Summer-2014 Examinations

Subject Code : 17323 (ECN)
Model Answer
Page No : 1 of 23
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

1 a) i) Cycle : " In a sinusoidal AC waveform each repetition consisting of one positive and one identical negative part is called as one cycle of the waveform."
ii) Time period : " Time period is defined as time in seconds for waveform of an AC quantity to complete one cycle.

1 b) Given expression is, $i=10 \sin (100 \Pi t)$
Comparing it with, $\quad I=I_{m} \sin \left(2 \Pi f_{0} t\right)$
we get, $I_{m}=10,2 \Pi f_{0}=100 \Pi$
i) To calculate frequency: $2 \Pi f_{0}=100 \Pi$

$$
\begin{aligned}
& \therefore 2 \mathrm{f}_{0}=100 \\
& \therefore \mathrm{f}_{0}=50 \mathrm{~Hz}
\end{aligned}
$$

ii) To calculate $\mathrm{I}_{\mathrm{rms}}$: $\quad \mathrm{I}_{\mathrm{rms}}=0.707 \mathrm{I}_{\mathrm{m}}$

$$
\therefore \mathrm{I}_{\mathrm{rms}}=0.707 \times 10=7.07 \mathrm{~A}
$$

1 mark

1 c) Definition: Power factor is defined as the ratio of true power and apparent power of
1 mark an AC circuit.
In case of R-L series circuit, power factor is lagging due to negative sign of Φ.
1 mark
$1 \mathrm{~d})$

Labeled
2marks, unlabebed

1 mark

1 mark
1 e) A parallel circuit has two or more series circuits connected parallel with each other across a common pair of nodes as shown in figure. The total current flowing into the parallel combination gets divided in inverse proportion to the impedance value.

1 f) There are two components of admittance:
i) Conductance (G) : It is ratio of resistance (R) and squared impedance $\left(Z^{2}\right)$
ii) Susceptance(B):): It is ratio of reactance (X) and squared impedance $\left(Z^{2}\right)$

1 g)

Labeled 2 marks, unlabeled

1 mark

1) Calculate equivalent current source as the short circuit current through the voltage source terminals: $(\mathrm{I}=\mathrm{V} / \mathrm{r})$
2) The Shunt Resistance of current source: ($R_{\text {sh }}=r$)
3) Draw the equivalent source.

1 mark

1 j) Statement of Maximum Power transfer Theorem (for DC circuits):
"It states that, the maximum amount of power is delivered to the load resistance when the load resistance is equal to the Thevenin's equivalent source resistance of the
network supplying the power across the load terminals."
According to this theorem, condition for maximum power to be transferred is, $R_{L}=2$ marks $R_{T H}$, where $R_{T H}=$ Thevenin's source resistance across R_{L}.
$1 \mathrm{k})$ Statement of Thevenin's Theorem :
It states that current flowing through any resistance (referred as load resistance R_{L}) of an active, bilateral circuit can be calculated by Thevenin's theorem as

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{th}} /\left(\mathrm{R}_{\mathrm{th}}+\mathrm{R}_{\mathrm{L}}\right)
$$

where,
$\mathrm{V}_{\text {th }}=$ the open circuit voltage measured across load terminals by removing the load resistance
$\mathrm{R}_{\mathrm{th}}=$ the Thevenin's equivalent resistance measured across load terminals by removing the load resistance and replacing all sources by their internal resistances

1 l) i) At the instant of switching (sudden or abrupt change in circuit condition), 1 mark inductor (L) opposes the change in current in it and behaves as open circuit.
ii) At the instant of switching (sudden or abrupt change in circuit condition), capacitor (C) opposes change in voltage across it and behaves as short circuit.

2 a) Given equation is, $\mathrm{e}=25 \sin (314 \mathrm{t})$
Comparing it with $\mathrm{e}=\mathrm{Vm} \sin (\omega \mathrm{t})$

Amplitude $V_{M}=25 \mathrm{~V}$	1 mark
RMS value $=$ peak value $/ \sqrt{ } 2=25 / \sqrt{ } 2=17.67 \mathrm{~V}$.	1 mark
Frequency $=\omega / 2 \pi=314 / 2 \pi=50 \mathrm{~Hz}$.	1 mark
Time period $=1 /$ frequency $=1 / 50=0.02 \mathrm{sec}$	1 mark

Subject Code : 17323 (ECN)
Model Answer

2 b)

Fig. Waveform of voltage and current for purely inductive circuit.
Expression for supply voltage can be given by, $\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$
Now, Current in purely inductive circuit is, $I=(1 / \mathrm{L}) \int_{\mathrm{vdt}}$
$\therefore \mathrm{I}=(1 / \mathrm{L}){ }_{0}{ }^{\Pi / 2} \mathrm{~V}_{\mathrm{m}} \sin (\omega \mathrm{t}) \mathrm{dt}$
$\therefore \mathrm{I}=\left(\mathrm{V}_{\mathrm{m}} / \omega \mathrm{L}\right) \sin (\omega \mathrm{t}-\pi / 2)$
$\therefore \mathrm{I}=\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t}-\pi / 2)$.

