

Summer – 2014 Examinations <u>Model Answer</u>

Page No: 1 of 23

Important Instructions to examiners:

Subject Code : 17323 (ECN)

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept

Summer – 2014 Examinations				
Subject Code : 17323 (ECN)		: 17323 (ECN)	Model Answer	Page No: 2 of 23
1 a)	i)	•	al AC waveform each repetition consi ical negative part is called as one cycle	e
	ii)	Time period : "Time p an AC quantity to com	period is defined as time in seconds for applete one cycle.	waveform of 1 mark
1 b)	Comp we ge	expression is, $i = 10 \text{ sin}$ baring it with, $I = I_m \text{sin}$ but, $I_m = 10, 2 \Pi f_0 = 1$ bulate frequency: $2 \Pi f_0$ $\therefore 2 f_0 = 10$ $\therefore f_0 = 50$	$ \begin{array}{l} n \ (2 \ \Pi \ f_0 \ t) \\ 100 \ \Pi \\ 5_0 = 100 \ \Pi \\ 00 \end{array} $	1 mark
	ii) To cal	Iculate I_{rms} : $I_{rms} = 0.7$ $\therefore I_{rms} = 0.707 \times 10^{-10}$		1 mark
1 c)	an AC cir	cuit.	ned as the ratio of true power and appa	-
1 d)	In case of	of R-L series circuit, pov	wer factor is lagging due to negative sig	gn of Φ . 1 mark

1 e) A parallel circuit has two or more series circuits connected parallel with each other 1 mark across a common pair of nodes as shown in figure. The total current flowing into the parallel combination gets divided in inverse proportion to the impedance value.

1 mark

	3
1 f) There are two components of admittance:i) Conductance(G): It is ratio of resistance(R) and squared impedance(Z2)ii) Susceptance(B):): It is ratio of reactance(X) and squared impedance(Z2)1 ma	
1 g) I g	ks, eled

1 h) The mathematical equation for three phase voltages displaced by 120^{0} is given by,

$V_R = V_m \sin \omega t$	1 mark
$V_{\rm Y} = V_{\rm m} \sin \left(\omega t - 120^0 \right)$	1 muit
$V_{\rm B} = V_{\rm m} \sin \left(\omega t - 240^0 \right)$	1 mark

1 mark

- 1 i) Steps to transform Voltage source to Current source:
 - 1) Calculate equivalent current source as the short circuit current through the voltage source terminals: (I = V / r) 1 mark
 - 2) The Shunt Resistance of current source: ($R_{sh}=r$)
 - 3) Draw the equivalent source.

1 j) Statement of Maximum Power transfer Theorem (for DC circuits): "It states that, the maximum amount of power is delivered to the load resistance when the load resistance is equal to the Thevenin's equivalent source resistance of the

Su	Summer - 2014 Examinationsbject Code : 17323 (ECN)Model Answer	Page No: 4 of 23
	network supplying the power across the load terminals." According to this theorem, condition for maximum power to be transferred is, R_{TH} , where R_{TH} = Thevenin's source resistance across R_L .	$R_L = 2$ marks
1 k)	Statement of Thevenin's Theorem : It states that current flowing through any resistance (referred as load resistance I an active, bilateral circuit can be calculated by Thevenin's theorem as $I_L = V_{th}/(R_{th} + R_L)$ where, V_{th} = the open circuit voltage measured across load terminals by removing the log resistance R_{th} = the Thevenin's equivalent resistance measured across load terminals by	1 mark
	removing the load resistance and replacing all sources by their internal resistance I_L A	es
	Linear active Network	
		1 mark
1 l)	i) At the instant of switching (sudden or abrupt change in circuit condition), inductor (L) opposes the change in current in it and behaves as open circuit	1 mark it.
	ii) At the instant of switching (sudden or abrupt change in circuit condition), capacitor (C) opposes change in voltage across it and behaves as short circ	1 mark cuit.
2 a)	Given equation is, $e = 25 \sin (314 t)$	
	Comparing it with $e = Vm \sin(\omega t)$	
	Amplitude $V_M = 25 V$	1 mark
	RMS value = peak value/ $\sqrt{2}$ = 25/ $\sqrt{2}$ = 17.67 V.	1 mark
	Frequency = $\omega/2\pi = 314/2\pi = 50$ Hz.	1 mark
	Time period = $1/\text{frequency} = 1/50 = 0.02 \text{ sec}$	1 mark

