
UNIT IV

5.1Input and output – Introduction to System. IO .namespace
5.2 File and folder operations
5.3 Stream class
5.4 Introduction to ADO .NET
5.5 Building data table
5.6 Data view
5.7 Data set
5.8 Data relations
5.9 ADO.NET managed providers – OleDb managed provider
5.10 SQLProvider.

5.1 Introduction to System.IO namespace

Used to manipulate the physical directories and files.
To read data from and write data to string buffers.

Members of System.IO namespace

IO Type meaning

Directory
DirectoryInfo
File
FileInfo

Used to manipulate the properties for a given
directory or file.
The Directory and File types expose their
functionality as static methods.
The DirectoryInfo and FileInfo types expose similar
functionality as Object variable.

Path Contains file directory path information.

StreamWriter
StreamReader

Used to store text information to a file. Do not
support for random access.

StringWriter
StringReader

Same as StreamReader/Writer. but storage is a
string buffer rather than a file.

FileStream For random file access.

BinaryReader
BinaryWriter

Used to store and retrieve primitive data
types(Integer,Boolean,strings) as a binary value.

5.2 File and Folder Operations

File and Directory types

FileSystemInfo

FileSystemInfo
Property

Meaning

Attributes Gets or sets the attributes associated to
current file.

CreationTime Gets or sets the creation for the file or
directory.

Exists Used to determine if a given file or directory
exists.

Extension Used to retrieve a file extension.

FullName Gets the full path of the directory or file.

DirectoryInfo

Members Meaning

Create()
CreateSubdirectory()

Create a directory or subdirectory.

Delete() Deletes a directory all its contents.

GetDirectories() Returns an array of strings to list the
subdirectories.

GetFiles() Gets the files in the specified directory.

MoveTo() Moves a directory and its contents to a new
path.

 Program to display details of directory
Class direct
{
 public static void Main()
 {
 DirectoryInfo dir=new DirectoryInfo(“c:\sharp”);
 Console.WriteLine(“Fullname” + dir.FullName);
 Console.WriteLine(“Creation” + dir.CreationTime);
 Console.WriteLine(“Attributes” + dir.Attributes.ToString());
 }
}
FileInfo

Used to retrieve the details of existing files.
Used to create, copy, move and delete the files.

Members of FIleInfo

Members Meaning

Create() Creates the new file.

CopyTo() Copies an existing file to a new file.

MoveTo() Moves the file to a new location.

Delete() Remove the file from directory.

Open() Open the already existing file.

OpenRead() Creates a read-only filestream.

OpenWrite() Creates a read/write filestream.

Program to display details of the given file
using System;
using System.IO;
class dir
{
 public static void Main()
 {
 FileInfo f=new FileInfo("c://c#/sample1.txt");
 FileStream fs=f.Create();
 Console.WriteLine(f.CreationTime + "\n"+ f.FullName + "\n" +
 f.Attributes.ToString());
 fs.Close();
 f.Delete();
 }
}
FileInfo.Open()-Opens File with various read and write previlages

 Syntax: FileStream f1= FileInfo.Open(FileMode.Create,FileAccess.Read,FileShare.Read);

FileMode Attribute Values

FileMode Meaning

Append Open the already existing file and write at the
end of the file. if it not exist create the new file.

Create Create the new file. If the file already exists, it is
overwritten.

CreateNew Create a new file. If the file already exists, an
IOException is thrown.

Open Open an existing file.

OpenOrCreate Open an existing file; otherwise creates new file.

FileAccess Meaning

FileAccess Attribute Values

FileAccess Meaning

Read Read-only access to the file.

ReadWrite Read and write access to the file.

Write Write access to the file.

FileShare Attribute Values

FileShare Meaning

None Declines sharing of the current file.

Read Allows subsequent opening of the for
reading.

ReadWrite Allows subsequent opening of the file
for reading or writing.

Write Allows subsequent opening of the file
for writing.

5.3 Stream

Members of class Stream

Stream Member Meaning

Close() Closes the current stream.

Length Returns the length of the stream, in bytes.

Position Determines the position in the current stream.