2 c) R-C Series Circuit:

Circuit 1 mark,

Impedance triangle 1 mark,

[^0]2 d) Formula/Expression for:

1) Active power: $\mathrm{P}=\mathrm{VI} \cos \phi$. (W)
2) Reactive power: $\mathrm{Q}=\mathrm{VI} \sin \phi$. (VAR)
3) Apparent power: $\mathrm{S}=\mathrm{V}$ I. (VA)
4)

$$
\text { Power Factor }=\frac{\text { Active power }(\mathrm{P})}{\text { Apparent power }(\mathrm{S})}
$$

2 e) i) Given: $\mathrm{Z}=25 \angle-45^{\circ} \Omega$
Let us convert it to rectangular form, $\mathrm{r}=25 \& \theta=-45^{\circ}$
Its rectangular form is, $Z=25 \cos 45^{\circ}-j 25 \sin 45^{0}$
$=(17.67-\mathrm{j} 17.67) \mathrm{ohm}$
Comparing it with $\mathrm{Z}=\mathrm{R}+\mathrm{j} \mathrm{X}$
Resistance $(\mathrm{R})=17.67 \Omega$ and $\mathrm{X}_{\mathrm{C}}=17.67 \Omega \quad 1$ mark
Taking $\mathrm{f}=50 \mathrm{~Hz}, \quad \mathrm{Xc}=1 /(2 \pi \mathrm{f} \mathrm{C})$.
$\mathrm{C}=1 /(2 \pi \times 50 \mathrm{x})=1.800 \times 10^{-4} \mathrm{~F}=180 \mu \mathrm{~F}$. 1 Mark
ii) Given : $\mathrm{Z}=10-\mathrm{j} 15 \Omega$
\therefore Resistance $(\mathrm{R})=10 \Omega$ and $\mathrm{X}_{\mathrm{C}}=15 \Omega$
1 mark
$\mathrm{Xc}=1 /(2 \pi \mathrm{fC}), \mathrm{C}=1 /(2 \pi \mathrm{f} \mathrm{Xc})$
$\mathrm{C}=1 /(2 \pi \times 50 \times 15)=2.1231 \times 10^{-4} \mathrm{~F}=212.31 \mu \mathrm{~F}$.
1 mark

2 f) Given: $\mathrm{R}=75 \Omega, \mathrm{C}=60 \mu \mathrm{~F}=60 \times 10^{-6} \mathrm{~F}$, voltage $=230 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$
i) $\quad \mathrm{X}_{\mathrm{C}}=1 /(2 \pi \mathrm{fC})$

$$
\begin{aligned}
& =1 /\left(2 \times \pi \times 50 \times 60 \times 10^{-6}\right) \\
& =53.05 \Omega
\end{aligned}
$$

ii) Now, $|Z|=\sqrt{ }\left(R^{2}+X_{C}{ }^{2}\right)$

$$
\begin{aligned}
& =\sqrt{ }\left(75^{2}+53.05^{2}\right) \\
& =\sqrt{ }(5625+2814.3) \\
& =91.87 \Omega
\end{aligned}
$$

\therefore Current $=$ Voltage $/$ Impedance

$$
\begin{aligned}
& =230 / 91.87 \\
& =2.5 \mathrm{~A} .
\end{aligned}
$$

iii) Power factor $=\cos \phi=\mathrm{R} /|\mathrm{Z}|$

$$
\begin{aligned}
& =75 / 91.87 \\
& =0.816 \text { lead. }
\end{aligned}
$$

1 mark
iv) \quad Active power $=\mathrm{VI} \cos \phi=230 \times 2.5 \times 0.816$ 1 mark

$$
=469.2 \mathrm{Watt}
$$

3 a) Resonance in series RLC circuit:

variable frequency source.
As the frequency is increased from zero towards higher values at a certain frequency $f_{\mathrm{O}}, \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ and the net reactance of the circuit becomes zero. This is resonance condition. At resonance the voltages across the inductive reactance and capacitive reactance (X_{L} and X_{C}) are equal and opposite in phase.
$V_{L}=-V_{C}$ and hence $V_{L}+V_{C}=0$, (phasor addition).
Also $\mathrm{Z}=\sqrt{ }\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]$ and $\mathrm{V}=\sqrt{ }\left[\mathrm{V}_{\mathrm{R}}{ }^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}\right]$
Give $V=V_{R}$.

