

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

17645

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
1.	A)	Attempt any three:	12
	a)	State the need of alternative energy sources in present energy	4M
		scenario.	
	Ans.	Need of alternative energy sources in present energy scenario:	
		1. Conventional sources of energy like oil, gas and coal are depleting	
		very fast. Oil is likely to last up to2025 and coal another 200 years.	
		2. Oil, gas and coal cause air pollution which is causing global	Any
		warming and climate changes all over the world. It is also	four
		increasing the level of sea, elimination of certain species,	points
		impacting the life of plant, animals and marine life.	<i>4M</i>
		3. Import of oil bill is increasing due to increasing energy needs.	
		4. Causing reduction in agricultural production per capita.	
		5. Scarcity of fresh water supply	
		6. Causing increased health problems.	
		In view of the above, we need to reduce our dependency on oil, coal	
		and nuclear fuels and their imports. Therefore, we need to increase	
		our oil and gas production and look for alternate sources of energy for	
		our power needs.	

SUMMER -	2017	EXAMINATION

Subj	ject: Rene	ewable Energy Sources Subject Code: 1'	7645
	b) Ans.	Define renewable energy sources and give four examples.Renewable energy is energy obtained from sources that areessentially inexhaustible.Example of renewable energy sources includes:1) Solar energy2) Wind power3) Geothermal energy,4) Tidal power5) Ocean power	4M Definitio n 2M ^{1/2} M for each example
	c)	6) Hydroelectric power. Define 'Solar Constant' and state its formula.	4M
	Ans.	Definition Solar Constant: The rate at which solar energy arrives at the top of the atmosphere is called the solar constant I_{sc} . This is the amount of energy received in unit time on a unit area perpendicular to the sun's direction at the mean distance of the earth from the sun. The distance between earth and the sun varies a little through the year. i.e. the earth is closest to the sun in summer and farthest in the winter. This produces a nearly	Definitio n 2M
		sinusoidal variation in the intensity of solar radiation. $I_n = I_{sc} [1 + 0.033 \cos \frac{360_n}{365}]$ Where n is the day of the year	Formula 2M
	d) Ans	With reference to radiation geometry define: Solar azimuth angle, Zenith angle, Incident angle and declination. Solar azimuth angle: (γ) It is the angle subtended in the horizontal plane of the normal to the surface of the horizontal plane. The angle is taken positive if the normal is west of south and negative when east of south in northern hemisphere. Zenith angle: (Θ_z) It is the vertical angle between the sun's ray and the line perpendicular to the horizontal plane through the point. It is complimentary angle of the sun's altitude angle. $\theta_z + \alpha = \frac{\pi}{2}$	4M Each definitio n 1M
		-	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

	Incident angle: (Θ) It is the angle being measured between the beam of rays and normal to the plane.	
	Declination: (δ) It is the angular distance of the sun's rays north (or south) of the equator. It is the angle between a line extending from the centre of the sun of the earth and the projection of this line upon the earth's equatorial plane.	
(B)	Attemnt any one	6
(D) a)	Listout the different types of solar collectors and explain the	6M
	working of any one.	
Ans.	Types of solar collectors:	Classific
	1) Non concentrating flat plate type solar collector.	ation
	2) Concentrating (focusing) type solar collector.	2111
	a) Cylindrical parabolic collectors (line focusing)	
	b)Paraboloid-trough collectors (point focusing)	
	1) Flat plate type solar collector	Any one
	Flat Plate Collector	
	Correr Absorber Pade Heade	Diagram 2M& explanat ion 2M
	Construction & Working : It consists of solar radiation collector or absorber, glass cover, insulating material and water pipe. The most important part is its solar radiation absorber which derives heat energy from sunrays. The absorbing material is typically a flat metal sheet. Water carrying pipe is attached to this sheet. The absorber plate is insulated at the back and at the side to insulate it from ambience for	
	(B) a) Ans.	 Incident angle: (0) It is the angle being measured between the beam of rays and normal to the plane. Declination: (6) It is the angular distance of the sun's rays north (or south) of the equator. It is the angle between a line extending from the centre of the sun of the earth and the projection of this line upon the earth's equatorial plane. (B) Attempt any one:

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

Г

٦

ct: Renewable Energy Sources Subject Code: 176					17645
b) S Ans.	State components cooker.	Polar and their compared	Receiver Declination State Declination Concentration Supporting lase old concentrating collector is and operation	nor of Dish type Solar	· · · · · · · · · · · · · · · · · · ·
	System	Spe	cifications	Comments	Co
	Components	Material	Properties		en
	Components Reflector Flat mirror pieces Metal foil	Material Glass Anodized aluminium	Properties Reflectivity should be high to achieve higher optical efficiency, useful for high temperature	Mirrors are difficult to get in curved shape, also they are fragile. Mostly anodized aluminium is used. Special coating should be done on reflective surface to protect it from scratches.	en Sp au ta
	Components Reflector Flat mirror pieces Metal foil Supporting stand	Material Glass Anodized aluminium GI, Mild steel	Properties Reflectivity should be high to achieve higher optical efficiency, useful for high temperature Enough to support the dish	Mirrors are difficult to get in curved shape, also they are fragile. Mostly anodized aluminium is used. Special coating should be done on reflective surface to protect it from scratches. Powder coated for durability	en Spi au ta

