
SATHYABAMA UNIVERSITY FACULTY OF ELECTRICAL AND ELECTRONICS

OBJECT ORIENTED PROGRAMMING (SCS1202)

UNIT 5 I/O AND LIBRARY ORGANIZATION

I/O Stream - File I/O - Exception Handling - Templates - STL - Library Organization and

Containers - Standard Containers - Overview of Standard Algorithms-Iterators and Allocators.

FILE HANDLING

 File handling is an important part of all programs. Most of the applications need to save

some data to the local disk and read data from the disk again. C++ File I/O classes simplify such

file read/write operations for the programmer by providing easier to use classes.

 The I/O system of C++ uses file streams as an interface between the program and the

files during file operations.

• The stream that supplies data to the program is known as input stream

• The one that receives data from the program is known as output stream.

In other words, the input stream reads data from the file and the output stream writes data

to the file. This is illustrated in figure

 Data

 File

Result

File

Program

read

data

data input
Input Stream

D

i

s

k

Output Stream data

output
write data

 File Input and Output Streams

 The input operation involves the creation of an input stream and linking the input file

with the program. The input stream extracts (reads) the data from the file and supplies to the

program. Similarly, the output operation involves establishing an output stream and making

necessary links with the program and the output file. The output stream receives data from the

program and stores or inserts (writes) the data into the file.

NOTE: File is a collection of related data stored in a particular area on the disk

DATA FILES

To accomplish the task of storing large amounts of datadata files are used.There are two types of

data files:

Sequential Access Files: These files must be accessed in the same order in which they were

written. This process is analogous to audio cassette tapes where you must fast forward or rewind

through the songs sequentially to get to a specific song. In order to access data from a sequential

file, you must start at the beginning of the file and search through the entire file for the data that

you want.

Random Access Files: These files are analogous to audio compact disks where you can easily

access any song, regardless of the order in which the songs were recorded. Random access files

allow instant access to any data in the file. Unfortunately, random access files often occupy

more disk space than sequential access files.

File Streams:

C++ program views input (or output) as a

bytes from an input stream. On output, a program inserts (<<) bytes into the output stream.

stream acts as a mediator between the program and the stream's source or destination.

A buffer is a block of memory used as an intermediate, temporary storage area for

the transfer of information between a program and a device

Creating a Sequential Access File

A file is a container for data. which needs to be opened and closed.

something into a file, or take something out, you must open the file (the drawer).

finished using the file, the file (the drawer) must be closed.

File Stream Classes:

 C++ provides the following classes to perform input and o

from files:

• ifstream : Stream class to

• ofstream : Stream class to

• fstream : Stream class to both

 These file stream classes are designed exclusively to manage the disk files and their

declaration exists in the header file

any program that uses files.

NOTE: To use the classes, include the

C++ program views input (or output) as a stream of bytes. On input, a program extracts (>>)

On output, a program inserts (<<) bytes into the output stream.

stream acts as a mediator between the program and the stream's source or destination.

of memory used as an intermediate, temporary storage area for

the transfer of information between a program and a device

Creating a Sequential Access File

A file is a container for data. which needs to be opened and closed. Before you can put

g into a file, or take something out, you must open the file (the drawer).

finished using the file, the file (the drawer) must be closed.

C++ provides the following classes to perform input and output of characters to /

Stream class to read from files

Stream class to write on files

Stream class to both read and write from/to files

These file stream classes are designed exclusively to manage the disk files and their

declaration exists in the header file fstream.h, therefore we must include this header file in

NOTE: To use the classes, include the following statement in the program

On input, a program extracts (>>)

On output, a program inserts (<<) bytes into the output stream. The

stream acts as a mediator between the program and the stream's source or destination.

of memory used as an intermediate, temporary storage area for

Before you can put

g into a file, or take something out, you must open the file (the drawer). When you are

utput of characters to /

These file stream classes are designed exclusively to manage the disk files and their

therefore we must include this header file in

 # include< fstream.h >

 These classes are derived directly or indirectly from the classes istream, and ostream.