Read()
ReadByte()

Reads a sequence of bytes and advances the current
position.

Seek() Sets the position in the current stream.

Write()
WriteByte()

Write a sequence of bytes to the current stream and
advances the current position.

5.3.1 ByteStreams

a)FileStreams – Example
using System;
using System.IO;
class stream
{
 public static void Main()
 {
 FileStream fs=new FileStream("test.txt",FileMode.OpenOrCreate,
 FileAccess.ReadWrite);
 for(int i=0; i<256; i++)
 fs.WriteByte((byte)i);
 fs.Position=0;
 for(int i=0; i<256; i++)
 Console.WriteLine(fs.ReadByte());
 fs.Close();
 }
}
b)Memory Streams – Example
using System;

using System.IO;
class stream
{
 public static void Main()
 {
 MemoryStream ms=new Memorytream();
 ms.Capacity=256;
 for(int i=0; i<256; i++)
 ms.WriteByte((byte)i);
 ms.Position=0;
 for(int i=0; i<256; i++)
 Console.WriteLine(ms.ReadByte());
 ms.Close();
 }
}

c)Buffered Stream – Example

using System;
using System.IO;
class stream
{
 public static void Main()
 {
 FileStream fs=new FileStream("test.txt",FileMode.OpenOrCreate,FileAccess.ReadWrite);
 BufferedStream bs=new BufferedStream();
 Byte[] b={0x55,Ox66,Ox43);
 Bs.Write(b,0,b.Length)
 bs.Close();
 }
}

5.3.2 Character Streams

Members of TextWriter

TextWriter Member Meaning

Close() Closes the writer, the buffer is automatically
flushed.

Write() Writes a line to the text stream, without a new
line constant.

WriteLine() Writes a line to the text stream, with a new line
constant.

NewLine Used to make a newline.

Flush() Clears all buffers for the current writer.

Members of TextReader

TextReader Member Meaning

Read() Reads data from an input stream.

ReadBlock() Reads a max. of count characters from the
current stream and writes the data to a buffer.

ReadLine() Reads a line of characters from the current
stream and returns data as string.

ReadToEnd() Reads all character from the current position till
end and returns them as one string.

Peek() Returns the next character without changing the
position of the reader.

Stream Reader and Writer

Used to read from or write Character based data to file(e.g. string).

 Object
 - TextReader
 -StreamReader
 -StringReader
 - TextWriter
 - StreamWriter
 - StringWriter

Example-StreamWriter
Program for Write the text content in to the file sample.txt
Class wstream
{
 public static void Main()
 {

 FileInfo f=new FileInfo(“sample.txt”);
 StreamWriter sw=f.CreateText();
 sw.WriteLine(“Good Morning”);
 sw.WriteLine(‘Have a nice day”);
 sw.Close();
 }
}

StreamReader
Program for reading the data from sample.txt
Class sread
{
 public static void Main()
 {
 // create a StreamReader
 StreamReader sr=File.OpenText(“sample.txt”);
 string input;
 while((input=sr.ReadLine()!=null)
 Console.WriteLine(input);
 sr.Close();
 }
}

StringWriter and StringReader
Used to read from or writeCharacter based data to Buffer(e.g. string).
StringWriter - Example
Class strwrite
{
 public static void Main()
 {
 StringWriter sw=new StringWriter();
 sw.WriteLine(“good morning”);
 sw.WriteLine(“Have a nice day”);
 sw.Close();
 Console.WriteLine(“contents” + sw.ToString());
 }
}
StringReader
Code to read the content from StringWriter:
 StringReader sr=new StringReader(sw.ToString());
 String input;
 While((input=sr.ReadLine())!=null)
 Console.WriteLine(input);
 Sr.Close();

5.3.3.BinaryReader and BinaryWriter

 Used to read and write discrete data types to an underlying stream.

