

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 1/26 **Model Answers Important Instructions to examiners:** The model answer shall be the complete solution for each and every question on the question paper. Numerical shall be completely solved in a step by step manner along with step marking. All alternative solutions shall be offered by the expert along with self-explanatory comments from the expert. In case of theoretical answers, the expert has to write the most acceptable answer and offer comments regarding marking scheme to the assessors. In should offer the most convincing figures / sketches / circuit diagrams / block diagrams / flow diagrams and offer comments for step marking to the assessors. In case of any missing data, the expert shall offer possible assumptions / options and the ensuing solutions along with comments to the assessors for effective assessment. In case of questions which are out of the scope of curricular requirement, the expert examiner shall solve the question and mention the marking scheme in the model answer. However, the experts are requested to submit their clear cut opinion about the scope of such question in the paper separately to the coordinator. Experts shall cross check the DTP of the final draft of the model answer prepared by them.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 2/26

		1/301 WillCI-2013		ge 110. 2/2
Que.	Sub.	Model Answers	Mark	Total
No.	Que.		S	Marks
1)	2)	At what point on the curve $y = e^x$, close is 12		20
	a) Ans	At what point on the curve $y = e^x$, slope is 1?		
	71110	$y = e^x$	1	
		$\therefore \frac{dy}{dx} = e^x$		
			1	
		$\therefore e^x = 1$	4	
		$\therefore x = 0$	1 1	
		$\therefore y = e^0 = 1$	1	
		\therefore Point is $(0,1)$		4
	b)	Find the radius of curvature of $y = e^x$ at $(0,1)$		
	Ans	$y = e^x$		
	AIIS		1/2	
		$\therefore \frac{dy}{dx} = e^x$		
		$\therefore \frac{d^2 y}{dx^2} = e^x$	1/2	
		$\therefore \frac{a}{a} \frac{y}{a} = e^x$		
		$\begin{array}{c c} ax \\ at (0,1) \end{array}$	1/	
			1/2	
		$\frac{dy}{dx} = e^0 = 1$		
		$\frac{dx}{dx}$	1/2	
		$\frac{d^2y}{dx^2} = e^0 = 1$, _	
		Radius of curvature = $\frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$ $= \frac{\left(1 + (1)^2\right)^{\frac{3}{2}}}{1}$ $= 2.828$	1	4
	c)	Evaluate: $\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$		
	A =	▼ **		
	Ans	$\int \frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}} dx$		
		Put $\sqrt{x} = t$	1/2	
		Put $\sqrt{x} = t$ $\therefore \frac{1}{2\sqrt{x}} dx = dt$ $\therefore \frac{1}{\sqrt{x}} dx = 2dt$		
		$\therefore \frac{1}{\sqrt{x}} dx = 2dt$	1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 3/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	Que.	$=\int \sin t \ 2dt$	1	Marks
,		•	1	
		$=-2\cos t + c$	1/	4
		$=-2\cos\sqrt{x}+c$	1/2	
	d)	Integrate w.r.t. $x = \frac{\sin x}{\cos^2 x}$		
	Ans	$\int \frac{\sin x}{\cos^2 x} \mathrm{d}x$		
		$= \int \frac{\sin x}{\cos x \cos x} dx$	2	
		$=\int \tan x \sec x dx$	2	4
		$= \sec x + c$	2	1
		OR		
		$\int \frac{\sin x}{\cos^2 x} \mathrm{d}x$		
		put $\cos x = t$		
		$\therefore -\sin x dx = dt$		
		$\therefore \sin x dx = -dt$	1	
		$\int \frac{-dt}{t^2}$	1	
		$=-\frac{t^{-1}}{-1}+c$	1	
		$\begin{bmatrix} -1 \\ 1 \\ = -+c \end{bmatrix}$	1/2	
		t		
		$=\frac{1}{\cos x}+c$	1/2	
		$= \sec x + c$		4
	e)	Evaluate: $\int xe^x dx$		
	Ans	$\int xe^x dx$		
		$= x \int e^x dx - \int \left[\int e^x dx \frac{d}{dx} x \right] dx$ $= xe^x - \int 1 \cdot e^x dx$	1	
		$= xe^x - \int 1.e^x dx$	1+1	
		$==xe^x-e^x+c$	1	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 4/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	f)	Evaluate: $\int \frac{1}{x(x+1)} dx$		
	Ans	$\int \frac{1}{x(x+1)} dx$		
		consider $\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$		
		$\therefore A = 1$	1	
		B = -1	1	
		$\therefore \int \frac{1}{x(x+1)} dx = \int \left(\frac{1}{x} + \frac{-1}{x+1}\right) dx$		
		$= \log x - \log (x+1) + c$	1+1	4
	g)	Evaluate: $\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$		
	Ans	$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$	_	
		$\begin{vmatrix} \int_0^2 \sqrt{1-x^2} \\ = \left[\sin^{-1} x \right]_0^1 \end{vmatrix}$	2	
		$= \left[\sin^{-1} 1\right] - \left[\sin^{-1} 0\right]$	1	
		$=\frac{\pi}{2}$	1	4
	h)	Find the area under the curve $y = x^2$ from $x = 0$ to $x = 3$ with X-axis		
	Ans	$A = \int_{0}^{3} x^{2} dx$	1	
		$= \left[\frac{x^3}{3}\right]_0^3$	1	
			1	
		$\begin{bmatrix} -\left[\frac{1}{3} \right] - \left[\frac{1}{3} \right] \\ = 9 \text{ Sq.units} $	1	4
	i) Ans	Find order and degree of the following differential equation. Order = 2		
	AIIS	$\frac{d^2y}{dx^2} = \sqrt{y + \left(\frac{dy}{dx}\right)^2} \therefore \left(\frac{d^2y}{dx^2}\right)^2 = y + \left(\frac{dy}{dx}\right)^2$	2	
		$dx^{2} \forall (dx) (dx^{2}) (dx)$ Degree = 2	2	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 5/26