The actions performed by the stream classes related to file management are:

ifstream: The class ifstream supports input operations. It contains open() with default input

mode and inherits get() , getline() , read() , seekg() , and tellg() functions from istream.

ofstream: The class ofstream supports output operations. It contains open() with default

output mode and inherits put() , write() , seekp() , and tellp() functions from ostream

fstream: The class fstream supports simultaneous input and output operations. It contains

open () with default input mode and inherits all functions from istream and ostream classes

through iostream.

Opening and Closing of Files :

 Manipulation of a file involves the following steps:

• Name the File on the disk

• Open the File

• Process the File (Read / Write)

• Check for Errors while processing

• Close the File

File name:

 The Filename is a string of characters, with which a file is logically identified by the

user. The number of characters used for the file name depends on the Operating system.

Normally a filename contains two parts, a name and an extension. The extension is optional.

In MS-DOS systems, the maximum size of a file name is eight characters and that of an

extension is three characters. In UNIX based systems, the file name can be up to 31 characters

and any number of extensions separated by a dot.

 For example :

 result.data

 name.doc

 salary are some valid file names.

// Basic file operations

#include <iostream.h>

#include <fstream.h>

Void main ()

 {

 ofstream myfile;

 myfile.open ("example.txt");

 myfile << "Good Morning India.\n";

 myfile.close();

 }

[file example.txt]

Good Morning India

 This code creates a file called example.txt and inserts a sentence into it in the same way

we are used to do with cout, but using the file stream myfile instead.

opening a file

 A file can be opened either in Read, Write or Append mode. For opening a file, we must

first create a file stream and then link it to the filename. A file can be opened in two ways:

 1. Using Constructor function of the class.

 2. Using the member function open () of the class.

 The first method is useful when we use only one file in the stream. The second method is

 used when we want to mange multiple files using one stream.

Opening files using Constructors:

 We know that a constructor is used to initialize an object while it is being created. Here,

the constructor can be utilized to initialize the file name to be used with the file stream

object. The creation and assignment of file name to the file stream object involves the

following steps:

1. Create a file stream object using the appropriate class. For example, ofstream can be

used to create the output stream, ifstream for input stream and fstream can be used to

create input and output stream.

2. Initialize the object with the desired filename

 Opening File in Write Mode:

Example:

#include <fstream.h>

 void main()

 {

 ofstream myfile("example.txt”);

 myfile<< "Hello World!";

 myfile.close();

 }

 This code creates a file called example.txt and inserts a sentence “Hello World”

into it using the file stream myfile.

In the above example,

ofstream myfile (“example.txt”);

1. ofstream means “output file stream”. It creates an object for a file stream to write in a

file.

2. myfile –the name of the object. The object name can be any valid C++ name.

3. (“example.txt”); - opens the file example.txt, which should be placed in the directory

from where you execute the program. If such a file does not exist, it will be created for

you.

 We are familiar with the cout statement. For instance,

 cout<<”Hello World!”

 prints the message Hello World! on the screen. Whereas, the statement

 myfile<< "Hello World!”

 prints the message Hello World! into the file pointed by the file pointer myfile.

 If we want to print variables instead of text, just write as myfile<<variable name.

For example the following statement

 Myfile<<salary

 writes the content of the variable salary to the output file.

In order to open a file with a stream object we use its member function

open():

Syntax: open (filename, mode);

Where filename is a null-terminated character sequence of type const char * (the same type that

string literals have) representing the name of the file to be opened, and mode is an optional

parameter with a combination of the following flags:

ios::in Open for input operations.

ios::out Open for output operations.

ios::binary Open in binary mode.

ios::ate
Set the initial position at the end of the file.

If this flag is not set to any value, the initial position is the beginning of the file.

ios::app

All output operations are performed at the end of the file, appending the

content to the current content of the file. This flag can only be used in streams

open for output-only operations.

ios::trunc
If the file opened for output operations already existed before, its previous

content is deleted and replaced by the new one.

