

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer 2015 Examination

Subject & Code: Applied Maths (17301) Model Answer Page No: 1/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Mark
		Important Instructions to the Examiners:		
		1) The Answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in the figure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's Answers and the model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

Page No: 2/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	Que.	Attempt any TEN of the following:		IVIAIRS
	a)	At which point on the curve $y = 3x - x^2$ the slope of the tangent		
	·	is -5.		
	Anc	$y = 3x - x^2$		
	Ans.	$\therefore \frac{dy}{dx} = 3 - 2x$	1/2	
		But tangent is parallel to x-axis.		
		$\therefore 3 - 2x = -5$		
		$\therefore x = 4$	1/2	
		$\therefore y = 3(4) - (4)^2 = -4$	1/2	
		$\therefore \text{ the point is } (4, -4).$	1/2	2
	b)	Divide 80 into two parts such that their product is maximum.		
	Ans.	Let x, y be the numbers. But $x + y = 80$ i. e., $y = 80 - x$		
		To maximize, $p = xy = x(80 - x)$		
		$\therefore p = 80x - x^2$		
		$\therefore \frac{dp}{dx} = 80 - 2x$	1/2	
		$\therefore \frac{d^2 p}{dx^2} = -2$	1/2	
		For stationary values, $\frac{dp}{dx} = 0$		
		$\therefore 80 - 2x = 0 or 80 = 2x$		
		$\therefore x = 40$	1/2	
		$At \ x = 40, \ \frac{d^2p}{dx^2} = -2 < 0$	1/	2
		$\therefore At \ x = 40, \ p \ has \ \max imum \ value.$	1/2	
	c)	Evaluate: $\int \sin^3 x \cos x dx$		
	Anc	$ \operatorname{Dut} \sin r - t $		
	Ans.	$\int \sin^3 x \cos x dx$ $\therefore \cos x dx = dt$	1/2	
		$= \int t^3 dt$	1/2	
		$=\frac{t^4}{4}+c$	1/2	
		4		
		$=\frac{\sin^4 x}{4} + c$	1/2	2

Page No: 3/26

Sub.	Model Anguara	Marke	Total
Que.	Wiodel Allswers	Iviains	Marks
d)	Evaluate $\int xe^x dx$.		
Ans.	$\int xe^x dx = x \int e^x dx - \int \left[\int e^x dx \right] \frac{d}{dx} (x) \cdot dx$	1/2	
	$= xe^x - \int e^x dx$	1/2	
	$=xe^x-e^x+c$	1/2+1/2	2
e)	Evaluate $\int \frac{1}{(x+3)(x+2)} dx$		
Ans.	$I = \int \frac{1}{(x+3)(x+2)} dx$		
		1/2	
	$B=1 \qquad(*)$	1/2	
	$\frac{1}{(x+3)(x+2)} = \frac{-1}{x+3} + \frac{1}{x+2}$		
	$\therefore I = \int \left[\frac{-1}{x+3} + \frac{1}{x+2} \right] dx$		
	$=-\log(x+3)+\log(x+2)+c$	1/2+1/2	2
	Note (*): There are various methods to find the values of A and B to partially factorize the given expression including direct method. Students may apply any one of the methods. Take in count all such methods.		
	OR		
	$I = \int \frac{1}{(x+3)(x+2)} dx$		
	$=\int \frac{1}{x^2 + 5x + 6} dx$		
	$=\int \frac{1}{x^2 + 5x + \frac{25}{4} - \frac{25}{4} + 6} dx$	1/2	
	$=\int \frac{1}{\left(x+\frac{5}{2}\right)^2 - \left(\frac{1}{2}\right)^2} dx$	1/2	
	d) Ans. e) Ans.	d) Evaluate $\int xe^x dx$. Ans. $\int xe^x dx = x \int e^x dx - \int \left[\int e^x dx \right] \frac{d}{dx}(x) \cdot dx$ $= xe^x - \int e^x dx$ $= xe^x - e^x + c$ e) Evaluate $\int \frac{1}{(x+3)(x+2)} dx$ $\frac{1}{(x+3)(x+2)} = \frac{A}{x+3} + \frac{B}{x+2}$ $\therefore A = -1$ $B = 1 \qquad$	Que. d) Evaluate $\int xe^{x}dx$. Ans. $\int xe^{x}dx = x \int e^{x}dx - \int \int e^{x}dx \Big] \frac{d}{dx}(x) \cdot dx$ $= xe^{x} - \int e^{x}dx$ $= xe^{x} - e^{x} + c$ $\frac{1}{(x+3)(x+2)}dx$ e) Evaluate $\int \frac{1}{(x+3)(x+2)}dx$ $\frac{1}{(x+3)(x+2)} = \frac{A}{x+3} + \frac{B}{x+2}$ $\therefore A = -1$ $B = 1 (*)$ $\frac{1}{(x+3)(x+2)} = \frac{-1}{x+3} + \frac{1}{x+2}$ $\therefore I = \int \left[\frac{-1}{x+3} + \frac{1}{x+2} \right] dx$ $= -\log(x+3) + \log(x+2) + c$ Note (*): There are various methods to find the values of A and B to partially factorize the given expression including direct method. Students may apply any one of the methods. Take in count all such methods. OR $I = \int \frac{1}{(x+3)(x+2)} dx$ $= \int \frac{1}{x^{2} + 5x + 6} dx$ $= \int \frac{1}{x^{2} + 5x + 6} dx$ $= \int \frac{1}{x^{2} + 5x + 25 - 4} dx$