Hence the supply voltage applied is across the resistance $\mathrm{R}, \mathrm{V}=\mathrm{V}_{\mathrm{R}}$.
The impedance is minimum at resonance.
Current is max. $=I_{O}=V / R$. And is in phase with applied voltage.
As $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$, we have $2 \pi \mathrm{f}_{\mathrm{O}} \mathrm{L}=1 /\left(2 \pi \mathrm{f}_{\mathrm{O}} \mathrm{C}\right)$ which gives us
$\mathrm{f}_{\mathrm{O}}=1 /[2 \pi \sqrt{ }(\mathrm{LC})]$. (Where $\mathrm{L}=$ coefficient of inductance in henry, and $\mathrm{C}=$
Capacitance in farads).

3 b) Compare series and parallel resonant circuits: (any four points)

	Parameter	Series resonant circuit	$\underline{\text { Parallel resonant ckt }}$
1	Impedance	minimum $=\mathrm{R}$	maximum $=\mathrm{L} /(\mathrm{CR})$
2	Current	maximum $=\mathrm{V} / \mathrm{R}$	minimum $=\mathrm{V} /(\mathrm{L} / \mathrm{CR})$
3	Resonant frequency	$\mathrm{f}_{\mathrm{r}}=1 /[2 \pi \sqrt{ }(\mathrm{LC})]$	$\mathrm{f}_{\mathrm{r}}=(1 / 2 \pi) \sqrt{ }\{[1 /(\mathrm{LC})]-$ $\left.\left(\mathrm{R}^{2} / \mathrm{L}^{2}\right)\right\}$
4	Power factor	Unity	unity
5	Magnification	Voltage	current
6	Q	$(1 / \mathrm{R})[1 / \sqrt{ }(\mathrm{LC})]$	$(1 / \mathrm{R})[1 / \sqrt{ }(\mathrm{LC})]$

1 mark each point any four = 4 marks
ii) Branch Current $\left(i_{2}\right)=V / Z_{2}$

$$
\begin{aligned}
& =200 \angle 0 / 5.66 \angle 45^{0} \\
& 35.34 \angle-45^{0} \mathrm{~A}
\end{aligned}
$$

iii) Total Impedance $\mathrm{Z}_{\mathrm{T}}=\left(\mathrm{Z}_{1} * \mathrm{Z}_{2}\right) /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)$

$$
\begin{aligned}
& =\left(10 \angle 36.87 * 5.66 * \angle 45^{0}\right) /((8+\mathrm{j} 6)+(4+\mathrm{j} 4)) \\
& =56.6 \angle 81.87 / 15.62 \angle 39.81 \\
& =3.62 \angle 42.06 . \mathrm{ohm}
\end{aligned}
$$

Total Current $\mathrm{i}_{\mathrm{T}}=\mathrm{V} / \mathrm{Z}_{\mathrm{T}}$

$$
\begin{aligned}
& =200 \angle 0 / 3.62 \angle 42.06 \\
& =55.25 \angle-42.06 \mathrm{~A}
\end{aligned}
$$

Phasor Diagram

3 d) Given : $\mathrm{R}=100 \Omega, \mathrm{~L}=0.2 \mathrm{H}, \mathrm{C}=150 \mu \mathrm{~F}, \mathrm{~V}=230 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$.
Soln : $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$

$$
\begin{aligned}
& =2 \pi * 50 * 0.2 \\
& =62.8 \Omega \\
\mathrm{X}_{\mathrm{C}} & =1 / 2 \pi \mathrm{fC} \\
& =2 \pi * 50 * 150 * 10^{-6} \\
& =1 / 47100 * 10^{-6} \\
& =21.23 \Omega \\
\mathrm{Z} & =\sqrt{ }\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right] \\
& =\sqrt{ }\left[100^{2}+(62.8-21.23)^{2}\right] \\
& =\sqrt{ }[10000+1728.06] \\
& =108.29 \Omega \\
\text { Now, } \mathrm{I} & =\mathrm{V} / \mathrm{Z} \\
& =230 / 108.29 \\
& =2.12 \mathrm{~A}
\end{aligned}
$$

1 mark
Power factor $=\cos \Phi=\mathrm{R} / \mathrm{Z}$

$$
\begin{aligned}
& =100 / 108.29 \\
& =0.923(\mathrm{lag})
\end{aligned}
$$

1 Mark
1 mark
Power factor is lagging because $X_{L}>X_{C}$
Power consumed by ckt $=\mathrm{VI} \cos \Phi=230 * 2.12 * 0.923=450$ Watt
3 e) i) Taking i_{2} as reference phasor, i_{3} is leading current 1 mark and i_{1} is lagging current. 1 mark
ii) i_{1} lags behind i_{3} by $(40+30)=70^{\circ} \quad 2$ marks