All these flags can be combined using the bitwise operator OR (|). For example, if we want to

open the file example.bin in binary mode to add data we could do it by the following call to

member function

open():

ofstream myfile;

myfile.open ("example.bin", ios::out | ios::app | ios::binary);

Each one of the open() member functions of the classes ofstream, ifstream and fstream has a

default mode that is used if the file is opened without a second argument:

class default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically and respectivelly

assumed, even if a mode that does not include them is passed as second argument to the open()

member function.

Closing a file

When we are finished with our input and output operations on a file we shall close it so that its

resources become available again. In order to do that we have to call the stream's member

function close(). This member function takes no parameters, and what it does is to flush the

associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object can be used to open another file, and the

file is available again to be opened by other processes.

#include<iostream.h>

#include<fstream.h>

Void main()

{

Ofstream outf(“item”);

Cout<<”enter the item name”;

Char name[30];

Cin>>name;

Outf<<name;

Cout<<”enter item cost”;

float cost;

cin>>cost;

outf<<cost;

outf.close();

ifstream inf(“item”);

inf>>name;

inf>>cost;

cout<<name;

cout<<cost;

inf.close();

}

INPUT/OUTPUT OPERATIONS ON FILES:

• The functions, put(), and get(), are designed to manage a single character at a time.

• The other functions, read(), write(), are designed to manipulate blocks of character data.

 put(), and get() functions:

• The function get() is a member function of the file stream class fstream, and is used to

read a single character from the file.

• The function put() is a member function of the output stream class fstream, and is used to

write a single character to the output file.

#include <fstream.h>

void main()

 {

 char c, string[75];

 //open a file to write a string (character by character) into it

fstream file(“student.txt”, ios::out);

 cout<<”Enter string:”;

 file.getline(string, 74);

 for(int i=0;string[i]; i++)

 file.put(string[i]);

 file.close();

 // open a file to read a string (character by character) from it

 fstream file(“student.txt”, ios::in);

 cout<< <<”Output string”;

 while(!file.eof())

 {

 file.get(c);

 cout<<c;

 }

file.close();

 }

Run:

Enter string: object oriented programming

Output string: object oriented programming

 In the above program a new member function called eof() that returns true in the case that

the end of the file has been reached. We have created a while loop that finishes when indeed

file.eof() becomes true(i.e. the end of the file has been reached).

 Write() and read() functions:

• The functions write () and read(), unlike the function put() and get(), handle the data in

binary form.

• This means that the values are stored in the disk file in the same format in which they are

stored in the internal memory.

• For example an int value 2435 can be stored either as int or char formats.

• An int takes 2 bytes to store its value in the binary form, irrespective of its size but the

character will take 4 bytes to store the same int value.

• The binary format is more accurate for storing the numbers as they are stored in the exact

internal representation. There are no conversions while saving the data and therefore

saving is much faster.

• The binary input and output functions takes the following syntax:

infile.read((char*)&V,sizeof(V));

outfile.write(char*)&V,sizeof(V));

these functions take two arguments.

• The first is the address of the variable V, it must be cast to type char*(ie. pointer to

character type)

• The second is the length of that variable V in bytes.

#include <fstream.h>

void main()

 {

 int num1=2344;

 float num2=45.45;

 // open file in write binary mode, write int and close

 ofstream outfile(“num.bin”, ios::binary);

 outfile.write((char*)&num1,sizeof(num1));

 outfile.write((char*)&num2,sizeof(num2));

outfile.close();

// open file in read binary mode, read int and close

ifstream infile(“num.bin”, ios::binary);

 infile.read((char*)&num1,sizeof(num1));

 infile.read((char*)&num2,sizeof(num2));

cout<<”number1:”<<num1<<” number2:”<<num2;

infile.close();

 }

Run:

number1: 2344 number2: 45.45

Note: in main(), the statement

outfile.write((char*)&num1,sizeof(num1));

writes the contents of the integer variable num1 to the disk file. The number of bytes to be

written can be computed by sizeof(num1).

the statement

infile.read((char*)&num1,sizeof(num1));

reads the sizeof(num1) gives the number of bytes from the file and stores in the memory location

pointed by the 2
nd

 parameter.

