

WINTER-16 EXAMINATION Model Answer

Subject code 17426

page 1 of 21

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

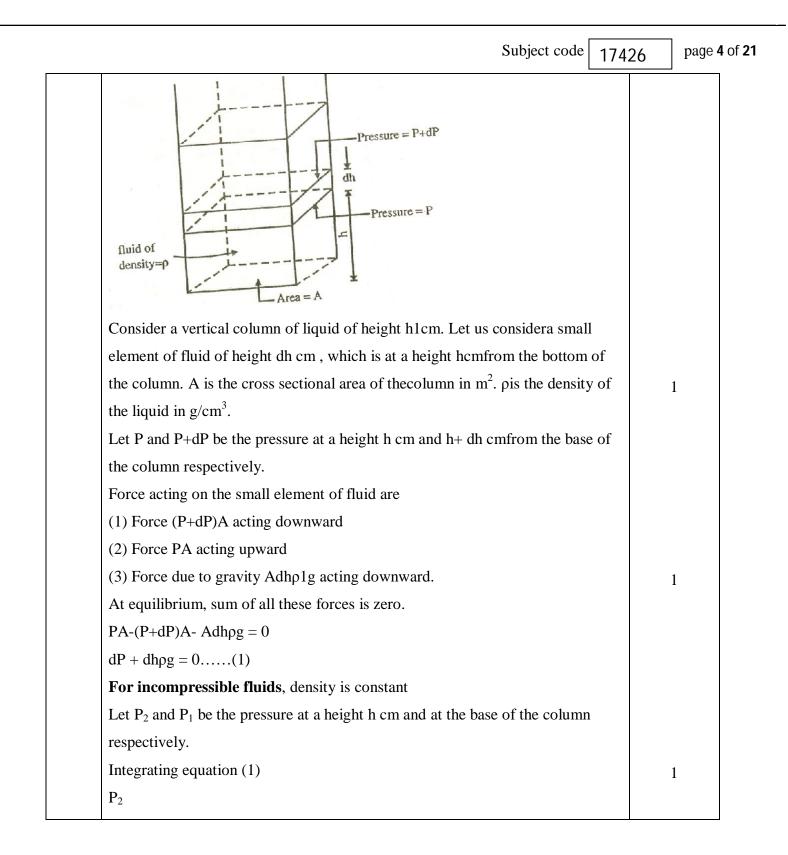
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-16 EXAMINATION Model Answer

Subject code 17426


page **2** of **21**

Q No.		Answer		Marks
1a	Attempt any SIX of the f	ollowing		12
1a-i	Expression for kinematic	viscosity(v) :		2
	$v = \mu / \rho$ where μ is the vis	scosity of the fluid and ρ is	the density of the fluid	
1a-ii	Water is incompressible flu	uid.		2
1a-iii	Flow is laminar since NRe	is less than 2100		2
1a-iv	Expression to calculate f	riction factor for laminar	flow	2
	For laminar flow : $f = \frac{16}{NR}$	5 e		
1a-v	Schedule number:			
	Definition: They are Amer	rican Standard Association	designation for classifying	1
	the strength of the pipe.			
	It indicates the wall thickn	ess of the pipe.		1
1a-vi	Specific application of ce	ntrifugal pump:		1 mark
	It is used for handling ab	rasive, corrosive and dirty	fluids. Used in refineries,	each for
	power plants, fire protect	ion sprinkler system, boil	er feed application, sugar	any two
	refining, pharmaceuticals,	paints etc		
1a-vii	Equipment used for prod	lucing vacuum without a	moving part.	2
	Jet ejector.			
1b	Attempt any TWO of the	e following		8
1b-i	Differentiate average vel	ocity and point velocity		2 marks
		average velocity	point velocity	each
	Formula	v = Q / A Where Q is	$V_{P=C_p}\sqrt{2gH}$	
		volumetric flow rate	<i>Р</i> •	
		and A is area of pipe.		
		$v = \dot{m} / \rho A Where \dot{m}$ is		