MODEL ANSWER

Subj	ect: Rene	wable Energy Sources Subject Code: 17	645
		FIGURE 4.6 Dish type concentrator solar cooker.	Diagram 1M
		Operation: In Dish type solar cooker the concentration of solar radiation is manifold greater than normal solar radiation (about 20 to 50 times, or could be much higher depending on the requirement). This is effectively a two dimension concentration ,i.e light is concentrated from two dimensions and brought to a point. A schematic diagram of dish type concentrator is shown in fig.	Operatio n 2M
2.		Attempt any four:	16
	a)	Discuss the environmental aspects associated with the energy	4M
	Ans.	 Use of fossil fuels gives rise to production of Greenhouse gas which contains methane, hydrogen and other hydrocarbons. This affects the environment species and leads to pollution. Due to which there is a need of alternate energy sources such as renewable. Energy pattern is economic growth. Resources are used to meet human needs as well as preserving environmental issue for generation. The rate of fossil fuel being used is phenomenal and is no way the nature can replace them. This will lead to a situation of scarcity of fuel. The fuel used by power plants such as coal, gas, oil are producing pollutants which disturb environmental stability . Emphasis on use of renewable sources of energy can prevent the environmental disaster. Use of hydropower, wind, solar energy can give some retrieve. Similarly excessive use of land, water, forest and living resources can lead to irrespirable harm to environment. 	Any 4 pts 1M for each
	b)	List the equipments used for solar radiation measurement and	4 M
	,	explain any one in brief.	
	Ans.	There are two basic types of instruments used for solar radiation measurement:	

SUMMER - 2017 EXAMINATION

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code: 17645

diffuse radiations which produce heat. A "glass dome" prevents the loss of radiation received by the black surface. A "thermopile" is a temperature sensor and consists of a number of thermocouples connected in series to increase the sensitivity. The "supporting stand" keeps the black surface in a proper position. The sun's radiation is allowed to fall on a black surface to which the hot junctions of a thermopile are attached. The cold junctions of the thermopile are located in such a way that they do not receive the radiation. As a result, an emf proportional to the solar radiation is generated. Explain construction and operation of Advanced Solar Cooker. 4Mc) (Note: Any other relevant design can be considered) **Inclined Box Type Solar Cooker:** Ans. REFLECTOR HINGE SUSPENDED S. STRIP HINGE Advance COOKING OUTER BOX d Solar NER BOX COOKING NSULATION Cooker POT (New ADJUSTABLE STAND CASTER WHEEL Design), SPECIFICATIONS: 2M for LENGTH- 940mm. WIDTH- 320mm HEIGHT- 295mm CAPACITY OF EACH COOKING POT- 1.25 LITRE Diagram & 2M FIG-1. INCLINED BOX TYPE SOLAR COOKER for **Operatio** The detailed constructional feature of the cooker is shown in above n figure. The cooker box consists of a top open black painted inner box kept inside of the box and the space between the two boxes is filled with glass wool insulation. The upside of this cooker box is covered by two layers of transparent glass keeping a gap in between and the supporting frame of the cover is hinged with cooker box for keeping glass cover in inclined position to handle the cooking pots. So the cooker box is similar to conventional box type cooker, but the shape of the box is different from common type. The length of the box in presently proposed type is at about three times of its width and depth is equal to the width.

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

	 The cooker is to be placed facing sun, keeping longer side vertically inclined position and the inclination of the cooker box can easily be changed from 15 degree to 45 degrees with respect to the ground by the adjustable stand, attached at the back side of the box. Two mirror reflectors are used in this cooker, however even up to four reflectors can be conveniently arranged in this box type cooker 	
	(provided the reflectors are light weight). The reflectors are set along the length of the cooker box cover, one in each side, by hinge and holding strip. So length of reflectors are equal to the length of the glass cover.	
	The widths are equal to the width of the glass cover .When the cooker is in use, each reflector is kept at the inclination of about 115 degree with the face of the box cover .In this position the reflections from the top edge of the reflectors touch the outer longitudinal edge of cover glass when the cooker is placed in perpendicular direction to the solar rays .If four reflectors are used then other two reflectors are to be hinged at the top of the inner reflectors, one in each side at an angle of nearly 15 degree with the inner one All the reflectors can be folded for keeping on the top of the cooker box cover when not in use. The face of the cooker is to be placed perpendicular to beam radiation to collect the maximum energy. This perpendicular position can be easily achieved simply by the rotation of the cooker towards the sun with the help of caster wheels ,suitably attached at the bottom side of the cooker and by changing the inclination of the cooker by adjustable stand of the back side .But the position of the reflectors remain unchanged throughout the working period.	
d) Ans.	State the working principle and applications of Solar Pond. Principle: In general pond, when water is heated up by the sun rays the heated water rises to the top of the pond. The hot water loses heat to the atmosphere & so the net temperature at the top of the pond remains nearly at atmospheric temperature. The solar pond technology ensures that heated brine water remains at the bottom of the pond due to more brine concentration and density in it.	4M Principl e of solar pond 2M

