Winter - 2015 Examinations

Subject Code: 17321 (BEE)

Model Answer
Page No: 1 of $\mathbf{2 3}$

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.
5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Winter - 2015 Examinations

Subject Code: 17321 (BEE)

Model Answer

Page No : 2 of 23
1 A) Attempt any six:
1A) a) Give two examples of trivalent and pentavalent impurities.
Ans:
Trivalent Impurities: (any two)

1) Gallium (Ga)
$1 / 2$ mark
2) Indium (In)
each
3) Aluminium (Al)
4) Boron (B)

Pentavalent Impurities: (any two)

1) Phosphorus (P)
2) Antimony (Sb)
3) Arsenic (As)
4) Bismuth (Bi)

1A) b) Draw the symbol of LED and photodiode.
Ans:

1) LED:

2) Photodiode:

1A) c) Define α and β of the transistor.
Ans:

1) $\alpha:$

It is defined as the ratio of collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$ to emitter current $\left(\mathrm{I}_{\mathrm{E}}\right)$.

$$
\alpha=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}
$$

2) β :

It is defined as the ratio of collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$ to base current $\left(\mathrm{I}_{\mathrm{B}}\right)$.

$$
\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}
$$

1A) d) State the need of biasing of BJT.

Winter - 2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No: 3 of 23

Ans:

Need of Biasing of BJT:

The purpose of dc biasing of BJT is to obtain a certain dc collector current at a certain dc collector voltage i.e. I_{C} and V_{CE} (Q-point).
The selected Q point is stabilized against variation in temperature.
1A) e) List two types of oscillator, which generates frequency in RF range.
Ans:
Types of Oscillators generating frequencies in RF range:
i) Hartley Oscillator
ii) Colpitt's Oscillator

1 mark
iii) Clapp Oscillator each of any

1A) f) State two advantages of digital circuits.
two

Ans:
Advantages of Digital Circuits:
i) Digital circuits are easier to design.
ii) Information storage is easy.
iii) Accuracy and precision are greater.

1 mark
iv) Less affected by noise.
v) Reliability is more.

1A) g) Write down output voltage for IC's 7818 and IC's 7924.
i) For IC 7818, output voltage is +18 volt.

1 mark
ii) For IC 7924, output voltage is -24 volt. each
1A) h) State any two applications of zener diode.

Ans:

Applications of Zener Diode:
i) As a voltage regulator.
ii) As a fixed reference voltage provider in transistor biasing circuits.
iii) As peak clippers or limiters in wave shaping circuits. each of any two

Ans:

Ans:

Zener Diode as Voltage Regulator:

A voltage regulator circuit should keep the load voltage constant in spite of changes in its input voltage or load current and temperature. The series resistance R_{s} is connected to limit the total current drawn from the unregulated dc supply. The zener diode regulator, as shown in fig.(a), is a shunt type voltage regulator because

(a) Regulator circuit using Zener Diode

2 marks for diagrams

Winter-2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No: 4 of 23
the control element i.e. zener diode is connected in parallel with the load resistance.

Working of Zener Voltage Regulator:

The input voltage $\mathrm{V}_{\text {in }}$ is an unregulated dc voltage which is obtained from a rectifier filter combination. R_{s} is the current limiting resistor and R_{L} is the load resistor. The input voltage $\mathrm{V}_{\text {in }}$ should always be higher than the breakdown voltage V_{Z}. The zener diode is reverse biased and operates in the zener region of the reverse characteristics, as shown in

(b) Reverse characteristics of Zener Diode fig.(b)
If $V_{\text {in }}$ is higher than V_{Z} and if the Zener current I_{Z} is between $I_{Z \min }$ and $I_{Z \text { max }}$ then the voltage across the Zener will remain constant equal to V_{Z} irrespective of any changes in $\mathrm{V}_{\text {in }}$ and I_{L}. As the output voltage is constant and equal to V_{Z}, we get regulated output voltage.
The Zener current I_{Z} should not be higher than $\mathrm{I}_{\mathrm{Zmax}}$, otherwise excessive power dissipation will damage the Zener diode.
The Zener current I_{Z} should not be less than $\mathrm{I}_{\mathrm{Z} \text { min }}$ because the Zener diode then cannot operate in the zener region and cannot maintain constant voltage across it. The regulator keeps the load voltage constant in spite of changes in input voltage and load current.

