

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

17407

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

•••••

Q. No.	Sub Que.	Answer	Marking Scheme
1	A	Attempt any six of the following	12
1A	a	Define entropy and enthalpy.	2
	Ans.	Entropy : Entropy is defined as a thermodynamic property of a working substance which increase with addition of heat and decreases with removal of heat. Entropy is represented by symbol "S". Change in entropy can be expresses as	1
		$\Delta S = \frac{dQ}{T}$	
		Where The share bet a farmer of the state of	
		I = absolute temperature	
		$\Delta S = change in entropy$	
		Enthalpy: Enthalpy is defined as the total heat content or total useful energy of a substance. The symbol for enthalpy is " h ." Enthalpy is also considered to be the sum of internal energy " u " and flow energy (or flow work) p.V . This definition of enthalpy can be expressed, mathematically, as follows:	1
		h = u + p.V	
		Where,	
		\mathbf{h} = Specific enthalpy, measured in kJ/kg (SI Units)	
		\mathbf{u} = Specific internal energy, measured in kJ/kg (SI Units)	
		$\mathbf{p} \cdot \mathbf{v} = Flow Energy, Flow Work or p-V work, quantified in kJ/kg (SI Units)$	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

1A	b	Define Dryness fraction and degree of superheat.	2
	Ans.	Dryness fraction: Dryness fraction is defined ratio of the mass of the dry steam present in the total mass of steam. Or Dryness fraction is ratio of the mass of actual dry steam to the mass of wet steam. Therefore, $x = \frac{m_s}{m_s + m_w}$ Where m_s and m_w are the masses of steam and water in the mixture of $(m_s + m_w)$. Degree of superheat: It is difference between the temperature of Superheated Steam and the saturation temperature correspondingly to given pressure is said to be Degree of Superheat.	1
1.A	c	Give classification of compressors.	2
	Ans.	Compressors Positive Displacement Compressors Reciprocating Rotary Roots Blower Screw type Vane type Single Multistage Single Acting Compressors Dynamic Compressors Dynamic Compressors Dynamic Compressors Dynamic Single Dynamic Compressors Dynamic Single Dynamic Compressors Dynamic Single Displacement Compressors Dynamic Single Displacement Compressors Dynamic Single Displacement Compressors Dynamic Single Double Compressors Dynamic Single Compressors Dynamic Single Compressors Dynamic Single Double Compressors Dynamic Single Double Compressors Dynamic Single Compress	2
1. A	d	Enlist any four applications of compressed air.	2
	Ans.	 Application of compressed air: (Any four) 1. Operating tools in factories 2. Operating drills and hammers in road building 3. Starting diesel engines 4. Operating brakes on buses, trucks and trains 5. Spray painting 6. Excavating 7. To clean the large workshops Etc. 	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

1.A	e	Plot P-V and T-S diagram for open cycle gas turbine.	02
		P q_{in} q	02
1.A	f	Give classification of renewable Energy sources.	02
1A	g Ans.	 Renewable energy sources are classifies as: (any four, 02 marks) 1. Wind power 2. Biomass 3. Solar applications of energy 4. Hydraulic power 5. Fuel cells 6. Bio fuels List any four merits of liquid fuels over gaseous fuels. Merits of liquid fuels over gaseous fuels: (For Any four points 02 marks) i) Comparatively Less space required to storage. ii) Comparatively Less chance of explosion. iii) There is no loss of heat during storage. iv) Comparatively less inflammable. v) Comparatively less inflammable. v) Comparatively loss of head during storage. 	02
1 A	h	Enlist any four types of gaseous fuels.	02
	Ans.	Types of gaseous fuels: (Any four)1) Natural fuel2) CNG3) LPG4) Water gas5) Producer gas6) Coal gas7) Blast Furnace gas8) Coke oven gas9) Oil gas	02

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code:

1	B	Attempt	any two of the foll	owings.		08
1 B	а	Represen	nt Carnot cycle o	n P-V and T-S dia	agram and write equation for air	04
		standard	efficiency.			
	Ans.		Rev. isothermal	A Rev. adiabatic	$ \begin{array}{c} 3 \\ $	02
10		Air stand Where, T T2= temp	Carn lard efficiency of C 1= temperature of s perature of sink	tot cycle on P-V and Carnot Cycle:- $\eta = (T1-T2)/T$ ource	T-S diagram T1	02
IB	b	Explain	Latent heat and Se	ensible heat.		04
	Ans.	Latent he substance temperatu Latent he Dependin	eat: It is defined as a t saturation tempe ire is called latent h at is usually express ig upon the change i	the quantity of heat r erature. OR The amore eat. sed in kJ/kg. in state which a subst	ant of heat added at saturation	02
		Sr No	Change of state	Hat	Type of latent heat	
			change of state	added/removed		
		1	Solid to liquid	Added	Latent Heat of fusion	
		2	Liquid to solid	Removed	Latent heat of solidification	
		3	Liquid to vapour	Added	Latent heat of evaporation /	
			•••		vaporization	
		$ \frac{4}{\alpha} $	Vapour to liquid	Removed	Latent heat of condensation	
		Sensible	neat : It is defined a	s the quantity of heat	which can be sensed by the	
		thermome	et The word 'son	it of neat added up to	saturation temperature is called	02
		As oppos substance sensible h	ed to latent heat, it i e. Change in temperate	is the heat responsible ature can be sensed/p	e for changing the temperature of a perceived and hence it got the name as	~

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

ATION Subject (

Subject Code:

1R	C	Give classification of gas turbine	04
	L Ans	Classification of gas turbine: (Note: Any four points)	V 4
	1113.	1. According to the path of the working substance:	
		i) Open cycle gas turbine	
		ii) Close cycle gas turbine	
		iii) Semi-closed cycle gas turbine	
		2. According to process of combustion:	
		i) Constant pressure gas turbine	
		ii) Constant volume gas turbine	
		3. According to direction of flow:	
		i) Radial flow	
		ii) Axial flow	
		iii) Tangential flow	
		4. According to principle of action of expanding gases:	
		i) Impulse turbine	
		ii) Reaction turbine	
		5. According to their usage:	
		i) Constant speed	
		ii) Vorishle speed	
		ii) variable speed	
2		Attempt any four of the following:	16
2	a	Plot isobaric process with help of P-V and T-S diagram. Write formula for	04
		workdone and Internal Energy.	
		Isobaric Process	
		P	
		P=C 2	
			0.2
			02
		Q	
		(C) (D) (D)	
		P-V diagram T-S diagram	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

	Formula for Workdone:	0
	$W = P(V_2 - V_1) = mR(T_2 - T_1)$	
	Formula for Internal Energy:	
	Change in intermnal energy during isobaric process is given as	0
	$dU=m C_v (T2-T_1)$	
b	Differentiate between conduction and convection.	0
Ans.	Difference between conduction and convection (for any four point, 4marks)	
	Sr. Conduction Convection	
	1It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another without displacement of molecules or due to the vibrations of molecules.It is the mode of heat transfer from part of substance to another p same substance or one substance one substance to another without molecules or due to the vibrations of molecules.	m one part of nce to to of ving.
	2 It is the mode of heat transfer in which fluid particles do not mix fluid particles mix with each other.	which er. 0
	3 It occurs in solid. It occurs in liquid and gases.	
	4 It governs by Fourier's law of It governs by Newton's la heat conduction	w of
	5Example: Heat flow from one end to other end of metal rod.Example: Heat flow from boile to water.	r shell

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

Summer – 17 EXAMINATION

Subject Code:

2	е	Define the following:	
-	C	(i)Capacity of compressor (ii)Volumetric efficiency	04
		(iii) Piston Displacement (iv) Compressor Efficiency	•
		(i) Capacity of compressor: It is the quantity of free air actually delivered by the compressor and expressed in m ³ /min or m ³ /s.	1
		(ii) Volumetric efficiency: It is the ratio of free air delivered per stroke to the swept volume of the piston.Volumetric efficiency is given as	1
		$\eta_v = \frac{\text{Volume of free air delevered per stroke}}{\text{swept volume of the piston}}$	
		(iii) Piston Displacement: This is the volume swept by the piston in moving from T.D.C. to B.D.C. this is also called swept volume If "d" is the cylinder bore and "L" the stroke, the piston displacement V _s is given by $V_s = \frac{\pi}{4} d^2 L$	1
		(iv) Compressor Efficiency: It is the ratio of isothermal work (or power) required to drive compress to the actual work required to drive compressor for the same pressure ration. Mathematically compressor efficiency is given as $\eta_{c} = \frac{\text{Isothermal Power}}{\text{Indicated power}}$	1
2	f	Give comparison of open cycle and closed cycle gas turbine.	
_	-		
		Sr. Open cycle gas turbine Closed cycle gas turbine No.	
		 Fuel Compressor Air from atmosphere Compressor Burned gases to atmosphere Compressor Cond air Cold air Cooler Cooler Any type of working fluid with better thermodynamic properties can be used. Maintenance cost is low. Maintenance cost is high. Working fluid replaced continuously Mass of installation per KW is Mass of installation per KW is more. 	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

		6	Dura form of fuel should be used	Any type of fuel is used	
		7	Hast exchanger is not used	Host exchanger is used	
		/ 0	The turbing blodge weer ewey	It excites arosion of turbing blade due to	
		0	arlier as it gats contaminated	It avoids crossion of turbine blade due to	
			with air	contaminated gases	
		0	The exhaust gas from the turbine	The exhaust gas from the turbine is	
		,	is exhausted to the atmosphere	passed into cooling chamber	
		10	This system required less space	This system required more space	
		10	Since turbine exhaust is	Since exhaust is cooled by circulated	
			discharged into atmosphere it is	water it is best suited for stationary	
			best suited for moving vehicle	installation marine use	
03		Atten	ant any FOUR of the following:	Instantation, marine use	16
05		Auen	ipt any FOOR of the following.		10
3	a	Descr	ibe working of two stage reciproca	ting air compressor.	04
		Angu	~ …		
		AllSw	ei.		
			WATE	ROUT	
			1		02
			AIR FROM Pit, P2t2 INTE	ER- P2 t3 P3 ty AIR TO	02
			ATMOSPHERE	RECEIVER	
			LP	LID .	
			sh WATE	R IN	
			1 Stage Da	2nd stage	
				and a start and a start a star	
			L.		
			off redee of an privacity The referencie and	- A contractor of other states	
		In ab	ave fig. shows two stage reciprocat	ting air compressor with water cooled	
		intore	oolor	ung all combressor with water cooled	
		intero	00101.		
		First o	of all fresh air is sucked from atmo	sphere in low pressure (L.P.) cvlinder	
		during	its suction stroke at inlet pressure	\mathbf{p}_1 and Temperature t1.	
		The a	ir after compression in L.P. cyunde	er (1 st stage) from 1 to 2 is delivered	
		to inte	\mathbf{r}_{cooler} at pressure \mathbf{p}_2 and Temper	ature t ₂ .	
		Now a	air is cooled in intercooler from 2 t	o 3 at constant pressure p_2 and from	
		Temp	erature t_2 to t_2 .		02
		After	that air is sucked in high pressu	re (H.P.) cylinder during its suction	•
		stroke			
		Finally	, air after further compression in H	P. cylinder (i.e. second stage) from 3	
		to 4 is	s delivered by the compression at pro-	essure p ₂ & Temperature t ₄	
			a compression of the compressor at pr		

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

3	b	Explain with neat sketch turbojet engine.	04
	Ans.	Answer: Turbo-jet Engine: Turbo-jet engine consists of diffuser, compressor, combustion chamber turbine and nozzle. At entrance air diffuser causes rise in pressure in entering air by slowing it down. A rotary compressor, which raises the pressure of air further to required value and delivers to the combustion chamber. The compressor is axial or radial type driven by turbine. In the combustion chamber, fuel is sprayed, as result of this combustion takes place at constant pressure and the temperature of air is raised. Then this product of combustion passes into the gas turbine gets expanded and provides necessary power to drive the compressor. The discharge nozzle in which expansion of gases is completed and thrust of propulsion is produced. The velocity in the nozzle is grater	02
		then flight velocity.	02
		Fig. Turbo-jet Engine	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