Page No: 4/26

Que.	Sub.	Model Approprie	Marle	Total
No.	Que.	Model Answers	Marks	Marks
1)		$= \frac{1}{2\left(\frac{1}{2}\right)} \log \left(\frac{x + \frac{5}{2} - \frac{1}{2}}{x + \frac{5}{2} + \frac{1}{2}}\right) + c$	1/2	
		$= \log\left(\frac{x+2}{x+3}\right) + c$	1/2	2
	f)	Evaluate $\int_0^{\log_e 2} e^{2x} dx$		
		Γ 2 _x ¬log ²		
	Ans.	$\int_0^{\log_e 2} e^{2x} dx = \left[\frac{e^{2x}}{2} \right]_0^{\log 2}$	1/2	
		$= \frac{e^{2\log 2}}{2} - \frac{e^0}{2}$	1/2	
		$= \frac{1}{2} - \frac{1}{2}$ $= \frac{4}{2} - \frac{1}{2}$ $= \frac{3}{2} or 1.5$	1	2
	g)	Find the area between the line $y = 2x$ and $x = 1$ and $x = 3$.		
		$\int_{1}^{3} y \cdot dx = \int_{1}^{3} 2x \cdot dx$	1/2	
		$= \left[2 \cdot \frac{x^2}{2}\right]_1^3 \qquad or \qquad \left[x^2\right]_1^3$	1/2	
		$= 3^2 - 1$	1/2	
		= 8	1/2	2
	h)	Find the order and degree of the following equation: $\frac{d^2y}{dx^2} + \sqrt{1 + \frac{dy}{dx}} = 0$		
	Ans.	Order = 2	1	
		For degree,		
		$\left(\frac{d^2y}{dx^2}\right)^2 = 1 + \frac{dy}{dx}$		
		$\therefore \text{ Degree} = 2$	1	2

Page No: 5/26

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.	THOUGH THIS WEIS	Walks	Marks
	i)	Form a differential equation if $y^2 = 4ax$.		
	Ans.	2 4		
		$y^2 = 4ax$ $\therefore 2y \frac{dy}{dx} = 4a$		
			1	
		$\therefore y^2 = 2y \frac{dy}{dx} \cdot x$	1/2	
		$\therefore y = 2x \frac{dy}{dx} or 2x \frac{dy}{dx} = y$	1/2	
		or $2x\frac{dy}{dx} - y = 0$ or $\frac{dy}{dx} - \frac{y}{2x} = 0$.		2
	j)	From a pack of 52 cards one card is drawn at random. Find the probability of getting a king.		
	Ans.	n = n(S) = 52	1/2	
		m=n(A)=4	1/2	
		$m = n(A) = 4$ $\therefore p = p(A) = \frac{n(A)}{n(S)}$		
		$=\frac{4}{52}$	1/2	
		$=\frac{1}{13} or 0.077$	1/2	
				2
	k)	An unbiased coin is tossed 5 times. Find the probability of getting three heads.		
	Ans.	$p = \frac{1}{2} = 0.5$ $\therefore q = 1 - p = \frac{1}{2} = 0.5$	1/2	
		Here $n=5$		
		$\therefore p = {}^{n}C_{r}p^{r}q^{n-r}$		
		$= {}^5C_3 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2$	1	
		$=\frac{5}{16}$ or 0.3125	1/2	2
		Note: Due to the use of advance non-programmable scientific calculators which is permissible in the board		
		examination, writing directly the values of ${}^{n}C_{r}$ or		
		${}^{n}C_{r}p^{r}q^{n-r}$ is permissible. No marks to be deducted for		
		calculating directly the value.		

Subject & Code: Applied Maths (17301)

Page No: 6/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)				IVIGINS
	<i>l</i>)	A die is thrown, find the probability of getting an odd number.		
	Ans.	$\therefore n = n(S) = 6$	1/2	
		$\therefore m = n(A) = 3$	1/2	
		$\therefore p = \frac{n(A)}{n(S)}$		
		$=\frac{3}{6}$	1/2	
		$=\frac{1}{2} \ or \ 0.5$	1/2	2
				_
2)		Attempt any four of the following:		
	a)	Find the equation of tangent and normal to the curve $y = x(2 - x)$ at $(2, 0)$.		
	Ans.	y = x(2-x)		
		$\therefore \frac{dy}{dx} = 2 - 2x$	1	
		\therefore the slope of tangent at $(2, 0)$ is		
		m=2-4=-2	1/2	
		∴ the equation of tangent is $y - 0 = -2(x - 2)$	1/	
		$y = 0 = 2(x - 2)$ $\therefore y = -2x + 4 or 2x + y = 4$	1/ ₂ 1/ ₂	
		$\therefore \text{ the slope of normal } = -\frac{1}{m} = \frac{1}{2}$	1/2	
		:. the equation of normal is		
		$y-0=\frac{1}{2}(x-2)$	1/2	4
		$\therefore 2y = x - 2 or x - 2y - 2 = 0 or -x + 2y + 2 = 0$	1/2	4
	b)	Find radius of curvature of the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ at		
	Ans.	$\theta = \frac{\pi}{4}$		
		$x = a\cos^3\theta$		
		$\therefore \frac{dx}{d\theta} = -3a\cos^2\theta\sin\theta$	1/2	

Subject & Code: Applied Maths (17301)

Page No: 7/26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Tradici Filo Weld	TVICTION	Marks
2)		$y = a \sin^3 \theta$ $\therefore \frac{dy}{d\theta} = 3a \sin^2 \theta \cos \theta$	1/2	
		$\therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{3a\sin^2\theta\cos\theta}{-3a\cos^2\theta\sin\theta} = -\tan\theta$	1/2	
		$\& \frac{d^2y}{dx^2} = \frac{d}{d\theta} \left(\frac{dy}{dx}\right) \times \frac{d\theta}{dx}$		
		$= -\sec^2 \theta \times \frac{1}{-3a\cos^2 \theta \sin \theta}$ $\therefore at \ \theta = \frac{\pi}{4},$	1/2	
		$\frac{dy}{dx} = -\tan\frac{\pi}{4} = -1$	1/2	
		and $\frac{d^2y}{dx^2} = \sec^2\frac{\pi}{4} \times \frac{1}{3a\cos^2\frac{\pi}{4}\sin\frac{\pi}{4}}$	1/2	
		$=\frac{4\sqrt{2}}{3a}$	72	
		$\therefore \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}} = \frac{\left[1 + (-1)^{2}\right]^{\frac{3}{2}}}{\frac{4\sqrt{2}}{3a}}$	1/2	
		$=\frac{3a}{2}$	1/2	4
	c)	Find the maximum and minimum value of $y = x^3 - \frac{15}{2}x^2 + 18x$.		
	Ans.	$y = x^3 - \frac{15}{2}x^2 + 18x$	1/2	
		$\therefore \frac{dy}{dx} = 3x^2 - 15x + 18$		
		$\therefore \frac{d^2y}{dx^2} = 6x - 15$	1/2	
		For stationary values, $\frac{dy}{dx} = 0$		
		$\therefore 3x^2 - 15x + 18 = 0$ $\therefore x = 2, 3$	1/2+1/2	