Exception Handling:-

 Exceptions are runtime anomalies or unusual conditions that a program may encounter

while executing. Anomalies might include conditions such as division by zero, access to an array

outside of its bounds, or running out of memory or disk space.

 Exceptions are of two kinds, namely, synchronous exceptions and asynchronous

exceptions. Errors such as “out-of-range” and “overflow” belong to the synchronous type

exceptions. The errors that are caused by events beyond the control of the programs(such as

keyboard interrupts) are called asynchronous exceptions. The proposed exception handling

mechanism in C++ is designed to handle only synchronous exceptions.

 The purpose of the exception handling mechanism is to provide means to detect and

report an “exceptional circumstance” so that appropriate action can be taken. The mechanism

suggests a separate error handling code that performs the following tasks.

1. Find the problem(Hit the exception)

2. Inform that an error has occurred(throw the exception)

3. Receive the error information(catch the exception)

4. Take corrective actions(Handle the exception)

Exception handling mechanism is basically built upon three keywords, namely, try,throw, and

catch. The keyword try is used to preface a block of statements which may generate exceptions.

This block of statements is known as try block. When an exception is detected , it is thrown

using a throw statement in the try block. A catch block defined by the keyword catch, catches the

exception thrown by the throw statement in the try block, and handles it appropriately. The catch

block that catches an exception must immediately follow the try block that throws the exception.

Exception Handling Model:

 The exception handling mechanism uses three blocks try, throw, catch. The relationship

of those three exception handling model shown below

 try block catch block

Exception

• The keyword try is used to preface a block of statements (surrounded by braces) which

may generate exceptions. This block of statements known as try bock.

• When an exception is detected, it is thrown using a throw statement in the try block.

• A catch block defined by the keyword catch catches the exception thrown by the throw

statement in the try block, and handle it appropriately.

• General format:

…………

…………

try

{

 ………. // block of statements which detects and

 throw exception // throws an exception

 ……….

 ……….

 }

 catch (type arg)

 {

 Detects and

throws an

exception

 Catches and

handles the

exception

 ……… // block of statements that handles the exception

 ………

 ………

 }

……..

……..

• When the try block throws an exception, the program control leaves the try block and

enters the catch statement of the catch block.

• Exceptions are objects or variables used to transmit information about a problem.

• If the type of object thrown matches the arg type in the catch statement, then catch block

is executed for handling the exception.

• If they do not match, the program is aborted with the help of the abort() function which

is invoked automatically.

• The catch block may have more than one catch statements, each corresponding to a

particular type of exception.

• For example if the throw block is likely to throw two exception, the catch block will have

two catch statements one for each type of exception. Each catch statement is called is

exception handler.

• When no exception is detected and thrown, the control goes to the statement immediately

after the catch block. That is catch block is skipped.

• Example: divide by zero

Program:-

 #include<iostream.h>

 void main()

 {

 int a,b;

 cout <<”Enter values of a and b”<<endl;

 cin>>a;

 cin>>b;

 int x=a-b;

 try

 {

 if(x!=0)

 {

 cout<<”Result(a/x)”<<a/x<<endl;

 }

 else// there is an exception

 {

 throw(x);//throws int object

 }

 }

 catch(int i)

 {

 cout<<”Exception caught: x=”<<x<<endl;

 }

 cout<<”End”;

}

 Output:-

 Enter values of a and b

 20 15

 Result(a/x)=4

 End

 Output2:-

 Enter values of a and b

 10 10

 Exception caught: x=0

 End

 The program detects and catches a division-by-zero problem. The output of first run shows a

successful execution. When no exception is thrown, the catch block is skipped and execution resumes

with the first line after the catch. In the second run, the denominator x becomes zero and therefore a

division-by-zero situation occurs. This exception is thrown using the object x. Since the exception object

is an int type, the catch statement containing int type argument catches the exception and displays

necessary message.

