MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-16 EXAMINATION
Model Answer

Subject code 17426 page $\mathbf{1}$ of $\mathbf{2 1}$

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the
figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer		Marks
1a	Attempt any SIX of the following		12
1a-i	Expression for kinematic viscosity (v) : $\nu=\mu / \rho$ where μ is the viscosity of the fluid and ρ is the density of the fluid		2
1a-ii	Water is incompressible fluid.		2
1a-iii	Flow is laminar since NRe is less than 2100		2
1a-iv	Expression to calculate friction factor for laminar flow For laminar flow :f $=\frac{16}{N R e}$		2
1a-v	Schedule number: Definition:They are American Standard Association designation for classifying the strength of the pipe. It indicates the wall thickness of the pipe.		1
1a-vi	Specific application of centrifugal pump: It is used for handling abrasive, corrosive and dirty fluids. Used in refineries, power plants, fire protection sprinkler system, boiler feed application, sugar refining, pharmaceuticals, paints etc		1 mark each for any two
1a-vii	Equipment used for producing vacuum without a moving part. Jet ejector.		2
1b	Attempt any TWO of the following		8
1b-i	Differentiate average velocity and point velocity		2 marks
	average velocity	point velocity	
	Formula $\mathrm{v}=\mathrm{Q} / \mathrm{A}$ Where Q is volumetric flow rate and A is area of pipe. $\mathrm{v}=\dot{m} / \rho \mathrm{AWhere} \dot{m}$ is	$V_{P=c_{p}} \sqrt{2 g H}$	

WINTER-16 EXAMINATION

Model Answer

WINTER-16 EXAMINATION

Model Answer

Model Answer

Model Answer

		page 1
	Use: Branching of pipe line	
4-b	Name of dimensionless number:Reynolds number $\mathrm{N}_{\mathrm{Re}}=\frac{\mathrm{Du} \rho}{\mu}$ Where $\mathrm{D}=$ diameter in m $u=$ Velocity in m / s $\rho=$ density in $\mathrm{kg} / \mathrm{m}^{3}$ $\mu=$ Viscosity in $\mathrm{Kg} / \mathrm{ms}$ $\mathrm{N}_{\mathrm{Re}}=\frac{\mathrm{Du} \rho}{\mu}=\frac{\frac{m * \frac{m}{S} * \frac{K g}{m^{3}}}{\frac{K g}{m s}}}{\frac{\mathrm{~K}^{2}}{}}$ All the units are getting cancelled. So it is dimensionless	1 3
4-c	Diagram of centrifugal compressor:	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER-16 EXAMINATION

Model Answer

(

	Subject code	17426	page 1
	$\mathrm{V}_{\mathrm{a}}=100 / 12.56=7.96 \mathrm{~cm} / \mathrm{s}$ From equation of continuity, $\dot{m}=\rho v \mathrm{~A}=$ constsant $\mathrm{A}_{\mathrm{b}}=\pi \mathrm{D}_{\mathrm{b}}^{2} / 4=3.14 * 2^{2} / 4=3.14 \mathrm{~cm}^{2}$ Since $\rho_{\mathrm{A}}=\rho_{\mathrm{B}}$, $\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{a}} * \mathrm{~A}_{\mathrm{a}} / \mathrm{A}_{\mathrm{b}}=7.96 * 12.56 / 3.14=\mathbf{3 1 . 8 4} \mathbf{c m} / \mathbf{s}$		1 1 1
4-f	$\begin{aligned} & \Delta \mathrm{hm}=1.4 \mathrm{~cm} \text { of } \mathrm{Hg} \\ & \rho \mathrm{~m}=\rho \mathrm{Hg}=13.6 \mathrm{~g} / \mathrm{cm}^{3} \\ & \rho \mathrm{f}=\rho \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~g} / \mathrm{cm}^{3} \\ & \Delta \mathrm{Hf}=\Delta \mathrm{hm}(\rho \mathrm{~m}-\rho \mathrm{f}) / \rho \mathrm{f}=1.4(13.6-1) / 1=\mathbf{1 7 . 6 4} \mathbf{~ c m} \text { of water. } \end{aligned}$		4
5	Attempt any TWO of the following		16
5-a	Data: Specific gravity of oil $=0.8$ Density of oil= Specific gravity * Density of water Density of oil $=\rho=0.8 * 1000=800 \mathrm{~kg} / \mathrm{m}^{3}$ Viscosity of oil $=\mu=0.08$ Poise $=0.008 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$ Diameter of pipe $=\mathrm{d}=12.5 \mathrm{~mm}=0.0125 \mathrm{~m}$ Length of pipe $=\mathrm{L}=20 \mathrm{~m}$ Velocity $=\mathrm{u}=50 \mathrm{~cm} / \mathrm{s}=0.5 \mathrm{~m} / \mathrm{s}$ Pressure drop $=\Delta \mathrm{P}=$? Let's find out Reynolds number $\begin{gathered} N_{R e}=\frac{D u \rho}{\mu} \\ N_{R e}=\frac{0.0125 * 0.5 * 800}{0.008} \\ N_{R e}=\mathbf{6 2 5} \end{gathered}$ $N_{R e}<2000$,flow is laminar. Fanning Friction factor $f=\frac{16}{N_{R e}}$		2

