GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

D C MACHINES AND TRANSFORMERS (Code: 3330902)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	3 rd semester

1. RATIONALE

This course deals with single phase transformer and DC Machines which are widely used in power systems, industries and commercial applications. This course will enable the students to develop skills to select, install, operate, and maintain various types of DC machines and transformers. Practical aspects of the course will make the students capable of performing various tests on these machines. It is therefore very important for every electrical engineer to learn this course if he/she wants to excel in his/her professional life.

2. **COMPETENCY** (Programme Outcome according to NBA Terminology)

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain various types of DC machines and single phase transformers safely.

3. TEACHING AND EXAMINATION SCHEME

	Examination Scheme			Total Credits	cheme	ching So	Tea	
Total Marks	Marks	Practical	Theory Marks		(L+T+P)	(In Hours)		
	PA	ESE	PA	ESE	С	Р	Т	L
200	60	40	30	70	08	04	00	04

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Major Lea	rning Outcomes	Topics and Sub-topics			
	omes in Cognitive	* *			
Domain ac	cording to NBA				
	ninology)				
<u> </u>		Law of conservation of energy			
80 00	ble of electrical energy 1.2	Role of electrical energy and uses			
Conversion					
- T	nditions for EMF 1.3	Electro-mechanical energy			
production		conversion principle and EMF			
		Singly excited and doubly excited			
doubly excite	d electrical machines	electrical machines.			
Unit – II 2a. Describe fund	tion of different parts 2.1	Construction and materials used			
	ne with sketches.	for various parts of DC generator.			
Generators 2b. Derive emf e		Functions of various parts of DC			
generators generator		generator.			
2c. Explain the w	vorking DC 2.3	EMF equation of DC generator			
Generator.		Working principle of DC generator			
2d. Different type	es of armature				
winding.	2.5	Simplex lap and wave winding.			
2e. Classify diffe	• •	Different types of DC generators			
generator wit		Change to sight in a formation to the DC			
2f. Describe pert		Characteristics of various types DC			
DC Generato	of different types of	generators. Efficiency and losses of DC			
	ses and efficiency.	generator.			
2g. Calculate los 2h. Explain arma	÷	Armature reaction and its effects			
commutation		and commutation			
2i. Given the dat	a diagnose the				
problems of l	DC generators				
	ing of DC motor 3.1				
_	e equation of DC	back emf. Torque equation for DC motor.			
motor 3c. Justify the ne		Need DC motor starters			
starter		freed DC motor statters			
3d. Explain work	ing of DC motor 3.4	Construction and working of DC			
starter	6	motor starters			
3e. Classify diffe	rent types of DC 3.5				
motors		motors			
		Performance characteristics of DC			
types of DC r		Series, Shunt and Compound			
	peed control of DC	motor.			
motor	3.7				
	5	Losses in DC motors and its			
3i. State the need		computation Brake test Swinburne's test field			
	cations of various	Brake test, Swinburne's test, field test.			
types of DC i		0 Applications of DC Series, Shunt			
3k.Given the dat		and compound motor.			
problems of I	DC machines				

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – IV Single Phase Transformers	 4a. Explain the working of a single phase transformer with sketches 4b. Derive EMF equation of transformer and transformation ratio 4c. Differentiate between core and shell type transformer with sketches. 4d. State the materials used for the different parts of the transformer 4e. Explain the performance of the transformer on no load, resistive, inductive and capacitive loads with phasor diagrams 4f. Explain various losses in transformer. 4g. Derive expression for efficiency and the condition for maximum efficiency of a single phase transformer 4h. Describe the significance of voltage regulation 4i. Explain the various parameters for the transformer equivalent circuit 4j. Solve numerical problems with respect to the performance and maintenance of single phase transformer. 	 4.1 Single phase transformer: Working principle, construction, materials used for different parts 4.2 EMF equation and transformation ratio. 4.3 Core and shell type of transformers. 4.4 Phasor diagram for load and different types of loads 4.5 Losses in transformer: Iron loss, Copper loss, Hysteresis loss and eddy current loss 4.6 Efficiency Condition for maximum efficiency of single phase transformer. 4.7 Voltage regulation 4.8 Equivalent circuit of single phase transformer.
Unit – V Testing of Single Phase Transformers	 5a. State the need for conducting different types of tests on single phase transformers. 5b. State the steps for conducting the OC and SC tests of the single phase transformer 5c. Describe the need and conditions for parallel operation of transformers 5d. Solve numerical on various tests of single phase transformers 5e. Describe working of an autotransformer with sketches. 5f. Distinguish between autotransformer and welding transformer 	 5.1 Direct load test, OC and SC test and Sumpner Test along with connection diagrams, efficiency and regulation of transformer 5.2 Derivation of equivalent circuit and its related parameters 5.3 Need of parallel operation, essential and desirable conditions for parallel operation. 5.4 Parallel operation and load sharing of single phase transformer 5.5 Construction and working of autotransformer; welding transformer