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)	j)	Form the differential equation of the curve $y = ax^2$		
	Ans	$y = ax^2$	1½	
		$\frac{dy}{dx} = 2ax$		
		$\frac{dy}{dx} = 2\frac{y}{x^2}x$	1½	
		$y = ax^{2}$ $\frac{dy}{dx} = 2ax$ $\frac{dy}{dx} = 2\frac{y}{x^{2}}x$ $x\frac{dy}{dx} - 2y = 0$	1	4
	k)	Three cards are drawn from well shuffled pack of cards .Find the probability that all of them are king.		
	Ans	$n(S) = {}^{52}C_3$	1	
		$n(A) = {}^4C_3$	1	
		$n(S) = {}^{52}C_3$ $n(A) = {}^{4}C_3$ $P(A) = \frac{n(A)}{n(S)} = \frac{4}{22100} = 0.00018$	2	4
	l) Ans	Two coins are tossed simultaneously, find the probability of getting atleast one head.		
		$S = \{HH, HT, TH, TT\}$ $n (S)=4$ $A = \{HH, HT, TH\}$	1	
		n (A)=3	1	
		$P(A) = \frac{n(A)}{n(S)} = \frac{3}{4} = 0.75$	2	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 6/26

		17301 Willter-2013		- 110. 0/2
Que.	Sub.	Model Answers	Marks	Total
No.	Que.		1,14110	Marks
2)		Attempt any <u>FOUR</u> of the following:		16
	a)	Find the equation of tangent and normal to the curve		
		$2x^2 - xy + 3y^2 = 18$ at (3,1)		
	Ans	` '		
		$2x^2 - xy + 3y^2 = 18$		
		$4x - \left(x\frac{dy}{dx} + y\right) + 6y\frac{dy}{dx} = 0$	1/2	
		$4x - x\frac{dy}{dx} - y + 6y\frac{dy}{dx} = 0$		
		$\left(6y - x\right)\frac{dy}{dx} = y - 4x$		
		$\therefore \frac{dy}{dx} = \frac{y - 4x}{6y - x}$	1/2	
		at point (3,1)		
		slope of tangent = $\frac{-11}{3}$	1/2	
		slope of normal = $\frac{3}{11}$	1/2	
		Equation of tangent at $(3,1)$ is	.,	
		$y-1=\frac{-11}{3}(x-3)$	1/2	
		$\therefore 11x + 3y - 36 = 0$	1/2	
		Equation of normal at $(3,1)$ is	1/2	
		$y-1=\frac{3}{11}(x-3)$	1/2	4
		$\therefore 3x - 11y + 2 = 0$		4
	b)	Show that the radius of curvature at any point on the curve		
	Ans	$y = a \log \left(\sec \frac{x}{a} \right)$ where a is constant is $a \sec \left(\frac{x}{a} \right)$		
		$y = a \log \left(\sec \frac{x}{a} \right)$		
		$\therefore \frac{dy}{dx} = a \cdot \frac{1}{\sec \frac{x}{a}} \cdot \frac{d}{dx} \sec \frac{x}{a}$	1	
		a		
		$= a \cdot \frac{1}{\sec \frac{x}{a}} \cdot \sec \frac{x}{a} \cdot \tan \frac{x}{a} \cdot \frac{1}{a}$		
		$=\tan\frac{x}{a}$	1/2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 7/26

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que.		1	Marks
		$\frac{d^2y}{dx^2} = \sec^2\left(\frac{x}{a}\right)\frac{1}{a}$		
		Radius of curvature $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$		
		$= \frac{\left[1 + \tan^2\left(\frac{x}{a}\right)\right]^{\frac{3}{2}}}{\sec^2\left(\frac{x}{a}\right)\frac{1}{a}}$	1/2	
		$= \frac{\left[\sec^2\left(\frac{x}{a}\right)\right]^{\frac{3}{2}}}{\sec^2\left(\frac{x}{a}\right)\frac{1}{a}}$	1/2	
		$= a \sec\left(\frac{x}{a}\right)$	1/2	4
	c)	Find the maximum and minimum value of $x^3 - 9x^2 + 24x$		
	Ans	Let $y = x^3 - 9x^2 + 24x$ $\therefore \frac{dy}{dx} = 3x^2 - 18x + 24$	1/2	
		$\therefore \frac{d^2 y}{dx^2} = 6x - 18$	1/2	
		Consider $\frac{dy}{dx} = 0$		
		$3x^2 - 18x + 24 = 0$ $\therefore x = 2 \text{ or } x = 4$	1	
		at $x = 2$ $\frac{d^2 y}{dx^2} = 6(2) - 18 = -6 < 0$	1/2	
		$y \text{ is maximum at } x = 2$ $y_{\text{max}} = 2^3 - 9(2)^2 + 24(2)$	1/2	
		=20		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 8/26