		Fossil Fuels Biofules 0.6% Fossil Fuels Biofules 0.	
3	e	Compare ultimate analysis and proximate analysis of solid fuels.	04
	Ans.	Sr. No. Ultimate analysis Proximate analysis 01 Ultimate analysis is coal is complete breakdown of coal into chemical constituents Proximate analysis is coal is complete breakdown of coal into chemical constituents 02 This analysis gives percentage of carbon, hydrogen, oxygen, Sulpher and ash. This analysis gives percentage of moisture, volatile matter, fixed carbon and ash.	04
3	f	During a boiler trial the coal analysis on mass basis was reported as : $C = 62.4\%$, $H_2 = 4.2\%$, $O_2 = 4.5\%$, Moisture – 15% & ash – 13.9%. Calculate minimum air required to burn 1 kg of coal. Also calculate higher and lower calorific value.	04
		Soln : Given	
		Composition of coal on mass basis.	
		Carbon (C) = $62.4 = 0.624$	
		Hydrogen (H2) = $4.2\% = 0.042$	
		Oxygen $(O2) = 4.2\% = 0.045$	
		Moisture = $15\% = 0.15$	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

	1		1
		Ash = 13.9 = 0.139	
		Now Minimum mass of air required for complete combustion of 1 Kg. of fuel	
		-100/23 (2 67 C + 8 H2 + S - O2) Kg	
		$= 100/23 (2.67 \times 0.624 + 8 \times 0.042 + 0 - 0.044)$	
		= 100/23 (2.136 + 0.264 + 0.009 - 0.004)	
		$= 100/23 (1.666 \pm 0.336 - 0.045)$	
		= 8.613 Kg per Kg of Coal burnt	01
			01
		We know Dulong's formula.	
		H.C.V. of Coal = $33800 \text{ C} + 144000 (\text{H2} - \text{O2}/8) + 9270 \text{ S} \text{ KJ/Kg}.$	01
		$= (33800 \times 0.624) + [144000 (0.042 - 0.045/8)] + (9270 \times 0)$	01
		H.C.V. = 26329.2 KJ/Kg.	01
			•••
		L.C.V. of Coal = $H.C.V 9 H2 \times 2466 KJ/Kg.$	
		$= 263329.2 - (9 \ge 0.042 \ge 2466)$	
		= 26329.2 - 932.148	01
		= 25397.052 KJ/Kg	
4		Attempt any TWO of following.	16
4	я		08
1	u	Describe construction of a thermal power plant with neat sketch and explain its	00
		working. What are the parameters to be taken into economic for site substine of	
		working. What are the parameters to be taken into account for site selection of	
		thermal power plant ?	
	Ans.		
		Thermal Power Plant :	
		Turbine Electrical	
		power house	
		Boiler Power Abuse	02
		Gen	
		Combustion den.	
		Fuel supply	
		Condenser	
		Feed	
		pump Cooling	
		Water numn	
		River	
		Figure :- thermal power plant.	
L			