Subject & Code: Applied Maths (17301)

Page No: 8/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)		At $x = 2$, $\frac{d^2y}{dx^2} = 6(2) - 15 = -3 < 0$ \therefore At $x = 2$, y has max imum value and it is	1/2	
		$y = (2)^3 - \frac{15}{2}(2)^2 + 18(2) = 14$	1/2	
		At $x = 3$, $\frac{d^2y}{dx^2} = 6(3) - 15 = 3 > 0$	1/2	
		$At x = 3, \frac{dx^2}{dx^2} = 0(3) = 13 = 3 > 0$ $\therefore At x = 3, y has min imum value and it is$		
		$y = (3)^3 - \frac{15}{2}(3)^2 + 18(3) = 13.5$	1/2	4
	d)	Evaluate $\int \frac{e^x(x+1)}{\cos^2(xe^x)} dx$		
	Ans.	$\int \frac{e^{x}(x+1)}{\cos^{2}(xe^{x})} dx$ $Put xe^{x} = t$ $\therefore (xe^{x} + e^{x} \cdot 1) dx = dt$ $\therefore e^{x} (x+1) dx = dt$	1	
		$=\int \frac{dt}{\cos^2 t}$	1	
		$= \int \sec^2 t dt$	1/2	
		$= \tan t + c$ $= \tan \left(xe^{x}\right) + c$	1	
			1/2	4
	e)	Evaluate $\int \frac{\sec^2 x}{3\tan^2 x - 2\tan x - 5} dx$		
	Ans.	$\int \frac{\sec^2 x}{3\tan^2 x - 2\tan x - 5} dx$ $Put \tan x = t$ $\therefore \sec^2 x dx = dt$	1/2	
		$=\int \frac{1}{3t^2 - 2t - 5} dt$		
		$\therefore 3t^2 - 2t - 5 = 3\left[t^2 - \frac{2}{3}t - \frac{5}{3}\right]$		
		$=3\left[t^2 - \frac{2}{3}t + \frac{1}{9} - \frac{1}{9} - \frac{5}{3}\right]$		
		$=3\left \left(t-\frac{1}{3}\right)^2-\left(\frac{4}{3}\right)^2\right $	1	

Page No: 9/26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
2)		$\therefore I = \int \frac{1}{3\left[\left(t - \frac{1}{3}\right)^2 - \left(\frac{4}{3}\right)^2\right]} dt$	1/2	
		$= \frac{1}{3} \int \frac{1}{\left(t - \frac{1}{3}\right)^2 - \left(\frac{4}{3}\right)^2} dt$ $\begin{bmatrix} 1 & 4 \end{bmatrix}$		
		$= \frac{1}{3} \cdot \frac{1}{2\left(\frac{4}{3}\right)} \cdot \log \left[\frac{t - \frac{1}{3} - \frac{4}{3}}{t - \frac{1}{3} + \frac{4}{3}} \right] + c$	1	
		$=\frac{1}{8} \cdot \log \left[\frac{t - \frac{5}{3}}{t + 1} \right] + c$	1/2	
		$= \frac{1}{8} \cdot \log \left[\frac{3t - 5}{3t + 3} \right] + c$		4
		$= \frac{1}{8} \cdot \log \left[\frac{3 \tan x - 5}{3 \tan x + 3} \right] + c$	1/2	4
	f)	Evaluate $\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$		
	Ans.	$\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$ $Put \sin^{-1} x = t$ $\therefore \frac{1}{\sqrt{1 - x^2}} dx = dt$ $Also x = \sin t$	1	
		$= \int \sin t \cdot t \cdot dt$	1/2	
		$=t\int\sin tdt-\int(\int\sin tdt)\frac{d}{dt}(t)dt$	1/2	
		$= t(-\cos t) - \int (-\cos t) \cdot 1 \cdot dt$ = $-t\cos t + \int \cos t \cdot dt$	1	
		$= -t\cos t + \sin t + c$	1/2	4
		$=-\sin^{-1}x\cdot\cos\left(\sin^{-1}x\right)+x+c$	/2	

Page No: 10/26

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
3)		Attempt any four of the following:		
	a)	Evaluate $\int_{0}^{\pi/2} \frac{dx}{\sqrt{9-4x^2}}$		
	Ans.	The given problem cannot be solved within the given limits because for the integrating the given function within the prescribed limits the function must be well defined on the given interval. For example at $x = \frac{\pi}{2}$, $\frac{1}{\sqrt{9-4x^2}}$ is a non-real number and hence the function is not defined on the interval $\left[0, \frac{\pi}{4}\right]$.	4	4
	b)	Evaluate $\int_{\pi/6}^{\pi/3} \frac{\sin x}{\sin x + \cos x} dx$		
	Ans.	$I = \int_{\pi/6}^{\pi/3} \frac{\sin x}{\sin x + \cos x} dx$ $Re \ place \ x \to \pi/2 - x$ $\therefore \sin x \to \cos x$ $\& \cos x \to \sin x$	1	
		$\therefore I = \int_{\pi/6}^{\pi/3} \frac{\cos x}{\cos x + \sin x} dx$		
		$\therefore 2I = \int_{\pi/6}^{\pi/3} \frac{\sin x + \cos x}{\sin x + \cos x} dx$	1	
		$\therefore 2I = \int_{\pi/6}^{\pi/3} 1 \cdot dx$	1/2	
		$\therefore 2I = \left[x\right]_{\pi/6}^{\pi/3}$	1/2	
		$=\frac{\pi}{3}-\frac{\pi}{6}$	1/2	
		$\therefore I = \frac{\pi}{12}$	1/2	4
		OR		
		$I = \int_{\pi/6}^{\pi/3} \frac{\sin x}{\sin x + \cos x} dx$		
		$= \int_{\pi/6}^{\pi/3} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$	1/2	
		$\therefore I = \int_{\pi/6}^{\pi/3} \frac{\cos x}{\cos x + \sin x} dx$	1/2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Applied Maths (17301) Page No: 11/26

