MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001-2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	$\begin{gathered} \text { A) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any three of the following: State the role of power system engineer. i. For operation of the power system he has to plan for generation of electricity where, when and by using what fuel. ii. He has to plan for expansion of the existing grid system and also for new grid system. iii. He coordinated operation of a vast and complex power network, so as to achieve a high degree of economy and reliability. iv. He has to be involved in constructional task of great magnitude both in generation and transmission. v. He has to solve problem of power shortages. vi. He has to evolve strategies for energy conservation and load management. vii. For solving the power system problems he has to develop new method.	$\begin{gathered} \hline 12 \\ 4 \mathrm{M} \\ \\ \text { Any } 4 \\ \text { point } \\ \text { each 1M } \end{gathered}$
	b) Ans.	Give expression for complex power, active power and reactive power at receiving end of a transmission line. Complex power at the receiving end is given by	4M

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

		$I_{R}=\mathrm{C} V_{s}+A I_{s}$ From O. C. test, $\quad I_{s}=\mathrm{O}$ $Z_{r o}=\frac{V_{R}}{I_{R}}=\frac{D V_{s}}{C V_{S}}=\frac{D}{C}$ -receving end impedance with sending end open clcted. From S.C. test, $V_{s}=\mathrm{O}$ $Z_{r s}=\frac{V_{R}}{I_{R}}=\frac{B I_{s}}{A I_{s}}=\frac{B}{A}$ - receving end impedance with sending end s.ced Now, $\begin{aligned} & Z_{r o}-Z_{r s}=\frac{D}{C}-\frac{B}{A}=\frac{A D-B C}{A C} \\ &=\frac{1}{A C} \quad[A S A D-B C=1] \end{aligned}$ Now, $\frac{Z_{r o}-Z_{r s}}{Z_{s o}}=\frac{1}{A C} \cdot \frac{C}{A}=\frac{1}{A^{2}}$ $\begin{equation*} \therefore \mathbf{A}=\sqrt{\frac{Z_{s o}}{Z_{r o}-Z_{r s}}} \tag{a} \end{equation*}$ $Z_{r s}=\frac{B}{A}$ or $\mathbf{B}=\mathbf{A} \boldsymbol{Z}_{r s}=\boldsymbol{Z}_{r s} \sqrt{\frac{Z_{s o}}{Z_{r o}-Z_{r s}}}$ $\begin{equation*} Z_{s o}=\frac{A}{\bar{C}} \tag{b} \end{equation*}$ $\begin{equation*} \therefore \mathrm{C}=\frac{A}{Z_{s o}}=\frac{1}{Z_{s o}} \sqrt{\frac{Z_{s o}}{Z_{r o}-Z_{r s}}} \tag{c} \end{equation*}$ $Z_{r o}=\frac{D}{C}$ $\begin{align*} \therefore \mathrm{D}=\mathrm{C} \cdot Z_{r o}= & \frac{Z_{r o}}{Z_{s o}} \sqrt{\frac{Z_{s o}}{Z_{r o}-Z_{r s}}} \\ & =Z_{r o} \sqrt{\frac{1}{\left(Z_{r o}-Z_{r s} Z_{s o}\right.}} \tag{d} \end{align*}$ If $Z_{r_{o}}=Z_{s o}$ we get $\mathrm{A}=\mathrm{D}$ for symmetric network	1M
1.	B) a) Ans.	Attempt any one of the following: Prove that $\mathrm{AD}-\mathrm{BC}=1$ for a generalized circuit with π and T network. i) Nominal π method: Fig. shows medium tr line assuming total capacitance of the line divided into two parts and each half located at each end of the line	$\begin{gathered} 6 \\ 6 M \end{gathered}$