Subject Code: 17301 Winter-2015

	t Coue.	1/301 Willter-2013	1 450 1	10. 6/20
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	_~	at $x = 4$		
		$\frac{d^2y}{dx^2} = 6(4) - 18 = 6 > 0$	1/	
		CLV CLV	1/2	
		\therefore y is minimum at $x = 4$		
		$y_{\min} = 4^3 - 9(4)^2 + 24(4)$		_
		=16	1/2	4
		_		
	d)	Evaluate: $\int \cos^{-1} x dx$		
	Ans	$I = \int \cos^{-1} x \cdot 1 dx$		
		$= \cos^{-1} x \int 1 dx - \int \left(\int 1 dx \frac{d}{dx} \cos^{-1} x \right) dx$	1	
		$=(\cos^{-1} x)x - \int \frac{-1}{\sqrt{1-x^2}} x dx$	1	
		$=x\cos^{-1}x+\int \frac{x}{\sqrt{1-x^2}}dx$		
		$= x \cos^{-1} x + \frac{1}{-2} \int \frac{-2x}{\sqrt{1-x^2}} dx$	1	
		$= x \cos^{-1} x - \frac{1}{2} \left(2\sqrt{1 - x^2} \right) + c$	1	
		$= x \cos^{-1} x - \sqrt{1 - x^2} + c$	1	4
	e)	Evaluate: $\int \frac{\left(\tan^{-1} x\right)^3}{1+x^2} dx$		
	Δ			
	Ans	$I = \int \frac{\left(\tan^{-1} x\right)^3}{1 + x^2} dx$		
		$\int_{0}^{\infty} 1 + x^{2}$ Put $\tan^{-1} x = t$	1/2	
		$\frac{1}{1+x^2}dx = dt$	1/2	
		$\therefore I = \int t^3 dt$	1	
		$=\frac{t^4}{4}+c$	1 1	
		•	1	4
		$=\frac{\left(\tan^{-1}x\right)^4}{4}+c$	1	4
	f)	Evaluate: $\int \frac{e^x}{\left(e^x - 1\right)\left(e^x + 1\right)} dx$		
	,	$\int (e^x - 1)(e^x + 1)$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 9/26

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que. Ans	Put $e^x = t$		Marks
2)	Alis	$e^{x}dx = dt$	1	
		$I = \int \frac{dt}{(t-1)(t+1)}$		
		$=\int \frac{dt}{t^2-1}$	1	
		$= \frac{1}{2} \log \left(\frac{t-1}{t+1} \right) + c$	1½	
		$= \frac{1}{2} \log \left(\frac{e^x - 1}{e^x + 1} \right) + c$	1/2	4
		OR		
		Put $e^x = t$		
		$e^x dx = dt$	1	
		Let $\frac{1}{(t-1)(t+1)} = \frac{A}{t-1} + \frac{B}{t+1}$		
		1=A(t+1)+B(t-1)		
		Put $t = -1$		
		1 = B(-2)		
		$B = -\frac{1}{2}$	1/2	
		Put $t = 1$		
		1 = A(2)		
		$A = \frac{1}{2}$	1/2	
		$\frac{1}{(t-1)(t+1)} = \frac{\frac{1}{2}}{t-1} + \frac{-\frac{1}{2}}{t+1}$		
		(t-1)(t+1) $t-1$ $t+1$		
		$\int \frac{dt}{(t-1)(t+1)} = \int \left(\frac{\frac{1}{2}}{t-1} + \frac{-\frac{1}{2}}{t+1}\right) dt$	1/2	
		$= \frac{1}{2} \log(t-1) - \frac{1}{2} \log(t+1) + c$	1	
		$= \frac{1}{2} \log \left(\frac{t-1}{t+1} \right) + c$		
		$=\frac{1}{2}\log\left(\frac{e^x-1}{e^x+1}\right)+c$	1/2	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 10/26

Que.	Sub.	Model Answers	Marks	Total
No. 3)	Que.			Marks 16
,		Attempt any <u>FOUR</u> of the following: $\frac{\pi}{2}$		
	a)	Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{4 - \sin^{2} x} dx$		
	Ans	Put $\sin x = t$		
		$\cos x dx = dt$ when $x \to 0$ to $\frac{\pi}{2}$ $t \to 0$ to 1	1+1	
		$\therefore I = \int_0^1 \frac{1}{4 - t^2} dt$		
		$I = \int_{0}^{1} \frac{1}{\left(2\right)^{2} - t^{2}} dt$		
		$I = \left[\frac{1}{2(2)} \log \left \frac{2+t}{2-t} \right \right]_0^1$	1	
		$I = \frac{1}{4} \left[\log \left \frac{3}{1} \right - \log \left \frac{2}{2} \right \right]$	1	
		$I = \frac{1}{4} \left[\log 3 - \log 1 \right]$ $I = \frac{1}{4} \log 3$		
		$I = \frac{1}{4}\log 3$		4
	b)	Evaluate $\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$		
	Ans	$I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$		
		$I = \int_{0}^{\frac{\pi}{4}} \log \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) dx$	1/2	
		$I = \int_{0}^{\frac{\pi}{4}} \log \left(1 + \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x} \right) dx$		
		$I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) dx$	1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 11/26