2

Su	bject Code	: 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 6 of 23
2 d)	Formula/	Expression for:		
	1) A	ctive power: $P = VI$	cos (W)	1 mark
	2) R	eactive power: Q = V	VI sin φ. (VAR)	1 mark
	3) A	pparent power: $S = V$	/ I. (VA)	1 mark
	4)			
		Power Factor = $\frac{\text{Act}}{\text{App}}$	tive power (P) parent power (S)	1 mark
2 e)	i)	Its rectangular form	rectangular form, $r = 25 \& \theta = -45^{\circ}$ n is, $Z = 25 \cos 45^{\circ} - j 25 \sin 45^{\circ}$ = (17.67 - j 17.67) ohm	
		Comparing it with Resistance $(R) = 1$	$\Sigma = R + J X$ 17.67 Ω and $X_{C} = 17.67 \Omega$	1 mark
		Taking $f=50$ Hz,		1 Mark
	ii)	$C = 1/(2 \pi x 50 x)$ Given : $Z = 10 - j$	= 1.800×10^{-4} F = 180 μF. 15 Ω	
		· ,	= 10 Ω and X _C = 15 Ω	1 mark
		$Xc = 1/(2\pi fC), C = C = 1/(2\pi x 50 x 15)$	$= 1/(2\pi f Xc)$ 5) = 2.1231 x 10 ⁻⁴ F = 212.31 µF.	1 mark
2 f)	Given: R i)		$= 60 \times 10^{-6} \text{ F}$, voltage = 230 V, f= 50 Hz	1 mark
	ii)		$(4 + 53.05^{2})$ (25 + 2814.3) Ω	
		= 230 / 9 = 2.5 A.	91.87	1 Mark
	iii)	Power factor $= \cos$	$ \phi = R / Z = 75 / 91.87 = 0.816 lead. $	1 mark
	iv)	Active power = VI	$\cos \phi = 230 \times 2.5 \times 0.816$ = 469.2 Watt	1 mark

Summer – 2014 Examinations Model Answer

Page No: 7 of 23

Subject Code : 17323 (ECN)

3 a) Resonance in series RLC circuit:

As the frequency is increased from zero towards higher values at a certain frequency f_0 , $X_L = X_C$ and the net reactance of the circuit becomes zero. This is resonance condition. At resonance the voltages across the inductive reactance and capacitive reactance (X_L and X_C) are equal and opposite in phase.

$$V_L = -V_C$$
 and hence $V_L + V_C = 0$, (phasor addition). 1 mark

Also Z =
$$\sqrt{[R^2 + (X_L - X_C)^2]}$$
 and V = $\sqrt{[V_R^2 + (V_L - V_C)^2]}$

Give $V = V_R$.

Hence the supply voltage applied is across the resistance R, $V = V_R$.

The impedance is minimum at resonance.

Current is max. = $I_0 = V/R$. And is in phase with applied voltage. As $X_L = X_C$, we have $2\pi f_0 L = 1/(2\pi f_0 C)$ which gives us

 $f_0 = 1/[2\pi\sqrt{(LC)}]$. (Where L = coefficient of inductance in henry, and C = 1 mark Capacitance in farads).

1 mark

1 mark

Subject Code : 17323 (ECN)

Summer – 2014 Examinations <u>Model Answer</u>

Page No : 8 of 23

3 b) Compare series and parallel resonant circuits: (any four points)

	Parameter	Series resonant circuit	Parallel resonant ckt	
1	Impedance	minimum = R	maximum = $L/(CR)$	
2	Current	maximum= V/R	minimum = $V/(L/CR)$	
3	Resonant	$f_r=1/[2\pi\sqrt{(LC)}]$	$f_r = (1/2\pi) \{[1/(LC)]-$	1 mark
	frequency		(R^2/L^2)	each point
4	Power factor	Unity	unity	any four =
5	Magnification	Voltage	current	4 marks
6	Q	$(1/R)[1/\sqrt{(LC)}]$	$(1/R)[1/\sqrt{LC})]$	