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$\left.\begin{array}{l} V_{S}=V_{R}\left(1+\frac{Y Z}{2}\right)+I_{R} Z------(i) \\ I_{S}=I_{R}\left(1+\frac{Y Z}{2}\right)+V_{R} Y\left(1+\frac{Y Z}{4}\right)-----(i i) \end{array}\right\}$ comparing equation(i)and(ii)with actual equation Vs \& Is then $\begin{gathered} A=D=1+Y Z / 2 \\ B=Z \\ C=Y(1+Y Z / 4) \end{gathered}$ Therefore $\begin{aligned} \mathrm{AD}-\mathrm{BC} & =\left(1+\frac{Y Z}{2}\right)\left(1+\frac{Y Z}{2}\right)-Z Y((1+Y Z / 4) \\ & =1 \end{aligned}$ ii) Nominal T method: Figure shows the nominal T method with capacitance is connected at centre of line, the line resistance and reactance is halfly tempered on both side $\left.\begin{array}{l} I_{S}=Y V_{R}+I_{R}\left(1+\frac{Y Z}{2}\right)----(i i i) \\ \qquad V_{S}=\left(1+\frac{Y Z}{2}\right) V_{R}+\left(Z+\frac{Y Z}{4}\right) I_{R}----(i v) \end{array}\right\}$	$1 M$

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

		comparing equation (iii)and (ii)withactual equation $V_{S} \& I_{S}$ then $\begin{aligned} & A=D=1+\frac{Y Z}{2} \\ & B=Z\left(1+\frac{Y Z}{4}\right) \\ & C=Y \end{aligned}$ Therefore $\begin{aligned} \mathrm{AD}-\mathrm{BC} & =\left(1+\frac{Y Z}{2}\right)\left(1+\frac{Y Z}{2}\right)-Y Z\left(1+\frac{Y Z}{4}\right) \\ & =1 \end{aligned}$	$1 M$ $1 M$
	b) Ans.	Give significance of inductance and resistance on performance of transmission line. Significance of inductance: 1) It causes $I X_{L}$ drop in transmission line which affects regulation 2) It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases. 3) It causes voltage drop which affects the voltage regulation of the line. Significance of resistance: 1) It causes voltage drop, so it affects regulation. 2) It causes $I^{2} R$ loss which affects efficiency and temperature rise. 3) Whatever power loss occurs in transmission line is only due resistive parameter. 4) Though value of resistance is very small, it causes losses, temperature rise\& poor voltage regulation so it cannot be neglected	6M Signific ance of inductan ce $3 M$ Signific ance of resistanc e 3M
2.	a) i) Ans.	Attempt any one of the following: Derive generalised circuit constants of two networks connected in series.	16 8M $1 M$

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510
Two n / w are said to be connected in series when the o / p of one n / w is connected to the i / p of other n / w.
Let the constants of these n / w be $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1} \& \mathrm{~A}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{D}_{2}$ which are connected in series as show in fig.
These two n / w could be two transmission line or a transformer connected in to transmission line from equation of $\mathrm{V}_{\mathrm{R}}=\mathrm{DV}_{\mathrm{S}}-\mathrm{BI}_{\mathrm{S}}$ \& $\mathrm{I}_{\mathrm{R}}=-\mathrm{CV}_{\mathrm{S}}+\mathrm{DI}_{\mathrm{S}}$

- $\mathrm{V}=\mathrm{D}_{1} \mathrm{~V}_{\mathrm{S}}-\mathrm{B}_{1} \mathrm{I}_{\mathrm{S}}$
$1 M$
$\mathrm{I}=-\mathrm{C}_{1} \mathrm{~V}_{\mathrm{S}}+\mathrm{A}_{1} \mathrm{I}_{\mathrm{S}}$
\& $\mathrm{V}=\mathrm{A}_{2} \mathrm{~V}_{\mathrm{R}}+\mathrm{B}_{2} \mathrm{I}_{\mathrm{R}}$
$\mathrm{I}=\mathrm{C}_{2} \mathrm{~V}_{\mathrm{R}}+\mathrm{D}_{2} \mathrm{I}_{\mathrm{R}}$
$D_{1} V_{S}-B_{1} V_{S}=A_{2} V_{R}+B_{2} I_{R}$
$-\mathrm{C}_{1} \mathrm{~V}_{\mathrm{S}}=\mathrm{A}_{1} \mathrm{I}_{\mathrm{S}}=\mathrm{C}_{2} \mathrm{~V}_{\mathrm{R}}+\mathrm{D}_{2} \mathrm{I}_{\mathrm{R}}$
Multiply equation (5) by A_{1} and (6) by B_{1} and adding the equation
$\left(A_{1} D_{1}-B_{1} C_{1}\right) V_{S}+\left(-B_{1} A_{1}+B_{1} A_{1}\right) I_{S}$