Sub. Que.	Model Answers	Marks	Total Marks
	$I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{1 + \tan x + 1 - \tan x}{1 + \tan x}\right) dx$		
	$I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan x}\right) dx$	1/2	
	$I = \int_{0}^{\frac{\pi}{4}} \left[\log 2 - \log \left(1 + \tan x \right) \right] dx$	1/2	
	$I = \log 2 \int_{0}^{\frac{\pi}{4}} dx - \int_{0}^{\frac{\pi}{4}} \log (1 + \tan x) dx$		
	$I = \log 2 \left[x \right]_0^{\frac{\pi}{4}} - I$	1/2	
	$2I = \log 2 \left[\frac{\pi}{4} - 0 \right]$	1/2	
	$I = \frac{\pi}{8} \log 2$	1/2	4
c)	Find the area of an ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ by integration		
Ans	$\frac{x^2}{16} + \frac{y^2}{9} = 1$		
	10		
	7		
	area, $A = 4 \int_{a}^{b} y dx$	1	
	$A = 4 \left[\frac{3}{4} \int_{0}^{4} \sqrt{(4)^{2} - x^{2}} dx \right]$		
	$A = 3 \left[\frac{x}{2} \sqrt{(4)^2 - x^2} + \frac{(4)^2}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_0^4$	1	
	$A = 3\left[8\sin^{-1}\left(1\right) - 0\right]$	1	
	$A = 24\frac{\pi}{2}$ $A = 12\pi$	1	4
	Que.	Que. $I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{1 + \tan x + 1 - \tan x}{1 + \tan x}\right) dx$ $I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan x}\right) dx$ $I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan x}\right) dx$ $I = \log 2 \int_{0}^{\frac{\pi}{4}} dx - \int_{0}^{\frac{\pi}{4}} \log\left(1 + \tan x\right) dx$ $I = \log 2 \left[x\Big _{0}^{\frac{\pi}{4}} - I\right]$ $2I = \log 2 \left[\frac{\pi}{4} - 0\right]$ $I = \frac{\pi}{8} \log 2$ C) Find the area of an ellipse $\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$ by integration Ans $\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$ $\therefore y^{2} = \frac{9}{16}(16 - x^{2})$ $\therefore y = \frac{3}{4}\sqrt{16 - x^{2}}$ $\arctan A = 4\int_{0}^{\pi} y dx$ $A = 4\left[\frac{3}{4}\int_{0}^{4} \sqrt{(4)^{2} - x^{2}} dx\right]$ $A = 3\left[\frac{x}{2}\sqrt{(4)^{2} - x^{2}} + \frac{(4)^{2}}{2}\sin^{-1}\left(\frac{x}{4}\right)\right]_{0}^{4}$ $A = 3\left[8\sin^{-1}(1) - 0\right]$	Que. Model Answers Marks I = $\int_{0}^{\frac{\pi}{4}} \log \left(\frac{1 + \tan x + 1 - \tan x}{1 + \tan x} \right) dx$ I = $\int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1 + \tan x} \right) dx$ I = $\int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1 + \tan x} \right) dx$ I = $\int_{0}^{\frac{\pi}{4}} \log 2 - \log \left(1 + \tan x \right) dx$ I = $\log 2 \int_{0}^{\frac{\pi}{4}} dx - \int_{0}^{\frac{\pi}{4}} \log \left(1 + \tan x \right) dx$ I = $\log 2 \left[\frac{\pi}{4} - 0 \right]$ I = $\frac{\pi}{8} \log 2$ I =

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 12/26

Subject Code: 17301 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	OR		Marks
3)		$\frac{x^2}{16} + \frac{y^2}{9} = 1$		
		$\therefore y^2 = \frac{9}{16} \left(16 - x^2 \right)$ $\therefore y = \frac{3}{4} \sqrt{16 - x^2}$		
		$area, A = \int_{a}^{b} y dx$	1/2	
		$A = \left[\frac{3}{4} \int_{0}^{4} \sqrt{(4)^{2} - x^{2}} dx \right]$		
		$A = \frac{3}{4} \left[\frac{x}{2} \sqrt{(4)^2 - x^2} + \frac{(4)^2}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_0^4$	1	
		$A = \frac{3}{4} \left[8 \sin^{-1} (1) - 0 \right]$	1	
		$A = \frac{3}{4} \left[8\frac{\pi}{2} \right]$ $A = 3\pi$	1	
		∴ area of ellipse is $= 4 \times A$		
		$= 4 \times 3\pi$ $= 12\pi$	1/2	4
	d)	Solve $\frac{dy}{dx} = \cos(x+y)$		
	Ans	Put $x + y = v$		
		$1 + \frac{dy}{dx} = \frac{dv}{dx}$	1	
		$\frac{dy}{dx} = \frac{dv}{dx} - 1$		
		$\therefore \frac{dv}{dx} - 1 = \cos v$ $\frac{dv}{dx} = 1 + \cos v$	1/2	
		$\frac{dv}{dx} = 1 + \cos v$ $\frac{1}{1 + \cos v} dv = dx$		
		$\int \frac{1}{1 + \cos v} dv = \int dx$	1/2	

Subject Code: 17301

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Winter-2015

Page No: 13/26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)		$\int \frac{1}{2\cos^2\left(\frac{v}{2}\right)} dv = x + c$	1/2	
		$\frac{1}{2}\int \sec^2\left(\frac{v}{2}\right) dv = x + c$ $1 \tan\left(\frac{v}{2}\right)$	1	
		$\frac{1}{2} \frac{\tan\left(\frac{v}{2}\right)}{\frac{1}{2}} = x + c$ $\tan\left(\frac{v}{2}\right) = x + c$	_	
		$\tan\left(\frac{x+y}{2}\right) = x+c$ OR	1/2	4
		Solve $\frac{dy}{dx} = \cos(x+y)$ Put $x + y = v$ $1 + \frac{dy}{dx} = \frac{dv}{dx}$	1	
		$\frac{dy}{dx} = \frac{dv}{dx} - 1$ $\therefore \frac{dv}{dx} - 1 = \cos v$		
		$\frac{dx}{dv} = 1 + \cos v$ $\frac{1}{1 + \cos v} dv = dx$	1/2	
		$\int \frac{1}{1 + \cos v} dv = \int dx$	1/2	
		Put $\tan \frac{v}{2} = t$ $dv = \frac{2dt}{1+t^2}$		
		$\cos v = \frac{1 - t^2}{1 + t^2}$ $1 2dt$	1/2	
		$\therefore \int \frac{1}{1 + \frac{1 - t^2}{1 + t^2}} \frac{2dt}{1 + t^2} = x + c$	1/2	
		$2\int \frac{1}{1+t^2+1-t^2} dt = x+c$		