1 B) b) Explain construction and working principle of LED.

Ans:

Construction of LED:

The basic structure of LED is shown in fig.(a). The active region exists between the p and n regions. The light emerges from the active side in all the directions when electron hole-pairs recombine. The disadvantage of this structure is that the LED emits light in all the directions. This problem is solved by placing the basic structure inside a small reflective cup so as to focus the light in the desired direction. Such a structure is called as a cup type construction and is shown in fig.(b).

Working Principle of LED:

When the LED is forward biased, the electrons in the n-region will cross the junction and recombine with the holes in the p-type material. These free electrons reside in the conduction band and hence at a higher energy level than the holes in the valance band. When the recombination

(a) Basic Structure

(b) Cup type Construction takes place, these electrons return back to the valance band which is at lower
energy level than the conduction band. While returning back, the recombining electrons give away the excess energy in the form of light. This process is called as "electroluminescence", shown in fig.(c). In this way an LED emits light. This is the principle of operation of LED.

(c) Working Principle of LED

1B) c) Draw output characteristic of CE configuration and show various region.

Ans:

Output characteristic of CE configuration:

2 marks for diagram

2 marks for showing regions

2 Attempt any Four:
2 a) Draw the circuit diagram of bridge rectifier with π filter. Explain operation with I/P and O / P waveform.
Ans:
Bridge rectifier with π filter:
The circuit arrangement of bridge type rectifier with π type filter is shown in fig.(a). The π-filter is a combination of shunt capacitor filter and series L-filter. Due to the use of three filtering elements, the ripple factor of the filter is very low.

(a) Bridge Rectifier with filter

Operation:

During positive half-cycle of input, the secondary voltage V_{AB} is positive, which

Winter-2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No: 6 of 23
makes diodes D_{1} and D_{2} forward biased and D_{3} and D_{4} reverse biased. The load current flows from terminal A through $\mathrm{D}_{1}, \mathrm{~L}, \mathrm{R}_{\mathrm{L}}, \mathrm{D}_{2}$ to terminal B. The load voltage and load current are positive.
During negative half-cycle of input, the secondary voltage V_{AB} becomes negative, i.e. V_{BA} is positive, which makes diodes D_{3} and D_{4} forward biased and D_{1} and D_{2} reverse biased. The load current flows from terminal B through $\mathrm{D}_{3}, \mathrm{~L}, \mathrm{R}_{\mathrm{L}}, \mathrm{D}_{4}$ to terminal A. The load voltage and
 load current are once again positive.
The output of bridge rectifier is full wave rectified pulsating DC. The ripples in the current are reduced by filter inductor and the ripples in voltage are reduced by filter capacitors. Thus the pulsating DC is smoothened by filter and smooth DC voltage appears across the load. The input and output waveforms are shown in the figure.
2 b) Explain single stage CE amplifier with the help of circuit diagram.
Ans:
Single-stage CE Amplifier:

Single stage RC coupled CE amplifier
The capacitors C_{1} and C_{2} are called as the coupling capacitors. As the load resistor R_{L} (not shown in the diagram) is coupled to the amplifier through the coupling capacitor, this amplifier is called as RC coupled amplifier. The transistor is connected in the common emitter (CE) configuration. Therefore, this amplifier is called CE amplifier.
2 c) Draw diagram of class A push-pull amplifier and explain its operation.

2 marks for circuit diagram

2 marks for explanation

Ans:

Class A Push-pull Amplifier:

The circuit diagram of class A push-pull amplifier is as shown in the fig.(a).

Operation:

The resistors R_{1} and R_{2} along with $V_{c c}$ provide the dc biasing so as to keep the operating point (Q-point) at the centre of the dc load line, in order to achieve the class A operation. The driver transformer provides the phase splitting function and produces two voltages $\mathrm{V}_{\mathrm{a} 1}$ and $\mathrm{V}_{\mathrm{a} 2}$ which are equal in magnitude but 180° out of phase. The V_{cc} is applied to the collectors of transistors Q_{1} and Q_{2} through the centre-tapped output transformer.

(a) Class A Pushpull Amplifier

Operation Under dc conditions:

The transistors Q_{1} and Q_{2} have identical characteristics. Therefore their dc collector currents $i_{c 1}$ and $i_{c 2}$ are equal. These currents will flow in opposite directions through the two halves of the primary windings of the output transformer. Therefore, there is cancellation of flux produced due to dc current and saturation of the transformer core is avoided. For complete cancellation of flux, it is essential that the two transistors are perfectly matched.