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

1 1		
I r C	n above figure shows major components of thermal power plant which are amely as i) Boiler, ii) Steam turbine, iii) electric generator, iv) Condenser, v) combustion chamber, vi) Feed pump etc;	
(enerally for run such type of power plant we can use fuel in form of solid i.e. coal), liquid (oil) (or) gaseous for the production of steam.	
ŀ	lere steam is generated using storage energy in fuel.	
	nitially fuel is supplied into combustion chamber for combustion process. fter combustion this heat is given to boiler. Due to this heat water is onverted into steam.	
N C	low this steam is used to run steam turbine. This steam turbine is directly onnected to electrical generator which is used to produce electrical energy.	0.
יוןי' ער	low the steam coming out of turbine is allowed to pass through condenser in hich it is condensed with the help of cooling water.	
F F	lere condensate is again pumped to boiler for the formation of steam. This /pe of plant works on closed cycle. Fluid is used again and again for the urpose of power generation.	
I	n India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada.	
	n India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. hoice of fuel based on availability and economy of country. te selection for thermal power plant:	
I G Si 1)	n India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. hoice of fuel based on availability and economy of country. te selection for thermal power plant: Availability of land, workers is very important.	
I G Si 1) 2)	 India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. Choice of fuel based on availability and economy of country. The selection for thermal power plant: Availability of land, workers is very important. For transportation of fuel power plant should be near to road track (or) rail facility. 	
I C Si 1) 2) 3)	 India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. Indice of fuel based on availability and economy of country. It selection for thermal power plant: Availability of land, workers is very important. For transportation of fuel power plant should be near to road track (or) rail facility. For cooling purpose large amount of water is needed near to power plant. 	
I C Si 1) 2) 3) 4)	 In India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. Thoice of fuel based on availability and economy of country. It e selection for thermal power plant: Availability of land, workers is very important. For transportation of fuel power plant should be near to road track (or) rail facility. For cooling purpose large amount of water is needed near to power plant. Generally in India for run thermal power plant coal is used so power plant should be near to coal mines. 	
I C Si 1) 2) 3) 4) 5)	 India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. Indice of fuel based on availability and economy of country. It selection for thermal power plant: Availability of land, workers is very important. For transportation of fuel power plant should be near to road track (or) rail facility. For cooling purpose large amount of water is needed near to power plant. Generally in India for run thermal power plant coal is used so power plant should be near to coal mines. Ash disposal facility should be available. 	
I C Si 1) 2) 3) 4) 5) 6)	 India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. Indice of fuel based on availability and economy of country. It is election for thermal power plant: Availability of land, workers is very important. For transportation of fuel power plant should be near to road track (or) rail facility. For cooling purpose large amount of water is needed near to power plant. Generally in India for run thermal power plant coal is used so power plant should be near to coal mines. Ash disposal facility should be available. There should be scope for future development. 	0.
I Q Si 1) 2) 3) 4) 5] 6) 7)	 In India Coal is used for run thermal power plant. Oil is used in U.S.A. and as is used in Canada. Thoice of fuel based on availability and economy of country. It is selection for thermal power plant: Availability of land, workers is very important. For transportation of fuel power plant should be near to road track (or) rail facility. For cooling purpose large amount of water is needed near to power plant. Generally in India for run thermal power plant coal is used so power plant should be near to coal mines. Ash disposal facility should be available. There should be scope for future development. Site should be safe and away from urban area. 	0

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

-	T		[
		temperature of water uniform and a thermometer the temperature up to accuracy of	
		0.0010 C is fitted through the lid of the calorimeter. The heat released by the fuel on	
		combustion is absorbed by the surrounding water and the calorimeter. From the above	
		data the calorific value of the fuel can be found.	
		Dulong's formula used to calculate the theoretical calorific value of fuel if ultimate analysis is available and the calorific value of elementary combustibles are known.	
		Theoretical calorific Value of fuel =33800 C + 144500 ($H_2 - \frac{O_2}{8}$) + 9300 S kJ/kg	02
		Where C, $H_2 O_2$ & S repents the mass of carbon, hydrogen, oxygen and sulfur in kJ/Kg	
4	С	Attempt the following:	08
4	C(i)	(i)Explain the tidal power plant.	04
	Ans.	(i) Working of Tidal power plant: During high tide the water flow from sea into the	
		tidal basin through water turbine as the level of water in sea is more than tidal basin.	
		This operates the turbine and generator and power is produced. Potential energy of sea	02
		water converted into mechanical energy by turbine and it converts into electrical by	
		convertee into incentance chergy by tarbine and it converts into electrical by	
		generators. During low fide water now from fidar basin into sea as water level in the	
		sea is lower than basin level in both cases generation of power is same. Only difference	
		in that rotation of turbine blade is opposite.	
		Power house Dam Sea Sea Tide comming in	02
		Dam Dam Sea Tidal basin Tide going out	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

