
1

 CHAPTER 1: Steps in program development
1.1 Programming process,

1.2 Algorithm

1.3 Flowcharting & different symbols

Study of ‘C’ as a programming language

1.4History of „C‟

1.5 Introduction to „C‟

1.6. Basic structure „C‟ program, sample „c‟ program

1.7 Execution of „C‟ program

Constant variables and data types

1.8.Character set

1.9.Key words and identifiers

1.10Constants

1.11Data types

1.12Variables and declaration of variables

1.1 Programming process:

1.2 Algorithm

1] In programming, algorithm are the set of well defined instruction in sequence to solve a

program. An algorithm should always have a clear stopping point.

[2] Qualities of a good algorithm :

Inputs and outputs should be defined precisely.

Each steps in algorithm should be clear and unambiguous.

Algorithm should be most effective among many different ways to solve a problem.

An algorithm shouldn't have computer code. Instead, the algorithm should be written in such a

way that, it can be used in similar programming languages.

2

An algorithm to add two numbers entered by user.

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 sum←num1+num2

Step 5: Display sum

Step 6: Stop

An algorithm to find the largest among three different numbers entered by user.

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a>b

 If a>c

 Display a is the largest number.

 Else

 Display c is the largest number.

 Else

 If b>c

 Display b is the largest number.

 Else

 Display c is the greatest number.

Step 5: Stop

[Refer manual for algorithm]

1.2 Flowcharting & different symbols

Symbol Purpose Description

Flow line
Used to indicate the flow of logic by connecting

symbols.

Terminal(Stop/Start) Used to represent start and end of flowchart.

Input/Output Used for input and output operation.

Processing
Used for airthmetic operations and data-

manipulations.

3

Symbol Purpose Description

Desicion
Used to represent the operation in which there

are two alternatives, true and false.

On-page Connector Used to join different flowline

Off-page Connector
Used to connect flowchart portion on different

page.

Predefined

Process/Function

Used to represent a group of statements

performing one processing task.

Flowcharts are diagrams that visually present the process of solving problems. They are

drawn according to steps described in the algorithms

Rules of Drawing Flowcharts for Algorithms

There are some basic shapes and boxes included in flowcharts that are used in the structure

of explaining steps of algorithms. Knowing how to use them while drawing flowcharts is crucial.

Here are some rules that should be known:

All boxes of flowcharts are connected with arrows to show the logical connection between them,

Flowcharts will flow from top to bottom,

All flowcharts start with a Start Box and end with a Terminal Box

Example 1: Calculate the Interest of a Bank Deposit

Algorithm:

 Step 1: Read amount,

 Step 2: Read years,

 Step 3: Read rate,

4

 Step 4: Calculate the interest with formula "Interest=Amount*Years*Rate/100

 Step 5: Print interest,

\

Example 2: Determine and Output Whether Number N is Even or Odd

Algorithm:

 Step 1: Read number N,

 Step 2: Set remainder as N modulo 2,

5

 Step 3: If remainder is equal to 0 then number N is even, else number N is odd,

 Step 4: Print output.

Example 3: Determine Whether a Temperature is Below or Above the Freezing Point

Algorithm:

 Step 1: Input temperature,

6

 Step 2: If it is less than 32, then print "below freezing point", otherwise print "above freezing

point"

Example 4: Determine Whether A Student Passed the Exam or Not:

Algorithm:

 Step 1: Input grades of 4 courses M1, M2, M3 and M4,

 Step 2: Calculate the average grade with formula "Grade=(M1+M2+M3+M4)/4"

 Step 3: If the average grade is less than 60, print "FAIL", else print "PASS".

7

1.3 History of ‘C’

2 C is a general-purpose language which has been closely associated with the UNIX operating

system for which it was developed - since the system and most of the programs that run it are

written in C.

3 Many of the important ideas of C stem from the language BCPL, developed by Martin

Richards. The influence of BCPL on C proceeded indirectly through the language B, which

was written by Ken Thompson in 1970 at Bell Labs, for the first UNIX system on

a DEC PDP-7. BCPL and B are "type less" languages whereas C provides a variety of data

types.

