MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :1 of $\mathbf{2 9}$
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :2 of $\mathbf{2 9}$
1 Attempt any TEN of the following.
1 a) Define cycle and time period of an alternating quantity.
Ans-
(i) Cycle:A complete set of positive and negative values of an alternating

01 mark quantity is termed a cycle.
(ii) Time period: The time taken by an alternating quantity to complete one cycle is called time period.

It is given by: (if $\mathrm{f}=$ frequency in Hertz)

$$
\mathrm{T}=\frac{1}{\mathrm{f}} \text { seconds }
$$

1 b) Write down the units of R, L and G.
Ans-

R	$\operatorname{Ohms}(\Omega)$
L	Henry (H)
G	Mho or Siemens ($\delta)$

$1 / 2$ mark
1/2 mark
01 mark
1 c) Define impedance of A.C. circuit and state its unit.
Ans-
Impedance- It is combined effect produced by the resistance, inductive reactance and capacitive reactance in the AC circuit.

01 mark
Unit- ohms (Ω)
1 d) Define quality factor of series AC circuit.
Ans-
Quality factor-It is the voltage magnification in series circuit or ratio
02 mark
Of V_{C} / V or V_{L} / V.
1 e) What is admittance of parallel A.C. circuit? State its unit.
Ans:
Admittance-for parallel AC circuit it is $Y=\sum \frac{1}{Z r}$ siemens, $\mathrm{z}_{\mathrm{r}}=\mathrm{r}^{\text {th }}$ impedance in 01 mark parallel. where $r=1,2,3 \ldots, n$
Unit - Siemens or mho
1 f) Define conductance and susceptance in case of parallel circuit.
Ans:
Conductance (G) -It is defined as the real part of the admittance (Y). It is also defined as the ability of the purely resistive circuit to pass the alternating current.

It is also defined as the ratio of resistance to the square of the impedance.
In general, conductance $(G)=\frac{R}{Z^{2}}$ siemens
Susceptance (B):It is imaginary part of the admittance (Y). It is defined as the ability of the purely reactive circuit (purely capacitive or purely inductive) to pass alternating current.
or
It is also defined as the ratio of reactance to the square of the impedance.

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :3 of $\mathbf{2 9}$
In general, Susceptance $(B)=\frac{X}{Z^{2}}$ siemens
1 g) Define unbalanced three phase load.
Ans:
If impedances of one or more legs of a three phase load are different from other legs in respect of magnitude and their nature, it is said to be an unbalanced three phase load. i.e. magnitude of voltages and resulting currents are different either in phase or magnitude or both phase \& magnitude.

1 h) Write down relation between line and phase values of voltages and currents in three phase star connected system.
Ans-
Relation between Line voltage \& phase voltage - $V_{L}=\sqrt{3} * V_{p h}$
Relation between Line current \& phase current $-I_{L}=I_{p h}$
1 i) How current source can be converted into equivalent voltage source?

- Given practical current source will be as below-

Given current source

equivalent voltage source

- Find magnitude of equivalent voltage source $v=I x R_{\text {sh }}$

01 mark

- Find magnitude of internal resistance of equivalent voltage source as $R_{s}=$ $\mathrm{R}_{\text {sh. }}$
- From computed parameters we can get equivalent voltage source.

1 j) Sate Thevenin's theorem.
Ans:
Statement- Any linear bilateral complex circuit can be represented by a simple equivalent circuit consisting of a single voltage source in series with a resistance, where the source voltage $\left(\mathrm{V}_{\mathrm{TH}}\right)$ is equal to the open circuit voltage appearing across the load terminals when load is removed and the series resistance $\left(\mathrm{R}_{\mathrm{TH}}\right)$ is equal to the equivalent resistance of the circuit seen between the load terminals, when voltage sources are replaced by short circuit and current sources are replaced by open circuit (the internal source impedances remaining in circuit).

1 k) Find Z_{L} to transfer maximum amount of power from source to load in fig.A

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :4 of $\mathbf{2 9}$

Fig. A

Ans-

Open Z_{L} and find $\mathrm{Z}_{\mathrm{TH}}=1+(2+\mathrm{j} 3)=3+\mathrm{j} 3 \Omega$
In $A C$ circuit, to deliver maximum amount of power to the load impedance, the load impedance $\left(\mathrm{Z}_{\mathrm{L}}\right)$ must be complex conjugate of Z_{TH}. Therefore, $\mathrm{Z}_{\mathrm{L}}=(3-\mathrm{j} 3) \Omega$ for maximum power transfer.

1 1) State the behavior of pure L at the time of switching.
Ans:
i) At the instant of switching (i.e. at $t=0$) the inductor acts as open circuit opposing any change in circuit current
ii) At $t=\infty$ the inductor acts as short circuit.

2 Attempt any FOUR of the following.
2 a) Explain the response of A.C. supply to pure inductance; draw wave diagram for the same.