3 f) Given:
$\mathrm{V}_{\mathrm{L}}=146.2$ volt, $\mathrm{V}_{\mathrm{R}}=150$ volt, supply voltage $\mathrm{V}=220$ volt, $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{I}=10 \mathrm{~A}$.
Sol $^{\mathrm{n}}$: Total impedance of coil $=\mathrm{Z}=\mathrm{V} / \mathrm{I}=220 / 10=22 \Omega$
Series resistance $R=V_{R} / I=150 / 10=15 \Omega$
Now, total $|\mathrm{Z}|=\sqrt{ }\left[\left(\mathrm{R}+\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right]$,
$\mathrm{R}_{\mathrm{L}} \& \mathrm{X}_{\mathrm{L}}=$ resistance \& reactance of coil respectively,

$$
|\mathrm{Z}|^{2}=\left(\mathrm{R}+\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}_{\mathrm{L}}^{2}
$$

$\therefore 22^{2}=\left(15+\mathrm{R}_{\mathrm{L}}\right)^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}$
$\therefore 484=225+30 \mathrm{R}_{\mathrm{L}+} \mathrm{R}_{\mathrm{L}}^{2}+\mathrm{X}_{\mathrm{L}}^{2}$
But, $\mathrm{R}_{\mathrm{L}}{ }^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}=\mathrm{Z}_{\mathrm{L}}{ }^{2}$ where Z_{L} is impedance of coil
$\therefore 484=225+30 \mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{L}}{ }^{2}$
$\therefore 259=30 \mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{L}}{ }^{2}$
But, $\quad Z_{L}=V_{L} / I$

$$
=146.2 / 10
$$

$$
=14.62 \Omega
$$

$$
\begin{aligned}
259 & =30 \mathrm{R}_{\mathrm{L}}+(14.62)^{2} \\
30 \mathrm{R}_{\mathrm{L}} & =45.2556
\end{aligned}
$$

i) $\quad R_{L}=1.51 \Omega$

1 Mark
Now,

$$
\begin{aligned}
\mathrm{X}_{\mathrm{L}} & \left.=\sqrt{ }\left(\mathrm{Z}_{\mathrm{L}}{ }^{2}-\mathrm{R}_{\mathrm{L}}{ }^{2}\right]\right) \\
& =\sqrt{ }\left[(14.62)^{2}-(1.51)^{2}\right] \\
& =\sqrt{ }(213.74-2.28) \\
& =14.54 \Omega
\end{aligned}
$$

Now,

$$
X_{L}=2 \pi \mathrm{fL}
$$

ii) Inductance of coil, $\mathrm{L}=\mathrm{X}_{\mathrm{L}} /(2 \pi \mathrm{f})=14.54 /(2 \pi * 50)$.

$$
=0.0463 \mathrm{H}
$$

1 Mark

1 Mark
iv) P.F. of total circuit $=\mathrm{R} / \mathrm{Z}$

$$
\begin{aligned}
& =15 / 22 \\
& =0.68 \text { (lag) }
\end{aligned}
$$

1 Mark
4 a) Compare three phase system with single phase system (4 points)

Sr. No.	Parameter	Single Phase System	Three Phase System
1	Line Voltage	Low(230)	High(415V)
2	Transmission Efficiency	Low	High
3	Size of machine to produce same output	Larger	smaller
4	Cross sectional area of conductors (for equal power)	Larger	smaller
5	Application	Domestic, small power application	Industrial large power applications
6	No. of conductors	Two	Three or four

4 b) Given : $\mathrm{R}=15 \Omega, \mathrm{~L}=0.03 \mathrm{H}, \mathrm{V}_{\mathrm{L}}=440 \mathrm{~V}, 50 \mathrm{~Hz}$.
Soln : For delta connected load,

$$
\begin{aligned}
& V_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}}=440 \mathrm{~V} \\
& \mathrm{Z}_{\mathrm{ph}}=\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}
\end{aligned}
$$

$$
=15+\mathrm{j}(2 \pi * 50 * 0.03)
$$

Subject Code : 17323 (ECN)
Model Answer

$$
\begin{aligned}
& =15+\mathrm{j}(9.42) \\
& =17.713 \angle 32.13^{0}
\end{aligned}
$$

i) Now, $\quad \mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}$

$$
\begin{aligned}
& =440 /\left(17.713 \angle 32.13^{0}\right) \\
& =24.84 \quad \angle-32.13^{0}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =\sqrt{ } 3 * \mathrm{I}_{\mathrm{ph}} \\
& =\sqrt{ } 3 * 24.8 \\
& =42.95 \mathrm{~A}
\end{aligned}
$$

iii) Power consumed $=P=\sqrt{ } 3 V_{L} I_{L} \cos \phi$

$$
\begin{aligned}
& =\sqrt{ } 3 * 440 * 42.95 * \cos (32.13) \\
& =27722 \text { watt }=27.722 \mathrm{~kW}
\end{aligned}
$$

iv)

Labeled phasor diagram 1 Mark

Subject Code : 17323 (ECN)