Subject Code: 17301

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 14/26

Winter-2015

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	2.5.5.	$2\int \frac{1}{2}dt = x + c$	1/2	
		t = x + c		
		$\tan\left(\frac{v}{2}\right) = x + c$	1/2	
		$\tan\left(\frac{x+y}{2}\right) = x+c$		4
		OR		
		Solve $\frac{dy}{dx} = \cos(x+y)$		
		Put $x + y = v$		
		$1 + \frac{dy}{dx} = \frac{dv}{dx}$		
		$\frac{dy}{dx} = \frac{dv}{dx} - 1$	1	
			1	
		$\therefore \frac{dv}{dx} - 1 = \cos v$		
		$\frac{dv}{dx} = 1 + \cos v$	1/2	
		$\frac{1}{1+\cos v}dv = dx$		
		$\int \frac{1}{1 + \cos v} dv = \int dx$	1/2	
		$\int \frac{1 - \cos v}{1 - \cos^2 v} dv = \int dx$	1/2	
		$\int \frac{1 - \cos v}{\sin^2 v} dv = x + c$		
		$\int \left(\frac{1}{\sin^2 v} - \frac{\cos v}{\sin^2 v}\right) dv = x + c$	1	
		$\int \left(\cos ec^2 v - \cot v \cos ecv\right) dv = x + c$	1	
		$-\cot v + \cos ecv = x + c$	1/2	4
		$-\cot(x+y) + \cos ec(x+y) = x+c$	/ 4	T
		. 2 2		
	e)	Solve the differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$		
	Ans	Put $y = vx$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 15/26

Que.	Sub.	Model Answers	Marks	Total
No. 3)	Que.		1	Marks
		$\frac{dy}{dx} = v + x \frac{dv}{dx}$	1	
		$\therefore v + x \frac{dv}{dx} = \frac{x^2 + (vx)^2}{x(vx)}$		
		$v + x\frac{dv}{dx} = \frac{x^2 + v^2 x^2}{vx^2}$		
		$v + x \frac{dv}{dx} = \frac{1 + v^2}{v}$	1/2	
		$x\frac{dv}{dx} = \frac{1+v^2}{v} - v$	1/2	
		$x\frac{dv}{dx} = \frac{1+v^2-v^2}{v}$		
		$x\frac{dv}{dx} = \frac{1}{v}$	1/2	
		1		
		$vdv = -\frac{1}{x}dx$		
		$\int v dv = \int \frac{1}{x} dx$	1/2	
		$\frac{v^2}{2} = \log x + c$	1/2	
		$\frac{y^2}{2x^2} = \log x + c$	1/2	4
	f)	Solve $(x+1)\frac{dy}{dx} - y = e^x (x+1)^2$		
	Ans	$\frac{dy}{dx} - \frac{1}{x+1} y = e^x (x+1)$		
		$\therefore P = -\frac{1}{x+1} \text{ and } Q = e^x (x+1)$	1	
		$IF = e^{-\int \frac{1}{x+1} dx} = e^{-\log(x+1)} = \frac{1}{x+1}$	1	
		$\therefore yIF = \int QIFdx + c$	4	
		$y\frac{1}{x+1} = \int e^x (x+1)\frac{1}{x+1} dx + c$	1	
		$\frac{y}{x+1} = \int e^x dx + c$		4
		$\frac{y}{x+1} = e^x + c$	1	'1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 16/26

Que.	Sub.	Model Answers	Marks	Total
No. 4)	Que.	Attempt any <u>FOUR</u> of the following:		Marks 16
- /	a)	Evaluate $\int_{1}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+3}} dx$		
	Ans	$I = \int_{1}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+3}} dx \qquad(1)$		
		$I = \int_{1}^{5} \frac{\sqrt{9 - (1 + 5 - x)}}{\sqrt{9 - (1 + 5 - x)} + \sqrt{(1 + 5 - x) + 3}} dx$		
		$I = \int_{1}^{5} \frac{\sqrt{x+3}}{\sqrt{x+3} + \sqrt{9-x}} dx \qquad (2)$	1	
		add (1) and (2) $I + I = \int_{1}^{5} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x + 3}} dx + \int_{1}^{5} \frac{\sqrt{x + 3}}{\sqrt{x + 3} + \sqrt{9 - x}} dx$		
		$2I = \int_{1}^{5} \frac{\sqrt{9-x} + \sqrt{x+3}}{\sqrt{9-x} + \sqrt{x+3}} dx$	1	
		$2I = \int_{1}^{5} 1 dx$	1/2	
		$2I = \left[x\right]_1^5$	1/2	4
		2I = 5 - 1 $I = 2$	1/2	1
	b)	Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{4 + 5\cos x}$		
	Ans	Put $\tan \frac{x}{2} = t$		
		$\cos x = \frac{1 - t^2}{1 + t^2} dx = \frac{2dt}{1 + t^2} \text{when } x \to 0 \text{ to } \frac{\pi}{2}$ $t \to 0 \text{ to } 1$	1	
		$\therefore I = \int_{0}^{1} \frac{1}{4+5\left(\frac{1-t^{2}}{1+t^{2}}\right)} \frac{2dt}{1+t^{2}}$	1/2	
		$I = 2\int_{0}^{1} \frac{1}{4(1+t^{2}) + 5(1-t^{2})} dt$		
		$I = 2\int_{0}^{1} \frac{1}{4 + 4t^{2} + 5 - 5t^{2}} dt$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

