17333

16172

3 Hours / 100 Marks

Seat No.	
----------	--

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

1. A) Attempt any six:

 $(6 \times 2 = 12)$

- i) Draw truth table for NAND and NOR gates.
- ii) Compare analog signal with digital signal according to nature/shape of signals and application.
- iii) State any two Boolean laws with expression.
- iv) Perform "BCD addition" for (2375) + (4933) = ?
- v) State the difference between Half and Full adder.
- vi) Write any four applications of counter.
- vii) State application of MUX and De-MUX.
- viii) Draw symbol of J-K flip-flop and write its truth table.

B) Attempt any two:

 $(4 \times 2 = 8)$

- i) List types of digital to analog converters and state specifications of ADC (any four).
- ii) Describe classification of memories.
- iii) State and explain De-morgan theorems.

2. Attempt any four:

 $(4 \times 4 = 16)$

- a) Convert following number into its equivalent = $(146.25)_{10}$.
 - i) Binary number
 - ii) Octal number respectively.
- b) Draw symbol and truth table for (i) 3 i/p OR gate (ii) 2 i/p EX-NOR gate.
- c) Implement the following logic expression using 16:1 MUX Y = $\sum m(0, 3, 5, 6, 7, 10, 13)$.
- d) Draw block diagram of decimal to BCD encoder and write its truth table.
- e) Compare combinational and sequential circuits (four points).
- f) Draw circuit diagram of successive approximation type ADC and explain its working.

P.T.O.

Marks

3. Attempt any four:

 $(4 \times 4 = 16)$

- a) Perform binary subtraction using 2's complements of following:
 - i) $(63)_{10} (20)_{10} = ?$
- ii) $(34)_{10} (48)_{10} = ?$
- b) Simplify the following and realize it $Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$.
- c) Explain full adder with logic diagram and its truth table and proper expressions.
- d) Draw diagram of BCD to segment decoder using IC 7447 with truth table.
- e) Describe the operation of RS Flip Flop using NAND gates only.
- f) State advantages and disadvantages of (i) Ramp type ADC (ii) Dual slope type ADC.

4. Attempt any four:

 $(4 \times 4 = 16)$

- a) Construct 16: 1 multiplexer using 4: 1 multiplexer. Draw diagram.
- b) What is race around condition? How can it be overcome?
- c) Draw AND, OR, NOT logic gates using any one of the universal gates and write its expressions.
- d) Draw R-2R ladder digital to analog converter and explain its working.
- e) Describe following number systems with respect to their base/radix, digits/symbols and its example. (i) Octal number (ii) Hexadecimal number.
- f) What is modulus counter? Design MOD-7 counter using IC 7490.

5. Attempt any four:

 $(4 \times 4 = 16)$

- a) Compare CMOS and TTL Logic families.
- b) Draw and explain working of Hex to binary encoder with truth table.
- c) Explain the operation 3-bit asynchronous counter with diagram.
- d) Draw labeled block diagram of 74181 ALU.
- e) Draw circuit diagram and explain working principle of dual-slope type ADC.
- f) Draw proper labeled diagram of parallel in parallel out (4 bit) shift register and explain its working.

6. Attempt any two:

 $(8 \times 2 = 16)$

- a) Reduce following Boolean expression using laws and theory of Boolean algebra.
 - i) A + BC = (A + B) (A + C).
 - ii) $Y = (A + \overline{B}) (\overline{A} + B) (A + B)$.
- b) i) Implement 1:16 demultiplexer using 1:8 demultiplexer.
 - ii) Explain working of full substractor with circuit diagram.
- c) i) Compare synchronous and asynchronous counter.
 - ii) Design a mod-10 synchronous counter.