Model Answer

Model Answer

WINTER-16 EXAMINATION

Model Answer

WINTER-16 EXAMINATION

Model Answer

Subject code 17426 page $\mathbf{1 8}$ of $\mathbf{2 1}$

	increased throughout the liquid.As long as delivery valve is closed and impeller is rotated,there will be just churning of the liquid within the casing.When delivery valve is opened,liquid is flown in outward radial direction, leaving the vanes of impeller at outer circumference with high velocity and pressure.Vacuum is created at the eye of impeller, therefore liquid from sump flows through suction pipe to eye of impeller thereby replacing the liquid which is being discharged from the entire circumference of the impeller.The high pressure is utilized in lifting of the liquid to required height through delivery pipe.	4

Model Answer

WINTER-16 EXAMINATION

Model Answer

$$
\mathrm{u}_{2}=\mathrm{u}_{0} \frac{A_{o}}{A_{2}} \mathrm{eq}_{\mathrm{e}} \mathrm{~V}
$$

\square page 20 of 21

The area of the vena contracta $\left(\mathrm{A}_{2}\right)$ can be related to area of orifice $\left(\mathrm{A}_{0}\right)$ by the coefficient of contraction (Cc)

$$
\mathrm{Cc}=\frac{A_{2}}{A_{o}}
$$

$$
\mathrm{A}_{2}=\mathrm{Cc} . \mathrm{A}_{0} \quad \text { eq. } \mathrm{VI}
$$

Putting the value of A_{2} from eq.VI in eq.V

$$
\begin{align*}
& \mathrm{u}_{2}=\frac{A_{o} \cdot u_{o}}{C c \cdot A_{o}} \\
& u_{2}= \frac{u_{o}}{C_{c}}
\end{align*}
$$

Putting value of u_{2} from eq.VII and A_{2} from eq.VI into eq. IV

$$
\begin{gathered}
\frac{u_{o}}{C_{c}}=\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho\left[1-\left(\frac{\text { Cc.A0 }}{A_{1}}\right)^{2}\right]}\right]^{\frac{1}{2}} \\
u_{o}=C_{c}\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho\left[1-\left(\frac{\mathrm{C} \cdot \mathrm{~A} 0}{A_{1}}\right)^{2}\right]}\right]^{\frac{1}{2}} \mathrm{Eq} \text { VIII }
\end{gathered}
$$

Considering frictional losses in the meter and the parameters Cc, α_{1}, α_{2},the coefficient of discharge of orificemeter . C_{o} can be introduced into the above equation and the can be written as

$$
u_{o}=C_{c}\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho\left[1-\left(\frac{A_{o}}{A_{1}}\right)^{2}\right]}\right]^{\frac{1}{2}} \quad e q \cdot I X
$$

Let $\beta=\frac{D_{o}}{D}$

$$
\begin{aligned}
& \left(\frac{A_{o}}{A_{1}}\right)^{2}=\left(\frac{D_{o}}{D}\right)^{4}=\beta^{4} \\
& u_{o}=C_{o} \sqrt{\frac{2\left(P_{1}-P_{2}\right)}{\rho\left(1-\beta^{4}\right)}}
\end{aligned}
$$

The above equation gives the velocity of liquid flowing through the orifice meter.

| 6-c | Vacuum pump:
 A vacuum pump is any compressor which takes the suction at a pressure below
 the atmospheric and discharges at atmospheric pressure.
 Example of vacuum pump: Steam Jet Ejector
 Steam Jet Ejector
 An ejector is a pumping device. It has no moving parts. Instead, it uses a fluid
 or gas as a motive force. Very often, the motive fluid is steam and the device is
 called a "steam jet ejector." Basic ejector components are the steam chest,
 nozzle, suction, throat, diffuser and the discharge. |
| :--- | :--- | :--- |