MODEL ANSWER

Subject: Renewable Energy Sources

Subject Code:

	Top zone Top zone Non-convective zone Bottom zone SoLAR POND Application of solar pond: a) Heating and cooling of building b) Production of power c) Industrial process heat d) Desalination e) Heating animal housing and drying crops on farms f) Heat for biomass conversion	Any 4 applicati on ½M for each
e)	State the meaning of following terms:	4 M
	Power in the wind, Max.power, Power coefficient, Wind-energy	
Ans.	1) Power in wind	1M for
	It relates kinetic energy of wind, harnessed & directed to perform a task mechanically. It depends on wind speed, location etc.	each definitio
	2) Maximum Power Theoretical power generated by wind turbine. It depends on power coefficient.	n
	3) Power Coefficient: The fraction of the free-flow wind power that can be extracted by a rotor is called the power- coefficient; thus	
	Power coefficient = $\frac{Power \text{ of wind rotor}}{Power \text{ available in the wind}}$	
	4) Wind energy Conversion: A wind energy conversion system (WECS) or wind energy harvester is a machine that, powered by the energy of the wind, generates mechanical energy that can be used to directly power machinery (mill, pump) or to power an electrical generator for making electricity.	
f)	State criteria to be considered in selecting the site for wind mills.	4M
Alls.		

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

 x) Nature of ground: Ground condition should be such that the functions for a WECS are secured. Ground surface should be stable. Erosion problem should not be there. xi) Favourable and cost: Total cost should be favorable as this along with siting cost enters into the total WECS system cost
 functions for a WECS are secured. Ground surface should be stable. Erosion problem should not be there. xi) Favourable and cost: Total cost should be favorable as this along with siting cost enters into the total WECS system cost.
Erosion problem should not be there. xi) Favourable and cost: Total cost should be favorable as this along with siting cost enters into the total WECS system cost
xi) Favourable and cost: Total cost should be favorable as this along with siting cost enters into the total WECS system cost
with siting cost enters into the total WECS system cost
with string cost chiefs into the total winces system cost.
xii) Other conditions such as icing problem, salt spray or blowing
dust should not be present at the site.
3.Attempt any four:16
a) With the help of pic-chart explain the potential of renewable 4M
energy sources uptill now.
Ans.
On shore Offshore Wind 0.85
Solar PV 0.53%
Panels 0.05% For p
Nuclear Power.
2M
Small and
Large Hydro 68.12%
Denomoble energy status and netentials
Renewable energy status and potential:
See Service Detertial (in Leatellad (in
Sr. Sources Potential (in Installed (in
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1 Wind energy 48,561 10464 Expla
2 Small Hydro Power 14292 2461 100 2
<u>3 Biogas 5000 1555</u>
4 Bio- Power 61000 773
5 Waste energy 7000 59
6Solar Photovoltaics202
Total 135853 14914
b) Define tilt factor for beam radiation and state factors on which it 4M
depends.
Ans. Definition of tilt factor:
The ratio of the beam radiation flux falling on a tilted surface to that

MODEL ANSWER

Subject: Renewable Energy Sources

Subject Code: 17645

	falling on a horizontal surface is called the tilt factor for beam radiation.	Definitio n 2M
	 Tilt factor for beam radiation depends on: 1. Horizontal tilt 2. Surface Azimuth 3. Declination Angle 4. Latitude 	Factors ½ M each
c)	State and explain the following methods to obtain energy from biomass: Anaerobic digestion Gasification.	4M
Ans.	 Anaerobic digestion: The process which converts decaying wet biomass and animal waste into biogas through the decomposition process by the action of anaerobic bacteria (bacteria that is live & grow in the absence of oxygen) is called anaerobic digestion. The air tight equipment used to convert the wet biomass into biogas by digestion or fermentation is called digester. The biochemical process of conversion from biomass to biogas is as in three stages: (i) Hydrolysis of organic matter: The biomass is broken due to the 	Anaerob ic method 2M
	 (i) Hydrorysis of organic matter. The biomass is broken due to the action of water (hydrolysis) into simpler soluble compounds. (ii) Anaerobic & facultative microorganism: These bacteria start growing to produce acetic & propionic acids. The output of process is the production of carbon dioxide. (iii)Digestion: Anaerobic bacteria slowly digest the biomass slurry to produce biogas the process is completed in two weeks 	
	 Gasification A solid fuel is converted by a series of thermo chemical process like drying, pyrolysis, oxidation and reduction to a gaseous fuel i.e. producer gas. If the atmospheric air is used for the gasification then the producer gas consist of mainly carbmonoxide, hydrogen and oxygen. This gas is more versatile than solid biomass, it can be burnt to produce process heat and steam, or used in internal combustion engines or gas turbine to generate electricity. The gasification process renders the use of biomass which is relatively clean and acceptable in environmental terms. 	Gasifica tion method 2M

