(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17510

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
$\mathbf{1 .}$	A) a)	Attempt any three of the following: Draw a basic structure of power system showing different voltage levels.	$\mathbf{1 2}$
$\mathbf{4 M}$			

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17510

WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17510

	c) Ans.	State the significance of resistance parameter on performance of transmission line. Significance of resistance: 1. Resistance causes voltage drop IR 2. Voltage drop in transmission line affects regulation 3. Resistance causes $I^{2} R$ losses, which affects efficiency. 4. Temperature of line increases due to resistance.	$4 M$ $1 M$ for each point
	d) Ans.	List the advantages of generalised circuit representation. Advantages of generalized: 1. The generalized circuit equations are well suited to transmission lines. Hence for given any type of the transmission line (short, medium, long). The equation can be written by knowing the values of A B C D constants. 2. Just by knowing the total impedance and total admittance of the line the values of A B C D constants can be calculated. 3. By using the generalized circuit equations VRNL $V_{S}=A V_{R}+B I_{R}$ i.e. when $I R=0 V R N L=V_{S} / A$ Now the regulation of the line can be immediately calculated by $\%$ Voltage Regulation $=V_{S} / A-V_{R} / V_{R} X 100$ 4. Output power $=V_{R} I_{R} \operatorname{Cos} \phi_{\mathrm{R}}$ for $\ldots . .1 \phi \ldots$ ckt. $=3 V_{R} I_{R} \operatorname{Cos} \phi_{\mathrm{R}}$ for $\ldots 3 \phi \ldots . . . c k t$. $\begin{aligned} \text { Input power } & =\mathrm{V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}} \operatorname{Cos} \phi_{\mathrm{S}} \ldots \ldots \ldots \ldots . .1 \phi . . \mathrm{ckt} . \\ & =3 \mathrm{~V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}} \operatorname{Cos} \phi_{\mathrm{S}} \ldots \ldots \ldots \ldots .3 \phi . . c k t . \end{aligned}$ losses in the line $=$ input - output 5. By calculating input and output power efficiency can be calculated. 6. Series circuit : When two lines are connected such that the output of the first line serves as output to the second line and the output of the second line is fed to the load, the two lines behave as to parts networks in cascade. Its ABCD constants can be obtain by using following matrix: $\left\|\begin{array}{ll} A & B \\ C & D \end{array}\right\|=\left\|\begin{array}{ll} A_{1} & B_{1} \\ C_{1} & D_{1} \end{array}\right\| \times\left\|\begin{array}{ll} A_{2} & B_{2} \\ C_{2} & D_{2} \end{array}\right\|$	Any 4 advanta ges 1M each

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

		7. When two transmission lines are connected in parallel then the resultant two part network can be easily obtained by $\begin{gathered} A=\frac{A_{1} B_{2}+A_{2} B_{1}}{B_{1}+B_{2}} \\ B=\frac{B_{1} B_{2}}{B_{1}+B_{2}} \\ D=\frac{D_{1} B_{2}+D_{2} B_{1}}{B_{1}+B_{2}} \\ C=C_{1}+C_{2}-\frac{\left(A_{1}-A_{2)}\left(D_{2}-D_{1}\right)\right.}{B_{1}+B_{2}} \end{gathered}$	
1.	B) a) Ans.	Attempt any one of the following: Explain the procedure for measurement of generalised circuit constants. Measurement of Generalized Circuit Constants can be done by conducting Open circuit and short circuit test. If a transmission line is already erected, the constants can be measured by conducting the open circuit and short circuit test on the two ends of the line. Consider a transmission line and determine the impedances which are complex quantities. The magnitudes are obtained by ratio of the voltages and currents and the angle with the help of wattmeter reading. The connection diagram is shown below: The test is conducted on sending end side. $\begin{aligned} & \text { Now, } \quad V_{S}=A V_{R}+\mathrm{B} I_{R}-\cdots---(1) \\ & I_{S}=\mathrm{C} V_{R}+\mathrm{D} I_{R}-\cdots---(1) \end{aligned}$	6 $6 M$

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code:

```
17510
```

From these $=\mathrm{n}$. s. under o. ctest
We to get, as $I_{R}=\mathrm{C} V_{R}$
$\therefore Z_{s o}=\frac{V_{s}}{I_{s}}=\frac{A V_{R}}{C V_{R}}=\frac{A}{C}$
-sending end impedance with receiving end open ckted.
From S.C. test as $V_{R}=0$
$V_{s}=\mathrm{B} I_{R} \times I_{s}=\mathrm{D} I_{R}$
$\therefore Z_{S S}=\frac{V_{S}}{I_{S}}=\frac{B}{D}$
sending end impedance with receiving end s.c.ed
Note- These impedances $Z_{s s,} Z_{s o}$ are complex quantities, the magnitudes are obtained by the ratio of the voltages and currents. The angle is obtained with the help of wattmeter.