$$
\begin{equation*}
=\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{B}_{1}(2) \mathrm{V}_{\mathrm{E}}+\left(\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{B}_{1} \mathrm{~B}_{2}\right) \mathrm{IR}\right. \tag{7}
\end{equation*}
$$

$\left(A_{1} D_{1}-B_{1} C_{1}\right) V_{S}=\left(A_{1} A_{2}+B_{1} C_{2}\right) V_{R}+\left(A_{1} B_{2}+B_{1} D_{2}\right) I_{R}$
Multiply equation (5) by G and (12) D_{1} and add
$\left(\mathrm{C}_{1} \mathrm{D}_{1}-\mathrm{D}_{1} \mathrm{C}_{1}\right) \mathrm{V}_{\mathrm{S}}+\left(-\mathrm{B}_{1} \mathrm{C}_{1}+\mathrm{A}_{1} \mathrm{D}_{1}\right) \mathrm{I}_{\mathrm{S}}=\left(\mathrm{A}_{2} \mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{D}_{1}\right) \mathrm{V}_{\mathrm{R}}+\left(\mathrm{B}_{2} \mathrm{C}_{1}+\mathrm{D}_{2} \mathrm{D}_{1}\right)$ I_{R}
$\left(\mathrm{A}_{1} \mathrm{D}_{1}-\mathrm{B}_{1} \mathrm{C}_{1}\right) I \mathrm{I}=\left(\mathrm{A}_{2} \mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{D}_{1}\right) \mathrm{V}_{\mathrm{R}}+\left(\mathrm{B}_{2} \mathrm{C}_{1}+\mathrm{D}_{2} \mathrm{D}_{1}\right) \mathrm{I}_{\mathrm{R}}$
Since $A_{1} D_{1}-B_{1} C_{1}=1$ from equation
$V_{S}=\left(A_{1} A_{2}+B_{1} C_{2}\right) V_{R}+\left(A_{1} B_{1}+B_{1} D_{2}\right) I_{R}$
From equation (8)
$\mathrm{I}_{\mathrm{S}}=\left(\mathrm{A}_{2} \mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{D}_{1}\right) \mathrm{V}_{\mathrm{R}}+\left(\mathrm{B}_{2} \mathrm{C}_{1}+\mathrm{D}_{2} \mathrm{D}_{1}\right) \mathrm{I}_{\mathrm{R}}$
but $V_{S}=A V_{R}+B I_{R}$
$\mathrm{I}_{\mathrm{S}}=\mathrm{CV}_{\mathrm{R}}+\mathrm{DI}_{\mathrm{R}}$
From equation (9), (10), (11) \& (12)
$\mathrm{A}=\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{B}_{1} \mathrm{C}_{2}$
$\mathrm{B}=\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{B}_{1} \mathrm{D}_{2}$

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

ii) Ans.	Describe the procedure for sending end circle diagram. Procedure for sending end circle diagram: i. Step-1: Draw the X-Y plane in which plane X represents the active power (MW) \& axis-y-represents the Reactive power (MVA). with proper scale. ii. Step-2: The centre of sending end circle is located at the tip of phaser $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{S}\right\|^{2}<\beta-\alpha$ drawing OC_{S} from positive MW axis. OR locate X and Y coordinates of the centre are $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{S}\right\|^{2} \operatorname{Cos}(\beta-\alpha)$ and $\left.\|\mathrm{D} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{S}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ and mark the point Cs. Join OCs. iii. Step-3: Radius $=\left\|\mathrm{V}_{\mathrm{S}} \\| \mathrm{V}_{\mathrm{R}}\right\| / \mid \mathrm{B}$ Draw the Curve with the radius of sending end circle from centre Cs to the scale. iv. Step-4: Locate point Lon X axis such that OL represents Ps to the scale. Draw perpendicular at L to X axis which cuts the circle at point at N. Join NCs. N is the operating point of the system. Step-5: Complete the triangle ONL which represents power triangle at sending end.	
b)	$\mathrm{A}, 3 \mathrm{X}, 50 \mathrm{~Hz}, \mathrm{OH}$ line has regularly transposed conductors equilaterally spaced 4 m apart. Calculate the capacitance line to neutral for this arrangement. Recalculate the capacitance/km to neutral when conductors are in same horizontal plane with successive spacing of $\mathbf{4 m}$, and are regularly transposed.	16M