Subject: Rene	SUMMER - 2017 EXAMINATION ewable Energy Sources Subject Code: 17	'645
d) Ans	Draw neat labelled schematic diagram of fluidized bed biomass gasifier.	4M
	Clarither zone Feed 1 Thuent Pool distribution Recycle	Correct diagram with labeled 4M
e) Ans.	 Give the advantages and disadvantages of geothermal energy. Advantages of Geothermal Energy: i) Geothermal energy is cheaper, compared to the energies obtained from other sources both zero fuels and fossil fuels. ii) It is versatile in its use. iii) It is the least polluting compared to the other conventional energy sources. iv) It is amenable for multiple uses from a single resource. v) Geothermal power plants have the highest annual load factors of 85% to 90% compared to 45% to 50% for fossil fuel plants. vi) It delivers greater amount of net energy from its system as compared to other alternative 	4M Any four advanta ges and disadvan tages 2M each
	 Disadvantages of Geothermal Energy: i) Low overall power production efficiency about 15%, as compared to 35- 40% for fossil fuel plants. ii) The withdrawal of large amounts of steam or water from a hydrothermal reservoir may result in surface subsidence. iii) The gases coming out of earth along with steam or hot water are 	

MODEL ANSWER

SUMMER - 2017 EXAMINATION

17645 **Subject: Renewable Energy Sources** Subject Code: hazardous, hence need to be removed by chemical action, before they are discharged. iv) Drilling operation is noisy. Large areas are needed for exploitation of geothermal energy v) State the thermal classification of biomass. **4M** f) In thermal gasification, solid fuel is converted into gaseous fuel by Ans. For series of thermo chemical processes like drying, pyrolysis, oxidation, statemen and reduction. t 1M Biomass gasifiers are classified as per the direction of gas flow: 1. Down draught gas generator 2. Up draught gas generator For 3. Cross draught gas generator classific ation Biomass gasifiers are classified as per output power as : (any 1. Small size gasifiers with output upto 10kw. three) 2. Medium size gasifiers with output in the range of 10kw- 50kw. *3M* 3. Large size gasifiers with output in the range of 50 kw- 300 kw. 4. Very large gasifiers with outputs 300 kw and above. Gasifiers may also be classified as per the type of bed: 1. Fixed bed gasifier 2. Fluidised bed gasifier 4. Attempt any three: 12 A) a) State construction and operation of solar dryer. 4MAns. CLOTH SCREEN DRYING BOX Diagram SOLAR 2M000 COLLECTOR AIR FLOW BLACK SURFACE

> CLEAR GLASS OR PLASTIC SHEET

> > AIR FLOW

TABLE OR CHAIR SUPPORT

www.ecostudio.com.au

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Ren	ewable Energy Sources Subject Code: 17	7645
	Solar dryer consisting of a solar collector and a drying chamber, without direct exposure of the content to the environment, drying is more hygienic as there is no secondary contamination of the products through rain, dust, insects, rodents or birds. The products are dried by hot air only. There is no direct impact of solar radiation (sunshine) on the product. The solar energy produces hot air in the solar collectors. Increasing the temperature in a given volume of air decreases the relative air humidity and increases the water absorption capacity of the air. A steady stream of hot air into the drying chamber circulating through and over the meat pieces results in continuous and efficient dehydration.	Explana tion 2M
b)	With the help of neat labelled diagram explain the construction of	4M
Ans.	Solar cell Module Array Array field	Diagram 2M
	Glass cover Encapsulant Solar cells Encapsulant Tedlar	
	Diagram: Protection of solar PV cell	
	Solar cens are fixed on a board and connected in series and parallel	