4 In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the publication of The C

Programming Language by Kernighan & Ritchie caused a revolution in the computing world.

http://cwis/AS/CC/GL/ccglu.html#5
http://www.le.ac.uk/cc/glossary/ccglb.html#8
http://www.digital.com/

8

5 In 1983, the American National Standards Institute (ANSI) established a committee to

provide a modern, comprehensive definition of C. The resulting definition, the ANSI

standard, or "ANSI C", was completed late 1988.

1.5 Introduction to ‘C’

C has been used successfully for every type of programming problem imaginable from operating

systems to spreadsheets to expert systems - and efficient compilersare available for machines

ranging in power from the Apple Macintosh to the Cray supercomputers. The largest measure of

C's success seems to be based on purely practical considerations:

1. the portability of the compiler;

2. the standard library concept;

3. a powerful and varied repertoire of operators;

4. an elegant syntax;

5. ready access to the hardware when needed;

6. and the ease with which applications can be optimised by hand-coding isolated

procedures

C is often called a "Middle Level" programming language. This is not a reflection on its lack of

programming power but more a reflection on its capability to access the system's low level

functions. Most high-level languages (e.g. Fortran) provides everything the programmer might

want to do already built into the language. A low level language (e.g. assembler) provides

nothing other than access to the machines basic instruction set. A middle level language, such as

C, probably doesn't supply all the constructs found in high-languages - but it provides you with

all the building blocks that you will need to produce the results you want!

Uses of C

C was initially used for system development work, in particular the programs that make-up the

operating system. Why use C? Mainly because it produces code that runs nearly as fast as code

written in assembly language. Some examples of the use of C might be:

1. Operating Systems

2. Language Compilers

3. Assemblers

4. Text Editors

5. Print Spoolers

6. Network Drivers

http://www.le.ac.uk/cc/glossary/ccglc.html#47
http://www.apple.com/
http://www.cray.com/
http://www.le.ac.uk/cc/glossary/ccgla.html#36

9

7. Modern Programs

8. Data Bases

9. Language Interpreters

10. Utilities

1.6. Basic structure ‘C’ program, sample ‘c’ program

BASIC STRUCTURE OF A C PROGRAM:

Structure of C program is defined by set of rules called protocol, to be followed by programmer

while writing C program. All C programs are having sections/parts which are mentioned below.

1. Documentation section

2. Link Section

3. Definition Section

4. Global declaration section

5. Function prototype declaration section

6. Main function

7. User defined function definition section

C Basic commands Explanation

#include <stdio.h>

This is a preprocessor command that

includes standard input output header

file(stdio.h) from the C library before

compiling a C program

int main()

This is the main function from where

execution of any C program begins.

{

This indicates the beginning of the main

function.

/*_some_comments_*/

whatever is given inside the command

“/* */” in any C program, won‟t be

considered for compilation and execution.

printf(“Hello_World!

“);

printf command prints the output onto the

screen.

getch();

This command waits for any character input

from keyboard.

return 0;

This command terminates C program (main

function) and returns 0.

10

} This indicates the end of the main function.

#include <stdio.h> /* Link section */

int total = 0; /* Global declaration, definition section */

int sum (int, int); /* Function declaration section */

int main () /* Main function */

{

 printf ("This is a C basic program \n");

 total = sum (1, 1);

 printf ("Sum of two numbers : %d \n", total);

 return 0;

}

int sum (int a, int b) /* User defined function */

{

 return a + b; /* definition section */

}

Sections Description

Documentation

section

We can give comments about the program,

creation or modified date, author name etc in this

section. The characters or words or anything

which are given between “/*” and “*/”, won‟t be

considered by C compiler for compilation

process.These will be ignored by C compiler

during compilation.

Example : /* comment line1 comment line2

comment 3 */

Link Section

Header files that are required to execute a C

program are included in this section

Definition

Section

In this section, variables are defined and values

are set to these variables.