3 c) Impedance $Z_1 = (8+j6) \Omega = 10 \angle 36.87^0$, Impedance $Z_2 = (4+j4) \Omega = 5.66 \angle 45^0$

لا ₁₂

i) Branch Current (i₁) =
$$V/Z_1$$

= 200 $\angle 0/10\angle 36.87$
= 20 $\angle -36.87^0A$ 1 mark
ii) Branch Current (i₂) = V/Z_2
=200 $\angle 0/5.66\angle 45^0$
35.34 $\angle -45^0A$ 1 Mark
iii) Total Impedance $Z_T = (Z_1 * Z_2) / (Z_1 + Z_2)$
= $(10\angle 36.87 * 5.66 * $\angle 45^0) / ((8 + j6) + (4 + j4))$
= $56.6\angle 81.87 / 15.62 \angle 39.81$
= $3.62 \angle 42.06$ ohm
Total Current $i_T = V / Z_T$
= $200\angle 0/3.62 \angle 42.06$
= $55.25 \angle -42.06 A$ 1 mark
Phasor Diagram$

Su	bject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 9 of 23
3 d)	Soln : $X_L = 2 \pi fL$ = $2\pi * 50 * 0.2$ = 62.8Ω $X_C = 1 / 2\pi fC$ = $2\pi * 50 * 150 * 10^{-6}$ = 21.23Ω $Z = \sqrt{[R^2 + (X_L - X_C)^2]}$ = $\sqrt{[100^2 + (62.8 - 2)]}$ = $\sqrt{[10000 + 1728.00]}$ = 108.29Ω Now, $I = V / Z$	1.23) ²]	
	= 230 / 108.29 = 2.12 A		1 mark
	Power factor = $\cos \Phi = R / Z$ = 100 / 108.29 = 0.923 (lag)		1 Mark
	Power factor is lagging becaus Power consumed by ckt = VI	the $X_L > X_C$ $\cos \Phi = 230 * 2.12 * 0.923 = 450$ Watt	1 mark 1 mark
3 e)	i) Taking i_2 as reference i_3 is leading current and i_1 is lagging cur	-	1 mark 1 mark
	ii) i_1 lags behind i_3 by	$(40+30) = 70^0$	2 marks
3 f)	Sol ⁿ : Total impedance of coil = Series resistance R = V _R /I Now, total $ Z = [(R + R_L R_L & X_L = resistance & reactar Z ^2 = (R + R_L)^2 + X_L^2$ $\therefore 22^2 = (15 + R_L)^2 + X_L^2$ $\therefore 484 = 225 + 30 R_{L+} R_L^2 + X_L^2$	$I = 150 / 10 = 15 \Omega$ $D^{2} + X_{L}^{2}],$ acc of coil respectively, X_{L}^{2} $X_{L}^{2} = Z_{L}^{2} \text{ where } Z_{L} \text{ is impedance of coil}$ / 10	= 10A.

Subiect Code	S: 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No : 10 of 23
~			
	$259 = 30R_{L} + (2)$	$(14.62)^2$	
	$30R_{L} = 45.2556$,	
i)	$R_L = 1.51 \overline{\Omega}$		1 Mark
		_	
Now,	$X_{\rm L} = \sqrt{(Z_{\rm L}^2 - R_{\rm L}^2)^2}$		
	$=\sqrt{[(14.62)]}$		
	$=\sqrt{(213.74)}$	- 2.28)	
	= 14.54 Ω		
Now,	$X_{\rm L} = 2 \pi f L$		
ii)	,	$X_{\rm L} / (2 \pi f) = 14.54 / (2\pi * 50).$	
	= 0.0463 H		1 Mark
iii)	Power consumed by co	$\mathbf{x} = \mathbf{I}^2 \mathbf{x} \mathbf{D}$	
111)		$^{2} * 1.51$	
	10	1 watt	1 Mark
	- 15	1 watt	1 Wurk
iv)	P.F. of total circuit = R		
,	= 15 / 22		
	= 0.68 (lag)		1 Mark

4 a) Compare three phase system with single phase system (4 points)

Sr.	Parameter	Single Phase	Three Phase	
No.		System	System	Any four
1	Line Voltage	Low(230)	High(415V)	
2	Transmission Efficiency	Low	High	points 1 Mark fo
3	Size of machine to produce same output	Larger	smaller	each point
4	Cross sectional area of conductors (for equal power)	Larger	smaller	
5	Application	Domestic, small power application	Industrial large power applications	
6	No. of conductors	Two	Three or four	1

4 b) Given : $R = 15\Omega$, L = 0.03H, $V_L = 440V$, 50 Hz.