Г

٦

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subj	ect: Rene	wable	Energy Sources	Subject Code: 1	7645
		combi modul Solar home Therefi into A to AC import One discha This p charge	nations to provide the required e. PV module generates electricit appliances or industrial applian fore, there is a need to convert C power. This can be achieved converter (or inverter). Therefore ant part of PV energy systems. also needs to protect the rging beyond the limit. In bo protection requires a device can be controller is in-built in the in- protect of the separately.	voltage and power to form a PV y in DC form. But many of our cess use AC power for operation. PV module generated DC power d by using equipment called DC ore, the use of inverter is also an battery from overcharging or th cases, battery life decreases. alled charge controller. Usually nverter itself but it can also be	Explana tion 2M
	c)	Draw	neat block diagram of variab	le speed constant frequency,	4M
	Ans.	wind-	electric generation system.	ECTIFIER DC DC DC DC DC DC DC DC DC DC DC DC DC	Each block 1M Four block 3M
	d)	State	the difference between closed	cycle and open cycle ocean	4 M
	Ans.	Sr. No.	Closed cycle OTP	Open cycle OTP	
		1	This cycle requires separate	Open cycle refers to the utilization of see water as the	
			and rejects heat to the	working fluid, wherein sea	

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

			source and sink via heat	water is flash evaporated	
			exchanger	under a partial vacuum	
		2	The working fluid may be	Sea water itself is a working	Any
			ammonia, propane, or a	fluid.	four
			Freon.		differen
		3	Operating pressures of	Operating pressure of	ces each
			working fluid at boiler is	working fluid at boiler is	<i>1M</i>
			much higher	much lower	
		4	Condenser temperature is	Condenser temperature is	
			much higher	much lower	
		5	Turbines are much smaller	Turbines are larger	
		6	The cost of closed cycle	More costly as the turbine	
			system for providing	cost is half the cost of power	
			substantial number of	system.	
			megawatts is lesser		
		7	Requires very large heat	Requires smaller heat	
			exchanger	exchanger	
4	D)	Attom	nt any ana		6
4.	D)	Attem	ipt any one:		U
4.	a)	Draw	neat diagram of dome and d	rum type biomass plant.	6M
4.	a) Ans,	Draw	neat diagram of dome and d	rum type biomass plant.	6M
4.	a) Ans,	Draw	neat diagram of dome and d	rum type biomass plant.	6M
4.	a) Ans,	Draw	neat diagram of dome and d	rum type biomass plant.	6M
4.	a) Ans,	Draw	neat diagram of dome and d	rum type biomass plant.	6M
4.	a) Ans,	Draw	neat diagram of dome and d	rum type biomass plant.	6M Correct
4.	a) Ans,	Draw	neat diagram of dome and d	rum type biomass plant.	6M Correct diagram
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M 6M Correct diagram with
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M 6M <i>Correct</i> <i>diagram</i> <i>with</i> <i>labeled</i>
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M 6M <i>Correct</i> <i>diagram</i> <i>with</i> <i>labeled</i> 6M
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M Correct diagram with labeled 6M
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M Correct diagram with labeled 6M
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M Correct diagram with labeled 6M
4.	a) Ans,	Draw	neat diagram of dome and di	rum type biomass plant.	6M Correct diagram with labeled 6M

Г

٦

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Ren	ewable Energy Sources Subject Code: 17	645
	GAS PIPE USPLACEMENT GAS HOLDER FLOATER WATER WATER	
b) Ans.	 State the components of tidal power plant and state their functions. A barrage: A barrage is a small wall built at the entrance of a gulf in order to trap water behind it. It will either trap it by keeping it from going into the gulf when water levels at the sea are high or it will keep water from going into the sea when water level at the sea is low Turbines: they are the components responsible for converting potential energy into kinetic energy. They are located in the passageways that the water flows through when gates of barrage are opened. Sluices: sluice gates are the ones responsible for the flow of water through the barrage. Embankments: they are caissons made out of concrete to prevent water from flowing at certain parts of the dam and to help maintenance work and electrical wiring to be connected or used to move equipment or cars over it 	6M 2 Compon ents ^{1/2} M each Any 4 function 1M each

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

ode: 17645

5.		Attempt any four:		16
	a)	Draw neat schematic representat	tion of distribution of solar	4 M
		energy.		
	Ans.	Reflected back	A CONTRACTOR OF	Complet
		into space		ely
		$I \rightarrow I$		Labelled
				Diagram
		Dittuse	Atmospheric	<i>4M</i>
		Pottocted	(warming of	(Darath.
		back by surface Diffe	use (air)	(Parily labelled
		radio	Direct	adellea 3M
			Pradiation	Unlahell
				ed
		Surface of	earth	Diagram
		Direct diffuse	and total radiation	2M
	b)	State the limitations of pyrhelion	neter for measurement of beam	4M
		radiation.	4 61 1.4.	
	Ans.	Limitationsol pyrneliometer for	measurement of beam radiation:	Any 4
		• It can measure only direct solar	r radiation at normal incidence. It	umuallo ng of
		cannot measure diffused radiat	1011. i.e	ns oj nvrhelio
		• It cannot be used in tilted position	d radiation	motor
		Call not receive ground reflecte	a radiation.	each 1M
		Shading fing arrangement is no pyranometer	or provided as in case of	
		• Accuracy of measurement is no	ot as good as pyranometer	
		• Accuracy of measurement is no	or as good as pyranometer.	
	c)	State the difference between hor	izontal axis and vertical axis	4M
		wind turbines.		
	Ans.	Horizontal axis wind mill	Vertical axis wind mill	
		1.More power capture(for same	1. Less power capture(for same	Any 4
		tower height)	tower height)	points
		2. No effect of fatigue in such	2. The structure suffers from	each 1M
		structure	fatigue effect.	
		3. No appearance of the	3. appearance of the unwanted	
		unwanted power periodicity	power periodicity	
		4. Less noise problem	4. More noise problem	
		5. There exists complexity of	5. No such problem of	