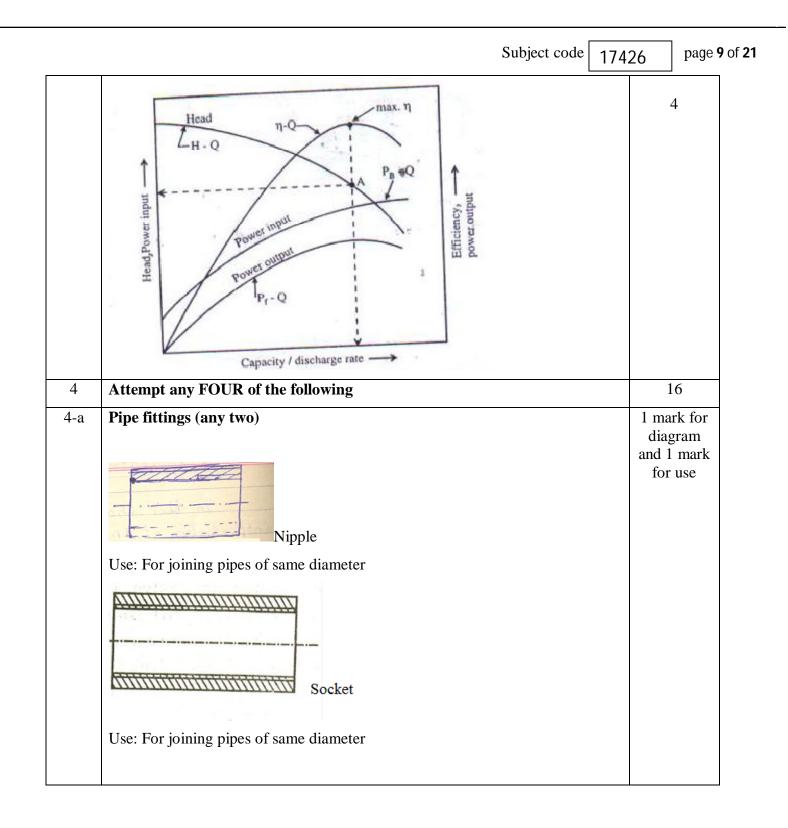
			Subject code	17426	page 3 of 21
		mass flow rate and $\boldsymbol{\rho}$ is			
		density of fluid.			
	Variation in the value	constant	Velocity changes w	vith	
			position (location)		
1b-ii	Diagram of Gate valve:	I			4
1b-iii	pos B	ly open sition ody Plug riable head meter and var	riable area meter:		4
		Variable head meter	Variable area meter		
	Variation in pressure	Pressure drop varies	Pressure drop	is	
	r and r	with flow rate	constant with flow ra		
	Ease of handling	difficult	easy		
	Cost	cheap	costly		
2	Attempt any FOUR of th	e following			16
2-a	Expression to calculate p	ressure			
					1