Soln : For delta connected load,

 $V_{ph} = V_L = 440 \ V$

 $Z_{ph} = R + jX_L$

 $= 15 + j(2\pi * 50 * 0.03)$

Subject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 11 of 23
= 15 +	j(9.42)	
	$3 \angle 32.13^{0}$	
i) Now, $I_{ph} = V_{ph} / Z$	Z _{ph}	
	$(17.713 \angle 32.13^{0})$	
= 24.84	$\angle -32.13^{\circ}$	1 Mark
ii) $I_L = \sqrt{3} * I_{ph}$		
$=\sqrt{3} * 2$		
= 42.95	A	1 Mark
iii) Power consumed = $P = \sqrt{1}$	$3 V_L I_L \cos \phi$	1 Wark
= \	/3 * 440 * 42.95 * cos(32.13)	
= 2	27722 watt = 27.722 kW	1 Mark
iv)		
$\phi = 32.13 \text{ degrees}$	I _{BR}	Labeled phasor diagram 1 Mark

Sul	bject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 12 of 23
4 c)	Given: $Z_{ph} = (17.32 + j10)\Omega$, 3Φ ,	f=50Hz, V_L =400V, Star connection.	
	Solution: $Z_{ph} = \sqrt{(17.32^2 + 10^2)} = V_{ph} = V_L / \sqrt{3} = 400 / \sqrt{3} = 230.94$ $I_{ph} = V_{ph} / Z_{ph} = 230.94 / 20 = 11.000$	V	1 Mark
	Now, i) $\cos \Phi = R / Z_{ph}$ ii) Power consume	d = 17.32/20 = 0.866 $d = 3 V_{ph} I_{ph} \cos \Phi = 3 * 230.94 * 11.55 * 0.866$ = 6929.79 W	66 1 Mark
	iii)For delta connection, V _{ph} = Power consur	$V_{L} = 400V$ $I_{ph} = V_{ph} / Z_{ph} = 400/20 = 20A$ $med = 3 V_{ph} I_{ph} \cos \Phi$ $= 3 * 400 * 20 * 0.866$	1 mark
		= 20784 W	1 Mark
4 d)	1 R2 R2 R3 2 R3 3	PIZHT ZZP31 ZZP31 SO	
	We write expressions for equiv	valent resistances between corresponding termin	hals of
	the two networks and proceed.		
	Resistance between 1 and 2		
	for star = $R_1 + R_2$ = (for delta)	$) = \frac{R_{12} (R_{23} + R_{31})}{(R_{12} + R_{23} + R_{31})} \qquad(1)$	

Resistance between 2 and 3

for star =
$$R_2 + R_3 = ($$
 for delta $) = \frac{R_{23} (R_{12} + R_{31})}{(R_{12} + R_{23} + R_{31})}$ -----(2)

Resistance between 3 and 1

for star =
$$R_3 + R_1 = ($$
 for delta $) = \frac{R_{31} (R_{12} + R_{23})}{(R_{12} + R_{23} + R_{31})}$ -----(3)

1 mark

Subtracting (2) from (3) we get,

Subject Code : 17323 (ECN) $R_{1} - R_{2} = \frac{R_{12} (R_{31} - R_{23})}{(R_{12} + R_{23} + R_{31})}$ -----(4)Adding (1) and (4) and simplifying we get

$$2R_1 = \frac{2R_{12}R_{31}}{(R_{12} + R_{23} + R_{31})}, \text{ hence } R_1 = \frac{R_{12}R_{31}}{(R_{12} + R_{23} + R_{31})},$$
 1 mark