Similarly the same tests can be named out on receiving end side.
\therefore From o.c. test -
Generalized $=$ O.C can be written
As $V_{R}=\mathrm{D} V_{s}-\mathrm{B} I_{s}$
$I_{R}=-\mathrm{C} V_{s}+\mathrm{A} I_{s}$
Since the direction of sending end current according to the network whereas while performing the tests on receiving end side, the direction of the current will be leaving the network, therefore these equations become
$V_{R}=\mathrm{D} V_{s}+\mathrm{B} I_{s} \times\left(-I_{R}\right)=-\left(V_{s}+A\left(-I_{s}\right)\right.$
$\therefore-I_{R}=-\mathrm{C} V_{S}-A I_{s}$
$I_{R}=\mathrm{C} V_{s}+A I_{s}$
From O. C. test, $\quad I_{S}=\mathrm{O}$
$Z_{r o}=\frac{V_{R}}{I_{R}}=\frac{D V_{S}}{C V_{s}}=\frac{D}{C}$

- receving end impedance with sending end open clcted.

From S.C. test, $V_{S}=\mathrm{O}$
$Z_{r s}=\frac{V_{R}}{I_{R}}=\frac{B I_{s}}{A I_{s}}=\frac{B}{A}$
-receving end impedance with sending end s.ced
Now,

$$
\begin{aligned}
Z_{r o}-Z_{r s}=\frac{D}{C}-\frac{B}{A} & =\frac{A D-B C}{A C} \\
& =\frac{1}{A C}[A S A D-B C=1]
\end{aligned}
$$

Now, $\frac{Z_{r o}-Z_{r s}}{Z_{s o}}=\frac{1}{A C} \cdot \frac{C}{A}=\frac{1}{A^{2}}$

$$
\begin{equation*}
\therefore \mathrm{A}=\sqrt{\frac{Z_{s o}}{Z_{r o}-Z_{r s}}} \tag{a}
\end{equation*}
$$

$$
Z_{r s}=\frac{B}{A}
$$

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION

		If $Z_{r o}=Z_{s o}$ we get $\mathrm{A}=\mathrm{D}$ for symmetric network	1M
		Define skin effect and proximity effect. State factors on which skin effect and proximity effect depends. SKIN EFFECT: The distribution of current throughout the cross section of a conductor is uniform when DC is passing through it. But when AC is flowing through a conductor, the current is non-uniformly distributed over the cross section in a manner that the current density is higher at the surface of the conductor compared to the current density at its center. This phenomenon is called skin effect. Skin effect depends on factors: - Current - Permeability of material - Frequency - Conductor diameter - Diameter - Material of conductor PROXIMITY EFFECT: When the alternating current is flowing through a conductor alternating magnetic flux is generate surrounding the conductor. This	$2 M$ Any 2, $1 / 2$ M for each

WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17510

		magnetic flux associates with the neighboring conductor and generate circulating currents. This circulating currents increases resistance of conductor. This phenomenon is called as, "proximity effect". Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material	Any 2, $1 / 2$ M for each
2.	$\begin{gathered} \text { a) } \\ \text { i) } \\ \text { Ans. } \end{gathered}$	Attempt any two of the following: Define generalised circuit and generalised circuit constant. Generalized Circuit: An passive, linear, bilateral network with two port terminals is known as generalized circuit. A transmission line is a 2 port network, two input terminals where power enters \& two output terminals where power leaves the network. Generalized Circuit Constant: 1) $\mathrm{A}=\frac{V S}{V R} ; \mathrm{I}_{\mathrm{R}}=0$ It is the ratio of the voltage impressed at the sending end to the voltage at the receiving end when the receiving end is open circuited. It is a dimension less quantity. 2) $\mathrm{B}=\frac{V S}{I R} ; \mathrm{V}_{\mathrm{R}}=0$ It is the volt impressed at the sending end to current of receiving end when receiving end is short circuited. It is known as Transfer impedance. Its unit is in ohms. 3) $\mathrm{C}=\frac{I S}{V R} ; \mathrm{I}_{\mathrm{R}}=0$ It is defined as the ratio sending end current to the receiving end voltage when receiving end is open circuited. It is known as Transfer admittance and its unit mho. 4) $\mathrm{D}=\frac{I S}{I R} ; \mathrm{V}_{\mathrm{R}}=0$	16 4M Definitio n of generali sed circuit 1M Generali sation circuit constant 3M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