4	C(ii)	Explain H.C.V. and L.C.V. of fuels.	04
		H.C.V. of Fuel: Higher calorific value of fuel is defined as amount of heat energy obtain by the complete combustion of 1kg of fuel, when the products of its combustion are cooled down to the temperature of supplied air. Unit is (KJ/kg)	02
		L.C.V. of Fuel: When heat absorbed or carried away by the product of combustion is not recovered & steam is formed during combustion is not condensed. Then the amount of heat obtain per kg of fuel is known as lower calorific value of fuel. Unit is (KJ/kg)	02
5		Attempt any <u>TWO</u> of the following.	16
	(a)	Derive the equation for air standard efficiency of diesel cycle.	08
		Answer: P Q_a $Q_$	01
		$\begin{array}{c} & & & & \\ \hline & & \\ \end{array} \\ \hline P - V \text{ diagram} \\ \hline \\ Diesel cycle consist of following four processes-Process 1-2 : Isentropic compression Process 2-3 : Heat addition at constant pressure Process 3-4 : Isentropic expansion Process 3-4 : Isentropic expansion Process 4-1 : Heat rejection at constant volume \\ \hline \\ Here compression ratio (r) = \frac{V_1}{V_2} \\ Cut- off ratio (\rho) = \frac{V_3}{V_2} \\ By considering 1 kg of air, \end{array}$	01

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

		-
Heat supplied = $Q_a = C_p (T_3 - T_2)$]
Heat rejected = $Q_r = C_v (T_4 - T_1)$	0.1	
Work done = $Q_a - Q_r$	01	
$_{=}C_{p}(T_{3}-T_{2}) - C_{v}(T_{4}-T_{1})$		
Air standard efficiency is given by,		
$\eta_{ase} = \frac{Net work done}{Heat addition}$		
$=\frac{C_p(T_3-T_2)-C_v(T_4-T_1)}{C_p(T_3-T_2)}$		
$= 1 - \frac{T_4 - T_1}{\frac{C_P}{C_V}(T_3 - T_2)}$		
$\eta_{\text{ase}} = 1 - \frac{T_4 - T_1}{\gamma(T_3 - T_2)} \dots \qquad (1)$	01	
Consider isentropic process 1-2,		
$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$		
$T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=T_{1}(r)^{\gamma-1}$	01	
Consider constant pressure heat addition process 2-3,		
As per Charle's law,		
$\frac{V}{T} = C$		
$\frac{V_2}{T_2} = \frac{V_3}{T_3}$		
$T_3 = \frac{V_3}{V_2} \ge T_2 = \rho X_{T_2}$		
Consider isentropic process 3-4,		
$\frac{T_4}{T_3} = \left(\frac{V_3}{V_4}\right)^{\gamma - 1}$	01	
		1

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

		$T_{4=}T_{3}\left(\frac{V_{3}}{V_{2}} X \frac{V_{2}}{V_{4}}\right)^{\gamma-1}$	
		$T_4 = T_3 \left(\frac{\rho}{r}\right)^{\gamma-1}$	
		$T_4 = \rho X T_1(r)^{\gamma-1} \left(\frac{\rho}{r}\right)^{\gamma-1} = T_1 \rho^{\gamma}$	
		Substituting the value of T_2 , T_3 and T_4 in equation 1,	
		$\eta_{\text{ase}} = 1 \cdot \frac{T_4 - T_1}{\gamma(T_3 - T_2)}$	
		$\eta_{\text{ase}} = 1 - \frac{1}{\gamma} \left[\frac{T_1 \rho^{\gamma} - T_1}{\rho_{T_1}(r)^{\gamma - 1} - T_1(r)^{\gamma - 1}} \right]$	
		$= 1 - \frac{1}{\gamma} \left[\frac{T_1(\rho^{\gamma} - 1)}{T_1(r)^{\gamma - 1}(\rho - 1)} \right]$	
		$\eta_{\text{ase}} = 1 - \frac{1}{(r)^{\gamma-1}} \left[\frac{(\rho^{\gamma}-1)}{\gamma(\rho-1)} \right]$	02
5	(b)	Determine the quantity of heat required to produce 1 kg of steam at a pressure of 6 bar	08
		at a temperature of 25° C, under the following conditions:	
		i) When steam is the wet having a dryness fraction 0.9.	
		ii) When steam is dry saturated.	
		iii)When it is superheated at a constant pressure at 250°C.	
		(Take Cp = 2.3 KJ/kgK)	
		For $P = 6$ bar, $hf = 670.4$ KJ/kg, and	
		$hfg = 2085 \text{ KJ/kg} \text{ and } t = 158.8 ^{\circ}\text{C}$	
		Answer:	
		Given: $P = 0$ bar	
		$\lambda = 0.9$ $\Lambda_{} 25^{0}C$	
		$\frac{\Delta T}{C} = 4.187 \text{ K} \frac{1}{k} \frac{K}{k}$	
		$C_{pw} = 2.3 \text{ KJ/kgK}$	
		$T_{\text{sup}} = 250^{\circ} \text{C}$	
		$T_{sat} = 158.8^{\circ}C$	
		m= 1 Kg	
		From steam table,	
		At 6 bar	
		$h_f = 670.4 \text{ KJ/kg}$, and $h_{fg} = 2085 \text{ KJ/kg}$	
		i) Wet steam	
		$\mathbf{h}_{\mathrm{wet}} = \mathbf{h}_{\mathrm{f}} + \mathbf{x}. \ \mathbf{h}_{\mathrm{fg}}$	
		=670.4 + 0.9 X 2085	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