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

		yaw mechanism	complexity in yaw mechanism	
		6.More complex design	6. Less complex design	
	d)	State any two advantages and tw	o limitations of hydrogen energy.	4M
	Ans.	Advantages of hydrogen energy:		
		1. Very high energy content		
		2. Burning is non polluting		
		3. Hydrogen produced from bioma	ss and supplied to consumers in the	
		transport sector		Any two
		4. Fuel cell operated bus; hydroger	n produced from biomass can	advanta
		compete well with gasoline operate	ed vehicles.	ges 2M
		5. It is a superior fuel for turbojet a	aircraft due to greater economy or	
		lower noise level and little pollutio	n g	
		6. Hydrogen as a vehicular fuel car	n reduce dependence on fossil fuel	
		which is increasing in cost every w	ear	
		7. Hydrogen can easily be transpor	ted and distributed through	
		pipeline		
		8 Hydrogen being a high density f	uel Its low transport cost high	
		product cost to make it can econon	nically viable fuel	
		r	y ·	
		Limitationsof hydrogen energy:		
		1. Commercial production of hydro	ogen at cheap cost.	Any two
		2. Effective energy utilization		limitatio
		3. Difficulty in storage since it is h	ighly explosive	ns 2M
		4. Lock of safety and management		
	e)	State the difference between Don	ne type and Drum type biomass	4 M
		plants (any 4).		
	Ans.	Dome type Biogas plant	Drum type Biogas plant	
		Constant volume in digester	Constant pressure in digester	
		Danger of explosion exists as	No danger of explosion of gas	
		pressure is high	as pressure in the digester is low	Any 4
		Due to high pressure, there is	No danger of leakage gas	points
		danger of leakage of gas		IM each
		Less costly	Cost is more due to floating	
			steel drum provision	
		No such danger	Corrosion of steel floating drum	
			1s likely	
		No maintenance needed	More maintenance needed due	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code:

Low gas production due to high pressure in digesterHigh gas production due to lower pressure in digesterInstallation is difficultInstallation is simple4Mf)Give the classification of bio-energy sources and explain each with example.4MAns.Biomass resources for energy production are widely available in forest ares,rural farms ,urban refuse and organic waste from agro industries. Biomass classification is illustatred in following fig.4MImage: State of the st			to sliding metallic drum	
pressure in digester lower pressure in digester Installation is difficult Installation is simple f) Give the classification of bio-energy sources and explain each with example. Ams. Biomass resources for energy production are widely available in forest ares, rural farms, urban refuse and organic wastes from agro industries. Biomass classification is illustated in following fig. 4M Image: Comparison of the energy energy forming refers to the cultivation of fast growing plants which supply fuel wood, biomass that can be converted into gaseous and liquid fuel like biogas, vegetable oil and alcohol. To which are saline, wind eroded lands in arid areas and water – lagged lands. 2M Vegetable Oil crops : Oil can be extracted from fertile area crops such as , sunflower, cotton seed, groundnut, rapeseed, palm and coconut . These oils after purification can be blended with diesel oil		Low gas production due to high	High gas production due to	
Installation is difficult Installation is simple f) Give the classification of bio-energy sources and explain each with example. 4M Ans. Biomass resources for energy production are widely available in forest ares, rural farms, urban refuse and organic waste from agro industries. Biomass classification is illustatred in following fig. 4M Image: Comparison of the energy production are widely available in forest ares, rural farms, urban refuse and organic waste from agro industries. Biomass classification is illustatred in following fig. 2M Image: Comparison of the energy production are widely availed by availe or provide and area plantation growth and residues are available in abundance as natural resources, easily collected and stored. These are rice husk, wheat straw, corn cobs, cotton sticks, sugar cane bagasse, groundnut and coconut shells. These are converted into briquettes or pellets for use as clean fuel. These are called biofuels which are high efficiency solid fuels. 2M Energy crops: Energy farming refers to the cultivation of fast growing plants which supply fuel wood, biomass that can be converted into gaseous and liquid fuel like biogas, vegetable oil and alcohol. To which are saline, wind eroded lands in arid areas and water – lagged lands. 2M Vegetable Oil crops : Oil can be extracted from fertile area crops such as sunflower, cotton seed, groundnut, rapeseed, palm and coconut . These oils after purification can be blended with diesel oil 2M		pressure in digester	lower pressure in digester	
f)Give the classification of bio-energy sources and explain each with example.4MAns.Biomass resources for energy production are widely available in forest ares,rural farms, urban refuse and organic waste from agro industries. Biomass classification is illustatred in following fig.4MImage: Construction of the energy or th		Installation is difficult	Installation is simple	
Ans.with example.Biomass resources for energy production are widely available in forest ares,rural farms, urban refuse and organic waste from agro industries. Biomass classification is illustatred in following fig.2M Classific ationEnergy cropsNatural vegetable growthOrganic wastes and residues2M Classific ationForest Agricultural Animal residuesUrban waste sold wasteIndustrial waste2M Classific ationForests: Forests, natural or cultivated are rich sources of Timber,fuel wood, charcoal and raw material for paper mills and others industries. Agricultural crop residues: residuesSewage sold waste2M Classific ationEnergy crops:Energy cropsCrop residuesSewage sold waste2M Classific ationEnergy crops:Energy cropsCrop residuesSewage sold waste2M Classific ationEnergy crops:Energy forms:Crop residuesCrop residuesEnergy crops:Energy farming refers to the cultivation of fast growing plants which supply fuel wood, biomass that can be converted into gaseous and liquid fuel like biogas, vegetable oil and alcohol. To which are saline, wind eroded lands in arid areas and water - lagged lands.2M Explana tionVegetable Oil crops : Oil can be extracted from fertile area crops such as ,sunflower, cotton seed, groundnut, rapeseed, palm and coconut . These oils after purification can be blended with diesel oil	f)	Give the classification of bio-ene	ergy sources and explain each	4 M
Ans. Biomass resources for energy production are widely available in forest ares, rural farms, urban refuse and organic waste from agroindustries. Biomass classification is illustatred in following fig. 2M Image: Comparison of the energy production of a sequence of the energy crops is the energy or product of the energy crops is the energy is th		with example.		
 Forest Agricultural Animal Urban waste Industrial waste Forests: Forests, natural or cultivated are rich sources of Timber, fuel wood, charcoal and raw material for paper mills and others industries. Agricultural crop residues: Crop residues are available in abundance as natural resources, easily collected and stored. These are rice husk, wheat straw, corn cobs, cotton sticks, sugar cane bagasse, groundnut and coconut shells. These are called biofuels which are high efficiency solid fuels. Energy crops: Energy farming refers to the cultivation of fast growing plants which supply fuel wood, biomass that can be converted into gaseous and liquid fuel like biogas, vegetable oil and alcohol. To which are saline, wind eroded lands in arid areas and water – lagged lands. Vegetable Oil crops : Oil can be extracted from fertile area crops such as ,sunflower, cotton seed, groundnut, rapeseed, palm and coconut . These oils after purification can be blended with diesel oil 	Ans.	Biomass resources for energy pro- forest ares,rural farms ,urban refu industries. Biomass classification Biomas Energy crops Natural veg	duction are widely available in se and organic waste from agro is illustatred in following fig.	2M Classific
 Forests: Forests, natural or cultivated are rich sources of Timber, fuel wood, charcoal and raw material for paper mills and others industries. Agricultural crop residues: Crop residues are available in abundance as natural resources, easily collected and stored. These are rice husk, wheat straw, corn cobs, cotton sticks, sugar cane bagasse, groundnut and coconut shells. These are converted into briquettes or pellets for use as clean fuel. These are called biofuels which are high efficiency solid fuels. Energy crops: Energy farming refers to the cultivation of fast growing plants which supply fuel wood, biomass that can be converted into gaseous and liquid fuel like biogas, vegetable oil and alcohol. To which are saline, wind eroded lands in arid areas and water – lagged lands. Vegetable Oil crops : Oil can be extracted from fertile area crops such as ,sunflower, cotton seed, groundnut, rapeseed, palm and coconut . These oils after purification can be blended with diesel oil 		Aquatic crop) Forest Agricultural Animal residue crop waste residues Mu soli	Urban waste Urban waste waste inicipal Sewage d waste liquid waste	
suitable as engine fuel.		 Forests: Forests, natural or cultive wood, charcoal and raw material of Agricultural crop residues: abundance as natural resources, end rice husk, wheat straw, corn cober groundnut and coconut shells. The pellets for use as clean fuel. These efficiency solid fuels. Energy crops: Energy farming growing plants which supply converted into gaseous and liquid alcohol. To which are saline, we water – lagged lands. Vegetable Oil crops : Oil can be such as ,sunflower, cotton seed coconut. These oils after purification. 	rated are rich sources of Timber, fuel for paper mills and others industries. Crop residues are available in asily collected and stored. These are s, cotton sticks, sugar cane bagasse, nese are converted into briquettes or se are called biofuels which are high g refers to the cultivation of fast fuel wood, biomass that can be d fuel like biogas, vegetable oil and ind eroded lands in arid areas and be extracted from fertile area crops d, groundnut, rapeseed, palm and ation can be blended with diesel oil	2M Explana tion
		Aquatic Crop: Aquatic crop con	nstitutes three water plants, namely	