Ans-

Above fig shows purely inductive circuit.
Let $\mathrm{i}=\operatorname{Im} \operatorname{Sin} \omega \mathrm{t}$. \qquad ..(1)
Then voltage across inductor is given by; $\mathrm{v}=-($ indued emf $)$

$$
\mathrm{e}=-\left(-\mathrm{L} \cdot \frac{\mathrm{di}}{\mathrm{dt}}\right) \text { by definition }
$$

$\therefore \mathrm{v}=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}\right)$
$=\mathrm{LI}_{\mathrm{m}} \cdot \omega \cos \omega \mathrm{t}$
$=\mathrm{I}_{\mathrm{m}} \omega \mathrm{L} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right)$

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}+\frac{\pi}{2}\right) \tag{2}
\end{equation*}
$$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :5 of 29
where $-V_{m}=I_{m} \cdot \omega L$

From equation (1) and (2) it is clear that there is phase difference of $\varphi=$ $\frac{\pi}{2} \mathrm{rad}=90^{\circ}$ lagging. i.e. the current ' i ' lags behind applied voltage ' v ' by 90°.

Waveform-

01 mark
each definition 1/2 mark = 1.5 mark

Reactive Power (Q):
Power drawn by the circuit due to reactive component (ISin ϕ) is called as reactive power.
It is given by, $\mathrm{Q}=\mathrm{VI} \sin \phi \mathrm{VAR} \quad($ or kVAR$)$.
equations-1/2 mark $=1.5$ mark
units $=01$ mark

2 c) Draw waveform and vector diagram to show following voltage and current.
$V=100 \sin \omega t$ And $i=4 \sin \left(\omega t-30^{\circ}\right)$

Ans-
Waveform-

Diploma in Engineering: Summer - 2015 Examinations
Subject Code: 17323(ECN)
Model Answer
Page No :6 of $\mathbf{2 9}$

Vector diagram- (only RMC values to be used)
02 marks

If RMS values not shown give only $1 / 2$ mark

2 d) Explain resonance in series AC circuit and also derive equations for resonant frequency for the same.
Ans-
Resonance in series RLC circuit-
The series RLC circuit is said to be in electrical resonance when it exhibits unity power factor or the applied voltage and resulting current become in phase with each other.
i.e. at certain frequency X_{L} equal to X_{C} in magnitude.in that case $X=X_{L}-X_{C}=0$ and $\mathrm{Z}=\mathrm{R}$; under this condition circuit behaves as a purely resistive circuit and thus it is said to be in Electrical resonance. It is shown by phasor diagram in below figure.

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :7 of $\mathbf{2 9}$
Equations for resonant frequency-
The frequency at which net reactance of the series circuit is zero is called the resonant frequency $\left(\mathrm{f}_{\mathrm{o}}\right)$.

At resonance; $\boldsymbol{X}_{\boldsymbol{L}}-\boldsymbol{X}_{\boldsymbol{C}}=\mathbf{0}$

$$
\begin{gathered}
\therefore X_{L}=X_{C} \\
\text { or } \quad \omega_{o} L=\frac{1}{\omega_{o} C}
\end{gathered}
$$

$\therefore \omega_{o}^{2}=\frac{1}{L C}$
or $(2 \pi f o)^{2}=\frac{1}{L C}$
or $f o=\frac{1}{2 \pi(\sqrt{L C})}$
2 e) Compare series and parallel circuits on any six points.
Ans-

Sr. no.	Parameter	Series circuit	Parallel circuit
1	Impedance	Minimum $\mathrm{Z}=\mathrm{R}$	Maximum $\mathrm{Z}_{\mathrm{D}}=\mathrm{L} / \mathrm{RC}$
2	Nature of circuit	Resistive	Resistive
3	Power factor	Unity	Unity
4	Current	Maximum $\mathrm{I}_{\mathrm{o}}=\mathrm{V} / \mathrm{R}$	Minimum $\mathrm{I}_{\mathrm{o}}=$ V/Z
5	Type of circuit	Accepter circuit	Rejecter circuit
6	Magnification	Voltage magnification	Current magnification
7	Resonant frequency	$\boldsymbol{f o}=\frac{\mathbf{1}}{\mathbf{2 \pi} \sqrt{\boldsymbol{L C}}}$	$\boldsymbol{f o}=\frac{\mathbf{1}}{\mathbf{2 \pi} \sqrt{\boldsymbol{L C}}}$
8	Q-factor	$\boldsymbol{Q}=\frac{\mathbf{1}}{\boldsymbol{R}} \sqrt{\boldsymbol{L}}$	$\boldsymbol{Q}=\frac{\mathbf{1}}{\boldsymbol{C}} \sqrt{\frac{\boldsymbol{L}}{\boldsymbol{C}}}$

$1=2 \mathrm{pts} 1$ mark,

3-4 pts 2 marks,
$5 \mathrm{pts}=3$ marks,
$6 \mathrm{pts}=4$ marks.

2 f) State any four advantages of polyphase circuits over a single phase circuits.
Ans-
Advantages of polyphase circuits over single phase circuits:

- Balanced polyphase systems are most efficient ones for transmission \& distribution.
- For equal power to be transmitted polyphase systems require less copper.

