
http://www.tutorialspoint.com/cprogramming/c_operators.htm Copyright © tutorialspoint.com

C - OPERATORSC - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C language is rich in built-in operators and provides the following types of
operators:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators

Misc Operators

This tutorial will explain the arithmetic, relational, logical, bitwise, assignment and other operators
one by one.

Arithmetic Operators
Following table shows all the arithmetic operators supported by C language. Assume variable A
holds 10 and variable B holds 20 then:

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an
integer division

B % A will give 0

++ Increments operator increases integer value by one A++ will give 11

-- Decrements operator decreases integer value by
one

A-- will give 9

Relational Operators
Following table shows all the relational operators supported by C language. Assume variable A
holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

== Checks if the values of two operands are equal or
not, if yes then condition becomes true.

A == B is not true.

!= Checks if the values of two operands are equal or
not, if values are not equal then condition becomes

A ! = B is true.

http://www.tutorialspoint.com/cprogramming/c_operators.htm
/cprogramming/c_arithmetic_operators.htm
/cprogramming/c_relational_operators.htm

true.

> Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

A > B is not true.

< Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

A < B is true.

>= Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

A >= B is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

A <= B is true.

Logical Operators
Following table shows all the logical operators supported by C language. Assume variable A holds
1 and variable B holds 0, then:

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the operands
are non-zero, then condition becomes true.

A && B is false.

|| Called Logical OR Operator. If any of the two
operands is non-zero, then condition becomes true

A | | B is true.

! Called Logical NOT Operator. Use to reverses the
logical state of its operand. If a condition is true
then Logical NOT operator will make false.

! A && B is true.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ are
as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

/cprogramming/c_logical_operators.htm

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C language are listed in the following table. Assume variable A
holds 60 and variable B holds 13, then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result if it
exists in both operands.

A & B will give 12, which is
0000 1100

| Binary OR Operator copies a bit if it exists in either
operand.

A | B will give 61, which is
0011 1101

^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

AB will give 49, which is 0011
0001

~ Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

 A will give -61, which is 1100
0011 in 2's complement
form.

<< Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 will give 240 which is
1111 0000

>> Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

A >> 2 will give 15 which is
0000 1111

Assignment Operators
There are following assignment operators supported by C language:

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from
right side operands to left side operand

C = A + B will assign value of
A + B into C

+= Add AND assignment operator, It adds right
operand to the left operand and assign the result to
left operand

C += A is equivalent to C = C
+ A

-= Subtract AND assignment operator, It subtracts
right operand from the left operand and assign the
result to left operand

C -= A is equivalent to C = C -
A

*= Multiply AND assignment operator, It multiplies
right operand with the left operand and assign the
result to left operand

C *= A is equivalent to C = C
* A

/= Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

C /= A is equivalent to C = C /
A

%= Modulus AND assignment operator, It takes C %= A is equivalent to C = C

/cprogramming/c_bitwise_operators.htm
/cprogramming/c_assignment_operators.htm

modulus using two operands and assign the result
to left operand

% A

<<= Left shift AND assignment operator C <<= 2 is same as C = C
<< 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C
>> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is same as C = C | 2

Misc Operators ↦ sizeof & ternary
There are few other important operators including sizeof and ? : supported by C Language.

Show Examples

Operator Description Example

sizeof Returns the size of an variable. sizeofa, where a is integer,
will return 4.

& Returns the address of an variable. &a; will give actual address
of the variable.

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression If Condition is true ? Then
value X : Otherwise value Y

Operators Precedence in C
Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Category Operator Associativity

Postfix [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - type* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

/cprogramming/c_sizeof_operator.htm
/cprogramming/c_operators_precedence.htm

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Loading [MathJax]/jax/output/HTML-CSS/jax.js