Similarly $R_2 = \frac{R_{23}R_{12}}{R_{12}+R_{23}+R_{31}}$ $R_3 = \frac{R_{31}R_{23}}{R_{12}+R_{23}+R_{31}}$ -----(5)

From above expressions

$$\frac{R_1}{R_2} = \frac{R_{31}}{R_{23}}, \quad \frac{R_2}{R_3} = \frac{R_{12}}{R_{31}} \text{ and } \quad \frac{R_3}{R_1} = \frac{R_{23}}{R_{12}} \quad -----(6)$$

From (5) $R_{12} = [R_1(R_{12} + R_{23} + R_{31})/R_{31}]$

$$= R_1 \left(\frac{R_{12}}{R_{31}} + \frac{R_{23}}{R_{31}} + 1 \right)$$
 1 mark

Using (6) $R_{12} = R_1 \left(\frac{R_2}{R_3} + \frac{R_2}{R_1} + 1 \right) = \left(\frac{R_1 R_2}{R_3} + R_2 + R_1 \right).$

Similarly we can write,

$$R_{23} = (\frac{R_3R_2}{R_1} + R_2 + R_3)$$
 and $R_{31} = (\frac{R_3R_1}{R_2} + R_3 + R_1)$

4 e) Given circuit is

In loop ABEFA by KVL,

Subject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 14 of 23
$13I_1 + 7I_2 = 15$	(1)	Equations
In loop CBEDC by KVL,		1 and 2 =
$7I_1 + 16I_2 = 10$	(2)	1 Mark,
Solving equations (1) & (2) we	e get	
I ₂ = 0.157 A		
$I_1 = 1.07 A$		1 mark
\therefore current through 7 Ω resistance	e is $I_1 + I_2 = 1.227$ A.	1 Mark
		1 mark
4 f) Given Circuit is $A = I_1 + I_2$	I_2 I_2 I_2 I_2 I_2 I_2 I_2	Students may determine current in any one of the three resistances to which marks will be awarded as given
	$= (V_{\rm C} - V_{\rm B}) / 10 \& I_3 = V_{\rm B} / 30$	
$V_{\rm B} / 30 = [(20 - V_{\rm B}) / 20]$	$[(VC - V_B) / 10]$	
But, $V_A = 20V$ and $V_C =$	= 10V	1 Mark
$V_{\rm B} / 30 = [(20 - V_{\rm B}) / 20]$	$0] + [(10 - V_B) / 10]$	
$2V_B = 3(20 - V_B) + 6$	6 (10 - V _B)	
$2V_{\rm B} = 60 - 3V_{\rm B} + 60$	$0-6V_{\rm B}$	

• Current in 10Ω resistance is,

 $V_{B} = 10.91 V$

 $11V_{B} = 120$

$$I_2 = (V_C - V_B) / 10$$

= (10 - 10.91) / 10
= -0.091A

Negative sign indicates that the actual direction of this current is opposite to that we assumed. OR

2 Marks

Subject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 15 of 23
• Current in 30 ohm = $I_3 = V$	$T_{\rm B}/30 = 10.91/30 = 0.3636$ A. OR	2 marks
• Current in 20 ohm = $I_1 = (2$	20-10.91)/20 = 0.4545 A.	2 marks
5 Attempt any two		16 marks
5 a)	Ine voltage ven voltage ven voltage ven voltage ven voltage ven voltage ven voltage voltage	Labeled phasor diagram 2 Marks
Let $V_R = V_{m(ph)} Sin\omega t$		
Where $V_{m(ph)}$ denotes the j	peak phase voltage.	
Hence $V_Y = V_{m(ph)} \sin (\omega t \cdot$	- 120 ⁰)	1 Mark
Convert V_R and V_Y into the	neir rectangular form to get,	
$V_R = V_m + j0$		
And $V_{\rm Y} = (V_{\rm m} \cos 120^0 - j)^2$	j V _m sin 120 ⁰)	
$= -0.5 V_{\rm m} - j 0.$	866 V _m	1 Mark
$V_{RY} = V_m + j0 - (-0.5)$	5 V _m –j 0.866 V _m)	
$= (1.5 V_{\rm m} + j 0.86)$	6 V _m) volts	1 Mark
Converting into polar form	n we get.	
$V_{RY} = \sqrt{3} V_{m (ph)} \angle 30$	0 ⁰ volts	1 Mark
The current passing throug	gh any branch of the star connected load is called	as the
phase current. The current	passing through any line R, Y, B is called as the	
current.		1 Mark