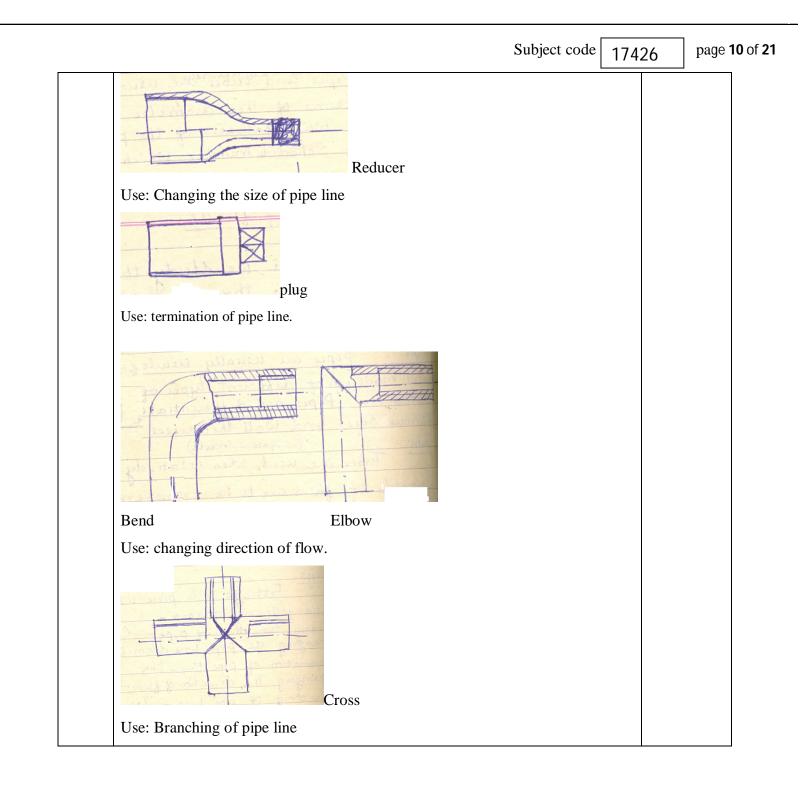
WINTER-16 EXAMINATION <u>Model Answer</u>

	Subject code 174	26	page 5 of 2
	$\int dP + g\rho \int dh = 0$		
	P ₁		
	P_1 is the pressure at the base of the column where $h = 0$		
	$\mathbf{P}_2 - \mathbf{P}_1 + \rho \mathbf{g} \mathbf{h} = 0$		
	$P_1 - P_2 = \rho g h$		
2-b	Necessity to calculate friction in a pipe.		
	As fluid flows through the pipe, it has to overcome some resistance due to		
	friction in the pipe, change in cross sectional area and some obstruction in the		3
	flow path. For overcoming this resistance, the fluid has to spend some energy.		
	So there will be loss of energy or head for the fluid in the direction of flow.		
	Hence calculation of friction is a necessity.		
	Yes, it changes with the nature of fluid (friction factor changes as density and		1
	viscosity of fluid changes).		
2-c	The ultimate safety device used in pressure vessel to avoid accident is rupture		1
	disc		
	Rupture Disk PRESSURE		3
	Rupture disc, is a non-reclosing pressure relief device. A rupture disc is a one-		-
	time-use membrane. They can be used as single protection devices or as a		
	backup device for a conventional safety valve; if the pressure increases and the		
	safety valve fails to operate (or can't relieve enough pressure fast enough), the		
	rupture disc will burst. Rupture discs are very often used in combination with		

WINTER-16 EXAMINATION <u>Model Answer</u>

	Subject code 174	26	page 6	of 21
	safety relief valves, isolating the valves from the process, thereby saving on			
	valve maintenance and creating a leak-tight pressure relief solution. The			
	membrane is generally made up of metal.			
2-d	NPSH			
	Net Positive Suction Head is the amount by which the pressure at the			
	suction point of the pump (sum of velocity head and suction head) is in			
	excess of the vapour pressure of the liquid	2	2	
	Expression for NPSH			
	$NPSH = (Ps - Pvap)/\rho g - hfs - Zs$	2	2	
	Where $Zs =$ height of pump from suction points.			
	Ps = Suction pressure			
	Pvap = Vapour pressure of liquid transported.			
	hfs = head loss due to friction.			
2-е	Since NRe is greater than 4000, flow is turbulent			
	For turbulent flow: $f = 0.078/(N_{Re})^{0.25}$	2	2	
	$F=9.276 * 10^{-3}$	2	2	
2-f	Calibration:			
	Calibration of a flow meter is comparing the flow rate measured by the flow	2		
	meter with a standard value.			
	Calibration curve for rotameter:			
	Ploat position Max.	2	2	