Que.	Sub.	Madal Angress	Maulia	Total
No.	Que.	Model Answers	Marks	Marks
3)		$\therefore 2I = \int_{\pi/6}^{\pi/3} \frac{\sin x + \cos x}{\sin x + \cos x} dx$	1	
		$\therefore 2I = \int_{\pi/6}^{\pi/3} 1 \cdot dx$	1/2	
		$\therefore 2I = \left[x\right]_{\pi/6}^{\pi/3}$	1/2	
		$=\frac{\pi}{3}-\frac{\pi}{6}$	1/2	
		$\therefore I = \frac{\pi}{12}$	1/2	4
	c)	Find the area bounded by two curves $y^2 = x$ and $x^2 = y$		
	Ans.	Given $y^2 = x$ and $x^2 = y$		
		$\therefore (x^2)^2 = x$ $\therefore x = 0, x = 1$	1/2 + 1/2	
		$A = \int_a^b (y_2 - y_1) dx$		
		$= \int_0^1 \left[\sqrt{x} - x^2 \right] dx$	1	
		$= \left[\frac{2}{3}x^{3/2} - \frac{x^3}{3}\right]_0^1$	1	
		$= \left[\frac{2}{3} \cdot 1^{3/2} - \frac{1^3}{3} \right] - 0$	1/2	
		$=\frac{1}{3} or 0.333$	1/2	4
		$ \begin{array}{c} \text{OR} \\ \therefore x = 0, x = 1 \end{array} $	1/2 + 1/2	
		$A = \int_{a}^{b} (y_2 - y_1) dx$		
		$= \int_0^1 \left[x^2 - \sqrt{x} \right] dx$	1	
		$= \left[\frac{x^3}{3} - \frac{2}{3}x^{3/2}\right]_0^1$	1	
		$= \left[\frac{1^3}{3} - \frac{2}{3} \cdot 1^{3/2}\right] - 0$	1/	
		$=-\frac{1}{3}$ or -0.333	1/2	
		$\therefore the \ area = \frac{1}{3} or 0.333$	1/2	4

Page No: 12/26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Misweis	Warks	Marks
3)	d)	Solve $xy^2dy - (x^3 + y^3)dx = 0$ given $y = 0$ when $x = 1$.		
	Ans.	$xy^2dy - \left(x^3 + y^3\right)dx = 0$		
		$\therefore \frac{dy}{dx} = \frac{x^3 + y^3}{xy^2}$		
		Put $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	1	
		$\therefore v + x \frac{dv}{dx} = \frac{x^3 + (vx)^3}{xv^2x^2} = \frac{1 + v^3}{v^2}$	1/2	
		$\therefore x \frac{dv}{dx} = \frac{1+v^3}{v^2} - v$	1/2	
		$\therefore x \frac{dv}{dx} = \frac{1}{v^2}$	72	
		$\therefore \int v^2 dv = \int \frac{1}{x} dx$	1/2	
		$\therefore \frac{v^3}{3} = \log x + c$	1/2	
		$\therefore \frac{y^3}{3x^3} = \log x + c$		
		$At \ x=1 \& y=0, \ c=0$	1/2	
		$\therefore \frac{y^3}{3x^3} = \log x$	1/2	4
	e)	Solve the differential equation $(x+y)^2 \frac{dy}{dx} = a^2$		
	Ans.	Put x + y = v		
		$\therefore 1 + \frac{dy}{dx} = \frac{dv}{dx} \qquad or \qquad \frac{dy}{dx} = \frac{dv}{dx} - 1$	1/2	
		$\therefore v^2 \left(\frac{dv}{dx} - 1 \right) = a^2$	1/2	
		$\therefore \frac{dv}{dx} - 1 = \frac{a^2}{v^2}$	1/2	
		$\therefore \frac{dv}{dx} = \frac{a^2}{v^2} + 1 = \frac{a^2 + v^2}{v^2}$	12	
		$\therefore \left(\frac{v^2}{a^2 + v^2}\right) dv = dx$	1/2	

Page No: 13/26

Subject & Code: Applied	Maths (17301)
-------------------------	---------------

Que.	Sub.		3.5.5	Total
No.	Que.	Model Answers	Marks	Marks
3)		$\therefore \int \left(\frac{v^2}{a^2 + v^2}\right) dv = \int dx$ $\therefore \int \left(1 - \frac{a^2}{a^2 + v^2}\right) dv = \int dx$ $\therefore v - a^2 \cdot \frac{1}{a} \tan^{-1} \left(\frac{v}{a}\right) = x + c$ $\therefore x + y - a \tan^{-1} \left(\frac{x + y}{a}\right) = x + c or y - a \tan^{-1} \left(\frac{x + y}{a}\right) = c$	1/ ₂ 1 1/ ₂	4
	f)	Solve $x \frac{dy}{dx} - y = x^2$		
	Ans.	$x \frac{dy}{dx} - y = x^{2}$ $\therefore \frac{dy}{dx} - \frac{1}{x} \cdot y = x$		
		$dx x$ $\therefore P = -\frac{1}{x} \text{ and } Q = x$ $\therefore IF = e^{\int pdx}$		
		$= e^{\int -\frac{1}{x} dx}$ $= e^{-\log x}$		
		$= \frac{1}{x}$ $\therefore y \cdot IF = \int Q \cdot IF \cdot dx + c$	1	
		$\therefore y \cdot \frac{1}{x} = \int x \cdot \frac{1}{x} \cdot dx + c$	1	
		$\therefore \frac{y}{x} = \int 1.dx + c$	1	
		$\therefore \frac{y}{x} = x + c$	1	4