Model Answer

4 c) Given: $\mathrm{Z}_{\mathrm{ph}}=(17.32+\mathrm{j} 10) \Omega, 3 \Phi, \mathrm{f}=50 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{L}}=400 \mathrm{~V}$, Star connection.
Solution: $Z_{\text {ph }}=\sqrt{ }\left(17.32^{2}+10^{2}\right)=\sqrt{ }(299.98+100)=20 \Omega$
$\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}} / \sqrt{ } 3=400 / \sqrt{ } 3=230.94 \mathrm{~V}$
$\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=230.94 / 20=11.15 \mathrm{~A}$
1 Mark
Now, i) $\cos \Phi=\mathrm{R} /\left|\mathrm{Z}_{\mathrm{ph}}\right|=17.32 / 20=0.866$
ii) Power consumed $=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \Phi=3 * 230.94 * 11.55 * 0.866$

$$
=6929.79 \mathrm{~W} \quad 1 \text { Mark }
$$

iii)For delta connection, $\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}$

$$
\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=400 / 20=20 \mathrm{~A}
$$

1 mark
Power consumed $=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \Phi$
$=3 * 400 * 20 * 0.866$
$=20784 \mathrm{~W}$
1 Mark
4 d)

We write expressions for equivalent resistances between corresponding terminals of the two networks and proceed.

Resistance between 1 and 2
for star $=\mathrm{R}_{1}+\mathrm{R}_{2}=($ for delta $)=\frac{R_{12}\left(R_{23}+R_{31}\right)}{\left(R_{12}+R_{23}+R_{31}\right)}$

Resistance between 2 and 3
for star $=\mathrm{R}_{2}+\mathrm{R}_{3}=($ for delta $)=\frac{R_{23}\left(R_{12}+R_{31}\right)}{\left(R_{12}+R_{23}+R_{31}\right)}$

Resistance between 3 and 1
for star $=\mathrm{R}_{3}+\mathrm{R}_{1}=($ for delta $)=\frac{R_{31}\left(R_{12}+R_{23}\right)}{\left(R_{12}+R_{23}+R_{31}\right)}$
Subtracting (2) from (3) we get,

$$
\begin{equation*}
\mathrm{R}_{1}-\mathrm{R}_{2}=\frac{R_{12}\left(R_{31}-R_{23}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{4}
\end{equation*}
$$

Adding (1) and (4) and simplifying we get

$$
2 \mathrm{R}_{1}=\frac{2 R_{12} R_{31}}{\left(R_{12}+R_{23}+R_{31}\right)}, \text { hence } \mathrm{R}_{1}=\frac{R_{12} R_{31}}{\left(R_{12}+R_{23}+R_{31}\right)},
$$

Similarly $\quad \mathrm{R}_{2}=\frac{\mathrm{R} 23 \mathrm{R} 12}{\mathrm{R} 12+\mathrm{R} 23+\mathrm{R} 31} \quad \mathrm{R}_{3}=\frac{\mathrm{R} 31 \mathrm{R} 23}{\mathrm{R} 12+\mathrm{R} 23+\mathrm{R} 31}$

From above expressions

$$
\frac{R_{1}}{R_{2}}=\frac{R_{31}}{R_{23}}, \frac{R_{2}}{R_{3}}=\frac{R_{12}}{R_{31}} \text { and } \frac{R_{3}}{R_{1}}=\frac{R_{23}}{R_{12}}
$$

From (5) $\quad \mathrm{R}_{12}=\left[R_{1}\left(R_{12}+R_{23}+R_{31}\right) / R_{31}\right]$

$$
=R_{1}\left(\frac{R_{12}}{R_{31}}+\frac{R_{23}}{R_{31}}+1\right)
$$

$\operatorname{Using}(6) \quad \mathrm{R}_{12}=R_{1}\left(\frac{R_{2}}{R_{3}}+\frac{R_{2}}{R_{1}}+1\right)=\left(\frac{R_{1} R_{2}}{R_{3}}+R_{2}+R_{1}\right)$.

Similarly we can write,

$$
\mathrm{R}_{23}=\left(\frac{R_{3} R_{2}}{R_{1}}+R_{2}+R_{3}\right) \quad \text { and } \quad \mathrm{R}_{31}=\left(\frac{R_{3} R_{1}}{R_{2}}+R_{3}+R_{1}\right)
$$

4 e) Given circuit is

In loop ABEFA by KVL,

$$
\begin{equation*}
13 \mathrm{I}_{1}+7 \mathrm{I}_{2}=15 \tag{1}
\end{equation*}
$$

Equations

1 and $2=$
1 Mark,
Solving equations (1) \& (2) we get

$$
\begin{aligned}
& \mathrm{I}_{2}=0.157 \mathrm{~A} \\
& \mathrm{I}_{1}=1.07 \mathrm{~A}
\end{aligned}
$$