3	Attempt any FOUR of the following	16
8-a	Derivation for calculation of pressure drop using a U tube manometer	
	$\begin{array}{c} P_{1} \\ \text{imb-1} \\ 1 \\ 1 \\ \text{fluid of} \\ \text{density } p \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1
	Pressure at the point $1 = P_1$	
	Pressure at the point $2 = P_1 + (x+h)\rho g$	
	Pressure at the point $3 =$ Pressure at the point 2 (2,3 on same plane)	
	Pressure at the point 4= Pressure at the point 3 $-h \rho_m g$	
	$= P_1 + (x+h)\rho g - h \rho_m g$	2
	Pressure at the point 5 P_2 = Pressure at the point 4 $-x\rho g$	
	$P_2 = P_1 + (x+h)\rho g - h \rho_m g - x\rho g$	
	$= \mathbf{P}_1 + \mathbf{hg}(\ \mathbf{\rho} - \mathbf{\rho}_m)$	1
	$(\mathbf{P}_1 - \mathbf{P}_2) = \Delta \mathbf{P} = \mathbf{h} (\rho_{\mathrm{m}}.\rho)\mathbf{g}$	
	$\Delta P = h \ (\rho_{\rm m}.\rho)g$	
-b	Reason for globe valve producing more pressure drop than gate valve:	4
	In gate valve, the diameter of opening through which the fluid flows is nearly	
	same as that of pipe. In the open position, the disk rises into the bonnet,	
	completely out of the path of the fluid. As a result a wide open gate valve	
	introduces only a small pressure drop. In globe valve even in fully open	
	position, the fluid has to take several turns which results in higher pressure	

	drop.				
l-c	Differentiate reciprocating	pump and centrifugal p	oump	1 n	nark
		centrifugal pump	Reciprocating	ea	ich
			pump		
	i) Category to	Non positive	Positive		
	which they	displacement	displacement		
	belong				
	ii) Cost	cheap	costly		
	iii)pressure	Very high pressure	moderate		
	developed				
	iv) efficiency	Less	More		
3-d	Pressure range developed by	y fan, blower and comp	pressor		4
	Fans - <30KPa				
	Blowers – discharge pressure upto90KPa, centrifugal with multistage				
	construction 275 to 700 Kpa				
	Compressor – Centrifugal compressor: 2 MPa,				
	Reciprocating co	ompressor: 240MPa			
3-е	Newtonian fluid:				2
	Newtonian fluid is that fluid which obeys Newton's law of viscosity. Newton's				
	law of viscosity states that shear stress is proportional to shear rate and the				
	proportionality constant is the viscosity of the fluid.				
	Relation between shear stre	ss and shear strain:			2
	$\tau = \mu \frac{dv}{dx}$ where τ is the shear	stress, $\frac{dv}{dx}$ is the shear rate	ate and μ is the viscosity	y	

	Subject code 17.	426	page 11 of 21
	Tee		
4-b	Use: Branching of pipe line		1
	Name of dimensionless number: Reynolds number $N_{Re} = \frac{D u \rho}{\mu}$ Where D = diameter in m u = Velocity in m/s ρ = density in kg/m ³ μ = Viscosity in Kg / ms $N_{Re} = \frac{D u \rho}{\mu} = \frac{m * \frac{m}{s} \frac{Kg}{ms}}{\frac{Kg}{ms}}$ All the units are getting cancelled. So it is dimensionless		3
4-c	Diagram of centrifugal compressor:		
		4	4