Invoking function that generates exceptions:

 #include<iostream.h>

 void divide(int x, int y, int z)

 {

 cout<<”We are inside the function”;

 if(x-y!=0)

 {

 int R = z/(x-y);

 cout<<”Result = ”<<R<<endl;

 }

 else

 {

 throw(x-y)

 }

 }

void main()

{

 try

 {

 cout<<”We are inside the try block”<<endl;

 divide(10,20,30);

 divide(10,10,20);

 }

 catch(int i)

 {

 cout<<”caught the exception”<<endl;

 }

}

Output:-

 We are inside the try block

 We are inside the function

 Result=-3

 We are inside the function

 Caught the exception

Multiple Catch Statements:-

 It is possible that a program segment has more than one condition to throw an exception. In such

cases, we can associate more than one catch statement with a try(much like the conditions in a switch

statement)as shown below:

 try

 {

 //try block

 }

 catch(type1 arg)

 {

 //catch block1

 }

 catch(type2 arg)

 {

 //catch block2

 }

 catch(typeN arg)

 {

 //catch blockN

 }

 When an exception is thrown, the exception handlers are searched in order for an appropriate

match. The first handler that yields a match is executed. After executing the handler, the control goes to

the first statement after the last catch block for that try. When no match is found, the program is

terminated.

Program

 #include<iostream.h>

 void test(int x)

 {

 try

 {

 if(x == 1) throw x;

 else

 if(x == 0) throw ‘x’;

 else

 if(x == 1) throw 1.0;

 cout<<”End of try-block”<<endl;

 }

 catch(char c)

 {

 cout<<”Caught a character”<<endl;

 }

 catch(int m)

 {

 cout<<”Caught an integer”<<endl;

 }

 catch(double d)

 {

 cout<<”Caught an double”<<endl;

 }

 void main()

 {

 cout<<”Testing Multiple catches”<<endl;

 cout<<”x==1”<<endl;

 test(1);

 cout<<”x==0”<<endl;

 test(0);

 cout<<”x== -1”<<endl;

 test(-1);

 cout<<”x== 2”<<endl;

 test(2);

 }

Output:-

 Testing Multiple catches

 x==1

 Caught an integer

 End of try-block

 x==0

 Caught a character

 End of try-block

 x== -1

 Caught an double

 End of try-block

 x== 2

 Caught an integer

 End of try-block

Catch All Exceptions:

 In some situations, we may not be able to anticipate all possible types of exceptions and therefore

may not be able to design independent catch handlers to catch them, IN such circumstances, we can force

a catch statement to catch all exceptions instead of a certain type alone. This could be achieved by

defining the catch statement using ellipses as follows.

 catch(……)

 {

 //Statement for processing all exceptions

 }

Program

 #include<iostream.h>

 void test(int x)

 {

 try

 {

 if(x == 0) throw x;

 if(x == -1) throw ‘x’;

 if(x == 1) throw 1.0;

 cout<<”End of try-block”<<endl;

 }

 catch(….)

 {

 cout<<”Caught an exception”<<endl;

 }

 void main()

 {

 cout<<”Testing Generic catch”<<endl;

 test(-1);

 test(0);

 test(1);

 }

Output:-

 Testing Generic catch

 Caught an exception

 Caught an exception

 Caught an exception

Rethrowing an Exception:-

 A handler may decide to rethrow the exception caught without processing it. In such situations,

we may simply invoke throw without any arguments as shown below.

 Throw;

 This causes the current exception to be thrown to the next enclosing try/catch sequence and is

caught by a catch statement listed after that enclosing try block.

Program:-

 #include<iostream.h>

 void divide(double x,double y)

 {

 cout<<”Inside function”<<endl;

 try

 {

 if(y == 0.0)

 throw y;

 else

 cout<<”Division =”<<x/y<<endl;

 }

 catch(double e)

 {

 cout<<”Caught double inside function”<<endl;

throw;

 }

 cout<<”End of function”<<endl;

 }

void main()

{

 cout<<”Inside main”<<endl;

 try

 {

 divide(10.5,2.0);

 divide(20.0,0.0);

 }

 catch(double i)

 {

 cout<<”caught double inside main”<<endl;

 }

 cout<<”End of main”<<endl;

}

Output:-

 Inside main

 Inside function

 Division = 5.25

 End of function

 Inside function

 Caught double inside function

 Caught double inside main

 End of main

 When an exception is rethrown, it will not be caught by the same catch statement or any other

catch in that group. Rather, it will be caught by an appropriate catch in the outer try/catch sequence only.