	$\mathbf{h}_{wet} = 2546.9 \ \mathbf{KJ/kg}$	01
	Heat already present in water =m $C_{pw} \Delta_T$	
	= 1 X 4.187 X 25 = 104.675 KJ/Kg	01
	Heat required per Kg of steam = h_{wet} - Heat already present in water	
	= 2546.9 - 104.675 =2442.225 KJ/Kg or KJ ii) Dry saturated steam	01
	$\begin{array}{l} h_g = h_f + h_{fg} \\ = 670.4 + \ 2085 \\ h_g \ = \textbf{2755.4 KJ/kg} \end{array}$	01
	Heat required per Kg of steam = h_g - Heat already present in water = 2755.4 - 104.675 =2650.725 KJ/Kg or KJ iii) Superheated steam $h_{sup} = h_f + h_{fg} + m C_{psup} (T_{sup} - T_{sat})$	01
	= 670.4 + 2085 + 1 X 2.3 X (250 - 158.8) h _{sup} = 2965.16 KJ/Kg Heat required per Kg of steam = h _{sup} - Heat already present in water	02
	= 2965.16 – 104.675 = 2860.485 KJ/Kg or KJ	01
(c)	Explain construction and working of screw compressor. Differentiate between centrifugal and axial flow compressor.	08
	 Answer: Note- credit should be given to equivalent figure. Screw compressor: Construction: It consists of two mutually engaged helical grooved rotors which are suitably housed in a casing. Out of two rotors male rotor is driver and female rotor is a driven. Male rotor has four lobes and female rotor as six flutes. Working: During rotation of rotor, air enters and takes space between male and female rotor. This air traps and moves axially and radically with rotation of rotors and gets 	01
	compressed due to volume reduction. Then this air discharged from upward direction. Speed of rotors is different due to different number of lobes and flutes. It handles 3.5 to 300 m3/min and maximum pressure ratio of 20. This system requires lubrication. This compressor is noisy In operation. Used in refrigeration industry.	01