Members of Binary Writer

Base Stream
Close()
Flush()
Seek()
Write()

Members of BinaryReader

BaseStream
Close()
PeekChar()
Read()
ReadXXX()

Example Program

Using System;
Using System.IO.*;
Class sampleBINARY
{
 FilStream fs=new FileStream(“temp.dat”,FileMode.OpenOrCreate,FileAccess.Read);
 BinaryWriter w=new BinaryWriter(fs);
 w.Write(10);
 w.Write(5.78)
 w.Write(‘a’);
 w.BaseStream.Position=0;
 BinaryReader r=new BinaryReader(fs);
 While(r.PeekChar!=-1)
 {
 Console.WrieLine(r.ReadByte());
 }
}

5.4 Introduction to ADO.NET

ADO .NET is a collection of classes, interfaces, structures, and enumerated types that manage
data access from relational data stores within the .NET Framework

Evolution of ADO.NET

The first data access model, DAO (data access model) was created for local databases.

Next came RDO (Remote Data Object) and ADO (Active Data Object) which were designed for Client
Server architectures.

With ADO, all the data is contained in a recordset object which had problems when implemented on the
network and penetrating firewalls.

ADO was a connected data access, which means that when a connection to the database is established
the connection remains open until the application is closed.

ADO .NET addresses the above mentioned problems by maintaining a disconnected database access
model which means, when an application interacts with the database, the connection is opened to serve
the request of the application and is closed as soon as the request is completed.if a database is Updated,
the connection is opened long enough to complete the Update operation and is closed.

By keeping connections open for only a minimum period of time, ADO .NET conserves system resources
and provides maximum security for databases and also has less impact on system performance.

ADO versus ADO .NET

ADO.NET Architecture

Components

Data Access in ADO.NET relies on two components:
 - DataSet
 - DataProvider
DataSet
 - The dataset is a disconnected, in-memory representation of data.
 - It is Local copy. The data can be Manipulated and updated
 independent of database.
Disconnected, cached, scrollable data
DataProvider
 - The Data Provider is responsible for providing and maintaining the
 connection to the database.
 - There are two DataProviders:
 SQL Data Provider (specifically for SQL Server7.0)
 OleDb DataProvider (other databases like access,oracle)

Each DataProvider consists of the following component classes:

Connection object which provides a connection to the database.
Command object which is used to execute a command.
DataReader object which provides a forward-only, read only, connected recordset.
DataAdapter object which populates a disconnected DataSet with data and performs update

ADO.NET Namespaces

System.Data This namespace defines types that represent tables, rows,
columns,constraints & DataSets.

System.Data.Common This namespace contains types shared between data providers.

System.Data.OleDb This namespace defines types that allow you to connect to an
OLE.DB

System.Data.Odbc This namespace defines types that constitute the ODBC data
provider.

System.Data.OracleClient This namespace defines types that constitute the Oracle data
provider.

System.Data.SqlClient This namespace defines types that constitute the SQL data
provider.

5.5.Building Data Table

Types of System. Data

Type Meaning

DataColumnCollection
DataColumn

DataColu mnCollection is used to represent all of the columns
used by a given DataTable. DataColumn represents a specific
column in a DataTable.

DataRowCollection
DataRow

These types represent a collection of rows for a DataTable and a
specific row of data in a DataTable.

DataSet Represents an in-memory cache of data that may consist of
multiple related DataTables.

DataRelationCollection
DataRelation

This collection represents all relationships between the tables in a
DataSet

DataTableCollection
DataTable

This collection represents all of the tables for a particular DataSet.

DataColumn

1. The DataColumn type represents a single column maintained by a DataTable

2. Eg: Assume you have a table named Employees with three columns (EmpID, FirstName and
LastName)

Properties of DataColumn:

Column Name Meaning

DataType Defines the datatype (Boolean, string, float & so on) stored in the
column.

AllowDBNull Boolean value that indicates whether the column may contain null
values.

Expression An expression defining how the value of a column is calculated.

Caption The caption to be displayed for this column.

AutoIncrement
AutoIncrementSeed
AutoIncrementStep

These properties are used to configure the auto increment
behaviour for a given column.

ReadOnly Determines if this column can be modified once a row has been
added to the table.

Table Gets the DataTable that contains this DataColumn.