4 f) Given Circuit is

Apply KCL at node $\mathrm{B}, \mathrm{I}_{3}=\mathrm{I}_{1}+\mathrm{I}_{2}$
But, $\mathrm{I}_{1}=\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right) / 20, \mathrm{I}_{2}=\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}\right) / 10 \& \mathrm{I}_{3}=\mathrm{V}_{\mathrm{B}} / 30$

$$
\mathrm{V}_{\mathrm{B}} / 30=\left[\left(20-\mathrm{V}_{\mathrm{B}}\right) / 20\right]+\left[\left(\mathrm{VC}-\mathrm{V}_{\mathrm{B}}\right) / 10\right]
$$

$$
\text { But, } \quad \mathrm{V}_{\mathrm{A}}=20 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{B}} / 30=\left[\left(20-\mathrm{V}_{\mathrm{B}}\right) / 20\right]+\left[\left(10-\mathrm{V}_{\mathrm{B}}\right) / 10\right]
$$

$$
2 \mathrm{~V}_{\mathrm{B}}=3\left(20-\mathrm{V}_{\mathrm{B}}\right)+6\left(10-\mathrm{V}_{\mathrm{B}}\right)
$$

$$
2 \mathrm{~V}_{\mathrm{B}}=60-3 \mathrm{~V}_{\mathrm{B}}+60-6 \mathrm{~V}_{\mathrm{B}}
$$

- Current in 10Ω resistance is,

$$
\begin{aligned}
\mathrm{I}_{2} & =\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}\right) / 10 \\
& =(10-10.91) / 10 \\
& =-0.091 \mathrm{~A}
\end{aligned}
$$

Negative sign indicates that the actual direction of this current is opposite to that we Students may determine current in any one of the three resistances to which marks will be awarded as given

$$
11 \mathrm{~V}_{\mathrm{B}}=120
$$

$$
\mathrm{V}_{\mathrm{B}}=10.91 \mathrm{~V}
$$ assumed. OR

- Current in 30 ohm $=I_{3}=V_{B} / 30=10.91 / 30=0.3636$ A. OR

2 marks

- Current in 20 ohm $=\mathrm{I}_{1}=(20-10.91) / 20=0.4545 \mathrm{~A}$.

Attempt any two 16 marks

5 a)

Labeled phasor diagram
2 Marks

Let $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{m}(\mathrm{ph})}$ Sinct
Where $\mathrm{V}_{\mathrm{m}(\mathrm{ph})}$ denotes the peak phase voltage.
Hence $V_{Y}=V_{m(p h)} \sin \left(\omega t-120^{\circ}\right)$
Convert V_{R} and V_{Y} into their rectangular form to get,
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{m}}+\mathrm{j} 0$
And $\mathrm{V}_{\mathrm{Y}}=\left(\mathrm{V}_{\mathrm{m}} \cos 120^{\circ}-\mathrm{j} \mathrm{V}_{\mathrm{m}} \sin 120^{\circ}\right)$

$$
\begin{array}{rlrl}
& =-0.5 \mathrm{~V}_{\mathrm{m}}-\mathrm{j} 0.866 \mathrm{~V}_{\mathrm{m}} & 1 \text { Mark } \\
\mathrm{V}_{\mathrm{RY}} & =\mathrm{V}_{\mathrm{m}}+j 0-\left(-0.5 \mathrm{~V}_{\mathrm{m}}-\mathrm{j} 0.866 \mathrm{~V}_{\mathrm{m}}\right) & \\
& =\left(1.5 \mathrm{~V}_{\mathrm{m}}+\mathrm{j} 0.866 \mathrm{~V}_{\mathrm{m}}\right) \text { volts } & \text { 1 Mark }
\end{array}
$$

Converting into polar form we get.

$$
\mathrm{V}_{\mathrm{RY}}=\sqrt{ } 3 \quad \mathrm{~V}_{\mathrm{m}(\mathrm{ph})} \angle 30^{0} \text { volts }
$$

The current passing through any branch of the star connected load is called as the phase current. The current passing through any line R, Y, B is called as the line current.

As current flowing through each line is equal to the current flowing through the corresponding branch, the line current is equal to the phase current.
\therefore For Star Connected Load $I_{L}=\mathbf{I}_{\text {ph }}$
5 b) Statement of superposition theorem :
The superposition theorem states that, in any linear network containing two or more sources, the response (current) in any element is equal to the algebraic sum of currents caused by individual source acting alone, while other sources are removed with only their internal resistances in place.
Procedural steps to find current in given circuit :

Step 1: Remove E_{2} and keep only its internal resistance r_{2} in circuit.