A catch handler itself may detect and throw an exception. Here again, the exception thrown will not be

caught by any catch statements in that group. It will be passed on to the next outer try/catch sequence for

processing.

Templates

Templates in C++ programming allows function or class to work on more than one data type at

once without writing different codes for different data types. Templates are often used in larger

programs for the purpose of code reusability and flexibility of program. The concept of templetes

can be used in two different ways:

• Function Templates

• Class Templates

Function Templates

A function templates work in similar manner as function but with one key difference. A single

function template can work on different types at once but, different functions are needed to

perform identical task on different data types. If you need to perform identical operations on two

or more types of data then, you can use function overloading. But better approach would be to

use function templates because you can perform this task by writing less code and code is easier

to maintain.

A function template starts with keyword template followed by template parameter/s inside < >

which is followed by function declaration.

template <class T>

 return type some_function(T arg)

{

}

In above code, T is a template argument and class is a keyword. You can use keyword typename

instead of class in above example. When, an argument is passed to some_function(), compiler

generates new version of some_function() to work on argument of that type.

Example of Function Template

template <typename T>

void Swap(T &n1, T &n2)

{

 T temp;

 temp = n1;

 n1 = n2;

 n2 = temp;

}

void main()

{

 int i1=1, i2=2;

 float f1=1.1, f2=2.2;

 char c1='a', c2='b';

 cout<<"Before passing data to function template.\n";

 cout<<"i1 = "<<i1<<"\ni2="<<i2;

 cout<<"\nf1 = "<<f1<<"\nf2="<<f2;

 cout<<"\nc1 = "<<c1<<"\nc2="<<c2;

 Swap(i1, i2);

 Swap(f1, f2);

 Swap(c1, c2);

 cout<<"\n\nAfter passing data to function template.\n";

 cout<<"i1 = "<<i1<<"\ni2="<<i2;

 cout<<"\nf1 = "<<f1<<"\nf2="<<f2;

 cout<<"\nc1 = "<<c1<<"\nc2="<<c2;

}

Output:

Before passing data to function template.

i1 = 1

i2 = 2

f1 = 1.1

f2 = 2.2

c1 = a

c2 = b

After passing data to function template.

i1 = 2

i2 = 1

f1 = 2.2

f2 = 1.1

c1 = b

c2 = a

Class Template

Templates are a feature of the C++ programming language that allows functions and classes to

operate with generic types. This allows a function or class to work on many different data types

without being rewritten for each one.

template <class T>

class class-name

{

.....

//class member specification

};

The class template is very similar to an ordinary class definition except the prefix template

<class T> and use of type T.The prefix tells the compiler that we are going to declare a

template and use T as a type name in the declaration.T may be substituted by any data type

including the user defined types.

Class Templates with Multiple Parameter:

Template<class T1 ,class T2>

Class classname

{

.............

.............

};

Example:

#include<iostream.h>

Template<class T1,class T2>

Class Test

{

T1 a;

T2 b;

Public:

Test(T1 x ,T2 y)

{

a=x;

b=y;

}

Void show()

{

Cout<<a<<b;

}

};

Void main()

{

Test<float, int >test1(1.2,123);

Test<int,char>test2(100,’w’);

test1.show();

test2.show();

}

STANDARD TEMPLATE LIBRARY

Most computer programs exist to process data. The data may represent a wide variety of

realworld information: personnel records, inventories, text documents, the results of scientific

experiments, and so on. Whatever it represents, data is stored in memory and manipulated in

similar ways. University computer science programs typically include a course called

“DataStructures and Algorithms.” The term data structures refers to the ways data is stored in

memory,and algorithms refers to how it is manipulated.