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Energy Conversion Principles	04	02	02	00	04
II	DC Generators	14	06	06	06	18
III	DC Motors	14	06	06	06	18
IV	Single Phase Transformers	16	06	08	06	20
V	Testing of Single Phase Transformers	08	02	04	04	10
	Total	56	22	26	22	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise	
No.	No.	(Course Outcomes in Psychomotor Domain according to NBA	
		Terminology)	
1	II	Identify various parts of DC machine	01
2	IV	Identify various parts of single phase transformer	01
3	II	Test the performance of DC compound machine	01
4	II	Maintain constant voltage of DC generator at different load conditions.	04
5	II	Test the performance of a separately excited DC shunt generator	04
6	II	Test the performance of DC series generator	04
7	II	Test DC compound generator for external and internal load	04
		characteristic.	
8	III	Connect three point and four point starters for DC motor.	02
9	III	Control the speed of DC shunt motor by armature and field control.	
10	III	Control the speed of DC series motor.	
11	III	Perform Swinburne's test of DC machine.	
12	V	Perform Load test on single phase transformer.	
13	V	Perform OC and SC test of single phase transformer.	04
14	V	Perform polarity test on single phase transformer.	04
15	V	Operate two single phase transformers in parallel having i) Equal	04
		impedances ii) Different impedances.	
16	V	Perform Sumpner's test on single phase transformer.	
17	II	Troubleshoot DC shunt generator/motor 02	
18	Π	Troubleshoot DC series generator/motor 02	
19	II	Troubleshoot DC compound machine	

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA	
		Terminology)	Required
20	IV, V	Troubleshoot single phase transformers	02
		Total	65

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Prepare journals based on practical performed in laboratory.
- ii. Assignments on solving numerical
- iii. Identify different types of dc machine based on their winding arrangement
- iv. Identify different types of transformer based on application
- v. Prepare chart displaying the various parts of dc machine
- vi. Prepare chart displaying the various parts of transformer
- vii. Prepare chart displaying the various parts of a three and four point dc motor starter

8. SPECIAL INSTRUCTIONAL STRETAGIES (If Any):

- i. Students should be shown in animations/video films to explain the working concept of DC machines and transformers based on the principle of electromagnetic induction
- ii. Students should be taken to nearby industries/substation where medium or big size DC Machines/Transformers are installed. Students should be shown major parts/accessories and their features and functions should be explained to them.

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1.	Electrical Technology Vol-II	Theraja, B.L.	S. Chand, New Delhi, 2011 or latest
2.	Electrical Machines	Despande, M.V.	PHI Learning,, New Delhi, 2011 or latest
3.	Electrical Technology	Uppal, S.L.	Khanna Publication, New Delhi, 2011 or latest
4.	Electrical Machine	Nagrath, I.J. and Kothari, D.P.	Tata McGraw Hill, New Delhi, 2011 or latest
5.	Electrical Machine-I	Gupta, J. B.	S. K. Kataria & Sons, New Delhi, 2011 or latest

B) List of Major Equipment/Materials with Broad Specifications

- i. DC shunt, series and compound motor 230 V DC, 19 A, 1000 RPM, 5HP
- ii. DC shunt motor-generator set 230 V DC, 16 A, 1000 RPM, 5 HP
- iii. Single phase transformer 230 V / 115 V, 1 kVA 1-phase transformer
- iv. Auto transformer : 0 230 V, 10 Amp
- v. Welding transformer: 50 V, 50 /100 Amp

C) List of Software/Learning Websites

- i. www.nptel.com/iitm/
- ii. www.howstuffworks.com/
- iii. www.vlab.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. R.L. Patel**, Sr. Lecturer, Electrical engineering Department, Govt. Polytechnic, Jamnagar
- **Prof. M. J. Aghara**, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Rajkot
- **Prof. A. P. Shah**, Lecturer, Electrical Engineering Department, B. & B. Institute of Technology, V.V.Nagar
- **Prof. V. C. Jagani**, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Junagadh.
- **Prof. K. V. Dave**, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. (Mrs.) C.S. Rajeshwari**, Professor & Head, Department of Electrical and Electronics Engineering
- **Dr. Joshua Earnest**, Professor, Department of Electrical and Electronics Engineering