Using any relevant method determine I' as follows;
$\mathrm{I}_{1}=\mathrm{E}_{1} /\left[\mathrm{r}_{1}+\mathrm{r}_{2} \mathrm{R} /\left(\mathrm{r}_{2}+\mathrm{R}\right)\right]$ and
$I^{\prime}=I_{1} r_{2} /\left[r_{2}+R\right]$.

Step 2: Remove E_{1} and keep only its internal resistance r_{1} in circuit.

Using any relevant method determine I " as follows;
$\mathrm{I}_{2}=\mathrm{E}_{2} /\left[\mathrm{r}_{2}+\mathrm{r}_{1} \mathrm{R} /\left(\mathrm{r}_{1}+\mathrm{R}\right)\right]$ and
$\mathrm{I}^{\prime \prime}=\mathrm{I}_{2} \mathrm{r}_{1} /\left[\mathrm{r}_{1}+\mathrm{R}\right]$.
Step 3: Add algebraically the branch currents obtained due to individual sources to
obtain combined effect of the both sources $I=I^{\prime}+I^{\prime}$.

5 c) Statement of Norton's theorem :
It states that, any linear, active, resistive network containing one or more voltage and/or current source can be replaced by any equivalent circuit containing a single current source and equivalent conductance (resistance across the current source).

The equivalent current source (Norton's source) $I_{N}=$ the short curcuit current through the terminals of the load.
The equivalent conductance G_{N} (or R_{N}) is the conductance (or resistance) seen between the load terminals with the load removed and sources replaced by their internal reistances.
If R_{L} is load resistance then current through it is $I_{L}=I_{N} R_{N} /\left(R_{N}+R_{L}\right)$.
Given circuit is,

Part I) to obtain value of $\mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{sc}}$:
Let us short circuit the 4Ω resistance.

1 Mark

Due to redundant branch, circuit reduces to,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{T}} & =[(6 * 7) /(6+7)]+6 \\
\therefore . \mathrm{R}_{\mathrm{T}} & =9.23 \Omega
\end{aligned}
$$

Subject Code : 17323 (ECN)
Model Answer

$$
\begin{aligned}
\cdot \ddots \mathrm{I}_{\mathrm{T}} & =10 / 9.23 \\
& =1.0834 \mathrm{~A} \\
\cdot \cdot \mathrm{I}_{\mathrm{N}} & =\mathrm{I}_{\mathrm{sc}}=(6 /(6+7)) * 1.0834 \\
& =0.5 \mathrm{~A}
\end{aligned}
$$

Part II) To obtain value of R_{N} or R_{TH}

Two 6Ω resistance are in parallel,
Their equivalent is $\mathrm{R}_{1}=(6 * 6) /(6+6)$

$$
=3 \Omega
$$

7Ω resistance is in series with R_{1}
. \cdot their equivalent is,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{Th}} & =(10 * 12) /(10+12) \\
& =5.45 \Omega
\end{aligned}
$$

Part III) Norton's equivalent circuit can be drawn as,

By current division rule, current through 4Ω resistance is given

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =[5.45 /(5.45+4)] * 0.5 \\
& =0.288 \mathrm{~A}
\end{aligned}
$$

6 Attempt any four.

6 a) Given circuit is,

Part 1) Find $V_{O C}$:

Subject Code : 17323 (ECN)

\therefore circuit reduces to,

. '. By voltage division rule,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{OC}} & =\mathrm{V}_{\mathrm{TH}}=24 \times 7 /(7+4) \\
& =15.27 \mathrm{~V}
\end{aligned}
$$

Part 2) Find R_{TH}

4Ω and 7Ω resistances are in parallel, Their equivalent is,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{P}} & =(4 * 7) /(4+7) \\
& =2.545 \Omega
\end{aligned}
$$

5Ω resistance is in series with this combination,

$$
\begin{aligned}
\therefore . \mathrm{R}_{\mathrm{TH}}= & 5+2.545 \\
& =7.545 \Omega
\end{aligned}
$$

Part 3) Application:

1 Mark

$$
\begin{aligned}
\therefore . \mathrm{I}_{\mathrm{L}} & =\mathrm{V} / \mathrm{R}_{\text {Total }} \\
& =15.27 /(7.545+10) \\
& =15.27 / 17.545 \\
& =0.87 \mathrm{~A}
\end{aligned}
$$

6 b)

Step 1) Using 5 V source only,

$6 \Omega \& 2 \Omega$ resistance are in parallel,

$$
\begin{aligned}
\therefore \quad \mathrm{R}_{\mathrm{P}} & =(6 \times 2) /(6+2) \\
& =1.5 \Omega
\end{aligned}
$$

2Ω resistance is in series with R_{P},

$$
\begin{aligned}
\therefore \quad \mathrm{R}_{\text {Total }} & =2+1.5 \\
& =3.5 \Omega
\end{aligned}
$$

\therefore Total current is,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{T}} & =\mathrm{V} / \mathrm{R}_{\text {Total }} \\
& =5 / 3.5 \\
& =1.428 \mathrm{~A}
\end{aligned}
$$