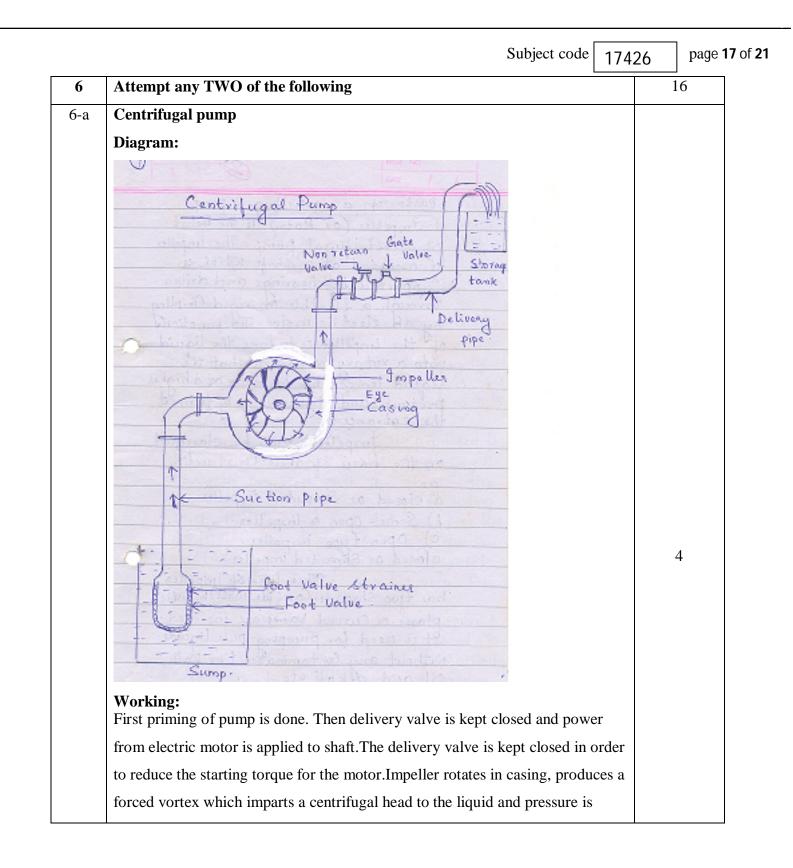
	Subject code 17	426	page 12 of 21
	- Components of a Centrifugal Compressor A: Inlet Bucket / Inlet Guide Vane B: Rotating Impeller C: Casing D: Diffusers E: Outlet Ducts		
4-d	Diagram of Venturimeter HIGH PRESSURE TAP TAP 19° TO 23° THROAT INLET CONVERGENT OUTLET CONE		4
4-e	$Q = 100 \text{ cm}^3 / \text{ s}$ $A_a = \pi Da^2 / 4 = 3.14 * 4^2 / 4 = 12.56 \text{ cm}^2$		1

	Subject code 17	426	page 13 c
	$V_a = 100 / 12.56 = 7.96 \text{ cm} / \text{ s}$		1
	From equation of continuity, $\dot{m} = \rho v A = constsant$		
	$A_b = \pi D_b^2 / 4 = 3.14 * 2^2 / 4 = 3.14 \text{ cm}^2$		1
	Since $\rho_A = \rho_B$,		
	$V_b = V_a * A_a / A_b = 7.96 * 12.56 / 3.14 = 31.84 cm / s$		1
4-f	Δ hm = 1.4cm of Hg		4
	$\rho m = \rho Hg = 13.6 g / cm^3$		
	$\rho f = \rho H_2 O = 1 g / cm^3$		
	Δ Hf= Δ hm (ρ m- ρ f) / ρ f = 1.4 (13.6-1) / 1 = 17.64 cm of water .		
5	Attempt any TWO of the following		16
5-a	Data:		
	Specific gravity of $oil = 0.8$		
	Density of oil= Specific gravity * Density of water		
	Density of oil= $\rho = 0.8 * 1000 = 800 \text{ kg} / \text{m}^3$		
	Viscosity of oil = μ = 0.08 Poise = 0.008 kg/m.s		
	Diameter of pipe =d=12.5 mm =0.0125 m		
	Length of pipe =L= 20 m		
	Velocity = $u = 50 \text{ cm/s} = 0.5 \text{ m/s}$		
	Pressure drop = ΔP = ?		
	Let's find out Reynolds number		
	$N_{Re} = \frac{Du\rho}{\mu}$		
	$N_{Re} = \frac{0.0125 * 0.5 * 800}{0.008}$		2
	$N_{Re} = 625$		
	N_{Re} < 2000, flow is laminar.		
	Fanning Friction factor $f = \frac{16}{N_{Re}}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	Subject code 174	126	page 14 of 21
	The pressure drop through a pipe is given by		2
			3
			1
5-b	Data:		
	Q = 20 lit/s		
	D=2 cm = 0.02 m		
	$\rho = 870 \text{ kg} / \text{m}^3 = 0.87 \text{ kg/lit}$		
	<u>i)</u> Mass flow rate (\dot{m}) in kg/s		
	$\dot{m} = Q. \rho$ $\dot{m} = 20 * 0.87$ OR $Q = 20 \text{ lit/s} = 20 * 10^{-3} \text{ m}^3/\text{s}$, $\rho = 870 \text{ kg/m}^3$ $\dot{m} = 17.4 \text{ kg/sm} = 20* 10^{-3} * 870 = 17.4 \text{ kg/s}$		2
	ii))Volumetric flow rate in m ³ /s Q = 20 lit/s $Q = 20 * 10^{-3} = 2 \times 10^{-2} \text{ m}^3/\text{s}$		2
	3) Average velocity(u)in m/s Q = u * A u=Q/A		