Operation Under ac conditions:

In the positive half cycle of input voltage V_{s}, the secondary voltage $\mathrm{V}_{\mathrm{s} 1}$ will be positive while $\mathrm{V}_{\mathrm{s} 2}$ will be negative, as shown in fig.(b). Therefore, transistor Q_{1} is more forward biased while Q_{2} is less forward biased. Therefore, $\mathrm{i}_{\mathrm{c} 1}$ will increase and $i_{c 2}$ will decrease. The output current i_{L} is proportional to the difference between $\mathrm{i}_{\mathrm{c} 1}$ and $\mathrm{i}_{\mathrm{c} 2}$.
$\mathrm{i}_{\mathrm{L}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\left(\mathrm{i}_{\mathrm{c} 1}-\mathrm{i}_{\mathrm{c} 2}\right) \quad$ where, $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$ is the turns ratio of the output transformer.
Therefore in the positive half cycle of V_{s}, the output current will be positive. As the load is resistive, the load current will be in phase with the load voltage.

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{i}_{\mathrm{L}} \mathrm{R}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\left(\mathrm{i}_{\mathrm{c} 1}-\mathrm{i}_{\mathrm{c} 2}\right) \mathrm{R}
$$

Therefore load voltage will be positive.
 positive half cycle
In the negative half cycle of input voltage V_{s}, the secondary voltage $\mathrm{V}_{\mathrm{s} 1}$ will be negative while $\mathrm{V}_{\mathrm{s} 2}$ will be positive, as shown in fig.(c). Therefore, transistor Q_{2} will be more forward biased while Q_{2} will be less forward biased. Therefore, $\mathrm{i}_{\mathrm{c} 1}$ will decrease and $\mathrm{i}_{\mathrm{c} 2}$ will increase. The output current i_{L} is proportional to the difference between $i_{c 1}$ and $i_{c 2}$ and hence becomes negative. The load voltage, being in phase with load current, will also become negative.

1 mark for diagram

3 marks for explanation

Winter - 2015 Examinations

Subject Code: 17321 (BEE)

Model Answer

Page No: 8 of 23

2 d) Classify rectifier and filter.

Working Principle:

When the n-p-n transistor is biased, as shown in fig.(b), such that the emitter-base junction is forward biased and collector-base junction is reverse biased, the
minority and majority carriers are set into the motion. The majority carriers electrons from n-region enters into p-region and holes from p-region enters into nregion. Since the base is lightly doped than the emitter, almost all the current flowing across the B-E junction consists of electrons entering the base from the emitter. Hence the electrons are the majority carriers in n-p-n transistor.

Some of the electrons entering into the base region do not reach the collector region. Instead they flow out of the base terminal via the base connection as shown in fig.(c) due to recombination. As the base region is very thin and lightly doped, there are very few holes available in the base region for recombination. Hence about 2% electrons will flow out of base due to recombination.
The remaining 98% electrons cross the reverse biased collector-base junction to constitute the collector current. They cross the collector region and collected by the supply V_{cc}. The emitter current is thus equal to the sum of the base current and collector current. $I_{E}=I_{B}+I_{C}$

2 f) A multistage amplifier is consisting of three stages, each having gain of 10 . What is the overall voltage gain in dB ?
Ans:
Data given:
Three stage amplifier
Gains: $\mathrm{Av}_{1}=\mathrm{Av}_{2}=\mathrm{Av}_{3}=10$
\therefore Over-all gain $=\mathrm{Av}_{1} \times \mathrm{Av}_{2} \times \mathrm{Av}_{3}$

$$
\begin{aligned}
& =10 \times 10 \times 10 \\
& =1000
\end{aligned}
$$

\therefore Over-all gain in $\mathrm{dB}=20 \log _{10}(1000)$

$$
=60 \mathrm{~dB}
$$

OR

$\mathrm{Av}_{1}=20 \log _{10}(10)=20 \mathrm{~dB}$
$A v_{2}=A v_{3}=20 \log _{10}(10)=20 \mathrm{~dB}$
\therefore Over-all gain in $\mathrm{dB}=\mathrm{Av}_{1}+\mathrm{Av}_{2}+\mathrm{Av}_{3}=20+20+20=60 \mathrm{~dB}$.