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :8 of 29

- For equal power to be transformed polyphase transformers are less in weight i.e Any four save materials.
- The problem of heavy neutral currents (due to single phase loads) can be points $=04$ overcome only in polyphase systems by load balancing.
- Polyphase induction motors are self-starting, whereas single phase induction motors are not self-starting machines unless provided with an extra starting winding.
- Polyphase motors have higher efficiency as compared to single phase motors.
- Poly phase motors have better power factor.
- Polyphase machines are very suitable for huge power applications whereas single phase ones are unsuitable.
- The size of polyphase motors is small as compared to single phase motors of same rating.
- Polyphase system is much cheaper with regards to generation of power and its transmission and distribution compared to a single phase system.

3 Attempt any two
3 a) A coil of resistance 50Ω and inductance of 0.1 H is connected in series with $100 \mu \mathrm{f}$ capacitor. A combination is supplied with 230 volt 50 Hz AC supply. Calculate voltage across each, current through the circuit, power factor \& draw complete vector diagram.

Solution- Given- $\mathrm{R}=50 \Omega, \mathrm{~L}=0.1 \mathrm{H}, \mathrm{C}=100 \mu \mathrm{f}, \mathrm{V}=230 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$

$$
X_{L}=2 \pi f L=2 \pi * 50 * \mathbf{0 . 1}=31.41 \Omega \quad 01 \text { mark }
$$

$$
X c=\frac{1}{2 \pi f C}=\frac{1}{2 \pi * 50 * 100 * 10^{-6}}=31.83 \Omega
$$

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) \\
& =50+\mathrm{j}(31.41-31.83) \\
& \mathrm{Z}=50-\mathrm{j} 0.42 \Omega \\
& \boldsymbol{Z}=\mathbf{5 0} \angle-\mathbf{0 . 4 8}{ }^{\circ} \Omega
\end{aligned}
$$

Current through circuit;
$I=\frac{V}{Z}=\frac{230 \angle 0^{0}}{50 \angle-0.48{ }^{\circ}}$
$I=4.6 \angle 0.48^{\circ} \mathrm{Amps}$
Voltage across each element -
$\mathrm{V}_{\mathrm{R}}=\mathrm{IR}=14.6 \mathrm{X} 50=230 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}=\mathrm{IX}_{\mathrm{L}}=4.6 \mathrm{X} 31.41=144.48 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}=\mathrm{IX}_{\mathrm{C}}=4.6 \mathrm{X} 31.83=146.41 \mathrm{~V}$
连-1.

Vector diagram-

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer

01 mark

01 Mark
Phase current-

$$
I p h=\frac{V p h}{Z p h}=\frac{200 \angle 0}{8.60 \angle 54.46}=23.25 \angle(-54.46) A
$$

Line current-

$$
I_{L}=\sqrt{3} X I p h=\sqrt{3} * 23.25=40.27 A
$$

01 mark

Power Factor-

$$
\operatorname{Cos} \varphi=\frac{R}{Z p h}=\frac{5}{8.60}=0.58 \mathrm{lag}
$$

01 Mark

Total Power absorbed-

$$
P=\sqrt{3} * V_{L} * I_{L} * \operatorname{Cos} \varphi=\sqrt{3} * 200 * 40.27 * 0.58=8090.96 \text { watts }
$$

Vector Diagram-
For vector diagram: $\mathrm{V}_{\mathrm{RY}}=\mathrm{V}_{\mathrm{YB}}=\mathrm{V}_{\mathrm{BR}}$; phase currents are $\left|\mathrm{I}_{\mathrm{R}}\right|=\left|\mathrm{I}_{\mathrm{Y}}\right|=\left|\mathrm{I}_{\mathrm{B}}\right|$ line currents are $\left|\left(I_{R}-I_{B}\right)\right|=\left|\left(I_{B}-I_{Y}\right)\right|=\left|\left(I_{Y}-I_{R}\right)\right|$.
Phase power factor angle $=\emptyset=54.46$ lag.

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :10 of 29

Phasor diagram 02 mark

3 c) Find current through impedance $3+\mathrm{j} 5$ using superposition theorem in the following circuit,

Ans:
Case-1) consider $200 \angle 30^{\circ}$ V, source acting alone:

01 mark
$\mathrm{Z}_{1}\left\|\mathrm{Z}_{2}=(3+\mathrm{j} 5)\right\|(5-\mathrm{j} 6) \Omega=\frac{(3+j 5) X(5-j 6)}{(3+j 5)+(5-j 6)}$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer

$$
=\frac{\left(5.83 \angle 59.03^{0}\right)\left(7.81 \angle-50.19^{0}\right)}{8-j 1}
$$

$$
=\frac{45.53 \angle 8.84}{8.06 \angle-7.12}
$$

$$
=5.64 \angle 15.96 \Omega
$$

$$
\mathrm{Z}_{\mathrm{eq}}=\mathrm{Z}_{3}+\left(\mathrm{Z}_{1} \| \mathrm{Z}_{2}\right)
$$

$$
=(4+\mathrm{j} 8)+(5.64 \angle 15.96)
$$

$$
=(4+\mathrm{j} 8)+(5.42+\mathrm{j} 1.55)
$$

$$
=9.42+\mathrm{j} 9.55
$$

$$
\begin{gathered}
\text { Zeq }=13.41 \angle 45.39^{0} \\
I=\frac{V}{Z_{e q}}=\frac{200 \angle 30^{0}}{13.41 \angle 45.39^{0}} \\
I=14.91 \angle-15.39^{0}
\end{gathered}
$$