MODEL ANSWER

SUMMER - 2017 EXAMINATION

Subject: Renewable Energy Sources

Subject Code: 1

		algae, water hyacinth and sea weeds. These plants grow abundantly in	
		water bodies and provide organic matter for biogas plants.	
		Animal Waste: animal waste, an organic material with combustible	
		property , is a rich source of fuel. Dung cakes prepared with animal	
		waste are used for cooking in rural and semi –urban areas. It is also a	
		raw material for biogas plants.	
		Urban Waste : Urban waste is of two types:	
		(i) Municipal Solid Waste (MSW) which includes excreta	
		household garbage and commercial waste.	
		(ii) (ii) Liquid waste from domestic sewage and effluents from	
		institution activities.	
		Industrial Waste: Energy recovery from industrial waste was taken	
		up in 1993 are implemented with technical assistance of national	
		laboratories.	
		Pulp and paper Industry Effluents. Starch and glucose	
		Industry waste, Palm Oil Industry, Distillery waste and tanneries	
		waste. These wastes are treated for production of bio-energy which	
		can be used for power generation.	
6.		Attempt any two:	16
	a)	With the help of block diagram explain operation of solar home	8 M
	,	lighting system and state its applications.	
	Ans.	Photovoltaic Power Generating System:	
		Operation: Solar PV panel converts solar energy to electrical energy	
		in dc form. The electrical energy is generated when sunlight falls on	
		the PV panel. There is no sunlight during cloudy days and night	<i>3M</i>
		hours, so battery is used here Electricity supplied to the appliance and	operatio
		also for battery charging when sunlight is there. Some of appliances	n
		are of dc type and can utilize dc output of PV panel directly but many	-
		of the appliances are of ac type, hence dc supply of PV panel is	
		converted into ac with the help of inverter. Overcharging and over	
		discharging of battery shortens its life so this needs battery protection	
		by a device called charge controller (cc). Which prevents	
		by a device called charge controller (cc). Which prevents Overcharging and over Over discharging of battery. Maximum	
		by a device called charge controller (cc). Which prevents Overcharging and over Over discharging of battery. Maximum power point tracker (MPPT) is an impedance matching device which	
		by a device called charge controller (cc). Which prevents Overcharging and over Over discharging of battery. Maximum power point tracker (MPPT) is an impedance matching device which is used alongwith PV panel to extract maximum power.	
		by a device called charge controller (cc). Which prevents Overcharging and over Over discharging of battery. Maximum power point tracker (MPPT) is an impedance matching device which is used alongwith PV panel to extract maximum power.	
		by a device called charge controller (cc). Which prevents Overcharging and over Over discharging of battery. Maximum power point tracker (MPPT) is an impedance matching device which is used alongwith PV panel to extract maximum power.	
		by a device called charge controller (cc). Which prevents Overcharging and over Over discharging of battery. Maximum power point tracker (MPPT) is an impedance matching device which is used alongwith PV panel to extract maximum power.	

MODEL ANSWER

SUMMER - 2017 EXAMINATION

17645 **Subject: Renewable Energy Sources** Subject Code: 2. The oxidizer diffuses through the cathode and is reduced by the electrons that have come from anode by products out of the external circuits. 3. The fuel cell is a device that keeps the fuel molecules from mixing with the oxidizer molecules, permitting, however the transfer of electrons by a metallic path that may contain a load. 4. The available fuels, hydrogen has so far given the most promising results. Although cells consuming coal, oil or natural gas would be economically much more useful for large scale applications. **Applications:** Domestic use: Fuel cell generate dc Current which can be used for 2Melectric lamps and some small applications such as heat pumps, motor Applicat etc., conversion into alternating current by means of inverter might be ions necessary (1) Central Power station: A long term possibility is a central power plant in which coat is gasified and the gas is used to generate electricity directly by means of fuel cell. (2) Automotive vehicles: The hydrogen-Oxygen (air) fuel cell might be used for electric vehicle propulsion. (3) Special applications: Fuel cells are under development are for special application where convenience is of a paramount importance, cost is secondary. Hydrogen oxygen and hydro carbon oxygen cells will be used in special military and space project.