Winter - 2015 Examinations

Subject Code: 17321 (BEE)

Model Answer

Page No: 10 of 23
3 a) Compare CB, CE and CC configurations on the basis of
i) Input impedance
ii) Current gain
iii) Voltage gain
iv) Output impedance

Ans:
Comparison between CB, CE and CC configurations:

Parameter	CB	CE	CC
Input Impedance	Low	Medium	High
	Or	Or	Or
	50Ω	600Ω to $4 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$
Current Gain	Less than or equal	High	High
	to 1	Or	Or
	Or	$\beta=\frac{I_{C}}{I_{B}}$	$\gamma=\frac{I_{E}}{I_{B}}$
	$\alpha=\frac{I_{C}}{I_{E}}$		
Voltage Gain	Medium	Medium	Less than or equal
		to 1	
Output Impedance	High	Medium	Low
	Or	Or	Or
	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$	50Ω

1 mark for
each point
b) Derive the relation between α and β with to BJT.

Ans:

Relation between α and β :

Current gain of transistor in CB configuration is,

$$
\alpha=\frac{I_{C}}{I_{E}}
$$

But $I_{E}=I_{B}+I_{C}$

$$
\alpha=\frac{I_{C}}{I_{B}+I_{C}}
$$

Dividing numerator and denominator by I_{B},

$$
\alpha=\frac{\frac{I_{C}}{I_{B}}}{1+\frac{I_{C}}{I_{B}}}
$$

But $\beta=\frac{I_{C}}{I_{B}}$ the current gain of transistor in CE configuration.
Therefore,

$$
\alpha=\frac{\beta}{1+\boldsymbol{\beta}}
$$

OR

Current gain of transistor in CE configuration is,

$$
\beta=\frac{I_{C}}{I_{B}}
$$

But $I_{E}=I_{B}+I_{C}$, so $I_{B}=I_{E}-I_{C}$

$$
\beta=\frac{I_{C}}{I_{E}-I_{C}}
$$

Dividing numerator and denominator by I_{E},

$$
\beta=\frac{\frac{I_{C}}{I_{E}}}{1-\frac{I_{C}}{I_{E}}}
$$

But $\alpha=\frac{I_{C}}{I_{E}}$ the current gain of transistor in CE configuration.
Therefore,

$$
\beta=\frac{\alpha}{1-\alpha}
$$

3 c) Draw and explain the characteristic of UJT.

Ans:

UJT Characteristics:

The UJT characteristic is emitter voltage versus emitter current characteristic, as shown in the figure. For emitter voltages less than V_{P} (peak point voltage) the UJT is in the off state and magnitude of I_{E} is not greater than I_{EO}. The emitter current I_{EO} corresponds very closely with the reverse leakage current I_{CO} of a bipolar transistor. This region is known as the cut off region.
As the emitter voltage increases and reaches $\mathrm{V}_{\mathrm{P}}=\left(\eta \mathrm{V}_{\mathrm{BB}}+\mathrm{V}_{\mathrm{D}}\right)$, the UJT starts conducting. Then with increase in emitter I_{E} the emitter voltage decreases as shown. The reduction in voltage across UJT is due to the drop in resistance $\mathrm{R}_{\mathrm{B} 1}$ with increase in the value of I_{E}. This region of operation is known as a "Negative Resistance" region, which is stable enough to be used in various applications. Eventually the "valley point" will be reached and further increase in I_{E} will place the device into saturation.
3 d) Define load regulation and line regulation for regulated power supply with expression.

Ans:

Load Regulation:

It is defined as the change in output voltage expressed as fraction of full load output

Stepwise derivation 4 marks

2 marks for diagram with labels

2 marks for explanation

Winter - 2015 Examinations

Subject Code: 17321 (BEE)

Model Answer

Page No: 12 of 23
voltage when the load current is changed from zero (no load) to full load value.

$$
\begin{gathered}
\text { Load Regulation }=\frac{V_{N L}-V_{F L}}{V_{F L}} \text { with } \mathrm{V}_{\text {in }} \text { constant } \\
\% \text { Load Regulation }=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100
\end{gathered}
$$

where, V_{NL} is the no load output voltage,
V_{FL} is the full load output voltage

Line Regulation:

It is defined as the change in output voltage due to change in input voltage with load R_{L} constant (I_{L} constant)
$\%$ Line Regulation $=\frac{\Delta V_{o} \times 100}{V_{o}}$ with R_{L} constant or I_{L} constant. where, V_{O} is the output voltage.

OR

Line Regulation $=V_{L H}-V_{L L}$
where, V_{LH} is the load voltage with high line voltage,
V_{LL} is the load voltage with low line voltage
e) Write important features of IC 723.