 Subject Code: 17301
 Winter-2015
 Page No: 17/26

	t Code.	1/501 Willer-2015	Page NC	
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)		$I = 2 \int_{0}^{1} \frac{1}{9 - t^{2}} dt$ $I = 2 \int_{0}^{1} \frac{1}{(3)^{2} - t^{2}} dt$	1/2	
			1	
		$I = 2\left[\frac{1}{2(3)}\log\left \frac{3+t}{3-t}\right \right]_0^1$	1	
		$I = \frac{1}{3} \left[\log \left \frac{4}{2} \right - \log \left \frac{3}{3} \right \right]$	1/2	
		$I = \frac{1}{3} \left[\log 2 - \log 1 \right]$ $I = \frac{1}{3} \log 2 $		
		$I = \frac{1}{3}\log 2 $	1/2	4
	c) Ans	Find the area between the parabola $y^2 = 4x$ and the line $y = 2x + 3$ As in the given problem Curves are Not intersecting thus finding the area between the given two curves is not possible.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

 Subject Code: 17301
 Winter-2015
 Page No: 18/26

		1/301 Winter-2015	Page No	
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	d)	Solve $\frac{dy}{dx} = e^{2x+y} + x^2 e^y$		
	Ans	$\frac{dy}{dx} = \left(e^{2x} + x^2\right)e^y$		
		$e^{-y}dy = \left(e^{2x} + x^2\right)dx$	1	
		$\int e^{-y} dy = \int \left(e^{2x} + x^2\right) dx$	1	
		$\frac{e^{-y}}{-1} = \frac{e^{2x}}{2} + \frac{x^3}{3} + c$	2	4
	e)	Solve $(2x+3\cos y)dx + (2y-3x\sin y)dy = 0$		
	Ans	$M = 2x + 3\cos y , N = 2y - 3x\sin y$		
		$\frac{\partial M}{\partial y} = -3\sin y ,$	1	
		$\frac{\partial N}{\partial x} = -3\sin y$	1	
		$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$		
		∴ equation is an exact D.E.		
		$\int_{y-cons \tan t} M dx + \int_{terms free from x} N dy = c$		
		$\therefore \int_{y-cons \tan t} (2x + 3\cos y) dx + \int 2y dy = c$	1	
		$x^2 + 3x\cos y + y^2 = c$	1	4
	f)	Show that $y = A \sin mx + B \cos mx$ is a solution of differential equation		
		$\frac{d^2y}{dx^2} + m^2y = 0$		
	Ans	$y = A\sin mx + B\cos mx$		
		$\frac{dy}{dx} = mA\cos mx - mB\sin mx$	1	
		$\frac{d^2y}{dx^2} = -m^2A\sin mx - m^2B\cos mx$	1	
			1	
		$\frac{d^2y}{dx^2} = -m^2 \left(A \sin mx + B \cos mx \right)$	1	
		$\frac{d^2y}{dx^2} = -m^2y$		
		$\frac{d^2y}{dx^2} + m^2y = 0$	1	4
		OR		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

 Subject Code: 17301
 Winter-2015
 Page No: 19/26

Que. Sub. No. Que. 4)	26.114	1	
	Model Answers	Marks	Total Marks
5) a)	Model Answers $y = A \sin mx + B \cos mx$ $\frac{dy}{dx} = mA \cos mx - mB \sin mx$ $\frac{d^2y}{dx^2} = -m^2 A \sin mx - m^2 B \cos mx$ $L.H.S. = \frac{d^2y}{dx^2} + m^2 y$ $= -m^2 A \sin mx - m^2 B \cos mx + m^2 (A \sin mx + B \cos mx)$ $= -m^2 A \sin mx - m^2 B \cos mx + m^2 A \sin mx + m^2 B \cos mx$ $= 0 = R.H.S.$ Attempt any FOUR of the following: A problem is given to three students X,Y,Z whose chances of solving	Marks 1 1 1	
a)	A problem is given to three students X,Y,Z whose chances of solving are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ respectively. Find the probability that:		
	i) The probem is solved by each of them.		
Ans	ii) The problem is not solved by any of them. $P(X) = \frac{1}{2} \qquad \therefore P(X') = 1 - \frac{1}{2} = \frac{1}{2}$ $P(Y) = \frac{1}{3} \qquad \therefore P(Y') = 1 - \frac{1}{3} = \frac{2}{3}$ $P(Z) = \frac{1}{4} \qquad \therefore P(Z') = 1 - \frac{1}{4} = \frac{3}{4}$ i)Problem is solved by each of them is: $= P(X \cap Y \cap Z)$ $= P(X) \times P(Y) \times P(Z)$ $= \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}$ $= \frac{1}{24} \text{or} 0.0417$ ii)Problem is not solved by any of them is: $P(X' \cap Y' \cap Z') = P(X') \times P(Y') \times P(Z')$ $= \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}$	1 11/2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 **Winter-2015** Page No: 20/26