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis Subject Code: 17510

		cquilaterally spacing 2 marks for diaqram. $\begin{aligned} C_{a n} & =\frac{2 \pi \epsilon}{\log \left(\frac{D}{7}\right)}-2 m \\ & =\frac{2 \pi \times 8.85 \times 10^{-12}}{\log \left(\frac{4}{8}\right)}-2 \mathrm{~m} . \\ C_{a n} & =\frac{5.56 \times 10^{-11}}{\log _{e}\left(\frac{4}{7}\right)} \mathrm{F} / \mathrm{m}=2 \mathrm{~m} \end{aligned}$ conductors are in same horizantal plane.

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

c) Ans.	A line has following parameters $A=D=0.9 \angle 0.4^{0}, B=99 \angle 76.96{ }^{0}$. The sending end and receiving end voltages are maintained at 220 KV . Calculate the maximum power supplied by sending end. Also calculate sending end complex power for a load of 100 MW at unity P.F. and $V_{S}=V_{R}=220 \mathrm{KV}$. For unity load, rexiving end ${ }^{3} p$ is zeco. $\begin{gathered} S_{R}=\frac{v_{S} v_{R}}{B} \sin (\beta-\delta)-\frac{A v_{R}^{2}}{B} \sin (\beta-\alpha) \\ 0=\frac{220^{2}}{99} \sin (76.96-8)-\frac{0.1 \times 220^{2}}{99} \sin (76.96-0.4) \\ 0=488.88 \sin (76.96-8)-427.95 \\ \sin (76.96-8)=0.875 \\ \delta=15.12^{\circ} \end{gathered}$ - To calculate s_{s} sublitute δ in the Following expross. $\begin{aligned} S_{s} & =\frac{A v_{s}^{2}}{B} \angle B-\alpha-\frac{v_{S} v_{R}}{B} \angle B+\delta=2 M \\ & =\frac{0.9 \times 220^{2}}{99} \angle 76.96-0.4-\frac{220^{2}}{99} \angle 76.96+15.92 \\ & =126.82-j 60.31-M V A \quad 2 m \end{aligned}$	16M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	Therefore it is prove that p.u. reactance of transformer remains same referred to both sides of transformer.		
b) Ans.	Write expression for co-ordinates of center and radius for sending end and receiving end circle diagram. For Sending End circle diagram: i. The centre of sending end circle is located at the tip of phasor $\|\mathrm{D} / \mathrm{B}\|$ $\left.1 \mathrm{~V}_{\mathrm{S}}\right\|^{2}<\beta-\alpha$ drawing OC_{S} from positive MW axis. The X and Y coordinates of the center are $\begin{aligned} & x-\text { co }- \text { ordinate }=\frac{\mathrm{DIV}_{S}^{2}}{\mathrm{~B}} \cos (\beta-\alpha) \mathrm{MW} \\ & Y-\text { co-ordinate }=\frac{\mathrm{DIV}_{S}^{2}}{\mathrm{~B}} \sin (\beta-\alpha) \mathrm{MVAR} \end{aligned}$ ii. The radius of sending end circle is drawn with $\left\|\mathrm{V}_{\mathrm{S}} \\| \mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\|$ from center C_{S}. For Receiving End: i. The centre of receiving end circle is located at the tip of phasor $\|\mathrm{A} / \mathrm{B}\|$ $\left.1 \mathrm{~V}_{\mathrm{r}}\right\|^{2}<\beta-\alpha$ drawing OC_{S} from positive MW axis The X and Y coordinates of the center are $\left.\|\mathrm{A} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{r}}\right\|^{2} \operatorname{Cos}(\beta-\alpha)$ and $\left.\|\mathrm{A} / \mathrm{B}\| 1 \mathrm{~V}_{\mathrm{r}}\right\|^{2} \operatorname{Sin}(\beta-\alpha)$ ii. The radius of Receiving end circle is drawn with $\left\|\mathrm{V}_{\mathrm{S}}\right\|\left\|\mathrm{V}_{\mathrm{R}}\right\| /\|\mathrm{B}\|$ from centre C_{s}.	4 M $1 M$ $1 M$ $1 M$ $1 M$	