Subject code 17	426 ^{pa}	ge 15 of 21
Area of pipe = $\pi/4 * D^2$		
$A = \pi / 4 * (0.02)^2 = 0.000314 \text{ m}^2$	2	
$u=2 \times 10^{-2} / 0.000314$		
u= 63.69 m/s		
4) Mass velocity (G) in kg $/m^2$.s		
G = Mass flow rate / Area of pipe	2	
G = 17.4 / 0.000314 = 55414 kg /m².s		

		Subject code 17426	page 16 of
5-c	Data:		
	Diameter of pipe= $D = 75 \text{ mm} = 0.075 \text{ m}$		
	Diameter of throat = $D_T = 25 \text{ mm} = 0.025 \text{ m}$		
	Density of water = ρ_{H2O} = 1000 kg /m ³		
	Density of mercury = ρ_{Hg} = 13600 kg /m ³		
	Coefficient of venturimeter = C_v = 0. 97		
	Δh = Difference in levels in mercury manometer		
	The flow equation of venturimeter		1
	$Q = \frac{C_v A_T \sqrt{2 * g * \Delta H}}{\sqrt{1 - \beta^4}}$		
	Area of throat = $A_T = \pi/4 * D_T^2$		
	$A_T = \pi/4 \ *(0.025)2$		2
	$A_T = 0.00049 \text{ m}^2$		
	$\beta = \frac{DT}{D} = 0.025 / 0.075 = 0.333$		1
	ΔH = Difference in levels in terms of water		
	$\Delta H = \Delta h \frac{\left(\rho_{Hg} - \rho_{H2O}\right)}{\rho_{H2O}}$		
	$\Delta H = 0.18 \frac{(13600 - 1000)}{1000}$		2
	$\Delta H = 2.268 m of water$		
	The flow equation becomes		
	$Q = \frac{0.97 * 0.000314\sqrt{2 * 9.81 * 2.268}}{\sqrt{1 - 0.334^4}}$		
	$Q = 0.00319 \text{ m}^3/\text{s}$		
	$Q = 0.00319 * 10^3$ lit/s		2
	Q = 3.19 lit/s		

	Subject code 1742	26 ^{pa}
	increased throughout the liquid.As long as delivery valve is closed and impeller	
	is rotated, there will be just churning of the liquid within the casing. When	
	delivery valve is opened, liquid is flown in outward radial direction, leaving the	4
	vanes of impeller at outer circumference with high velocity and	
	pressure. Vacuum is created at the eye of impeller, therefore liquid from sump	
	flows through suction pipe to eye of impeller thereby replacing the liquid which	
	is being discharged from the entire circumference of the impeller. The high	
	pressure is utilized in lifting of the liquid to required height through delivery	
	pipe.	
6-b	Derivation for finding out Velocity of liquid flowing through an Orifice:	
	(at vena contracta)	
	Let P_1 , P_2 & u_1 , u_2 be the pressures and velocities at stations 1 and 2	
	respectively. For incompressible fluids applying Bernoulli's equation between stations 1 (at	
	upstream of meter)and at 2 (at vena contracta).Neglect frictional losses and assuming $\alpha 1 = \alpha 2 = 1$ Bernoulli's equation at points 1 and 2 Pressure energy at pt.1 + Potential energy at pt.1 + kinetic energy at pt.1 = Pressure energy at pt.2 + Potential energy at pt.2 + kinetic energy at pt.2	