	L Couc.		Tage No	
Que	Sub.		Moule	Total
	Que	Model Answers	Mark	Mark
No.	~		S	s
5)	b)	If 30% of the bulbs produced are defective, find the probability that out of		
3)	0)	4 bulbs selected:		
		i) One is defective		
		ii) At the most two are defective		
	Ans	p = 30% = 0.3		
		q = 1 - p = 0.7		
		n=4	1	
			_	
		Binomial Distribution is:		
		$p(r) = {^{n}C_{r}} p^{r} q^{n-r}$		
		i) One is defective, $r = 1$		
		$p(1) = {}^{4}C_{1}(0.3)^{1}(0.7)^{4-1}$		
			11/2	
		p(1) = 0.4116	1/2	
		ii) At the most two are defective		
		= p(0) + p(1) + p(2)		
		$= {}^{4}C_{0}(0.3)^{0}(0.7)^{4-0} + 0.4116 + {}^{4}C_{2}(0.3)^{2}(0.7)^{4-2}$		
		= 0.2401 + 0.4116 + 0.2646	11/2	4
		= 0.9163	1/2	
	c)	Using Poisson distribution, find the probability that the ace of spade will be		
		drawn from a pack of well shuffled cards at least once		
		in 104 consecutive trials.		
	Ans			
		Given $n = 104$		
		$n-\frac{1}{n}$		
		$p = \frac{1}{52}$	1	
		m = np	_	
		1	1	
		$=104 \times \frac{1}{52} = 2$	_	
		r = atleast one		
		=1, 2, 3		
		$\therefore p(r) = \frac{e^{-m}m^r}{r}$		
		$\therefore p(r) = \frac{e^{-m}m^r}{r!}$		
		p(r) = 1 - p(0)		
			1	
		$=1-\frac{e^{-2}2^0}{0!}$		
		= 0.8646	1	4
				4
	1		L	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Page No: 21/26 Winter-2015

Jubjec	t Code:	1/301 Winter-2015	rag	e No: 21/
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	d)	Evaluate $\int \frac{dx}{2+3\cos x}$		
	Ans	Put $\tan \frac{x}{2} = t$		
		$\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$		
		1 01	1	
		$\therefore I = \int \frac{1}{2+3\left(\frac{1-t^2}{1+t^2}\right)} \frac{2dt}{1+t^2}$	1/2	
		$I = 2\int \frac{1}{2(1+t^2)+3(1-t^2)} dt$		
		$I = 2\int \frac{1}{2 + 2t^2 + 3 - 3t^2} dt$		
		$I = 2\int \frac{1}{5 - t^2} dt$	1/2	
		$I = 2\int \frac{1}{\left(\sqrt{5}\right)^2 - \left(t\right)^2} dt$	1/2	
		$I = \frac{2}{2\sqrt{5}}\log\left \frac{\sqrt{5}+t}{\sqrt{5}-t}\right + c$	1	
		$I = \frac{1}{\sqrt{5}} \log \left \frac{\sqrt{5} + \tan \frac{x}{2}}{\sqrt{5} - \tan \frac{x}{2}} \right + c$	1/2	4
	e)	Evaluate $\int_{0}^{1} x \tan^{-1} x dx$		
	Ans	$= \left[\tan^{-1} x \int x dx - \int \left(\int x dx \frac{d}{dx} \tan^{-1} x \right) dx \right]_0^1$	1/2	
		$= \left[\tan^{-1} x \frac{x^2}{2} - \int \frac{x^2}{2} \frac{1}{1+x^2} dx \right]_0^1$	1	
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{1 + x^2 - 1}{1 + x^2} dx \right]_0^1$		
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1 + x^2} \right) dx \right]_0^1$	1/2	
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) \right]_0^1$	1	
		$= \left[\frac{1}{2} \tan^{-1} (1) - \frac{1}{2} (1 - \tan^{-1} 1)\right] - 0$	1/2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 22/26

	it code:	1/301 Winter-2015	Page NO	
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	f)	$= \frac{1}{2} \frac{\pi}{4} - \frac{1}{2} + \frac{1}{2} \frac{\pi}{4}$ $= \frac{\pi}{4} - \frac{1}{2} \text{ or } \frac{1}{2} \left(\frac{\pi}{2} - 1 \right)$ Solve $\frac{dy}{dx} = \frac{y}{x} + \sin \frac{y}{x}$	1/2	4
	Ans	Put $\frac{y}{x} = v$ $\therefore y = vx$ $dy \qquad dv$	1	
		$\frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore v + x \frac{dv}{dx} = v + \sin v$	1/2	
		$x\frac{dv}{dx} = \sin v$	1/2	
		$\frac{dx}{\sin v} dv = \frac{1}{x} dx$ $\int \cos e c v dv = \int \frac{1}{x} dx$	1/2	
		$\log\left \cos ecv - \cot v\right = \log\left x\right + c$	1/2+1/2	
		$\log\left \cos ec \frac{y}{x} - \cot \frac{y}{x}\right = \log\left x\right + c$	1/2	4
6)		Attempt any <u>FOUR</u> of the following:		16
	a)	A bag contains 20 tickets numbered from 1 to 20. One ticket is drawn at random. Find the probability that it is numbered with		
	Ans	multiple of 3 or 5.		
		$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$ $\therefore n(S) = 20$	1	
		number multiple of 3 or 5 $A = \{3, 5, 6, 9, 10, 12, 15, 18, 20\}$ $\therefore n(A) = 9$	1½	
		$\therefore n(A) = 9$ $p(A) = \frac{n(A)}{n(S)}$ $= \frac{9}{20} or 0.45$		
		$=\frac{9}{20}$ or 0.45	1½	4
		OR		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