c) Ans.	Determine the inductance of 3-phase line operating at 50 Hz and conductors are arranged at corners of symmetrical triangle with side 3.4 m and diameter of each conductor is 0.8 cm . $\begin{aligned} & L_{x}=L_{y}=L_{B}=2 \times 10^{-7} \log _{e} \frac{D}{r^{1}} \\ & \qquad D=3.4 \mathrm{~m} \\ & r^{1}=0.7788 r=0.7788 \times\left(0.8 \times 10^{-2}\right)=0.00623 \mathrm{~m} \\ & L_{x}=L_{y}=L_{B}=2 \times 10^{-7} \log _{e}\left(\frac{3.4}{0.00623}\right) \\ & = \\ & =1.2604 \times 10^{-6} \frac{H}{M}=1.2604 \mathrm{mH} / \mathrm{KM} \end{aligned}$	4M $1 M$ $1 M$ $1 M$ $1 M$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	e) Ans.	Derive an expression for capacitance of 3-ph, transmission line with equal spacing. capacitance of 3ϕ transmission tine. with symmetifical arrangement. consider 3-phase line with symmetrical spacing. Let the radius of each conductor be γ and spaiding between conductors be D. We can worite expressions for $V_{a b}$ and $V_{a c}$ as. 1 mank $\left\{\begin{array}{l}v_{a b}=\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \frac{D}{\gamma}+q_{b} \ln \frac{\gamma}{D}+q_{c} \ln \frac{D}{D}\right]-\text { (1) } \\ V_{a c}=\frac{1}{2 \pi \varepsilon}\left[q_{a} \ln \frac{D}{\gamma}+q_{b} \ln \frac{D}{D}+q_{c} \ln \frac{r}{D}\right] \text { (() }\end{array}\right.$ Adding ean (1) \& (2) we get $1 \text { marf }\left\{\begin{array}{r} \text { If there are no other charges in vicinity } \\ v_{a b}+\frac{1}{q_{B}}\left[2 q_{a} \ln \frac{D}{\gamma}+\left(q_{c}+q_{c}\right) \ln \frac{r}{D}\right] \\ q_{a}+q_{b}+q_{c}=-q_{a} . \end{array}\right.$ $\begin{equation*} \therefore v_{a v i} v_{a c}=\frac{3 q_{a}}{2 \sigma_{\varepsilon}} \ln \frac{D}{r} \tag{4} \end{equation*}$ $\left\{\begin{array}{l} \text { 21 the three phave voltages ave } v_{a n}, v_{b n} s v_{c n} \text { then } \\ v_{a n}=v \angle 0, v_{b n}=v \angle-120^{\circ}, v_{c n}=v \angle+120^{\circ} \text { - © } \\ v_{a b}=v_{a n}-v_{b n}=v \angle 0^{\circ}-v \angle-120^{\circ}=\sqrt{3} v \angle 30^{\circ} \text { - } \\ v_{a}=v_{a n}-v_{c n}=v \angle 0^{\circ}-v \angle+120^{\circ}=v_{3} v \angle-30^{\circ} \text { - (3) } \\ v_{a b}+v_{a c}=v_{3} v \angle 30^{\circ}+v_{3} v \angle-30^{\circ}=3 v_{a}=3 v_{a n} \text { - } \end{array}\right.$ $v_{a n}=\frac{q_{a}}{2 \pi \varepsilon} \ln \frac{D}{r} .$ The line to neutral capacitance is. e. $\begin{aligned} C_{n} & =\frac{q_{g}}{\operatorname{Van}}=\frac{2 \pi \varepsilon}{\ln D / r} \mathrm{~F} / \mathrm{m} . \\ C_{n} & =\frac{0.0242}{\log D l_{r}} \mu \mathrm{~F} / \mathrm{km} . \end{aligned}$	4M $1 M$
4.	$\begin{gathered} \text { A) } \\ \text { a) } \\ \text { Ans. } \end{gathered}$	Attempt any three of the following: Define self GMD and mutual GMD. Definition of Self \& mutual GMD	$\begin{aligned} & 12 \\ & \mathbf{4 M} \end{aligned}$