	Subject code	17426	page 19 of
As orifice meter is installed in a horizontal pipeline :			
			2
	eq II		
The mass flow rates at stations 1 and 2 are equal, therefore			
\dot{m} = 1.u1.A1 = 2.u2.A2			
As density $\rho = \rho_1 = \rho_2$			
$.u_1.A_1 = .u_2.A_2$			
eqIII			
Where A_1 is the area of pipe and A_2 is area at vena contracta	ı		
Putting the value of from eqIII in eq.II,			
<u> </u>			
-			
—			
From the continuity equation ,we also have			
\dot{m} = .u ₀ .A ₀ = .u ₂ .A ₂			
Where u_0 is velocity through orifice			
A ₀ is area of orifice			

$u_2 = u_0 \frac{A_o}{A_2} eq. V$ Subject code 1742	6 page 20 of 21
The area of the vena contracta (A_2) can be related to area of orifice (A_0) by the	2
coefficient of contraction (Cc)	
$Cc = \frac{A_2}{A_o}$	
$A_2 = Cc. A_0 \qquad eq. VI$	
Putting the value of A ₂ from eq.VI in eq.V	
$\mathbf{u}_2 = \frac{A_o \cdot u_o}{Cc \cdot A_o}$	
$u_2 = \frac{u_o}{C_c} \qquad eq. VII$	
Putting value of u_2 from eq.VII and A ₂ from eq.VI into eq. IV	
$\frac{u_o}{C_c} = \left[\frac{2(P_1 - P_2)}{\rho \left[1 - \left(\frac{Cc.A0}{A_1}\right)^2\right]}\right]^{\frac{1}{2}}$	
$u_o = C_c \left[\frac{2(P_1 - P_2)}{\rho \left[1 - \left(\frac{Cc.Ao}{A_1} \right)^2 \right]} \right]^{\frac{1}{2}} Eq VIII$	
Considering frictional losses in the meter and the parameters Cc, α_1 , α_2 , the	
coefficient of discharge of orificemeter C_o can be introduced into the above	
equation and the can be written as $u_o = C_c \left[\frac{2(P_1 - P_2)}{\rho \left[1 - \left(\frac{A_o}{A_1} \right)^2 \right]} \right]^{\frac{1}{2}} \qquad eq. IX$	
Let $\beta = \frac{D_o}{D}$	2
$\left(\frac{A_o}{A_1}\right)^2 = \left(\frac{D_o}{D}\right)^4 = \beta^4$	
$u_o = C_o \sqrt{\frac{2(P_1 - P_2)}{\rho(1 - \beta^4)}}$	
The above equation gives the velocity of liquid flowing through the orifice	
meter.	

Vacuum pump:A vacuum pump is any compressor which takes the suction at a pressure below	x7	
the atmospheric and discharges at atmospheric pressure.	v	
Example of vacuum pump: Steam Jet Ejector		
Steam Jet Ejector		
An ejector is a pumping device. It has no moving parts. Instead, it uses a flui		
or gas as a motive force. Very often, the motive fluid is steam and the device		
called a "steam jet ejector." Basic ejector components are the steam ches	t,	
nozzle, suction, throat, diffuser and the discharge.		
Inlet entrained fluid Mixing region Combining tube Mixed fluid Steam at about 7 atm is admitted to a converging-diverging nozzle, from which it	4	
issues at supersonic velocity into a diffuser cone. The air or other gas to be moved is		
mixed with the steam in the first part of the diffuser, lowering the velocity to acoustic		
velocity or below. In the diverging section of the diffuser, the kinetic energy of the		
mixed gas is converted to pressure energy so that the mixture can be discharged		
directly to atmosphere.	4	