Subject & Code: Applied Maths (17301)	Page No: 14/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	Que.	Attempt any Four of the following:		Warks
	a)	Evaluate $\int_{1}^{5} \frac{\sqrt[3]{9-x}}{\sqrt[3]{9-x} + \sqrt[3]{x+3}} dx$		
	Ans.	$I = \int_{1}^{5} \frac{\sqrt[3]{9 - x}}{\sqrt[3]{9 - x} + \sqrt[3]{x + 3}} dx$ Re place $x \to 6 - x$ $\therefore 9 - x \to x + 3$ & $x + 3 \to 9 - x$	1	
		$\therefore I = \int_{1}^{5} \frac{\sqrt[3]{x+3}}{\sqrt[3]{x+3} + \sqrt[3]{9-x}} dx$ $\therefore 2I = \int_{1}^{5} \frac{\sqrt[3]{9-x} + \sqrt[3]{x+3}}{\sqrt[3]{9-x} + \sqrt[3]{x+3}} dx$	1	
		$\therefore 2I = \int_{1}^{5} 1 \cdot dx$		
		$\therefore 2I = \left[x\right]_1^5$	1/2	
		$\therefore 2I = 5 - 1$	1	
		$\therefore I = 2$	1/2	4
		OR		
		$I = \int_{1}^{5} \frac{\sqrt[3]{9 - x}}{\sqrt[3]{9 - x} + \sqrt[3]{x + 3}} dx$		
		$\therefore I = \int_{1}^{5} \frac{\sqrt[3]{9 - (6 - x)}}{\sqrt[3]{9 - (6 - x)} + \sqrt[3]{(6 - x) + 3}} dx$	1/2	
		$\therefore I = \int_{1}^{5} \frac{\sqrt[3]{x+3}}{\sqrt[3]{x+3} + \sqrt[3]{9-x}} dx$	1/2	
		$\therefore 2I = \int_{1}^{5} \frac{\sqrt[3]{9-x} + \sqrt[3]{x+3}}{\sqrt[3]{9-x} + \sqrt[3]{x+3}} dx$	1	
		$\therefore 2I = \int_{1}^{5} 1 \cdot dx$		
		$\therefore 2I = \left[x\right]_1^5$	1/2	
		$\therefore 2I = 5 - 1$	1	
		$\therefore I = 2$	1/2	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Applied Maths (17301) Page No: 15/26

Subje	ect & Co	ode: Applied Maths (1/301)	age No: 15/	26
Que. No.	Sub. Que.	Model Answers	Marks	Total Mark
4)	b)	Evaluate $\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$		
	Ans.	$\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$ $= \int \frac{dx/\cos^2 x}{\frac{4\cos^2 x + 9\sin^2 x}{\cos^2 x}}$		
		$= \int \frac{\sec^2 x dx}{4 + 9 \tan^2 x}$ $Put \tan x = t$ $\therefore \sec^2 x dx = dt$	1/2	
		$=\int \frac{dt}{4+9t^2}$	1/2	
		$=\int \frac{dt}{9\left(\frac{4}{9} + t^2\right)}$		
		$=\frac{1}{9}\int \frac{dt}{\left(\frac{2}{3}\right)^2 + t^2}$	1	
		$= \frac{1}{9} \cdot \frac{1}{2/3} \tan^{-1} \left(\frac{t}{2/3} \right) + c$	1	
		$= \frac{1}{6} \tan^{-1} \left(\frac{3 \tan x}{2} \right) + c$	1	4
	c)	Using integration find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		
	Ans.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		
		$\therefore y^2 = b^2 \left(1 - \frac{x^2}{a^2} \right)$		
		$\therefore y^2 = \frac{b^2}{a^2} \left(a^2 - x^2 \right)$		
		$\therefore y = \frac{b}{a}\sqrt{a^2 - x^2}$ Now $y = 0$ gives $a^2 - x^2 = 0$ i.e., $x = a, -a$		
		Now $y = 0$ gives $a - x = 0$ i.e., $x = a$, $-a$ $\therefore A = 4 \int_0^a y dx$	1	
	1			

1

 $=4\int_0^a \frac{b}{a}\sqrt{a^2-x^2}\,dx$

Subject & Code: Applied Maths (17301)

Page No: 16/26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel This Wels	IVICITA	Marks
4)		$=4 \cdot \frac{b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_0^a$	1	
		$= \frac{4b}{a} \left[0 + \frac{a^2}{2} \sin^{-1}(1) \right] - 0$	1/2	
		$=\frac{4b}{a}\left[\frac{a^2}{2}\cdot\frac{\pi}{2}\right]$		4
		$= \pi ab$	1/2	7
	d)	Solve $(2x^2 + 6xy - y^2)dx + (3x^2 - 2xy + y^2)dy = 0$		
	Ans.	$M = 2x^2 + 6xy - y^2$		
		$\therefore \frac{\partial M}{\partial y} = 6x - 2y$	1	
		$N = 3x^2 - 2xy + y^2$		
		$\therefore \frac{\partial N}{\partial x} = 6x - 2y$	1/2	
		:.the equation is exact.	1/2	
		$\int_{y \ cons \ tant} M dx + \int_{terms \ free \ from \ x} N dy = c$		
		$\int \left(2x^2 + 6xy - y^2\right) dx + \int y^2 dy = c$	1	
		$\therefore 2 \cdot \frac{x^3}{3} + 6y \cdot \frac{x^2}{2} - y^2 x + \frac{y^3}{3} = c$	1	4
		or $\frac{2}{3}x^3 + 3x^2y - y^2x + \frac{y^3}{3} = c$		_
		OR		
		$(2x^{2} + 6xy - y^{2})dx + (3x^{2} - 2xy + y^{2})dy = 0$		
		$\therefore \frac{dy}{dx} = -\frac{2x^2 + 6xy - y^2}{3x^2 - 2xy + y^2}$		
		Put $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	1	
		$\therefore v + x \frac{dv}{dx} = -\frac{2x^2 + 6vx^2 - v^2x^2}{3x^2 - 2vx^2 + v^2x^2}$	1/2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Page No: 17/26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Applied Maths (17301)

Que. Sub. Total **Model Answers** Marks No. Que. Marks 4) $\therefore v + x \frac{dv}{dx} = -\frac{2 + 6v - v^2}{3 - 2v + v^2}$ $\therefore x \frac{dv}{dx} = -\frac{2 + 6v - v^2}{3 - 2v + v^2} - v$ $\therefore x \frac{dv}{dx} = \frac{-(2+6v-v^2)-v(3-2v+v^2)}{3-2v+v^2}$ $\therefore x \frac{dv}{dx} = \frac{-2 - 9v + 3v^2 - v^3}{3 - 2v + v^2}$ $1/_{2}$ $\therefore \left[\frac{3 - 2v + v^2}{-2 - 9v + 3v^2 - v^3} \right] dv = \frac{dx}{x}$ $\therefore \int \left[\frac{3 - 2v + v^2}{-2 - 9v + 3v^2 - v^3} \right] dv = \int \frac{dx}{x}$ $\frac{1}{2}$ $\therefore -\frac{1}{3} \int \left[\frac{-9 + 6v - 3v^2}{-2 - 9v + 3v^2 - v^3} \right] dv = \int \frac{dx}{x}$ $\therefore -\frac{1}{3}\log(-2-9v+3v^2-v^3) = \log x + c$ 1 $\therefore -\frac{1}{3}\log \left| -2 - 9 \cdot \frac{y}{x} + 3\left(\frac{y}{x}\right)^2 - \left(\frac{y}{x}\right)^3 \right| = \log x + c$ $\frac{1}{2}$ Solve $(1+x^2)dy - x^2ydx = 0$ e) Ans. $\int (1+x^2) dy - x^2 y dx = 0$ $\therefore \frac{1}{y} dy - \frac{x^2}{1+x^2} dx = 0$ 1 $\therefore \int \frac{1}{y} dy - \int \frac{x^2}{1+x^2} dx = c$ 1 $\therefore \int \frac{1}{y} dy - \int \left(1 - \frac{1}{1 + x^2}\right) dx = c$ 1 $\therefore \log y - (x - \tan^{-1} x) = c$ 1 $or \quad \log y - x + \tan^{-1} x = c$

