtube.com/watch?v=pOvTyvBqzgM (displacement sensors)
- dd. http://www.youtube.com/watch?v=inLkCOwVgyM (force sensors)
- ee. http://www.youtube.com/watch?v=jxv0ITAr74A(force sensors)
- ff. http://www.youtube.com/watch?v=0MP_9n08urA(force sensors)
- gg. http://www.youtube.com/watch?v=zAddvPHfKnw(force sensors)
- hh. http://www.youtube.com/watch?v=_fQSMVf3hdM (calibration).
- ii. http://www.youtube.com/watch?v=HwSxBRaxn_4(calibration).
- jj. http://www.youtube.com/watch?v=ZymDMUuVuyY (geometrical Tol.)
- kk. http://www.gobookee.org/measurement-of-geometric-tolerances-inmanufacturing/
- ll. http://www.me.metu.edu.tr/courses/me410/exp1/410exp1theory.pdf
- mm. http://www.youtube.com/watch?v=5eaSkU6Ecik (flatness measurement)
- nn. http://www.youtube.com/watch?v=1tBnpzyhVXU (measuring straightness)

- oo. http://www.youtube.com/watch?v=1JNCe9fwRUw (measuring perpendicularity)
- pp. http://www.youtube.com/watch?v=eJ8a0k8kQIE(Roundness and cylindricity)
- qq. http://www.youtube.com/watch?v=V0R5GVCxBy4 (NDT)

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

• **Prof. A. M. Talsaniya**, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.

Coordinator and Faculty Members from NITTTR Bhopal.

- Dr. K.K. Jain, Professor and Dean, Department of Mechanical Engineering.
- **Prof. C.K. Chugh**, Professor, Mechanical Engineering, NITTTR, Bhopal.