Ans:

Important features of IC 723:
i) It can be connected to function as a positive or negative voltage regulator with an output voltage ranging from 2 V to 37 V .
ii) Output current can be up to 150 mA .
iii) The maximum supply voltage is 40 V .
iv) The line and load regulations are each 0.01%.
v) Built-in short circuit protection.
vi) Very low temperature drift.
vii) High ripple rejection.

3 f) Draw and explain the construction of n-channel JFET (FET)
Ans:
N-channel JFET (FET):

Construction:

The n-channel JFET has n-type semiconductor used as a channel which has two terminals, drain and source. Two p-type semiconductors are attached at both sides of n -channel and forms third terminal gate. Thus pn junction exists between gate
definitions

2 marks for expressions

2 marks for diagram

2 marks for explanation

Winter - 2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No : 13 of 23
and source.

1) When $V_{G S}=0$ volt:

When a voltage is applied between the drain and source with a DC supply voltage V_{DD} with $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, the electrons flow from source to drain through the narrow channel existing between the depletion regions. This constitutes drain current I_{D}. The value of drain current is maximum when $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$. This current is designated vy the symbol $\mathrm{I}_{\mathrm{DSS}}$.
2) When $V_{G S}$ is negative:

When V_{GS} is increased below zero i.e negative, the reverse voltage across the gate source junction is incrased. As a result depletion regions are widened. This reduces effective width of channe and therefore controls the flow of drain current through the channel.
If V_{GS} is increased further, two depletion regions touch each other. The drain current reduces to zero. The gate to source voltage at which current reduces to zero is called as pinch-off voltage.
4 Attempt any Four:
4 a) Draw the circuit diagram of RC phase shift oscillator. Write working in steps. Give the formula of frequency of oscillation.
Ans:
RC Phase shift Oscillator:

1) Circuit Diagram:
2) Working:

- In RC phase shift oscillator, CE amplifier is used, which provides 180° phase shift between input and output.
- In feedback network, three RC phase shift networks are used in which each network provides 60° phase shift, so that total phase shift is 180°.
- The total phase shift around whole circuit is 360°.
- So circuit gets positive feedback and works as an oscillator.

3) Frequency of Oscillations:

$$
f_{c}=\frac{1}{2 \pi R C \sqrt{6}}
$$

RC Phase Shift Oscillator

2 marks for circuit diagram

1 mark for working

1 mark
$4 \mathrm{~b})$ In a Colpitt's oscillator, $\mathrm{C}_{1}=0.2 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=0.02 \mu \mathrm{~F}$. If the frequency of oscillation is 10 kHz , find the value of inductor. Also find the required gain for the oscillation.
Ans:
Data Given:
$\mathrm{C}_{1}=0.2 \mu \mathrm{~F}$
$\mathrm{C}_{2}=0.02 \mu \mathrm{~F}$

$$
\mathrm{f}_{\mathrm{c}}=10 \mathrm{kHz}=10 \times 10^{3} \mathrm{~Hz}
$$

To find out: Value of inductor (L) and Gain (A)

1) To find Inductor L :

Winter - 2015 Examinations

Model Answer

Page No : 14 of 23
In Colpitt's oscillator,
$f_{c}=\frac{1}{2 \pi \sqrt{L C_{T}}}$

1 mark
1 mark 1 mark $\therefore L=14 \mathrm{mH}$
2) To find A :

In Colpitt's oscillator,
$\mathrm{A}>\frac{C_{1}}{C_{2}}$
A $>\frac{0.2}{0.02}$
\therefore Gain A> 10 .

[^0]c) Convert the following decimal number into equivalent binary number.
i) 63.92
ii) 109

Ans:

1) $(63.92)_{10}=(?)_{2}$

For integer part 63:

2	63
2	31
2	15
2	7
2	3
2	1
	0

1 mark

1 mark
$(.92)_{10}=(.11101)_{2}$
$\therefore(63.92)_{10}=(111111.11101)_{2}$
2) $(\mathbf{1 0 9})_{10}=(?)_{2}$

2	109
2	54
2	27
2	13
2	6
2	3
2	1
	0

$\therefore(109)_{10}=(1101101)_{2}$
4 d) Draw the symbol, logic expression and truth table for two input of the following gates: i) AND gate ii) OR gate.
Ans:
i) AND gate:

Logical expression: Y = A•B
Truth Table:

A	B	$\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}$
0	0	0
0	1	0
1	0	0
1	1	1

1 mark for symbol 1 mark for logical expression and truth table
ii) OR gate:

Logical expression: $\mathrm{Y}=\mathrm{A}+\mathrm{B}$
Truth Table:

\mathbf{A}	\mathbf{B}	$\mathrm{Y}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

4 e) Draw and explain the O/P characteristic of JFET (FET).