Global

declaration

section

Global variables are defined in this section. When

a variable is to be used throughout the program,

can be defined in this section.

Function

prototype

declaration

section

Function prototype gives many information about

a function like return type, parameter names used

inside the function.

11

Main function

Every C program is started from main function

and this function contains two major sections

called declaration section and executable section.

User defined

function section

User can define their own functions in this

section which perform particular task as per the

user requirement.

1.7 Execution of ‘C’ program

The compilation and execution process of C can be divided in to multiple steps:

Preprocessing - Using a Preprocessor program to convert C source code in expanded source

code. "#includes" and "#defines" statements will be processed and replaced actually source codes

in this step.

It is the first pass of any C compilation. It processes include-files, conditional compilation

instructions and macros

Compilation - Using a Compiler program to convert C expanded source to assembly source code.

Compilation is the second pass. It takes the output of the preprocessor, and the source code, and

generates assembler source code.

Assembly - Using a Assembler program to convert assembly source code to object code.

Assembly is the third stage of compilation. It takes the assembly source code and produces an

assembly listing with offsets. The assembler output is stored in an object file.

Linking - Using a Linker program to convert object code to executable code. Multiple units of

object codes are linked to together in this step.

Linking is the final stage of compilation. It takes one or more object files or libraries as input

and combines them to produce a single (usually executable) file. In doing so, it resolves

references to external symbols, assigns final addresses to procedures/functions and variables, and

revises code and data to reflect new addresses (a process called relocation).

Loading - Using a Loader program to load the executable code into CPU for execution

Table showing input and output of each step in the compilation and execution process:

Input Program Output

source code > Preprocessor > expanded source code

expanded source code > Compiler > assembly source code

assembly code > Assembler > object code

object code > Linker > executable code

executable code > Loader > execution

12

1.8.Character set

Letters : C language comprises the following set of letters to form a standard program. They are :

A to Z in Capital letters.

a to z in Small letters.

Digits :C language comprises the following sequence of numbers to associate the letters.0 to 9

digits.

Special Characters: C language contains the following special character in association with the

letters and digits

13

1.9.Key words and identifiers

Keyword is a predefined or reserved word in C library with a fixed meaning and used to perform

an internal operation. C Language supports 32 keywords.

Every Keyword exists in lower case latter like auto, break, case, const, continue, int etc.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static While

Identifiers

Identifiers are the names you can give to entities such as variables, functions, structures etc.

Identifier names must be unique. They are created to give unique name to a C entity to identify it

during the execution of a program.

 For example:

int money;

double accountBalance;

Here, money and accountBalance are identifiers.

Identifier names must be different from keywords. we cannot use int as an identifier because int

is a keyword.

Rules for writing an identifier

A valid identifier can have letters (both uppercase and lowercase letters), digits and underscore

only.

The first letter of an identifier should be either a letter or an underscore.

In such cases, compiler will complain about it. Some system names that start with underscore are

_fileno, _iob, _wfopen etc.

There is no rule on the length of an identifier. However, the first 31 characters of identifiers are

discriminated by the compiler. So, the first 31 letters of two identifiers in a program should be

different.

In short : Define :

i) Keyword: keywords are reserved words of the language which has specific meaning and

cannot be used as variable or constant names.

14

ii) Identifier: Identifier is used for naming variables, functions or labels.

iii) Variable: Variable is a user defined element that represents a memory location that can store

a value.

iv) Constant: Constant is a value that does not change (i.e. fixed value)

1.10 Constants

1.11 Data types

Data types in C Language

Data types specify how we enter data into our programs and what type of data we enter. C

language has some predefined set of data types to handle various kinds of data that we use in our

program. These datatypes have different storage capacities.

C language supports 2 different type of data types,

Primary data types

These are fundamental data types in C namely integer(int), floating(float), character(char)

and void.

Derived data types

Derived data types are like array, function, stucture, union and pointer.

15

1.12 Variables and declaration of variables

int i, j, k;

char c, ch;

float f, salary;

double d;extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

AND THAT IS END OF FIRST CHAPTER .=============