Using current division rule-
Current through ($\mathbf{3}+\mathbf{j} \mathbf{5}$)

$$
I_{L}^{\prime}=I * \frac{Z_{2}}{Z_{1}+Z_{2}}=14.91 \angle-15.39^{0} * \frac{5-j 6}{(3+j 5)+(5-j 6)}
$$

$$
I_{L}^{\prime}=\mathbf{1 4 . 4 4} \angle-\mathbf{5 8 . 4 6} \mathbf{}^{\mathbf{0}} \boldsymbol{A}=(7.55-\mathrm{j} 12.3) \mathrm{A}
$$

Correct $\mathrm{I}_{\mathrm{L}}{ }^{\prime}=$ 02 mark

Case II) Consider $\mathbf{1 0 0} \angle \mathbf{0}^{\mathbf{0}}$ source acting in network

01 mark

$$
Z_{1} \| Z_{3}=\frac{(3+j 5) *(4+j 8)}{(3+j 5)+(4+j 8)}=\frac{\left(5.83 \angle 59.03^{0}\right)\left(8.94 \angle 63.43^{0}\right)}{14.46 \angle 61.7}
$$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)

Model Answer

Page No :12 of 29
$=\frac{\left(52.12 \angle 122.46^{0}\right)}{\left(14.76 \angle 61.7^{0}\right)}$

$$
Z_{1} \| Z_{3}=3.6 \angle 60.77^{\circ}
$$

$$
Z_{e q}=Z_{2}+\left(Z_{1} \| Z_{3}\right)
$$

$$
Z_{e q}=(5-j 6)+\left(3.53 \angle 60.77^{0}\right)
$$

$$
Z_{e q}=(5-j 6)+(1.76+j 3.14)
$$

$$
Z_{e q}=(6.76-j 2.86)
$$

$$
Z_{e q}=7.34 \angle-22.9^{0}
$$

$$
I=\frac{V}{Z_{e q}}=\frac{100 \angle 0^{0}}{7.34 \angle-22.9^{0}}=13.62 \angle 22.9^{0}
$$

Using current division rule-
Current through $3+\mathrm{j} 5$,

$$
\begin{aligned}
& \quad I^{\prime \prime}{ }_{L}=I * \frac{Z_{3}}{Z_{1}+Z_{3}}=\left(13.62 \angle 22.9^{0}\right) * \frac{(4+j 8)}{(3+j 5)+(4+j 8)} \\
& =\quad 13.62 \angle \mathbf{2 2 . 9} * \frac{8.94 \angle 63.43}{7+j 13} \\
& =\quad \frac{121.76 \angle 86.33}{14.76 \angle 61.69} \\
& I_{L}{ }^{\prime \prime}=8.25 \angle 24.64^{\circ}=(7.5+\mathrm{j} 3.44) \mathrm{A} .
\end{aligned}
$$

Correct $\mathrm{I}_{\mathrm{L}}{ }^{\prime}{ }^{\prime}=$ 02 mark

Current through load impedance,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{L}} \prime \\
& =(14.44 \angle-58.46)+(8.25 \angle 24.64) \\
& =(7.55-\mathrm{j} 12.30)+(7.5+\mathrm{j} 3.44) \\
\mathrm{I}_{\mathrm{L}} & =15.05-\mathrm{j} 8.86 \mathrm{~A} .
\end{aligned}
$$

$$
1 \text { mark }
$$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :13 of 29

Given $\quad V_{m}=100 \mathrm{volt}, T=20 \mathrm{~ms}$
i) $\quad f=\frac{1}{T}$

$$
=\frac{1}{20 X 10^{-3}}=50 H z
$$

01 mark
ii) $\quad V_{r m s}=\frac{V_{m}}{\sqrt{2}}$

$$
=\frac{100}{\sqrt{2}}=70.71 \text { volt }
$$

iii) $\quad V_{a v g}=2 \frac{V_{m}}{\pi}$

$$
=2 \frac{100}{\pi}=63.60 \text { volt }
$$

iv) Amplitude $-V_{m}=100$ volt

4 b) A series circuit consisting of $\mathrm{R}=100 \Omega$ and $\mathrm{C}=200 \mu \boldsymbol{F}$ connected across 200 V , 50 Hz supply. Calculate $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{c}}, \mathrm{I}$ and power absorbed by the circuit.