Ans:

Output Characteristics of JFET:

- The output characteristics of JFET is plotted between the drain current I_{D} and drain to source voltage V_{DS} for constant gate to source voltage V_{GS}.
- When $\mathrm{V}_{\mathrm{GS}}=0$ volt constant, if we increase V_{DS}, the drain current I_{D} increases proportionally and remains constant after particular value of V_{DS}. This drain to source voltage is called pinch-off voltage V_{P}. This constant drain current is maximum current flowing through the JFET and known as source saturation current $\mathrm{I}_{\mathrm{DSS}}$.
- When we increase reverse bias on gate to source junction, the drain current

Winter-2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No: 16 of 23
decreases.

- When the reverse bias V_{GS} is increased beyond certain value, the drain current becomes zero. This gate-source voltage is known as $\mathrm{V}_{\mathrm{GS}(\text { (off) }}$.

2 marks for diagram

4 f) Compare Hartley and Colpitt's oscillator.
Ans:
Comparison between Hartley and Colpitt's oscillator:

Particulars	Hartley Oscillator	Colpitt's Oscillator
1) Type of oscillator	It is a LC type of oscillator	It is a LC type of oscillator
2) Components used	Two inductors and one capacitor are used in tank circuit.	Two capacitors and one inductor are used in tank circuit.
3) Frequency of oscillation	$\begin{aligned} & f_{c}=\frac{1}{2 \pi \sqrt{L_{T} C}} \\ & L_{T}=L_{1}+L_{2} \end{aligned}$	$\begin{aligned} & f_{c}=\frac{1}{2 \pi \sqrt{L C_{T}}} \\ & C_{T}=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}} \end{aligned}$
4) Advantages	Suitable at high frequencies Small size Low cost	Suitable at high frequencies Small size Low cost
5) Disadvantag es	Poor frequency stability	Poor frequency stability

5 Attempt any Four:

5 a) For a PN junction diode applied voltage are $0 v,+5 v,-10 v$. Draw the PN junction indicating relative width of the depletion region in each.
Ans:

Winter - 2015 Examinations

Relative Width of Depletion Region:

i) For 0 V:

Depletion region width is comparatively small.

ii) For 5 V:

Diode is forward biased and conducting, hence depletion region is absent.

iii) For-10 V:

Diode is reverse biased, the width of depletion region is increased.

5 b) A full wave rectifier uses two diodes, the internal resistance of each diode may be assumed constant at 20Ω. The transformer r.m.s. secondary voltage from centre tap to each end of secondary is 50 V and load resistance is 980Ω. Find:
i) the mean load current
ii) the rms value of load current

Ans:
Data Given: $\mathrm{V}_{\mathrm{rms}}=50 \mathrm{~V}$

$$
\text { To find out: } \quad I_{\mathrm{dc}}=\text { ? }
$$

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{L}}=980 \Omega & \mathrm{R}_{\mathrm{S}}=20 \Omega \\
\mathrm{I}_{\mathrm{rms}}=? &
\end{array}
$$

Winter - 2015 Examinations

Model Answer

Page No: 18 of $\mathbf{2 3}$

In full-wave centre tap rectifier,

$$
\begin{gathered}
V_{r m s}=\frac{V_{m}}{\sqrt{2}} \\
\therefore V_{m}=\sqrt{2} \times V_{r m s}=\sqrt{2} \times 50
\end{gathered}
$$

$$
\therefore V_{m}=70.71 \mathrm{~V}
$$

Now the peak load current is given by, $I_{m}=\frac{V_{m}}{\left[R_{S}+R_{L}\right]}=\frac{70.71}{20+980}=0.0707 \mathrm{~A}$

$$
\therefore I_{m}=70.7 m A
$$

The mean load current is given by,

$$
\begin{gathered}
I_{d c}=\frac{2 I_{m}}{\pi}=\frac{70.7 \times 2}{3.142} \\
\boldsymbol{I}_{\boldsymbol{d} \boldsymbol{c}}=45.03 \boldsymbol{m A}
\end{gathered}
$$

The rms load current is given by,

$$
\begin{aligned}
& I_{r m s}=\frac{I_{m}}{\sqrt{2}}=\frac{70.7}{\sqrt{2}} \\
& \boldsymbol{I}_{r m s}=50.14 \boldsymbol{m A}
\end{aligned}
$$