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

F	emale rotor (driven)	Air out Male rotor (driver)
	Fig. Sonow Co	
Diffe	rence between centrifugal and axial flo	ompressor ow compressor (any four pints):
Diffe Sr. No.	rence between centrifugal and axial flo	ompressor ow compressor (any four pints): Axial flow compressor
Diffe Sr. No. 1	rence between centrifugal and axial flo Centrifugal compressor Flow is radial	ompressor ow compressor (any four pints): Axial flow compressor Flow of air axial
Diffe Sr. No. 1 2	rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult	ow compressor (any four pints): Axial flow compressor Flow of air axial Multistaging is simple
Diffe Sr. <u>No.</u> 1 2 3	rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque	ow compressor Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque
Diffe Sr. No. 1 2 3 4	rence between centrifugal and axial fle Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque It is having larger frontal area	ow compressor (any four pints): Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque It is having less frontal area
Diffe No. 1 2 3 4 5	rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque It is having larger frontal area Isentropic efficiency is 70%	ow compressor (any four pints): Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque It is having less frontal area Isentropic efficiency is 80%
Diffe No. 1 2 3 4 5 6	rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque It is having larger frontal area Isentropic efficiency is 70% Low manufacturing and running cost	ow compressor ow compressor (any four pints): Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque It is having less frontal area Isentropic efficiency is 80% High manufacturing and running cost
Diffe Sr. No. 1 2 3 4 5 6 7	rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque It is having larger frontal area Isentropic efficiency is 70% Low manufacturing and running cost This is more compact	ow compressor Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque It is having less frontal area Isentropic efficiency is 80% High manufacturing and running cost This is less compact
Diffe Sr. No. 1 2 3 4 5 6 7 8	rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque It is having larger frontal area Isentropic efficiency is 70% Low manufacturing and running cost This is more compact Pressure ratio per stage is 4:1	ow compressor ow compressor (any four pints): Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque It is having less frontal area Isentropic efficiency is 80% High manufacturing and running cost This is less compact Pressure ratio is 1.1 to 1.2
Diffe Sr. No. 1 2 3 4 5 6 7 8 9	rig. screw co rence between centrifugal and axial flo Centrifugal compressor Flow is radial Multistaging is difficult Requires low starting torque It is having larger frontal area Isentropic efficiency is 70% Low manufacturing and running cost This is more compact Pressure ratio per stage is 4:1 It is used in turbojet engine, refrigeration cycle .	ow compressor Axial flow compressor Flow of air axial Multistaging is simple Requires high starting torque It is having less frontal area Isentropic efficiency is 80% High manufacturing and running cost This is less compact Pressure ratio is 1.1 to 1.2 It is used in gas turbine power plants.

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

6.		Attempt any <u>FOUR</u> of the following.	16	
6	(a)	Explain the adiabatic process with help of P-V & T-S diagram.		
	Ans.	Answer:- Explanation- 01 mark, Figure- 03 mark Adiabatic Process: The process in which heat is constant is known as adiabatic process. For adiabatic process, law is $PV^{\gamma} = C$. Where $\gamma = Adiabatic$ index = Cp/Cv.		
		$P = \begin{pmatrix} 2 \\ P \\ P \\ P \\ P \\ P \\ P \\ V \\ Diagram \end{pmatrix} $ $T = S \\ T \\$	03	
6	(b)	Explain sources of air leakage in condenser and define condenser efficiency.	04	
		 Answer:- Sources of air leakage in condenser (any three)- 1. Leakage from atmosphere at various joints of parts. 2. Air also comes in condenser with the steam. 3. In jet condensers dissolved air with injection water enters into the condenser. 4.Air leaks if any bypass seal is broken. Condenser efficiency- It is defined as ratio of difference between outlet and inlet temperature of cooling water to the difference between saturation temperature and inlet temperature of cooling water 	03	
		or It is defined as ratio of rise in temperature of cooling water to the difference between saturation temperature and inlet temperature of cooling water.		
6	(c)	Enlist factors affecting volumetric efficiency of reciprocating air compressor.		
		 Answer: Factors affecting volumetric efficiency of reciprocating air compressor (<i>any four</i>): 1) Clearance Volume 2) leakages at valves 3) Speed of compressor 	01 Mark each	

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER Summer – 17 EXAMINATION

Subject Code:

		Equation of thermal efficiency (any one):	
		$\eta_{\text{th}=1} - \frac{T1}{T2}$	
		or	
		$\eta_{\rm th} = \frac{T2 - T1}{T2}$	
		or	
		$\eta_{\mathrm{th}} = 1 - rac{1}{(r_p)^{rac{p-1}{\gamma}}}$	01
6	f	What is multi-staging? State necessity of multi-staging and intercooling of	04
		compressors.	
	Ans.	Answer:	
		Multi-staging –	01
		cooling arrangement between them. Such an arrangement is known as multi-staging	01
		Necessity of multistaging –	
		For producing high pressure i.e. more than 8 bar, single stage air compressor suffers	
		fallowing drawbacks-	01
		i) Size of cylinder is too large	
		11) Rise in temperature of air is very high.	
		Necessity of intercooling	
		In two stage air compressor air is compressed in first cylinder and the temperature of	
		air is increased. If this high temperature air is not passed through intercooler and sent	02
		directly to second stage then because of high temperature volume of air increases so	•-
		amount of air taken inside decreases and pressure is also automatically decreased and	
		volumetric efficiency is also decreases. To avoid this intercooling is necessary.	