		It is the ratio of amperes impressed at the sending end to the ampere at the receiving end when the receiving end is short circuited. It is a pare quantity.	
	ii) Ans.	Explain the procedure for receiving end circle diagram with usual notation. $S_{r}=\frac{-\|A\|\left\|v_{\delta}\right\|^{2}}{\|B\|} \angle(\beta-\alpha)+\frac{\left\|V_{s}\right\|\left\|V_{r}\right\|}{\|B\|} \angle(\beta-\delta)$ Step-1: Draw the $\mathrm{X}-\mathrm{Y}$ plane in which plane X represents the active power (MW) \& axis-y-represents the Reactive power (MVA). $\frac{\|A\|}{\|B\|}\|v r\|^{2}$ Step-2: To draw the center of the circle take the distance equal to \& angle equal to $(\beta-\alpha) \&$ draw the line in third quadrant $\&$ locate the point ' n '. Step-3: To draw the circle the radius is taken equal to $\|\mathrm{Vs}\|\|\mathrm{Vr}\| \&$ draw a circle in 1st quadrant.	Diagram 2M Explana tion 2M

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION

		Step-4: The operating point p on the circle is located by the amount of real power delivered to the load i.e.pr Step-5: Joint the 'op'\& draw the line parallel from point P to Y -axis. 'op' represents the true power $\mathrm{Sr}=\mathrm{Pr}+\mathrm{jQr} \&$ the corresponding value of Qr can be read from the diagram. Step-6: Draw the reference line w.r.t. 'on'at an angle α. The power angle is the angle between the ref. line shown \& phasor 'np'.	
2.	b)	Determine inductive reactance of 1φ tr. Line arrangement shown in fig. 1 per mt. length. The dia. of each conductor is 1 cm and current is equally shared by two parallel conductors. $d\left(a a^{\prime}\right)=25 \mathrm{~cm}$	8M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION

2.	c) Ans.	If A and B constants of a $3 \varphi \operatorname{tr}$. Line are $0.9 \angle 1^{0}$ and $100 \angle 85^{0}$ respectively. Determine the receiving end current and power supplied to load. Assume both sending end and receiving end voltages are 200 kV with phase dift. of 8^{0} between them.	8M

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

17510

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Give the expression for coordinates for centre and radius for sending end and receiving end circle dia. \\
The centre of Receiving end circle is located at the tip of phaser \(|\mathrm{A} / \mathrm{B}|\) \(\left.1 \mathrm{~V}_{\mathrm{r}}\right|^{2}<\beta-\alpha\) drawing \(\mathrm{OC}_{\mathrm{S}}\) from negative MW axis. \\
1. The \(X\) and \(Y\) coordinates of the centre are \(\left.|A / B| 1 V_{r}\right|^{2} \operatorname{Cos}(\beta-\alpha)\) and \(\left.|\mathrm{A} / \mathrm{B}| 1 \mathrm{~V}_{\mathrm{r}}\right|^{2} \operatorname{Sin}(\beta-\alpha)\) \\
2. The radius of sending end circle is drawn with \(\left|\mathrm{V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{R}}\right| /|\mathrm{B}|\) from centre \(\mathrm{C}_{\mathrm{S}}\) \\
The centre of sending end circle is located at the tip of phaser \(|\mathrm{D} / \mathrm{B}|\) \(\left.1 \mathrm{~V}_{\mathrm{S}}\right|^{2}<\beta-\alpha\) drawing \(\mathrm{OC}_{\mathrm{S}}\) from positive MW axis. \\
3. The \(X\) and \(Y\) coordinates of the centre are \(\left.|D / B| 1 V_{S}\right|^{2} \operatorname{Cos}(\beta-\alpha)\) and \(\left.|\mathrm{D} / \mathrm{B}| 1 \mathrm{~V}_{\mathrm{S}}\right|^{2} \operatorname{Sin}(\beta-\alpha)\) \\
4. The radius of sending end circle is drawn with \(\left|\mathrm{V}_{\mathrm{S}}\right| \mathrm{V}_{\mathrm{R}}|/|\mathrm{B}|\) from centre \(\mathrm{C}_{\mathrm{s}}\)
\end{tabular} \& \(4 M\)