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

	$L_{A}=2 \times 10^{-7} \operatorname{In} \frac{D m}{D s} H / m$ Ds --GMR: the denominator of the argument of the logarithm in above Equation is the n^{2} th root of n^{2} product terms (n sets of n product terms each). Each set of n product term pertains to a filament and consist of r ' ($D_{i i}$) for that filament and $(n-1)$ distances from that filament to every other filament in conductor A. The denominator is defined as the selfgeometric mean distance (self GMD) of conductor A, and is abbreviated as D_{sA}. Sometimes, self GMD is also called geometric mean radius Similarly, Dm --GMD: The numerator of the argument of the logarithm in above Equation is the m'nth root of the m'n terms, which are the products of all possible mutual distances from the n filaments of conductor A to m ' filaments of conductor B. It is called mutual geometric mean distance(mutual GMD) between conductor A and B and abbreviated as D_{m}. Example let radius of conductor $\mathrm{X} \& \mathrm{Y}$ is $=\mathrm{r}$ Self GMD of conductor $\mathrm{X}=\sqrt[4]{ } D_{11} D_{11^{\prime}} D_{11^{\prime}} D_{1^{\prime} 1}=\sqrt[4]{r^{\prime} x r^{\prime} x d x d}$ $=\sqrt{r^{\prime} x} d$ Self GMD of conductor $\mathrm{Y}=\mathrm{r}$, Mutual GMD between conductor $\mathrm{X} \& \mathrm{Y}=\sqrt{ } D_{12} D_{1^{\prime 2}}=$ $\sqrt{\left(\frac{d}{2}+D\right) \times\left(D-\frac{d}{2}\right)}$	$\begin{gathered} \text { Self } \\ \text { GMD } \\ 2 M \\ \\ \text { Mutual } \\ \text { GMD } \\ 2 M \end{gathered}$
b)	A 275 KV , 3ph, transmission line has following parameters. $A=0.93 \angle 1.5^{0}, B=115 \angle 77^{0}$, if receiving end voltage is 275 KV . Draw receiving end circle diagram and determine sending end voltage required if load of 250 MV at 0.85 lag p.f. is being delivered at receiving end.	4M

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code:
17510

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
c) \\
Ans.
\end{tabular} \& Draw a basic structure of modern power system showing different voltage levels. \& \begin{tabular}{l}
4M \\
4Mfor \\
correct \\
diagram \\
showing all voltage levels
\end{tabular} \\
\hline \& d)

Ans. \& \begin{tabular}{l}
State the field of application of reactive power compensation equipment given below:

i) Shunt capacitor bank

ii) Series inductance reactor

iii) Synchronous condenser

iv) Auto transformer

Field of application of reactive power compensation equipment:

i) shunt capacitor bank -substation \& medium Tr. Line

ii) Inductance reactor bank- long HV tr. Line

iii) Syn. condenser- load centre

iv) Auto transformer - substations

 \&

$$
4 \mathrm{M}
$$

1M each
\end{tabular}

\hline 4. \& | B) |
| :--- |
| a) |
| Ans. | \& | Attempt any one of the following: |
| :--- |
| A balanced load of 50 MVA is supplied at $132 \mathrm{KV}, 50 \mathrm{~Hz}, 0.8$ p.f. lag by means of transmission line. The series impedance is $180 \angle 75^{\circ}$ Ω / ph and total shunt admittance is $1 \times 10^{-3} \angle 90^{0}$ Siemens/ph. Calculate A, B, C, D constants using nominal π method. $\begin{aligned} & Z=180 \angle 75^{\circ} \Omega \\ & Y=1 \times 10^{-3} \angle 90^{0} \end{aligned}$ | \& \[

$$
\begin{gathered}
6 \\
6 M
\end{gathered}
$$
\]