Solution-
Given- $R=100 \Omega, C=200 \mu F, V=200$ volt, $f=50 \mathrm{~Hz}$

$$
\begin{array}{cc}
X_{c}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi * 50 * 200 * 10^{-6}}=15.91 \Omega & \\
Z=\sqrt{R^{2}+X_{c}^{2}}=\sqrt{100^{2}+15.91^{2}}=101.25 \Omega \\
I=\frac{V}{Z}=\frac{200}{101.25}=1.975 \text { Amp } & \\
& \\
V_{R}=I R=1.975 * 100=197.5 \text { volt } & 01 \mathrm{mark} \\
V_{c}=I X_{c}=1.975 * 15.91=31.42 \text { volt } & 01 \mathrm{mark} \\
& 01 \mathrm{mark}
\end{array}
$$

$\cos \emptyset=\frac{R}{Z}=\frac{100}{101.25}=0.981$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
$P=V I \cos \varnothing$

$$
P=200 * 1.975 * 0.981=387.495 \text { watt }
$$

4 c) Calculate current I_{1}, I_{2} and Total current I in the circuit shown fig.(B)

Fig. B
Ans:

$$
\begin{gathered}
Z_{1}=4+j 5=6.40 \angle 51.34^{0} \\
Z_{2}=6-j 8=10 \angle-53.13^{0} \\
I_{1}=\frac{V}{Z_{1}}=\frac{100 \angle 0^{0}}{6.40 \angle 51.34^{0}}=15.625 \angle-51.34^{0} \mathrm{~A} \\
I_{2}=\frac{V}{Z_{2}}=\frac{100 \angle 0^{0}}{10 \angle-53.13^{0}}=10 \angle 53.13^{0} \mathrm{~A}
\end{gathered}
$$

Total I
Now, $Z_{e q}=Z_{1} \| Z_{2}=6.13 \angle 14.92^{0} \Omega$
$I=\frac{V}{Z_{e q}}=\frac{100 \angle 0^{0}}{6.13 \angle 14.92^{0}}=16.31 \angle-14.92^{0}$
Or
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=15.625 \angle-51.34+10 \angle 53.13=16.31 \angle 14.92 \mathrm{~A}$
4 d) Explain how 3 phase emf can be generated? Write voltage equations and the meaning of the phase sequence.

Ans-
Generation of three phase EMF-

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer

Diagram $=01$
mark

Above fig shows a 2-pole, stationary armature, rotating field type three phase alternator. It has three armature coils aa', bb' and cc' displaced 120 degree from one another. With present position and clockwise rotation of the poles as indicated in fig. it is found that the emf induced in conductor ' a ' for coil aa' is maximum. The emf in conductor ' b ' of coil bb' would be maximum when the N - pole has turned through 120 degree i.e. when N-S axis lies along bb'. It is clear that the induced emf in conductor ' b ' reaches its maximum value 120 degree later than the maximum value in conductor ' a '. in the similar manner, the maximum emf induced in conductor ' c ' would occur 120 degree later than in 'b' or 240 degree later than in 'a'.
Thus three coils have three emfs induced in them which are similar in all respect with a time phase difference of 120 degrees with one another.

The instantaneous values of three emfs given by equations-
$e_{a}=E m \sin \omega t$
$\mathrm{e}_{\mathrm{b}}=E \mathrm{Em} \sin \left(\mathrm{wt}-120^{\circ}\right)$
Equations=01
mark
$e_{c}=E m \sin \left(w t-240^{\circ}\right)$
Phase Sequence-
It is the order in which the three phases reach their maximum values. It is shown in below fig. the phase sequence is A-B-C (or say R-Y-B)

Waveforms 01 mark

4 e) A star connected balanced load consumes 1500 watt power when connected to 3phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.If the power factor is $1 / \sqrt{2}$ lagging, Calculate the value of

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :16 of 29
resistance and impedance of each phase.
Ans:
Given-

$$
\begin{aligned}
& P=1500 W \\
& V_{L}=400 \mathrm{~V} \\
& \boldsymbol{F}=\mathbf{5 0 H z} \\
& \cos \phi=\frac{1}{\sqrt{2}}=0.707 \operatorname{lag} \\
& P=\sqrt{3} V_{L} I_{L} \cos \phi \\
& \therefore I_{L}=\frac{P}{\sqrt{3} V_{L} I_{L}}=\frac{1500}{\sqrt{3} X 400 \times 0.707} \\
& I_{L}=3.06 \mathrm{~A} \\
& Z=\frac{V_{p h}}{I_{p h}}=\frac{400}{\sqrt{3} * 3.06}=75.47 \Omega \\
& R=Z \cos \phi=75.47 X 0.707 \\
& R=53.35 \Omega \\
& X_{L}=Z \sin \phi=75.47 X 0.707=53.35 \Omega \\
& X_{L}=\sqrt{Z^{2}-R^{2}}=\sqrt{75.47^{2}-53.5^{2}}=53.35 \Omega \\
& L=\frac{X_{L}}{2 \pi f}=\frac{53.35}{2 \pi X 50}=0.1698 \mathrm{H}
\end{aligned}
$$

or

4 f) Derive the formulae for star to delta transformation
Ans-
Star to delta conversion:
Consider the star connected network as shown in below fig. it will be replaced by the equivalent delta connected network.

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :17 of 29

We write expressions for equivalent resistances between corresponding terminals of the two networks and proceed.