$2 M$

\hline \& c)

Ans. \& Determine the inductance of 3φ line operating at 50 Hz and conductors are arranged at triangle of sides $1.6 \mathrm{~m}, 3.2 \mathrm{~m}$ and 1.6 m . The conductor diameter is 0.8 cm .

$$
\begin{gathered}
L_{x}=L_{y}=L_{B}=2 \times 10^{-7} \log _{e} \frac{D_{e q}}{r^{1}} \\
D_{e q}=\sqrt[3]{D_{R Y} D_{R B} D_{B R}}=\sqrt[3]{1.6 \times 3.2 \times 1.6}=2.0158 \mathrm{~m} \\
r^{1}=0.7788 r=0.7788 \times\left(0.8 \times 10^{-2}\right)=0.00623 \mathrm{~m} \\
L_{x}=L_{y}=L_{B}=2 \times 10^{-7} \log _{e}\left(\frac{2.0158}{0.00623}\right. \\
=1.156 \times 10^{-6} \frac{\mathrm{H}}{\mathrm{M}}=1.156 \frac{\mathrm{mH}}{\mathrm{Km}}
\end{gathered}
$$ \& $4 M$

$1 M$
$1 M$
$1 M$

\hline \& d)

Ans. \& | A 250 kV transmission line has following GCC-A $=0.85 \angle 7^{0}$, $\mathrm{B}=$ $300 \angle 75^{\circ} \Omega /$ phase. Determine power at unity P.F. that can be received if voltage at each end is maintained at 250 kV . |
| :--- |
| Given data $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{R}}=250 \mathrm{KV}, \mathrm{~A}=0.85<7^{\circ}, \mathrm{B}=300<75^{\circ}$ | \& 4M

\hline
\end{tabular}

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Subject Code:

```
17510
```

	Then for unity power factor $\mathrm{Q}_{\mathrm{R}}=0$ $\therefore \mathrm{Q}_{\mathrm{R}}=\left\|\mathrm{V}_{\mathrm{S}}\right\|\left\|\mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\| \operatorname{Sin}(\beta-\delta)-\|\mathrm{A}\| /\|\mathrm{B}\|\left\|\mathrm{V}_{\mathrm{R}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ Substituting all values we get $\begin{aligned} & 0=(250) X(250) / 300 \operatorname{Sin}(\beta-\delta)-(0.85)(250)^{2} / 300 \operatorname{Sin}(75-7) \\ & 0=208.33 \operatorname{Sin}(\beta-\delta)-164.188 \\ & \operatorname{Sin}(\beta-\delta)=0.788 \\ & \beta-\delta=52^{\circ} \end{aligned}$ Substituting this is in equation of P_{R} we get $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=\left\|\mathrm{V}_{\mathrm{S}} \\| \mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\| \operatorname{Cos}(\beta-\delta)-\|\mathrm{A}\| /\|\mathrm{B}\|\left\|\mathrm{V}_{\mathrm{R}}\right\|^{2} \operatorname{Cos}(\beta-\alpha) \\ & =(250)(250) / 300 \operatorname{Cos}(52)-0.85 \times(250)^{2} / 300 \operatorname{Cos}(75-7) \\ & =(208.33)(0.616)-(177.083)(0.375) \\ & =128.33-66.406 \\ & \mathrm{P}_{\mathrm{R}}=61.924 \mathrm{MW} . \end{aligned}$ Unity power at receiving end is 61.924 MW	$1 M$ $2 M$ $1 M$
e) Ans.	Derive an expression for capacitance of 1φ tr. line compose of solid conductor. rb Capacitance of a 1φ line is defined as the charge on the conductor /unit of a p. d between them. $c=\frac{q}{v} \mathrm{~F} / \mathrm{mt}$ Where q - change on the conductor in coulombs / mt $\mathrm{V}-\mathrm{p}$. d between the conductors in volts. Consider a 1φ line excited from 1φ A.C source. The line develops equal and opposite sinusoidal charges on the two conductors. Let $q_{a} \& q_{b}$ be the changes on the conductors ' a ' $\&$ ' b ' whose radii are r_{a}, r_{b} respectively. Since the conductor ' b ' for mc a return path for the current through' conductor ' a ', the change ' q_{b} ' on conductor ' b ' is equal \&opposite to conductor ' a '. $\text { i.e. } q_{a}=-q_{b} \text { or } q_{b=-} q_{a}$ Assume that charges on each conductor are distributed uniformly	Diagram 1M Explana tion 1M Derivati on 2M