\hline
\end{tabular}

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

\begin{tabular}{|c|c|c|c|}
\hline \& \& Fig. ii:
$$
\begin{aligned}
D_{13} & =2 \sqrt{(2 \gamma)^{2}-\gamma^{2}} \\
& =2 \sqrt{3} \gamma
\end{aligned}
$$
$$
\begin{aligned}
& D_{5}=\sqrt[16]{\left(D_{11} D_{12} D_{13} D_{14}\right)^{2}\left(D_{21} D_{22} D_{23} D_{24}\right)^{2}} \\
& D_{11}=r^{1} \\
& D_{12}=2 r \\
& D_{13}=2 \sqrt{3} r
\end{aligned} D_{21}=2 r, D_{22}=r^{\prime} .
$$
$$
\begin{aligned}
D_{5} & =\sqrt[8]{\left(D_{11} D_{12} D_{13} D_{r 4}\right)\left(D_{21} D_{22} D_{23} D_{24}\right)} \\
& =\sqrt[8]{(\gamma: 2 r \times 2 \sqrt{3} \gamma \times 2 r)\left(2 \gamma \times \gamma^{\prime} \times 2 r \times 2 \gamma\right)} \\
& =\sqrt[8]{\left(0.7788^{2} \times 32 \times 2 \sqrt{3}\right) \times r^{8}} \\
& =1.69 \gamma
\end{aligned}
$$ \& $1 M$
$1 M$

$1 M$

\hline 5. \& a)

Ans. \& | Attempt any two of the following: |
| :--- |
| A $132 \mathrm{KV}, 50 \mathrm{~Hz}$, 3-phase line delivers load at $40 \mathrm{MW}, 0.8$ p.f. lag, at receiving end. The GCC of line are, $A=0.95 \angle 1.4^{0}, B=96 \angle 78^{0}, C=$ $0.0015 \angle 90^{0}$. Calculate sending end voltage, sending end current and voltage regulation. Use nominal T-method. $\begin{gathered} \text { given: } V_{R}=132 \mathrm{KV}, \quad A=0.95 \angle 1.4, \quad B=96 \angle 78 \\ \text { load }=40 \mathrm{Mw}, 0.8 \text { lag } \\ \text { load }=\sqrt{3} V_{R} I_{R} \cos \emptyset_{R}=40 \times 10^{6} \\ =\sqrt{3} X 132 \times 10^{3} \times I_{R} \times 0.8 \\ \therefore I_{R}=218.69 \mathrm{Amp} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(\mathbf{M}) \\ \emptyset_{R}=\cos ^{-1} 0.8=36.86 \end{gathered}$ | \& \[

$$
\begin{gathered}
\hline 16 \\
8 M
\end{gathered}
$$
\]

\hline
\end{tabular}

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

	$\begin{aligned} & \qquad V_{S}=A V_{R}+B I_{R} \\ & \quad=0.95 \angle 1.4 \times 132 \times 10^{3} \angle 0+96 \angle 78 \\ & \times 218.69 \angle-36.86 \ldots(\mathbf{1 M}) \\ & \qquad V_{s}=142.178 \angle 6.816 \mathrm{KV} \ldots \ldots \ldots \ldots(\mathbf{M}) \\ & I_{S}=C V_{R}+D I_{R} \\ & =0.0015 \angle 90 \times 132 \times 10^{3} \angle 0+0.95 \angle 1.4 \times 218.69 \angle-36.86 \\ & \ldots(\mathbf{1 M}) \\ & =186.11 \angle 24.599 \mathrm{Amp} \ldots .(\mathbf{1 M}) \\ & \text { Voltage regulation }=\frac{\frac{V s}{A}--V_{R F L}}{V_{R F L}} \times 100 \ldots(\mathbf{1 M}) \\ & =\frac{142.178}{0.95}-132 \\ & =19.68 \% \ldots(\mathbf{1 M}) \end{aligned}$	
b) Ans.	With the help of receiving end circle diagram, determine complex power delivered at unity p.f. if voltage at each end of line is maintained at 275 KV . Given that $A=0.85 \angle 5^{0}, B=200 \angle 75^{\circ}$.	8M