By current division rule, current through 6Ω is,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}}{ }^{\prime} & =[2 /(2+6)] * 1.428 \\
& =0.357 \mathrm{~A}
\end{aligned}
$$

Step 2): Keeping only 7 V source,

2Ω and 6Ω resistance are in parallel.

$$
\begin{aligned}
\therefore \quad \mathrm{R}_{\mathrm{P}} & =(6 * 2) /(6+2) \\
& =1.5 \Omega
\end{aligned}
$$

2Ω resistance is in series with R_{P}

$$
\begin{aligned}
\therefore \quad \mathrm{R}_{\text {Total }} & =2.1 .5 \\
& =3.5 \Omega
\end{aligned}
$$

\therefore Total current $=\mathrm{V} / \mathrm{R}_{\text {Total }}$

Subject Code : 17323 (ECN)
Model Answer

$$
\begin{aligned}
& =7 / 3.5 \\
& =2 \mathrm{~A}
\end{aligned}
$$

By current division rule, current through 6Ω resistance is,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =[2 /(2+6)] * \mathrm{I}_{\text {Total }} \\
& =(2 / 8) * 2
\end{aligned}
$$

$$
=0.5 \mathrm{~A} \quad 1 \text { Mark }
$$

Step 3): Total current through 6Ω resistance, according to superposition theorem is,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{L}} \\
& =0.357+0.5 \\
& =0.857 \mathrm{~A}
\end{aligned}
$$

6 c)

By KCL at node V_{1},

$$
\begin{aligned}
& 100=\left(\mathrm{V}_{1} / 0.2\right)+\left[\left(\mathrm{V}_{1}+15-\mathrm{V}_{2}\right) / 0.25\right] \\
& 100=5 \mathrm{~V}_{1}+4\left(\mathrm{~V}_{1}+15-\mathrm{V}_{2}\right) \\
& 100=5 \mathrm{~V}_{1}+4 \mathrm{~V}_{1}+60-4 \mathrm{~V}_{2} \\
& \therefore 9 \mathrm{~V}_{1}-4 \mathrm{~V}_{2}=40 \quad------- \text { Eq. } 1
\end{aligned}
$$

1 Mark
By KCL at node V_{2},

$$
\begin{aligned}
& \left(\mathrm{V}_{1}+15-\mathrm{V}_{2}\right) / 0.25=\left(\mathrm{V}_{2} / 0.1\right)+5 \\
& 4\left(\mathrm{~V}_{1}+15-\mathrm{V}_{2}\right)=10 \mathrm{~V}_{2}+5 \\
\therefore & 4 \mathrm{~V}_{1}+60-4 \mathrm{~V}_{2}-10 \mathrm{~V}_{2}=5 \\
\therefore & 4 \mathrm{~V}_{1}-14 \mathrm{~V}_{2}=-55 \quad-------------- \text { Eq. } 2
\end{aligned}
$$

1 Mark

Solving eqns 1 and 2,
$\mathrm{V}_{1}=7.09 \mathrm{~V}$
1 Mark
$\mathrm{V}_{2}=5.95 \mathrm{~V}$

Subject Code : 17323 (ECN)
Model Answer
Page No: 22 of 23

6 d) For RC series circuit:

Impedance Triangle

Labeled
2 Marks

Power Triangle

6 e) The initial and final conditions given are for switching constant direct supplies to the elements (resistor and inductor).

For Resistor

Initial condition:
According to ohm's law; the relationship between voltage and current, is given by,

$$
v=\mathrm{i} . \mathrm{R}
$$

This equation is time independent equation as R is a constant. Thus the current changes instantaneously as soon as the voltage changes or vice versa. That means initial condition at time $t=0$ is same as that exists then. Hence if at $t=0$ voltage v is applied the initial current will be v / R at $\mathrm{t}=0^{+}$.

Final Condition:

As ratio of voltage to current is a constant $(=R)$ at $t=\infty$; and there is no change in the value of resistor. Hence if at $t=\infty$, for voltage existing the current will be v / R again.

For Inductor:

Initial condition:
By definition of inductor it opposes any change in current in it, hence for any new circuit conditions imposed on it by switching DC it opposes it and behaves as open circuit for the change (switching). Thus the initial condition in an inductor is same

Subject Code : 17323 (ECN)
condition that exists before switching. (that is open circuit for new switching)

Final Condition:

After a long time has elapsed when switching has been done, $t=\infty$, Voltage across inductor becomes zero as supply current is constant $\left(\mathrm{di}=0\right.$, from $\left.\mathrm{V}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt}\right)$. This means it act as short circuit.

6 f)

Fig. Waveform when current lags voltage by 30°

2 Marks

Fig. Waveform when current leads voltage by 30°

[^0]: Power Triangle