 Subject Code: 17301
 Winter-2015
 Page No: 23/26

Jubjec	1	17301 Willtei-2013	1 6	7. 23/20
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	2	$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$		
		$\therefore n(S) = 20$	1	
		number multiple of 3 or 5		
		$n(A \cup B) = n(A) + n(B) - n(A \cap B)$		
			1	
		$n(A \cup B) = 6 + 4 - 1$		
		$\therefore n(A \cup B) = 9$	1	
		$p(A \cup B) = \frac{n(A \cup B)}{n(S)}$		
		$=\frac{9}{20}$ or 0.45	1	4
	b)	A firm produces articles of which 0.1% are defective, out of 500		
		articles. If wholesaler purchases 100 such cases, how many		
		can be expected to have one defective? Given: $e^{-0.5} = 0.6065$		
	Ans	p = 0.1% = 0.001	1/2	
		n = 500		
		$mean m = np = 500 \times 0.001$	1	
		m = 0.5	_	
		Poisson Distribution is		
		$P(r) = \frac{e^{-m}m^r}{r!}$		
		One is defective		
		r=1	1	
		$P(1) = \frac{e^{-0.5} (0.5)^1}{1!}$	1	
		P(1) = 0.30325	1/2	
		$No. \text{ of cases } = 100 \times 0.30325$		
		$= 30.325 \approx 30$	1	4
	c)	$1.0.523 \approx 30$ I.Q.'s are normally distributed with mean 100 and standard deviatio15.		
	,	Find the probability that a randomly		
		selected person has:		
		i) An I.Q.more than 130		
		ii) An I.Q.between 85 and 115		
		[z = 2, Area = 0.4772, z = 1, Area = 0.3413]		
	Ans	Given $\bar{x} = 100$, $\sigma = 15$		
		_		
		Standard normal variate, $Z = \frac{x - x}{\sigma}$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

 Subject Code: 17301
 Winter-2015
 Page No: 24/26

Jubjec	i coue.	1/501 Willer-2015	1 agc 1	10. 24/20
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	Que.	i) For $x = 130$, $Z = \frac{130 - 100}{15} = 2$	1/2	TVICITES
		13		
		p = (area more than 2) = 0.5 - A(2)	1	
		=0.5-0.4772		
		=0.0228	1/2	
		ii) For $x = 85$, $Z = \frac{85 - 100}{15} = -1$		
		For v. 115 7 115-100 1	1/	
		For $x = 115$, $Z = \frac{115 - 100}{15} = 1$	1/2	
			1	
		p(I.Q.between 85 and 115) = A(-1) + A(1)	1	
		=0.3413+0.3413	1/	4
		= 0.6826	1/2	4
	d)	Divide 80 into two parts such that their product is maximum.		
	Ans	consider x and y be the two parts		
		$\therefore x + y = 80$		
		y = 80 - x		
		product is, $P = xy$		
		P = x(80 - x)		
		$P = 80x - x^2$	1	
		$\frac{dP}{dx} = 80 - 2x$	1	
		$\frac{dx}{dx} = 60^{\circ} 2x$	1/2	
		$\frac{d^2P}{dx^2} = -2$	1/2	
			,-	
		For maximum value $\frac{dP}{dx} = 0$	1	
		$\therefore 80 - 2x = 0$	1	
		x = 40		
		At $x = 40$, $\frac{d^2P}{dx^2} = -2$, <i>i.e.</i> Product is maximum	1/2	
		$\therefore x = 40, y = 40$	1/2	4
				4
	e)	The equation of the tangent at the point (2,3) on the curve $y = ax^3 + b$		
	Í	is $y = 4x - 5$. Find the values of a and b		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

 Subject Code: 17301
 Winter-2015
 Page No: 25/26

	i Coue.	17301 Willtel-2013	. 48	e 140. 23/
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	Ans	The equation of the tan gent is,		WICH
		y = 4x - 5		
		$\therefore slope = m = 4$	1/2	
		$y = ax^3 + b$		
		$\frac{dy}{dx} = 3ax^2$	1	
		at (2,3)		
		$\frac{dy}{dx} = 12a$	1/2	
		dx		
		m = 12a		
		$\therefore 4 = 12a$	_	
		$a = \frac{1}{3}$	1	
		$\begin{cases} 3 \\ y = ax^3 + b \end{cases}$		
		$\therefore 3 = \left(\frac{1}{3}\right)(2)^3 + b$		
			1	
		$b = \frac{1}{3}$		
		$a = \frac{1}{3}, b = \frac{1}{3}$		4
	f)	Find the area of circle $x^2 + y^2 = 16$ by integration		
	Ans	$x^2 + y^2 = 16$		
		$\therefore y = \sqrt{16 - x^2}$		
		area, $A = 4 \int_{a}^{b} y dx$	1	
		area, $A = 4\int_{a} y dx$	•	
		$A = 4 \left[\int_{0}^{4} \sqrt{(4)^{2} - x^{2}} dx \right]$		
		$A = 4 \left[\frac{x}{2} \sqrt{(4)^2 - x^2} + \frac{(4)^2}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_0^4$	1	
		$A = 4 \left\lceil 8 \sin^{-1} \left(1 \right) - 0 \right\rceil$		
			1	
		$A = 4 \left[8 \frac{\pi}{2} \right]$		
		$A = 16\pi$	1	4
			1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17301 Winter-2015 Page No: 26/26

Subjec	ct Code	17301 Winter-2015	Pag	e No: 26/
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)