Resistance between 1 and 2

$$
\begin{equation*}
\text { for star }=\mathrm{R}_{1}+\mathrm{R}_{2}=(\text { for delta })=\frac{R_{12}\left(R_{23}+R_{31}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{1}
\end{equation*}
$$

Resistance between 2 and 3

$$
\begin{equation*}
\text { for star }=\mathrm{R}_{2}+\mathrm{R}_{3}=(\text { for delta })=\frac{R_{23}\left(R_{12}+R_{31}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{2}
\end{equation*}
$$

Resistance between 3 and 1

$$
\begin{equation*}
\text { for star }=\mathrm{R}_{3}+\mathrm{R}_{1}=(\text { for delta })=\frac{R_{31}\left(R_{12}+R_{23}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{3}
\end{equation*}
$$

Subtracting (2) from (3) we get,

$$
\begin{equation*}
\mathrm{R}_{1}-\mathrm{R}_{2}=\frac{R_{12}\left(R_{31}-R_{23}\right)}{\left(R_{12}+R_{23}+R_{31}\right)} \tag{4}
\end{equation*}
$$

Adding (1) and (4) and simplifying we get

$$
2 \mathrm{R}_{1}=\frac{2 R_{12} R_{31}}{\left(R_{12}+R_{23}+R_{31}\right)}, \text { hence } \mathrm{R}_{1}=\frac{R_{12} R_{31}}{\left(R_{12}+R_{23}+R_{31}\right)},
$$

Similarly $\quad \mathrm{R}_{2}=\frac{\mathrm{R} 23 \mathrm{R} 12}{\mathrm{R} 12+\mathrm{R} 23+\mathrm{R} 31} \quad \mathrm{R}_{3}=\frac{\mathrm{R} 31 \mathrm{R} 23}{\mathrm{R} 12+\mathrm{R} 23+\mathrm{R} 31}$

From above expressions

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=\frac{R_{31}}{R_{23}}, \frac{R_{2}}{R_{3}}=\frac{R_{12}}{R_{31}} \text { and } \frac{R_{3}}{R_{1}}=\frac{R_{23}}{R_{12}} \tag{6}
\end{equation*}
$$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :18 of 29
From (5) $\quad \mathrm{R}_{12}=\left[R_{1}\left(R_{12}+R_{23}+R_{31}\right) / R_{31}\right]$

Using (6)

$$
\begin{aligned}
= & R_{1}\left(\frac{R_{12}}{R_{31}}+\frac{R_{23}}{R_{31}}+1\right) \\
\text { g (6) } \quad & R_{12}=R_{1}\left(\frac{R_{2}}{R_{3}}+\frac{R_{2}}{R_{1}}+1\right)=\left(\frac{R_{1} R_{2}}{R_{3}}+R_{2}+R_{1}\right)
\end{aligned}
$$

Similarly we can write,

$$
\mathrm{R}_{23}=\left(\frac{R_{3} R_{2}}{R_{1}}+R_{2}+R_{3}\right) \quad \text { and } \quad \mathrm{R}_{31}=\left(\frac{R_{3} R_{1}}{R_{2}}+R_{3}+R_{1}\right) \quad 1 \text { mark }
$$

Attempt any FOUR.
5 a) A series RLC consist of $\mathrm{R}=10 \Omega, \mathrm{~L}=0.2 \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$ supplied with 200 V variable frequency supply. Find

1) Frequency at which the circuits behaves as purely resistive circuit and
2) Quality factor

Ans:

1) Frequency at which the circuits behaves as purely resistive circuit

$$
f o=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{\left(0.2 * 50 * 10^{-6}\right)}}=50.32 \mathrm{~Hz}
$$

2) Quality factor-

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{10} \sqrt{\frac{0.2}{50 * 10^{-6}}}=6.32
$$

5 b) How voltage source can be converted in to equivalent current source? Where it is used? Draw neat diagrams of both the sources.
Ans-
Steps to transform Voltage source to Current source:

1) Calculate equivalent current source as the short circuit current through the voltage source terminals: ($\mathrm{I}=\mathrm{V} / \mathrm{r}$)
2) The Shunt Resistance of current source: ($R_{\text {sh }}=r$)
3) Draw the equivalent source.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :19 of 29
Uses-

- Source transformation is used to find and simplifying a circuit solution when circuit with mixed sources present.
- Source transformation is an application of Thevenin's Theorem and Norton's theorem.

5 c) Find line and phase current through each line of the combination show in fig.C

Fig. C
Solution:
$\mathrm{Zph}=5+\mathrm{j} 6 \Omega$, it is balanced delta connected load.

$$
Z p h=\sqrt{5^{2}+6^{2}}=7.81 \Omega
$$

For delta connected load;
$\mathrm{V}_{\mathrm{L}}=\mathrm{Vph}=400$ Volts
Phase current-

$$
I p h=\frac{V p h}{Z p h}=\frac{400}{7.81}=51.21 \mathrm{~A}
$$

Line current-

$$
I_{L}=\sqrt{3} * I p h=\sqrt{3} * 51.21=88.69 \mathrm{~A}
$$

5 d) Explain Q-factor for parallel RLC circuit.
Ans-
It is defined as the ratio of the current circulating between its two branches to the line current drawn from the supply, or simply current magnification.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :20 of $\mathbf{2 9}$
As seen from above figure circulating current between capacitor \& coil branches is I_{C}.
Hence Q -factor $=\mathrm{I}_{\mathrm{C}} / \mathrm{I}$
Now $\mathrm{I}_{\mathrm{C}}=\mathrm{V} / \mathrm{X}_{\mathrm{C}}=\mathrm{V} /(1 / \omega \mathrm{c})=\omega \mathrm{cV}$
And $\mathrm{I}=\mathrm{V} / \mathrm{Z}_{\mathrm{D}}=\mathrm{V} /(\mathrm{L} / \mathrm{CR})=\mathrm{VCR} / \mathrm{L}$
Therefore $Q-$ factor $=\frac{\omega c V}{\frac{V C R}{L}}=\frac{\omega L}{R}=\frac{2 \pi f o L}{R}$
Since, $f o=\frac{1}{2 \pi \sqrt{L C}}$
Substituting, fo in above equation of Q -factor we get;