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17510
around its periphery and length.
Consider the conductor ' a ' alone with the charge and ' b ' without any charge. Now the p. d between the conductors $\mathrm{a} \& \mathrm{~b}$ is

$$
\vartheta_{a b}=\frac{q_{a}}{2 \pi k} \log _{\mathrm{e}} \frac{D}{r a} \mathrm{l} \quad-\mathrm{v} / \mathrm{mt}-(1)
$$

Similarly consider b with charge and ' a ' without any charge. Then the p. d. between the conductors $\mathrm{b} \& \mathrm{a}$ is given by
$\vartheta_{b a}=\frac{q b}{2 \pi k} \log _{\mathrm{e}} \frac{D}{r_{b}}-(2)$
p. d. between a \& b can be written as,
$\vartheta_{a b}=-\vartheta_{b a}=\frac{-q_{b}}{2 \pi k} \log _{\mathrm{e}} \frac{D}{r_{b}}-(3)$
Now by super position theorem, the net p . d. between $\mathrm{a} \& \mathrm{~b}$ when both the conductors are charged equally oppositely can be written by adding the eq. \qquad (1) \& (3)
$\vartheta_{a b}=\vartheta_{a b}{ }^{\prime}+\vartheta_{a b}{ }^{\prime}$

$$
\begin{aligned}
= & \frac{q_{a}}{2 \pi k} \log _{\mathrm{e}} \frac{D}{r_{a}}-\frac{q_{b}}{2 \Pi k} \log _{\mathrm{e}} \frac{D}{r_{b}} \\
& \frac{q_{a}}{2 \pi k} \log _{\mathrm{e}} \frac{D}{r_{a}}+\frac{q_{b}}{2 \Pi k} \log _{\mathrm{e}} \frac{D}{r_{b}}
\end{aligned}
$$

Since $q_{a}=-q_{b}$
$=\frac{q_{a}}{2 \pi k}\left[\log _{\mathrm{e}} \frac{D}{r_{a}}+\operatorname{loge} \frac{D}{r_{b}}\right]$

$$
=\frac{q_{a}}{2 \pi k} \log _{\mathrm{e}} \frac{D^{2}}{r_{a} r_{b}}
$$

If $r_{a}=r_{b}=r$

$$
\begin{align*}
\vartheta & =\frac{q_{a}}{2 \pi k} \log _{\mathrm{e}} \frac{D^{2}}{r^{2}} \\
& =\frac{2 q_{a}}{2 \pi k} \log _{\mathrm{e}} \frac{D}{r} \tag{4}
\end{align*}
$$

$\vartheta=\frac{q a}{\pi k} \log _{\mathrm{e}} \frac{D}{r}$

Capacitance between two conductors i.e. line capacitance Can be written as-

$$
\begin{equation*}
C_{a b}=\frac{q_{a}}{V_{a b}}=\frac{\pi k}{\log ^{D} D_{r}} \tag{5}
\end{equation*}
$$