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510
6.

Attempt any four of the following:
6
a) Derive the expression for complex power at sending end of 4M transmission line.
Ans.

Figure shows the single line diagram of a $3 \varnothing$ transmission line.

- In the figure two bus system having the sending end bus which is fed by the generator and the receiving end bus which feeds the load.
- S_{R} is the complex power of the receiving end and S_{S} is the complex power at the sending end.
- Using the current I_{S} can be expressed in terms of V_{R} and V_{S} as:

$$
\begin{aligned}
& I_{S}=\frac{D}{B} V_{S}-\frac{1}{B} V_{R}=\frac{A}{B} V_{S}-\frac{1}{B} V_{R} \ldots \ldots \text { (i) } \\
& \text { Let, } V_{R}=\left|V_{R}\right| \not 0, V_{S}=\left|V_{S}\right| \angle 0, D=A=|A| \angle \alpha, \\
& \quad \text { Then } I_{S}=\frac{|A|\left|V_{S}\right|}{B}(\angle \alpha+\delta-\beta)-\frac{\left|V_{R}\right|}{B}-\angle B
\end{aligned}
$$

The conjugates of I_{S} are

$$
\mathrm{Is}^{*}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|}{\mathrm{B}}(\mid \beta-\alpha-\delta)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|}{\mathrm{B}} \quad \angle \mathrm{~B}
$$

The complex power/phase at the sending end are

$$
\begin{gathered}
\mathrm{S}_{\mathrm{S}}=\mathrm{P}_{\mathrm{S}}+j a s=\mathrm{V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}}^{*} \\
\mathrm{~S}_{\mathrm{S}}=\left|\mathrm{V}_{\mathrm{S}}\right| \delta\left[\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|}{|\mathrm{B}|}(\beta<\alpha-\delta)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|}{|\mathrm{B}|} \angle \mathrm{B}\right] \\
\mathrm{S}_{\mathrm{S}}=\frac{|\mathrm{A}|\left|\mathrm{V}_{\mathrm{S}}\right|^{2}}{|\mathrm{~B}|}\left(\langle\beta-\alpha)-\frac{\left|\mathrm{V}_{\mathrm{R}}\right|\left|\mathrm{v}_{\mathrm{S}}\right|}{|\mathrm{B}|}(\not \beta+\delta)\right.
\end{gathered}
$$

The above equation is the sending end side complex power.

MODEL ANSWER
SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

c) Ans.	What is transposition of 3 ph line, state its advantages. Transposition of conductors means exchanging the positions of the conductors at regular intervals along the line such that each conductor occupies the original position of every other conductor over equal distance Advantages of transposition: Unsymmetrical Spacing in the transmission line causes the flux linkages and therefore the inductance of each phase to be different resulting in unbalanced receiving end voltages even when sending end voltages and line currents are balanced. 1) The transposition causes each conductor to have the same average inductance over the transposition cycle. Over the length of one transposition cycle the total flux linkages is zero. 2) Transposition results in balanced receiving end voltages when sending end voltages and line currents are balanced. 3) Voltages induced in the adjacent communication lines will be zero	Any 2 advanta ges 2M
d) Ans.	Prove that complex power in power system is $\mathrm{S}=\mathrm{VI}^{*}$.	4M

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

MODEL ANSWER

SUMMER - 2017 EXAMINATION
Subject: Power System Analysis
Subject Code: 17510