Subject & Code: Applied Maths (17301) **Page No:** 18/26

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
4)	f)	Show that $y = \sin(\log x)$ is solution of differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$		
	Ans.	$y = \sin(\log x)$ $\therefore \frac{dy}{dx} = \cos(\log x) \cdot \frac{1}{x}$ $\therefore x \frac{dy}{dx} = \cos(\log x)$	1	
		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = -\sin(\log x) \cdot \frac{1}{x}$	1	
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$	1	
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	1	4
5)		Attempt any Four of the following:		
	a)	The probability that A can shoot at a target is $\frac{5}{7}$ and B can		
		shoot at the same target is $\frac{3}{5}$. (A and B shoot independently.) Find the probability that i) The target is not shot at all. ii) The target is shot by at least one of them.		
	Ans.	$P(A) = \frac{5}{7}$:: $P(A') = 1 - \frac{5}{7} = \frac{2}{7}$	1/2	
		$P(A) = \frac{5}{7} \qquad \therefore P(A') = 1 - \frac{5}{7} = \frac{2}{7}$ $P(B) = \frac{3}{5} \qquad \therefore P(B') = 1 - \frac{3}{5} = \frac{2}{5}$	1/2	
		i) $P(\text{target is not shot}) = P(A' \& B')$ = $P(A') \cdot P(B')$		
		$=\frac{2}{7}\cdot\frac{2}{5}$	1	
		$=\frac{4}{35}$ or 0.114	1/2	

Page No: 19/26

Ouo	Sub.			Total
Que. No.	Que.	Model Answers	Marks	Marks
5)	2	$ii)P(\text{at least 1 shoot}) = 1 - p(\text{target is not shot})$ $= 1 - \frac{4}{35} or 1 - 0.114$ $= \frac{31}{35} or 0.886$	1 1/2	4
		Note for Numerical Problems: For practical purpose, generally the values of fractional numbers are truncated up to 3 decimal points by the method of rounded-off. Thus the solution is taken up to 3 decimal points only. If answer is truncated more than 3 decimal points, the final answer may vary for last decimal points. Thus 31/35 is actually 0.885714285 but can be taken as 0.886. Due to the use of advance calculators, such as modern scientific non-programmable calculators, the step 31/35 may not written by the students and then directly the answer 0.012 is written. In this case, no marks to be deducted.		
	b)	If 30% of the bulbs produced are defective, find the probability that out of 4 bulbs selected, a) one is defective, b) at the most two are defective.		
	Ans.	$p = \frac{30}{100} = 0.3$ $\therefore q = 0.7$ $Here n = 4$ $i) p = {}^{n}C_{r} p^{r} q^{n-r}$		
		$= {}^{4}C_{1}(0.3)^{1}(0.7)^{3}$ $= 0.412$ $ii) p = p(0) + p(1) + p(2)$ $= {}^{4}C_{0}(0.3)^{0}(0.7)^{4} + {}^{4}C_{1}(0.3)^{1}(0.7)^{3} + {}^{4}C_{2}(0.3)^{2}(0.7)^{2}$	1	
		= 0.24 + 0.412 + 0.265	1	
		= 0.916	1	4
		OR $p = 1 - \lceil p(3) + p(4) \rceil$	OR	
		$=1-\left[{}^{4}C_{3}\left(0.3\right)^{3}\left(0.7\right)^{1}+{}^{4}C_{4}\left(0.3\right)^{4}\left(0.7\right)^{0}\right]$	1	
		= 1 - [0.076 + 0.008] $= 0.916$	1	4

Page No: 20/26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
5)		Note: Due to the use of advance non-programmable scientific calculators which is permissible in the board		
		examination, writing directly the values of ${}^{n}C_{r}$ or		
		${}^{n}C_{r}p^{r}q^{n-r}$ is permissible. No marks to be deducted for		
		calculating directly the value.		
	c)	In a certain examination 500 students appeared, mean score is 68 and S. D. is 8. Assuming data is normally distributed, find the number of students scoring, a) less than 50		
		b) more than 60. (Given that area between $Z = 0$ to $Z = 2.25$ is 0.4878 and area between $Z = 0 \& Z = 1$ is 0.3413.)		
	Ans.	Given $\bar{x} = 68$ $\sigma = 8$ $N = 500$		
		$i) \ z = \frac{x - \overline{x}}{\sigma} = \frac{50 - 68}{8} = -2.25$	1/2	
		$\therefore p(x \le 50) = p(z \le -2.25)$		
		$=p\left(2.25\leq z\right)$		
		$=0.5-p(0 \le z \le 2.25)$	1/2	
		=0.5-0.4878		
		= 0.0122	1/2	
		\therefore no. of students = $N \cdot p$	/2	
		$=500\times0.0122$		
		= 6.1 <i>i.e.</i> , 6	1/2	
		<i>ii</i>) $z = \frac{x - \overline{x}}{\sigma} = \frac{60 - 68}{8} = -1$	1/2	
		$\therefore p(60 \le x) = p(-1 \le z)$		
		$= p\left(-1 \le z \le 0\right) + p\left(0 \le z\right)$	1/2	
		=0.3413+0.5		
		= 0.8413	1/2	
		$\therefore no. of \ students = N \cdot p$		
		$=500\times0.8413$		
		= 420.65 <i>i.e.</i> , 421	1/2	4