And it is represented as

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17510

4.	$\begin{gathered} \text { A) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any three of the following: Define self GMD and mutual GMD. Mutual GMD: If conductor A has ' n ' no of sub conductor \& conductor B has ' m ' no of subconductor, then $m n$th root of the $m n$ terms, which are the products of all possible mutual distances from the n filaments of conductor A to m ' filaments of conductor B. It is called mutual geometric mean distance (mutual GMD between conductor A and B and abbreviated as D_{m}. Similarly, Self GMD: or GMR $n^{2} t h$ root of n^{2} product terms (n sets of n product terms each). Each set of n product term pertains to a filament and consist of $r^{\prime}\left(D_{i i}\right)$ for that filament and $(n-1)$ distances from that filament to every other filament in conductor A. It is defined as the self-geometric meandistance (self GMD) of conductor A, and is abbreviated as $D_{s A}$. Sometimes, self GMD is also called geometric mean radius (GMR). Example let radius of conductor $\mathrm{X} \& \mathrm{Y}$ is $=\mathrm{r}$ Self GMD of conductor $\mathrm{X}=\sqrt[4]{D_{11}} D_{1,1,} D_{11}, D_{1,1}=\sqrt[4]{r^{\prime} x r^{\prime} x d x d}$ $=\sqrt{r^{\prime} x} d$ Self GMD of conductor $Y=r^{\prime}$ Mutual GMD between conductor $\mathrm{X} \& \mathrm{Y}=\sqrt{ } D_{12} D_{1 / 2}=$ $\sqrt{\left(\frac{d}{2}+D\right) \times\left(D-\frac{d}{2}\right)}$	12 $4 M$ 2M each

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17510

	b) Ans.	A275kV 3φ line has following parameter $A=0.91 \angle 1.5^{0}, B=115$ $\angle 77^{\mathbf{0}}$. If the receiving end voltage is 275 kV determine the max. power that can be delivered if sending end V is held at 295 kV . Given data $\mathrm{V}_{\mathrm{R}}=275 \mathrm{KV}, \mathrm{~A}=\mathrm{D}=0.91 \angle 1.5, \mathrm{~B}=115 \angle 77 \Omega$ $\mathrm{P}_{\text {RMAX }}=$? when $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{s}}=275 \mathrm{KV}$ For max receiving end power condition is	4M 1M 1M $2 M$
	c) Ans.	Explain the role of power system engineer. (Note: any other relative points may be consider) i. On the planning side he or she has to make decisions on how much electricity to generate ii. For operation of the power system he has to plan for generation of electricity where, when and by using what fuel. iii. He has to plan for expansion of the existing grid system and also for new grid system. iv. He coordinated operation of a vast and complex power network, so as to achieve a high degree of economy and reliability. v. He has to be involved in constructional task of great magnitude both in generation and transmission. vi. He has to solve problem of power shortages./ outage of line vii. He has to evolve strategies for energy conservation and load management. viii. For solving the power system problems he has to update with new technology method.	4M Any 4 1M each
	d) Ans.	State the need of reactive power compensation and name the devices used for reactive power compensation. Need of Reactive power compensation: Power system is well designed when it gives good quality of reliable supply i.e variation at receiving end is within limit (+/-5 \%). If variation is more performance of equipment is affected. Variation in Voltage indicates unbalance in reactive power generated Qs \& reactive power consumed by load Qr If Qs >Qr --- Vr increases If Qs < Qr ------Vr decreases	$4 M$ Need of reactive power compens ation 2M

WINTER - 2016 EXAMINATION

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17510

5.	a) Ans.	Attempt any two of the following: Derive overall ABCD constants of series connected two transmisson line networks. Two n / w are said to be connected in series when the o / p of one n / w is connected to the i / p of other n / w. Let the constants of these n / w be $\mathrm{A} 1, \mathrm{~B} 1, \mathrm{C} 1, \mathrm{D} 1 \& \mathrm{~A} 2, \mathrm{~B} 2, \mathrm{C} 2, \mathrm{D} 2$ which are connected in series as show in fig. These two n/w could be two transmission line or a transformer connected in to transmission line from equation of $\mathrm{V}_{\mathrm{R}}=\mathrm{DV}_{\mathrm{S}}-\mathrm{BI}_{\mathrm{S}}$ \& $\mathrm{I}_{\mathrm{R}}=-\mathrm{CV}_{\mathrm{S}}+\mathrm{DI}_{\mathrm{S}}$ $\begin{align*} & \therefore V=D_{1} V_{S}-B_{1} I_{S} \tag{1}\\ & \quad I=-C_{1} V_{S}+A_{1} I_{S} \tag{2}\\ & \& V=A_{2} V_{R}+B_{2} I_{R} \tag{3}\\ & I=C_{2} V_{R}+D_{2} I_{R} \tag{4} \end{align*}$ From equation (1) \& (3) \& equation (2) \& (4) respectively.	16 $8 M$