Su	bject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No : 16 of 23
 As current flowing through each line is equal to the current flowing through the corresponding branch, the line current is equal to the phase current. ∴ For Star Connected Load I_L = I_{ph} 			
5 b)	Statement of superposition theory	r	1 Walk
	sources, the response (current) i	ates that, in any linear network contain n any element is equal to the algebraic ing alone, while other sources are remo	sum of currents 3 Marks

their internal resistances in place.

Procedural steps to find current in given circuit :

Step 1: Remove E_2 and keep only its internal resistance r_2 in circuit.

Using any relevant method determine I' as follows;

$I_1 = E_1/[r_1 + r_2R/(r_2 + R)]$ and	1 mark
$I' = I_1 r_2 / [r_2 + R].$	1 mark

Step 2: Remove E_1 and keep only its internal resistance r_1 in circuit.

Using any relevant method determine I" as follows;

$$I_2 = E_2/[r_2 + r_1R/(r_1 + R)]$$
 and 1 mark
 $I'' = I_2 r_1/[r_1 + R].$ 1 mark

Step 3: Add algebraically the branch currents obtained due to individual sources to

т тпагк

Sub	oject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No : 17 of 23
	obtain combined effect of the	e both sources $I = I' + I''$.	1 mark
5 c)	and/or current source can be current source and equivalen	m : re, resistive network containing one or more replaced by any equivalent circuit containing t conductance (resistance across the current s e (Norton's source) I_N = the short curcuit cur	g a single source). 1 mark
	between the load terminals w internal reistances.	G_N (or R_N) is the conductance (or resistance) with the load removed and sources replaced by current through it is $I_L = I_N R_N / (R_N + R_L)$.	
	Given circuit is,		
	Part I) to obtain value of I_N = Let us short circuit the		1 Mark
	Due to	redundant branch, circuit reduces to,	
	10 V	6-2 3 7-2 	
	$R_{\rm T} = [(6*7) / (6+$. ' . $R_{\rm T} = 9.23\Omega$	7)] + 6	

Subject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 18 of 23
. ' . $I_T = 10 / 9.23$ = 1.0834 A . ' . $I_N = I_{sc} = (6 / (6+7))^{\frac{1}{2}}$ = 0.5 A	* 1.0834	1 Mark
Part II) To obtain value of R _N o Ve Hage Source Replaced by Short	r R _{TH}	1 Mark
Two 6 Ω resistance are in para Their equivalent is $R_1 = (6^{\circ})^{\circ}$ $= 3\Omega$ 7 Ω resistance is in series with . ' . their equivalent is, $R_{Th} = (10 * 12) / (10 + 12)$ $= 5.45\Omega$	* 6) / (6 + 6)	1 Mark

Part III) Norton's equivalent circuit can be drawn as,

1 Mark

16 marks

By current division rule, current through 4Ω resistance is given

$$I_{L} = [5.45 / (5.45 + 4)] * 0.5$$

= 0.288 A

6 Attempt any four.

6 a) Given circuit is,

Summer – 2014 Examinations <u>Model Answer</u>

Page No: 19 of 23

 \therefore circuit reduces to,

Subject Code : 17323 (ECN)

. '. By voltage division rule,

$$V_{OC} = V_{TH} = 24 \text{ x } 7 \text{ / } (7+4)$$

= 15.27 V

Part 2) Find R_{TH}

 4Ω and 7Ω resistances are in parallel, Their equivalent is,

$$R_{P} = (4 * 7) / (4 + 7)$$

= 2.545Ω
5Ω resistance is in series with this combination,
. '.R_{TH} = 5 + 2.545
= 7.545Ω

Part 3) Application:

. ' .
$$I_L = V / R_{Total}$$

= 15.27 / (7.545 + 10)
= 15.27 / 17.545
= 0.87 A

1 Mark

Subject Code : 17323 (ECN)