1 mark
4
c) List the type of biasing circuit. Draw the diagram of voltage divider bias method and describe its operation.
Ans:
Types of Biasing Circuits:
i) Base bias (Fixed bias)
ii) Base bias with emitter feedback (Emitter feedback bias)
iii) Base bias with collector feedback (Collector feedback bias)
iv) Voltage divider bias (Self bias)
v) Emitter bias

Voltage Divider Bias:

R_{1}, R_{2} and R_{E} are biasing resistors and $V_{C C}$ is biasing voltage.
Voltage at base of transistor is

$$
V_{B}=\frac{R_{2}}{R_{1}+R_{2}} V_{C C}
$$

Applying KVL at input circuit,

$$
V_{B}-V_{B E}-V_{E}=0
$$

Since V_{BE} is very small

$$
V_{B}=V_{E}
$$

Now, $I_{E}=\frac{V_{E}}{R_{E}}$

$$
\therefore I_{C}=\frac{V_{E}}{R_{E}} \quad\left[\text { since } I_{C} \cong I_{E}\right]
$$

Applying KVL to output circuit,

$$
\begin{array}{ll}
V_{C C}-I_{C} R_{C}-V_{C E}-V_{E}=0 & \\
V_{C C}-I_{C} R_{C}-V_{C E}-I_{E} R_{E}=0 & \\
V_{C E}=V_{C C}-I_{E}\left(R_{C}+R_{E}\right) & {\left[\text { since } I_{C} \cong I_{E}\right]}
\end{array}
$$

5 d) Draw two stage RC coupled amplifier and draw its frequency response. Show the

Ans:

Two-stage RC coupled Amplifier

2 marks for circuit diagram

1 marks for frequency response
plot

1 mark for bandwidth

1 mark for each of any four points

1 mark for each of any four points

Winter-2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No: 20 of $\mathbf{2 3}$

4)Characteristic curve	More flat	Less flat than FET
5)Gate to source junction	Only reverse bias	Forward or reverse bias
6)Gate connection	Not isolated from substrate	Isolated by SiO_{2} layer from substrate

(Examiner may consider any other points of comparison during evaluation)
6 Attempt any Four:
6 a) Describe transistor as a switch with neat diagram.

Ans:

Transistor as Switch:
A transistor can be used for two types of applications viz. amplification and switching. For amplification, the transistor is biased in its active region. For switching applications, transistor is biased to operate in the saturation (full on) or cut-off (full off) region.
(i) Transistor in cut-off region (Open switch):

In the cur-off region, both the junctions of transistor are reverse biased and very small reverse current flows through the transistor.
The voltage drop across the transistor $\left(\mathrm{V}_{\mathrm{CE}}\right)$ is high, nearly equal to supply voltage V_{CC}. Thus, in cut-off region the transistor is equivalent to an open switch as shown in fig.(a).
(ii) Transistor in Saturation region (Closed switch):

When $\mathrm{V}_{\text {in }}$ is positive, a large base current flows and transistor saturates. In the saturation region, both the junctions of transistor are forward biased. The collector current is very large, the voltage drop across the transistor $\left(\mathrm{V}_{\mathrm{CE}}\right)$ is very small, of the order of 0.2 V to 1 V , depending on

1 mark for diagram

Winter - 2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No: 21 of 23
the type of transistor. Thus in saturation region, the transistor is equivalent to a closed switch.

6
b) Define:
i) Drain resistance
ii) Transconductance
iii) Amplification factor
iv) Pinch off voltage of FET.

Ans:
i) Drain Resistance:
(a) DC drain resistance, also known as static or ohmic resistance of channel, is expressed as, $\quad R_{D S}=\frac{V_{D S}}{I_{D}}$
(b) AC drain resistance, also known as dynamic resistance of channel, is defined as resistance between drain to source when JFET is operating in pinch-off or saturation region and expressed as,

$$
r_{d}=\frac{\Delta V_{D S}}{\Delta I_{D}}
$$

ii) Transconductance:

It is also known as forward transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$. It is the ratio of small change in drain current to corresponding change in gate to source voltage.

$$
g_{m}=\frac{\Delta I_{D}}{\Delta V_{G S}}, \text { keeping } \mathrm{V}_{\mathrm{DS}} \text { constant. }
$$

iii) Amplification Factor:

It is defined as the ratio of small change in drain voltage to small change in gate voltage at constant drain current.
Amplification factor $\mu=\frac{\Delta V_{D S}}{\Delta V_{G S}}$, keeping I_{D} constant.
iv) Pinch-off Voltage:

It is the value of the drain to source voltage $V_{D S}$ at which the drain current I_{D} reaches its constant saturation value. Any further increase in $V_{D S}$ does not have any effect on the value of I_{D}. It is denoted by V_{P}.
6 c) Draw transistorized series regulator and explain its working.
Ans:
Transistorized Series Regulator:
The figure shows a circuit of a transistor series regulator. Since the transistor is connected in series with the load, the circuit is known as a series regulator.
Operation:
i) The unregulated DC supply is fed to the input terminal as shown in the figure.
ii) The output voltage is given by $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{BE}}$
iii) $\quad V_{Z}$ being a zener voltage, can assumed constant. Therefore, if the output voltage varies, the V_{BE} changes.
iv) If the output voltage increases due to some reason, then V_{BE} decreases and due to this base current decreases. Therefore the collector current decreases.

1 mark for each correct definition

Winter - 2015 Examinations

Subject Code: 17321 (BEE)

Model Answer

Page No: 22 of 23
v) This will increase the collector to emitter voltage (V_{CE}) across the transistor and V_{L} will be regulated, as $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{CE}}$
vi) If the output voltage decreases, then exactly opposite action will take place and the output voltage is regulated.
vii) The circuit action may be summarized in the form of following equation.

$$
\mathrm{V}_{\mathrm{L}} \downarrow \rightarrow \mathrm{~V}_{\mathrm{BE}} \downarrow \rightarrow \mathrm{I}_{\mathrm{B}} \downarrow \rightarrow \mathrm{I}_{\mathrm{C}} \downarrow \rightarrow \mathrm{~V}_{\mathrm{CE}} \uparrow \rightarrow \mathrm{~V}_{\mathrm{L}} \downarrow
$$

2 marks for circuit diagram

6 d) Draw the block diagram for DC power supply; explain the function of each block.

Ans:

DC Power Supply:

There are four basic blocks of a DC regulated power supply. They are:

1) Step-down transformer
2) Rectifier
3) Filter
4) Voltage Regulator

Functions of Each Block:
i) Step-down transformer: Reduces $230 \mathrm{~V}, 50 \mathrm{hz}$ ac voltage to required ac voltage level.
ii) Rectifier: Converts ac voltage into dc voltage. Typically bridge type full-wave rectifier is widely used.
iii) Filter: Used to remove fluctuations (ripples) present in dc output.
iv) Voltage regulator: Provides constant dc output voltage irrespective of changes in load current or changes in input voltage.
Voltage divider circuit is used to provide different dc voltages required for different electronic circuits.

Winter - 2015 Examinations

Subject Code: 17321 (BEE)
Model Answer
Page No : 23 of 23

6 e) Write advantages and disadvantages of positive and negative feedback.

Ans:

Advantages of Positive Feedback:
i) Voltage gain increases.
ii) No phase shift is provided.
iii) Feedback signal and input signal are in phase.
iv) Input and Output voltage increases.

Disadvantages of Positive Feedback:
i) Stability becomes poor as feedback increases.
ii) Noise increases with feedback.
iii) Bandwidth decreases.
iv) Input impedance decreases.

Advantages of Negative Feedback:
i) Stability becomes better as feedback increases.
ii) Noise decreases with feedback.
iii) Bandwidth increases.
iv) Input impedance increases.

Disadvantages of Negative Feedback:
i) Voltage gain decreases. Phase shift of 180° is provided.
ii) Feedback signal and input signal are out of phase.
iii) Input and Output voltage decreases.

6f) a) Define junction field effect transistor (JFET) and give an example.

Ans:
 Junction Field-Effect Transistor:

It is a semiconductor device having three terminals, namely Gate, Drain and 1 mark for
Source, in which the current flow is controlled by an electric field set up by an external voltage applied to gate terminal.
Types of JFET are: i) n-channel JFET and ii) p-channel JFET
1 mark for
Examples of JFET: BFW 10, BFW 11
6 f) b) Convert (AFB2) ${ }_{16}$ to Binary number.
example

Ans:

Hexadecimal Number			
A	F	B	2
1010	1111	1011	0010
	$\therefore(\mathrm{AFB} 2)_{16}=\left(\begin{array}{llll}1010 & 1111 & 1011 & 0010\end{array}\right)_{2}$		

1 mark for
final ans

[^0]: 1 mark