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

	$\begin{aligned} & D_{1}^{v_{S}-B_{1} I_{S}=A_{2} V_{R}+B_{2} I_{R}} \\ & -C_{1} v_{S}+A_{1} I_{S}=C_{2} v_{R}+D_{2} I_{R} \end{aligned}$ matiply can (B) by A_{1} \& © by B_{1} \& adding the eqn. $\begin{aligned} &\left(A_{1} D_{1}-B_{1} C_{1}\right) V_{s}+\left(-B_{1} A_{1}+B_{1} A_{1}\right) I_{s} \\ &=\left(A_{1} A_{2}+B_{1}(2) v_{e}+\left(A_{1} B_{2}+B_{1} V_{2}\right) I_{R}\right. \end{aligned}$ $\begin{equation*} \left(A_{1} D_{1}-B_{1} C_{1}\right) V_{S}=\left(A_{1} A_{2}+B_{1} C_{2}\right) V_{R}+\left(A_{1} B_{2}+B_{1} D_{2}\right) I R-(7) \tag{1} \end{equation*}$ multiply ean (B) by G \& (12 by D_{1} \& add $\begin{align*} &\left(C_{1} D_{1}-D_{1} C_{1}\right) V_{S}+\left(-B_{1} G_{1}+A_{1} D_{1}\right) I_{S}=\left(A_{2} C_{1}+C_{2} D_{1}\right)_{R}+ \\ &\left(A_{1} D_{1}-B_{1} C_{1}\right) I_{S}=\left(A_{2} C_{1}+C_{2} D_{2}\right) V_{R}+\left(B_{2} C_{1}+D_{2} D_{1}\right) I_{R} \end{align*}$ Sivee $A D_{1}-B_{1} C_{1}=1 \therefore$ flem ean (7) $\left.\begin{array}{rl} \therefore & V_{S}=\left(A_{1} A_{2}+B_{1}(2) V_{R}+\left(A_{1} B_{2}+B_{1} D_{2}\right) I R:\right. \text { (1) } \\ & \text { Rancan (B) } \\ I_{S}=\left(A_{2} C_{1}+C_{2} D_{1}\right) V R+\left(B_{2} G+D_{2} D_{1}\right) I R \quad \text { (1) } \end{array}\right\}$ but $\begin{equation*} V_{s}=A V_{R}+B I R \& \tag{n} \end{equation*}$ $I_{s}=C V_{R}+D I R$ from eqh (9), (1), ©\& (2) $\begin{aligned} & A=A_{1} A_{2}+B_{1} C_{2} \\ & B=A_{1} B_{2}+B_{1} D_{2} \\ & C=A_{2} C_{1}+C_{2} D_{1} \end{aligned}$	
b) Ans.	A 3φ line has following constants. $A=D=0.9 \angle 0.5^{0}, B=99 \angle 78^{0}$ Ω. The sending end and receiving end voltages are maintained at 220 kV . Calculate load angle when power fed at sending end is 400MW using sending end circle diagram. Also determine maximum power delivered at receiving end.	8M

(Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:
17510

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code:

```
                                17510
```

	c) Ans.	A 3φ line with equilateral spacing 3 mt is to be rebuilt with horizontal spacing as $D_{13}=2 D_{12}=2 D_{23}$. The conductors are to be fully transposed. Find the spacing between adjacent conduct as such that new line has the same inductance as original value. 3 phase line with equilateral spacing $L=2 X 10^{-7} \log _{e} \frac{D}{r^{\prime}}=2 X 10^{-7} \log _{e} \frac{3}{r^{\prime}}$ With horizontal spacing \qquad $\begin{aligned} & 2 X 10^{-7} \log _{e} \frac{\text { Deq }}{r \prime} \\ & \text { Deq }=\sqrt[3]{D 12} \times \text { D23X D31 } 2 \end{aligned}$ Inductance L remains same Equating eq $1 \& e q 2$ $\begin{aligned} & L=2 X 10^{-7} \log _{e} \frac{D}{r^{\prime}}=2 X 10^{-7} \log _{e} \frac{D e q}{r^{\prime}} . . \\ & \frac{D}{r^{\prime}}=\frac{D e q}{r^{\prime}} \\ & \mathrm{D}=\mathrm{Deq}=\sqrt[3]{(D 12} \times \text { D23X D31) } \\ & \left.3=\sqrt[3]{\left((D 12)^{2}\right.} X(2 D 12)\right) \\ & 3=\sqrt[3]{2} X(D 12)^{3} \end{aligned}$ $\mathrm{D} 12=\frac{3}{\sqrt[3]{2}}=2.381 \mathrm{~m}$	8M $1 M$ $1 M$ 3M $3 M$
6.	a) Ans.	Attempt any four of the following: Prove that complex power in power system is $\mathbf{S}=$ VI**.	$\begin{aligned} & 16 \\ & 4 M \end{aligned}$

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17510

Consider a single-phase load fed from a source as in Fig. Let
$V=|V| \angle \delta$
$I=|I| \angle(\delta-\theta)$

(a)

(b)

Complex power flow in a single-phase load
When θ is positive, the current lags behind voltage. This is a convenient
choice of sign of θ in power systems where loads have mostly lagging power factors.