Summer – 2014 Examinations <u>Model Answer</u>

Page No : 20 of 23

Step 1) Using 5 V source only,

 $6\Omega \& 2\Omega$ resistance are in parallel,

:. $R_P = (6 \ x \ 2) / (6 + 2)$ = 1.5 Ω

 2Ω resistance is in series with R_P ,

$$\therefore \qquad R_{\text{Total}} = 2 + 1.5 \\ = 3.5\Omega$$

 $\therefore \text{ Total current is,} \\ I_T = V / R_{Total} \\ = 5 / 3.5 \\ = 1.428 \text{ A} \\ \text{By current division rule, current through } 6\Omega \text{ is,} \\ I_L' = [2 / (2+6)] * 1.428 \\ = 0.357 \text{ A} \\ \end{array}$

Step 2): Keeping only 7 V source,

 2Ω and 6Ω resistance are in parallel.

:.
$$R_P = (6*2) / (6+2)$$

= 1.5 Ω

 2Ω resistance is in series with R_P

$$\therefore R_{\text{Total}} = 2.1.5$$

$$= 5.322$$

 \therefore Total current = V / R_{Total}

6

Subject Code : 17323 (ECN)	Summer – 2014 Examinations <u>Model Answer</u>	Page No: 21 of 23
= 7 / 3.5 = 2A By current division rule, current	ent through 6 Ω resistance is,	
$I''_{L} = [2 / (2+6)] * I_{Total}$ = (2 / 8) * 2 = 0.5 A		1 Mark
	h 6Ω resistance, according to superposition	theorem
is, $I_L = I'_L + I''_L$ = 0.357 + 0.5 = 0.857A		2 Marks
c) 100A (1) 100A (1) 100A (1) 100A (1)	$\begin{array}{c c} 15 V & V_2 \\ \hline \\ 1 & V \\ \hline \\ 52 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
By KCL at node V ₁ ,		
$100 = (V_1 / 0.2) + [(V_1 + 100) = 5V_1 + 4 (V_1 + 15) + 100 = 5V_1 + 4V_1 + 60 - 100 = 5V_1 - 4V_2 = 40$	$-V_2$) $4V_2$	1 Mark
By KCL at node V ₂ ,		
$(V_1 + 15 - V_2) / 0.25 = (V_1 + 15 - V_2) = 10 V_2 + 4V_1 + 60 = 4V_2 = 10V_2 = 5$	- /	
$\therefore 4V_1 + 60 - 4V_2 - 10V_2 = 5$ $\therefore 4V_1 - 14V_2 = -55 \qquad$	Eq.2	1 Mark
Solving eqns 1 and 2,		
$V_1 = 7.09 V$ $V_2 = 5.95 V$		1 Mark 1 Mark

- Power Triangle
- 6 e) The initial and final conditions given are for switching constant direct supplies to the elements (resistor and inductor).

For Resistor

Initial condition:

According to ohm's law; the relationship between voltage and current, is given by,

v = i.R

This equation is time independent equation as R is a constant. Thus the current changes instantaneously as soon as the voltage changes or vice versa. That means 1 Mark initial condition at time t = 0 is same as that exists then. Hence if at t = 0 voltage v is applied the initial current will be v/R at $t = 0^+$.

Final Condition:

As ratio of voltage to current is a constant (= R) at $t = \infty$; and there is no change in the value of resistor. Hence if at $t = \infty$, for voltage existing the current will be v/R again.

For Inductor:

Initial condition:

By definition of inductor it opposes any change in current in it, hence for any new circuit conditions imposed on it by switching DC it opposes it and behaves as open circuit for the change (switching). Thus the initial condition in an inductor is same

1 Mark

Summer – 2014 Examinations <u>Model Answer</u>

Page No: 23 of 23

Subject Code : 17323 (ECN)

condition that exists before switching. (that is open circuit for new switching)

Final Condition:

After a long time has elapsed when switching has been done, $t = \infty$, Voltage across inductor becomes zero as supply current is constant (di = 0, from V_L = Ldi/dt). This means it act as short circuit.

6 f)

2 Marks

1 Mark

Fig. Waveform when current lags voltage by 30°

2 Marks

Fig. Waveform when current leads voltage by 30°