Page No: 21/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)		Evaluate $\int_{0}^{\pi} \frac{dx}{5 + 4\cos x}$		
	Ans.	Put $\tan \frac{x}{2} = t$		
		$\therefore dx = \frac{2dt}{1+t^2} \text{and} \cos x = \frac{1-t^2}{1+t^2}$	1/2	
		$ \begin{array}{c cc} x & 0 & \pi \\ t & 0 & \infty \end{array} $	1/2	
		$\therefore \int_{0}^{\pi} \frac{dx}{5 + 4\cos x} = \int_{0}^{\infty} \frac{1}{5 + 4\left(\frac{1 - t^{2}}{1 + t^{2}}\right)} \cdot \frac{2dt}{1 + t^{2}}$	1/2	
		$=2\int\limits_{0}^{\infty}\frac{1}{t^{2}+9}dt$	1/2	
		$=2\int\limits_{0}^{\infty}\frac{1}{t^{2}+3^{2}}dt$		
		$=2\times\frac{1}{3}\left[\tan^{-1}\left(\frac{t}{3}\right)\right]_{0}^{\infty}$	1	
		$=\frac{2}{3}\Big[\tan^{-1}\infty-\tan^{-1}0\Big]$	1/2	
		$=\frac{2}{3}\left[\frac{\pi}{2}\right]$		
		$=\frac{\pi}{3}$	1/2	4
	e)	Evaluate $\int \frac{x}{x^2 + 3x - 4} dx$		
	Ans.	$\int \frac{x}{x^2 + 3x - 4} dx$		
		$=\int \frac{x}{(x-1)(x+4)} dx$		
		$= \int \left[\frac{1/5}{x-1} + \frac{4/5}{x+4} \right] dx $ (Please refer next note)	2	
		$= \frac{1}{5}\log(x-1) + \frac{4}{5}\log(x+4) + c$	1+1	4

Page No: 22/26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Allowels	With	Marks
5)		Note: To find the partial fractions, traditional partial fraction method is generally used. But apart from this direct method of partial fraction is also allowed here.		
	f)	Solve $x \log x \frac{dy}{dx} + y = z \log x$		
	Ans.	(Considering z as constant.)		
		$x\log x \frac{dy}{dx} + y = z\log x$		
		$\therefore \frac{dy}{dx} + \frac{1}{x \log x} y = \frac{z}{x}$		
		$\therefore P = \frac{1}{x \log x} \text{ and } Q = \frac{z}{x}$		
		$\therefore IF = e^{\int pdx} = e^{\int \frac{1}{x \log x} dx} = e^{\log(\log x)} = \log x$	1	
		$\therefore y \cdot IF = \int Q \cdot IF \cdot dx + c$		
		$\therefore y \cdot \log x = \int \frac{z}{x} \cdot \log x \cdot dx + c$	1	
		Put $\log x = t$ $\therefore \frac{1}{x} \cdot dx = dt$	1/2	
		$\therefore y \cdot \log x = z \int t \cdot dt + c$	1/2	
		$\therefore y \cdot \log x = z \cdot \frac{t^2}{2} + c$	1/2	
		$\therefore y \cdot \log x = z \cdot \frac{\left(\log x\right)^2}{2} + c$	1/2	4
6)		Attempt any Four of the following:		
	a)	If $P(A) = \frac{1}{2}$, $P(B') = \frac{2}{3}$ and $P(A \cup B) = \frac{2}{3}$, find $P(A' \cap B')$ and		
		P(A/B).		
	Ans.	$P(A) = \frac{1}{2}$ $P(B) = 1 - \frac{2}{3} = \frac{1}{3}$		
		$P(B) = 1 - \frac{2}{3} = \frac{1}{3}$	1/2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Applied Maths (17301)	Page No: 23/26
---------------------------------------	-----------------------

No. Que. i) $P(A' \cap B') = P(A \cup B)'$ $= 1 - P(A \cup B)$ $= 1 - \frac{2}{3}$ $= \frac{1}{3}$ or 0.333 ii) $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ $= \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $= \frac{1}{6}$ or 0.167 $\therefore P(A'_B) = \frac{P(A \cap B)}{P(B)}$ $= \frac{1/6}{1/3}$ $= \frac{1}{2}$ or 0.5 b) If the probability that an electric motor is defective is 0.01 , what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01$ $n = 300$ $m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m'}{r!}$ $p = 0.101$ $p = 0.101$ C) Fit a Poisson distribution for the following observation:	arks	Total Marks
b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p(x) = \frac{e^{-n} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $= \frac{1}{3} \text{ or } 0.333$ $\frac{1}{1} = \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $\frac{1}{1} = \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $\frac{1}{1} = \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $\frac{1}{1} = \frac{1}{2} + \frac{1}{3} - \frac{2}{3} = 0.0498$ $\frac{1}{1} = \frac{1}{2} + \frac{1}{3} - \frac{1}{3} = 0.0498$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{3} - \frac{1}{3} = 0.0498$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0.101$		1,14,11,10
b) $ \begin{aligned} &=1-\frac{2}{3} \\ &=\frac{1}{3} \text{ or } 0.333 \\ ⅈ)P(A\cap B) = P(A) + P(B) - P(A \cup B) \\ &=\frac{1}{2} + \frac{1}{3} - \frac{2}{3} \\ &=\frac{1}{6} \text{ or } 0.167 \\ &\therefore P(\frac{A}{B}) = \frac{P(A\cap B)}{P(B)} \\ &=\frac{\frac{1}{6}}{\frac{1}{3}} \\ &=\frac{1}{2} \text{ or } 0.5 \\ &=\frac{1}{2} \text{ or } 0.5 \end{aligned} $ b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? ($e^{-3} = 0.0498$) Ans. $ p = 0.01 \qquad n = 300 \\ \therefore m = np = 0.01 \times 300 = 3 \\ p(r) = \frac{e^{-m} \cdot m^r}{r!} \\ \therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!} \\ &= 0.101 \end{aligned} $ $ 1\frac{1}{2}$		
$ \frac{1}{3} \text{ or } 0.333 $ $ ii)P(A \cap B) = P(A) + P(B) - P(A \cup B) $ $ = \frac{1}{2} + \frac{1}{3} - \frac{2}{3} $ $ = \frac{1}{6} \text{ or } 0.167 $ $ \therefore P(A/B) = \frac{P(A \cap B)}{P(B)} $ $ = \frac{\frac{1}{6}}{\frac{1}{3}} $ $ = \frac{1}{2} \text{ or } 0.5 $ If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? ($e^{-3} = 0.0498$) Ans. $ p = 0.01 \qquad n = 300 $ $ \therefore m = np = 0.01 \times 300 = 3 $ $ p(r) = \frac{e^{-m} \cdot m^r}{r!} $ $ \therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!} $ $ = 0.101 $		
$ii)P(A \cap B) = P(A) + P(B) - P(A \cup B)$ $= \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $= \frac{1}{6} or 0.167$ $\therefore P(A/B) = \frac{P(A \cap B)}{P(B)}$ $= \frac{\frac{1}{6}}{\frac{1}{3}}$ $= \frac{1}{2} or 0.5$ $\frac{1}{2}$ If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$		
$= \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $= \frac{1}{6} or 0.167$ $\therefore P(\frac{A}{B}) = \frac{P(A \cap B)}{P(B)}$ $= \frac{\frac{1}{6}}{\frac{1}{3}}$ $= \frac{1}{2} or 0.5$ $= \frac{1}{2} or 0.5$ b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $= 0.101$ $= 0.101$ $= 0.101$ $= 0.101$ $= 0.101$ $= 0.101$		
$= \frac{1}{6} or 0.167$ $\therefore P(\frac{A}{B}) = \frac{P(A \cap B)}{P(B)}$ $= \frac{\frac{1}{6}}{1/3}$ $= \frac{1}{2} or 0.5$ If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m'}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $1/2$ $1/2$ $1/2$ $1/2$		
b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $11/2$ $11/2$		
b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ 11 12 142 1142 1142		
b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ 11 12 142 142		
b) If the probability that an electric motor is defective is 0.01, what is the probability that the sample of 300 electric motors will contain exactly 5 defective motors? $(e^{-3} = 0.0498)$ Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ 11/2 11/2		
Ans. $p = 0.01 \qquad n = 300$ $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\frac{11/2}{11/2}$		4
Afis. $\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $11/2$ $11/2$ $11/2$		
$\therefore m = np = 0.01 \times 300 = 3$ $p(r) = \frac{e^{-m} \cdot m^r}{r!}$ $\therefore p(5) = \frac{e^{-3} \cdot 3^5}{5!}$ $= 0.101$ $11/2$ $11/2$ $11/2$		
= 0.101		
= 0.101		
= 0.101		
c) Fit a Poisson distribution for the following observation:	2	4
c) Fit a Poisson distribution for the following observation:		
x 20 30 40 50 60 70		
f 8 12 30 10 6 4		