Complex power flow in the direction of current indicated is given by

$$
\begin{aligned}
S & =V I^{*} \\
& =|V||I| \angle \theta \\
& =|V||I| \cos \theta+j|V||I| \sin \theta=P+j Q
\end{aligned}
$$

or

$$
|S|=\left(P^{2}+Q^{2}\right)^{1 / 2}
$$

Here

$$
S=\text { complex power (VA, kVA, MVA) }
$$

$$
|S|=\text { apparent power (VA, kVA, MVA); it signifies rating of }
$$

equipments (generators, transformers)

$$
P=|V||I| \cos \theta=\text { real (active) power (watts, kW, MW) }
$$

$$
Q=|V||I| \sin \theta=\text { reactive power }
$$

= voltamperes reactive (VAR)
= kilovoltamperes reactive (kVAR)
$=$ megavoltamperes reactive (MVAR)
It immediately follows from Eq. that Q, the reactive power, is positive for lagging current (lagging power factor load) and negative for leading current (leading power factor load). With the direction of current indicated in Fig. $\quad S=P+j Q$ is supplied by the source and is absorbed by the load.

WINTER - 2016 EXAMINATION Model Answer

Subject Code: 17510

		$\begin{aligned} \theta=\tan ^{-1} \frac{Q}{P} & =\text { positive for lagging current } \\ & =\text { negative for leading current } \end{aligned}$ Phasor representation of complex power (lagging pf load) In Electrical engineering $\mathrm{S}=\mathrm{P}+\mathrm{jQ}$. Where Q is positive and it is inductive reactive power which lags i.e. due to lagging current. Q is negative when capacitive reactive power. i.e. due to leading current. The same concept is obtained when we consider $\mathrm{S}=\mathrm{VI}^{*}$ \& not when considered $\mathrm{S}=\mathrm{V} * \mathrm{I}$	
	b) Ans.	List the advantages of PU system. Advantages of PU calculations:- 1. Manufacturers specify impedance of apparatus in $\%$ or P.U. values on basis of name plate rating. 2. p.u. impedance of machine of same type having different ratings usually lay within narrow range though actual values differs with rating. Hence if impedance is not known, we can consider value from table in which avg. value for different type of machine are given. 3. P.u values are same referred to either side of transformer. 4. Type of connection of 3Φ transformer in 3Φ circuit does not affect p.u. values.	4M Any 4 each advanta ge 1M
	c) Ans.	What is transposition of 3φ line? State its advantages. Transposition of conductors means exchanging the positions of the conductors at regular intervals along the line such that each conductor occupies the original position of every other conductor over equal distance. Unsymmetrical Spacing in the transmission line causes the flux linkages and therefore the inductance of each phase to be different resulting in unbalanced receiving end voltages even when sending end voltages and line currents are balanced. Also voltages will be induced in the adjacent communication lines when the line currents are balanced. This problem is reduced by transposition.	4M $1 M$ 1M

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION

(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION

(ISO/IEC - 27001-2005 Certified)
WINTER - 2016 EXAMINATION
Model Answer
Subject Code: 17510

	$\begin{aligned} & B=Z=180 \angle 75^{\circ} \Omega \\ & \begin{aligned} C=Y\left(1+\frac{y z}{4}\right) \end{aligned} \\ & \quad=1 \times 10^{-3} \angle 90^{0}\left[1+\frac{\left(1 \times 10^{-3} \angle 90^{0}\right)\left(180 \angle 75^{\circ}\right)}{4}\right] \\ & \\ & \quad=1 \times 10^{-3} \angle 90^{0} x 0.9566 \angle 0.697 \\ & \\ & \quad=9.566 \times 10^{-4} \angle 90.697 \text { siemens } \end{aligned}$	2M