$$
Q-\text { factor }=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

5 e) Using Norton's theorem find current through R_{L} in fig.D

Fig. D
Ans:
Step-1) To determine I_{N} -

- Remove Load resistance R_{L} and short circuit load terminals.
- Determine current through short circuited branch using any one of the technique.

Using mesh analysis-
For loop-I
$-6 \mathrm{I}_{1}-3 \mathrm{I}_{1}+26=0$
$9 \mathrm{I}_{1}=26$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2005 Certified)

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :21 of 29
$\mathrm{I}_{1}=2.88 \mathrm{Amp}$
For loop-II
$\mathrm{I}_{2}=-6 \mathrm{~A} . \ldots .$. . (current source exist in second loop so no need to write loop equations)

Current through short circuited branch -

$$
\mathrm{I}_{\mathrm{N}}=\mathrm{I}_{1}-\mathrm{I}_{2}=2.88-(-6)=8.88 \mathrm{Amp}
$$

Step-2) To determine $\mathrm{R}_{\mathrm{TH}}-$

$$
\mathrm{R}_{\mathrm{TH}}=6 \Omega+3 \Omega=9 \Omega
$$

Equivalent diagram-

01 mark

$$
I_{L}=I_{N} * \frac{R_{T H}}{R_{T H}+R_{L}}=8.88 * \frac{9}{9+4}=6.14 \mathrm{Amp}
$$

5 f) Using superposition theorem find current through R_{L} in fig.E

Fig. E

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Solution-
Step-1) consider 10 V source acting in the network.

$5 \| 7=\frac{5 * 7}{5+7}=\frac{35}{12}=2.91 \Omega$

$R e q=10+2.91=12.91 \Omega$
$I=\frac{V}{R e q}=\frac{10}{12.91}=0.7745 \mathrm{Amp}$
Using current division rule-
$I_{L}^{\prime}=0.7745 * \frac{7}{7+5}=0.4517 \mathrm{Amp}$
1 mark

Step-2) consider 6 V source acting in the network.

$\mathbf{5} \| 10=\frac{\mathbf{5} * \mathbf{1 0}}{\mathbf{5}+\mathbf{1 0}}=\frac{\mathbf{5 0}}{\mathbf{1 5}}=3.33 \Omega$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer

$R e q=7+3.33=10.33 \Omega$
$I=\frac{V}{R e q}=\frac{6}{10.33}=0.5808 \mathrm{~A}$
Using current division rule-

$$
I_{L}^{\prime \prime}=0.5808 * \frac{10}{10+5}=0.3866 A
$$

Step-3) current through R_{L} is ;

$$
I_{L}=I_{L}^{\prime}-I_{L}^{\prime \prime}
$$

(since, both currents flows in opposite direction to each other, thus their difference is taken)

$$
I_{L}=0.4517-0.3866=0.0651 A
$$

6 Attempt any FOUR of the following.
6 a) Using mesh analysis for Fig.F find the values R1 and R2.

Fig. F
Ans:

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Apply KVL to loop -I (A-B-D-A)

$-2 \mathrm{R}_{1}-10\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+16=0$	1 mark
$-2 \mathrm{R}_{1}-10(2-3)+16=0$	
$-2 \mathrm{R}_{1}-10(-1)+16=0$	
$-2 \mathrm{R}_{1}+10+16=0$	
$2 \mathrm{R}_{1}=26$	01 mark
$\mathrm{R}_{1}=13 \Omega$	

Apply KVL to loop-II (B-C-D-B)

$-3 \mathrm{R}_{2}-30+10(2-3)=0$	1 mark
$-3 \mathrm{R}_{2}-30-10=0$	
$-3 \mathrm{R}_{2}-40=0$	
$3 \mathrm{R}_{2}=-40$	
$\mathrm{R}_{2}=-13.33 \Omega$	01 mark

For assessors :(negative resistance is only hypothetical cannot exist)
6 b) Find current through 8Ω resistance using nodal analysis in fig.G

Fig. G
Ans:

01 mark

Apply KCL at node-A

$$
\begin{gathered}
I_{1}+I_{2}+I_{3}=0 \\
\frac{V_{A}-20}{6}+\frac{V_{A}}{8}+\frac{V_{A}-12}{10}=0
\end{gathered}
$$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :25 of $\mathbf{2 9}$

$$
\begin{gathered}
\frac{8\left(V_{A}-20\right)+6 V_{A}}{6 * 8}+\frac{V_{A}-12}{10}=0 \\
\frac{8 V_{A}-160+6 V_{A}}{48}+\frac{V_{A}-12}{10}=0 \\
\frac{14 V_{A}-160}{48}+\frac{V_{A}-12}{10}=0 \\
10\left(14 V_{A}-160\right)+48\left(V_{A}-12\right)=0 \\
140 V_{A}-1600+48 V_{A}-576=0 \\
188 V_{A}=2176 \\
V_{A}=11.57 \text { Volts }
\end{gathered}
$$

6 c) Develop thevenin's equivalent circuit across A and B in the network shown in fig.H.