Subject & Code: Applied Maths (17301)

Page No: 24/26

Que.	Sub.	Model American	Maulia	Total
No.	Que.	Model Answers	Marks	Marks
6)	Ans.	x f xy 20 8 160 30 12 360 40 30 1200 50 10 500 60 6 360 70 4 280 70 2860	1	Warks
		$\therefore mean m = \frac{2860}{70} = 40.857$ $\therefore p = \frac{e^{-m}m^r}{r!}$	2	
		$= \frac{r!}{e^{-40.857} (40.857)^r}$	1	4
	d)	A metal wire 36 m long is bent to form a rectangle. Find its dimensions when its area is maximum.		
	Ans.	Let x and y be the sides of rectangle.		
		∴ $2x + 2y = 36$ or $x + y = 18$ ∴ $y = 18 - x$ But area $A = xy = x(18 - x) = 18x - x^2$	1/2	
		$\therefore \frac{dA}{dx} = 18 - 2x$	1/2	
		$\therefore \frac{d^2 A}{dx^2} = -2$	1/2	
		For stationary values, $\frac{dA}{dx} = 0$ $\therefore 18 - 2x = 0$		
		$\therefore x = 9$	1/2	
		At $x = 9$, $\frac{d^2A}{dx^2} = -2 < 0$ \therefore At $x = 9$, A has max imum value	1/2	
		and the other side is		
		y = 18 - x = 9	1/2	4

Subject & Code: Applied Maths (17301)

Page No: 25/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	e)	Find the equation of tangent to the curve $x = \frac{1}{t}$, $y = 1 - \frac{1}{t}$, when t=2.		1/2012210
	Ans.	$x = \frac{1}{t}, y = 1 - \frac{1}{t}$ $\therefore y = 1 - x$		
		$\therefore y = 1 - x$ $\therefore \frac{dy}{dx} = -1$ $\therefore at t = 2, x = 0.5 \text{ and } y = 0.5$	1 1 1/2 + 1/2	
		and slope $m = -1$ $\therefore the equation is,$ $y - b = m(x - a)$ $\therefore y - 0.5 = -1(x - 0.5)$	1	
		y - 0.5 = -1(x - 0.5) $y - 0.5 = -x + 0.5$ $x + y - 1 = 0$	1	4
		OR		
		$x = \frac{1}{t}, y = 1 - \frac{1}{t}$ $\therefore \frac{dx}{dt} = -\frac{1}{t^2} and \frac{dy}{dt} = \frac{1}{t^2}$ $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{\frac{1}{t^2}}{-\frac{1}{t^2}}$	1/2	
		$\therefore \frac{dy}{dx} = -1$	1/2	
		∴ at $t = 2$, $x = 0.5$ and $y = 0.5$ and slope $m = -1$ ∴ the equation is,	1/2 + 1/2	
		y-b = m(x-a) ∴ $y-0.5 = -1(x-0.5)$ ∴ $y-0.5 = -x+0.5$	1	
		$\therefore x + y - 1 = 0$	1	4

/26

Subject & Code: Applied Maths (1)	7301)	Page No: 26/

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	f)	Find the area between the parabola $y = 4 - x^2$ and the x-axis.		IVIAIR
	Ans.	$y = 4 - x^2 and x - axis \ i.e., \ y = 0$		
		$\therefore 4 - x^2 = 0$		
		$\therefore x = -2, 2$	1/2 + 1/2	
		$\therefore A = \int_{a}^{b} y dx$		
		$=\int_{-2}^{2}\left(4-x^{2}\right)dx$	1/2	
		$= \left[4x - \frac{x^3}{3}\right]_{-2}^2$	1	
		$= \left[2^{3} - \frac{2^{3}}{3}\right] - \left[\left(-2\right)^{3} - \frac{\left(-2\right)^{3}}{3}\right]$	1/2	
		$=\frac{32}{3}$ or 10.667	1	4
		Important Note		
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		