C++ classes provide an excellent mechanism for creating a library of data structures. In the past,

compiler vendors and many third-party developers offered libraries of container classes to handle

the storage and processing of data. However, Standard C++ includes its own builtin container

class library. It’s called the Standard Template Library (STL), and was developed by Alexander

Stepanov and Meng Lee of Hewlett Packard. The STL is part of the Standard C++ class library,

and can be used as a standard approach to storing and processing data.

Components of STL:

The STL contains several kinds of entities. The three most important are containers,

algorithms,and iterators.

A container is a way that stored data is organized in memory. There are two kinds of containers:

stacks and linked lists. Another container, the array, is socommon that it’s built into C++ (and

most other computer languages). However, there are many other kinds of containers, and the

STL includes the most useful. The STL containers are implemented by template classes, so they

can be easily customized to hold different kinds ofdata.

Algorithms in the STL are procedures that are applied to containers to process their data in

variousways. For example, there are algorithms to sort, copy, search, and merge data. Algorithms

are represented by template functions. These functions are not member functions of the container

classes. Rather, they are standalone functions.

Iterators are a generalization of the concept of pointers: they point to elements in a container.we

can increment an iterator, as you can a pointer, so it points in turn to each element in a container.

Iterators are a key part of the STL because they connect algorithms with containers.

Containers

The STL contains sequence containers and associative containers. The Containers are objects

that store data.

Sequence Containers:

A sequence container stores a set of elements in linear sequence.Each element is related to other

element by its position along the line.They all expand themselves to allow insertion of element

and all of them support a number of operations on them.

Element 0 Element 1 Element 2 Last Element

Begin() end()

Sequence containers maintain the ordering of inserted elements that you specify.

A vector container behaves like an array, but can automatically grow as required. It is random

access and contiguously stored, and length is highly flexible. vector is the preferred sequence

container for most applications. When in doubt as to what kind of sequence container to use, start

by using a vector!

.

An array container has some of the strengths of vector, but the length is not as flexible.

A deque (double-ended queue) container allows for fast insertions and deletions at the beginning

and end of the container. It shares the random-access and flexible-length advantages of vector,

but is not contiguous.

.

A list container is a doubly linked list that enables bidirectional access, fast insertions, and fast

deletions anywhere in the container, but you cannot randomly access an element in the container.

A forward_list container is a singly linked list—the forward-access version of list.

Associative Containers

In associative containers are designed to support direct acces to element using keys.They are not

sequential. The associative containers can be grouped into two subsets: maps and sets.

A map, sometimes referred to as a dictionary, consists of a key/value pair. The key is used to

order the sequence, and the value is associated with that key. For example, a map might contain

keys that represent every unique word in a text and corresponding values that represent the

number of times that each word appears in the text. The unordered version

of map is unordered_map.

A set is just an ascending container of unique elements—the value is also the key. The unordered

version of set is unordered_set.

Both map and set only allow one instance of a key or element to be inserted into the container. If

multiple instances of elements are required, use multimap or multiset. The unordered versions

are unordered_multimap and unordered_multiset.

Ordered maps and sets support bi-directional iterators, and their unordered counterparts support

forward iterators.

Derived containers:

The STL provides three Derived containers namely,stack,queue and priority_queue. These are

also knows as container adaptors.

stack,queue and priority_queue can be created from different sequence containers.The Derived

containers do not support iterators and therefore we cannot use them for data

mainpulation.However, they support two member functions pop() and push() for deleting and

inserting.

Overview of Standard Algorithms

Algorithms are functions that can be used generally across a variety of containers for processing

their content.Although each container provides functions for its basics operations,STL provides

more than sixty standared algorithms to support more extended or complex operations.Standard

algorithms also permit us to work with two different types of continers at the same time.STL

algorithm are not member function or frienfs of containers.They are standalone template

functions.

To have access to STL algorithm <algorithm> must be include in the program.