Fig. H

Ans:

Step-1) to determine V_{TH} -

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
$\mathrm{V}_{\mathrm{TH}}=$ Voltage drop across 3Ω resistor

$$
=3 * 2.22
$$

$$
=6.66 \text { volts } \quad 1 \text { mark }
$$

Step-2) To determine R_{TH} -

2Ω in series with 4Ω resistance; $2 \Omega+4 \Omega=6 \Omega$

$$
6 \Omega \| 3 \Omega=\frac{6 * 3}{6+3}=\frac{18}{9}=2 \Omega
$$

$\mathrm{R}_{\mathrm{TH}}=5 \Omega+2 \Omega+6 \Omega=13 \Omega$

Fig 1 mark

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :27 of $\mathbf{2 9}$
6 d) Find the value of RL to transfer maximum power in the network shown in fig.I

Fig. 1
Solution-
To transfer maximum amount of power to load, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}$
Thus, determining R_{TH}

Fig 01 mark
$6 \Omega \| 4 \Omega=\frac{6 * 4}{6+4}=\frac{24}{10}=2.4 \Omega$

Therefore, $\mathrm{R}_{\mathrm{TH}}=8+2.4=10.4 \Omega$
For max power transfer $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}=10.4 \Omega$
6 e) Find the voltages at node A and B in the network shown in fig.J

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)
Model Answer
Page No :28 of 29

Fig. J
Ans:

01 mark

Apply KCL at node -A

$$
\begin{gathered}
I_{1}+I_{2}=6 \\
\frac{V_{A}}{4}+\frac{V_{A}-V_{B}}{2}=6 \\
\frac{2 V_{A}+4\left(V_{A}-V_{B}\right)}{4 * 2}=6 \\
2 V_{A}+4 V_{A}-4 V_{B}=48 \\
3 V_{A}-2 V_{B}=24 \ldots \ldots \ldots \ldots .
\end{gathered}
$$

Apply KCL at node -B

$$
\begin{gathered}
I_{2}=I_{3}+I_{4} \\
I_{3}+I_{4}-I_{2}=0 \\
\frac{V_{B}}{5}+\frac{V_{B}-24}{6}-\frac{V_{A}-V_{B}}{2}=0 \\
\frac{V_{B}}{5}+\frac{2\left(V_{B}-24\right)-6\left(V_{A}-V_{B}\right)}{6 * 2}=0 \\
\frac{V_{B}}{5}+\frac{2 V_{B}-48-6 V_{A}+6 V_{B}}{12}=0
\end{gathered}
$$

Diploma in Engineering: Summer - 2015 Examinations

Subject Code: 17323(ECN)

$$
\begin{array}{cc}
\frac{\text { Model Answer }}{8 V_{B}-6 V_{A}-48} \\
\frac{V_{B}}{5}+\frac{\text { Page No :29 of 29 }}{12}=0 & \\
12 V_{B}+5\left(8 V_{B}-6 V_{A}-48\right)=0 \\
12 V_{B}+40 V_{B}-30 V_{A}-240=0 \\
-30 V_{A}+52 V_{B}=240 \ldots \ldots \ldots \ldots \ldots \ldots .(2) & 1 \text { mark }
\end{array}
$$

Solving equation (1) and (2) we get;
$\mathrm{VA}=18$ volts 1 mark
$\mathrm{VB}=15$ volts
6 f) Explain the concept of initial and final conditions in switching circuits for the elements R,L and C.
Ans-
Concept of initial condition:
A voltage source is connected to these elements using a switch. At instant of changing the switch position either from on to off or vice versa time $t=0$ is called reference time. In any switching network it is assumed that closing/opening of switch takes place instantaneously. Thus at time $t=0$; the condition of network is changed due to switching action. The network conditions at this instant are called as initial conditions.
Initial conditions:
Resistor: initial conditions in resistor are not present, as the equation ($\mathrm{v}=\mathrm{i} \mathrm{R}$) is time independent.
Inductor: at the time of switching inductor acts as an open circuit.
Capacitor: at the time of switching inductor acts as an short circuit
Concept of final condition:
If the switch is on, the switch at $t=0$ and then the network remains without switching action for a long time then the network conditions corresponding to this situation is known as the final condition or the steady state condition.
The final condition or steady state condition is also known as the network condition at $\mathrm{t} \rightarrow \infty$.
Final Conditions:
Resistor: final conditions in resistor are not present, as the equation ($\mathrm{v}=\mathrm{i} \mathrm{R}$) is time independent. Final conditions for resistor are zero.
Inductor: At the time of $(\mathrm{t} \rightarrow \infty)$ inductor acts as an short circuit.
Capacitor: at the time of switching (i.e. at $\mathrm{t} \rightarrow \infty$) the capacitor acts as open circuit.