STL algorithm,based on the nature of the operations they perform,they are categorised under

• Retrieve or non-mutating algorithm

• mutating algorithm

• Sorting algorithm

• Set algorithm

• Relational algorithm

Non modifying operations:

for_each Do specified operation for each element in a sequence

find Find the first occurence of a specified value in a sequence

find_if Find the first match of a predicate in a sequence

find_first_of Find the first occurence of a value from one sequence in another

adjacent_find Find the first occurence of an adjacent pair of values

count Count occurences of a value in a sequence

count_if Count matches of a predicate in a sequence

accumulate Accumulate (i.e., obtain the sum of) the elements of a sequence

equal Compare two ranges

max_element Find the highest element in a sequence

min_element Find the lowest element in a sequence

Modifying operations:

transform Apply an operation to each element in an input sequence and store

the result in an output sequence (possibly the same input sequence)

copy Copy a sequence

replace Replace elements in a sequence with a specified value

replace_if Replace elements matching a predicate

remove Remove elements with a specified value

remove_if Remove elements matching a predicate

reverse Reverses a sequence

random_shuffle Randomly reorganize elements using a uniform distribution

fill Fill a sequence with a given value

generate Fill a sequence with the result of a given operation

Sorting:

sort Sort elements

stable_sort Sort maintaining the order of equal elements

nth_element Put n
th

 element in its place

binary_search Find a value in a sequence, performing binary search

Numeric operations

Defined in header <numeric>

accumulate

sums up a range of elements

(function template)

inner_product

computes the inner product of two ranges of elements

(function template)

adjacent_difference

computes the differences between adjacent elements in a range

(function template)

partial_sum

computes the partial sum of a range of elements

(function template)

Set operations (on sorted ranges)

Defined in header <algorithm>

includes

returns true if one set is a subset of another

(function template)

set_difference

computes the difference between two sets

(function template)

set_intersection

computes the intersection of two sets

(function template)

set_symmetric_difference

computes the symmetric difference between two sets

(function template)

set_union

computes the union of two sets

(function template)

Iterator:

Iterators behaves like pointer and are used to acces container elements.They are often used to

traverse from one element to another,a process known as iterating through the container.

Different types of iterator must used with thwe different types of containers

Each type of iterator is used for performing certain functionsthe venn diagram of iterator is as

follows

 Random access

 bidirectional

 forward

 input output

The input and output iterator supports the least functions.They can be used only to traverse in a

container.

The forward iterator supports all operations of input and output iterator and also retains its

position in the container.

 A bidirectional iterator support all forward iterator operations,provides the ability to move in

the backward direction in the container.

A random access iterator combines the functionality of a bidirectional iterator with an ability

to jump to an arbitrary location.

Iterator Element access Read Write

Increment

operation comparison

Input -> v=*p ++ ==,!+

Output *p=v ++

Forward -> v=*p *p=v ++ ==,!=

Bidirectional -> v=*p *p=v ++.-- ==,!=

Random

access ->,[] v=*p *p=v

 ++,--,+,-

+=,-+ ==.!=,<,>,<=,>=

Allocators:

STL provides allocator that does all the memory management of the container classes. The

concept of allocators was originally introduced to provide an abstraction for different memory

models to handle the problem of having different pointer types on certain 16-bit operating

systems (such as near, far, and so forth). However, this approach failed. Nowadays, allocators

serve as an abstraction to translate the need to use memory into a raw call for memory.

Allocators separate the implementation of containers, which need to allocate memory

dynamically, from the details of the underlying physical memory management. Thus, different

memory models such as shared memory, garbage collections, and so forth to your containers

without any hassle because allocators provide a common interface.

Allocators are integrated into the container classes by

 vector<T, Alloc>

'T' represents the vector's value type—in other words, the type of object that is stored in the

vector. 'Alloc' represents the vector's allocator, the method for the internal memory

management.

The internal implementation of the allocator is completely irrelevant to the vector itself. It is

simply relying on the standardized public interface every allocator has to provide. The vector

does not need to care any longer whether it would need to call 'malloc', 'new', and so on to allocate

some memory; it simply calls a standardized function of the allocator object named 'allocate()'

that will simply return a pointer to the newly allocated memory.