Enabling Auto.Incrementing Fields:-

 AutoIncrementing columns are used to ensure that when a new row is added to a given table the value
of this column is assigned automatically based on the current step of the incrementation.
Seed value is used to mark the starting value of the column,where step value identifies the number to
add to the seed when incremented
 eg:-
 DataTable t1=new DataTable(“Student”);
 DataColumn C1=new DataColumn();
 C1.ColumnName ="ID"
 C1.ColumnName=System.Type.GetType("System.Int32”);
 C1.AutoIncrement=true;
 C1.AutoIncrementseed=1;
 C1AutoIncrementStep=1;
 DataColumn C2=new DataColumn();
 C2.ColumnName=”Name”;
 C2.DataType=Type.GetType(“System.String”);
 C2.ReadOnly=True;
 t1.columns.Add(C1);

 t1.columns.Add(C2);

 DataColumn C3=new DataColumn();
 C3.ColumnName=”Dept”;
 C3.DataType=Type.GetType(“System.String”);
 t1.columns.Add(C1);
 t1.columns.Add(C2);
 t1.columns.Add(C3);

 Data Row
 *Data Row types represents the actual data in the table.
 *cannot create direct instance of this type, but obtain reference from a given Data Table.
 *Use the method New Row() of Data Table

Members of DataRow Type:

ItemArray : This property gets or sets all of the values for this row using an array
 of objects.
Table : Obtaining the reference of the table containing this row.
AcceptChanges: Commit all the changes made to this row.
RejectChanges: Reject all the changes made to this row.
Delete() : Marks this row to be removed.
isNull() : Get the value indicating whether the specified column contains null

How to insert new row in the above table:
 DataTable t1=new DataTable("Student");
//...........
.............
Creat two columns "Names" & ID.
 DataRow r1=t1.NewRow();//Creat Row
 r1["name"]="aaa";//insert datas
 r1[“Dept”]=”IT”;
 t1.Rows.Add(r1);//Add row to the table.
 DataRow r2=t1.NewRow();//Creat Row
 r2["name"]="bbb";//insert datas
 r2[“Dept”]=”IT”;
 t1.Rows.Add(r2);//Add row to the table.
 DataRow r3=t1.NewRow();//Creat Row
 r3["name"]="aaa";//insert datas
 r3[“Dept”]=”ECE”;
 t1.Rows.Add(r3);//Add row to the table.

Data Table

Data table is an in-memory representation of a tabular block of data.

Members of data table:

Columns : Returns the collection of columns that belong to this table.
Constraints : Gets the collection of constraints maintained by the table.
DefaultView : Gets a customized view of the table.
MaximumCapacity: Gets or Sets the initial no. of rows in this table.
PrimaryKey : Gets or Sets an array of columns that function as primary keys for the
 table.
Rows : It returns the collection of rows that belong to this table.
TableName : Gets or Sets the name of the table.

Now the structure of Table student:

ID Name Dept

1 aaa IT

2 bbb IT

3 aaa ECE

Building Complete DataTable:

DataTable

Create the following Data Table

ID Name

1 aaa

2 bbb

3 aaa

4 bbb

Program to create above table

Using System.Data;
Using System;
Class sample
{
Public static void Main()
{
DataTable t1=new DataTable(“Student”);

//Create Data Column “ID” and add it to the data table.

DataColumn c1=new DataColumn();
c1.ColumnName=”ID”;
c1.DataType=Type.GetType(“System.Int32”);
//Set the Auto-Increment behaviour
c1.AutoIncrement=true;
c1.AutoIncrementSeed=1;
c1.AutoIncremrntStep=1;
//Add this column
t1.Columns.Add(c1);

//Create DataColumn “Name” and add it to the table.

DataColumn c2=new DataColumn();
c2.ColumnName= “Name”;
c2.DataType=Type.GetType(“System.String”);
//add this column
t1.Columns.Add(c2);

//Create New Row and insert datas.

DataRow r1=t1.NewRow();
r1[“Name”]= “aaa”;
//Value of ID field set automatically
//Add row to DataTable
t1.Rows.Add(r1);
DataRow r2=t1.NewRow();
r2[“Name”]= “bbb”;
//Value of ID field set automatically
//Add row to DataTable
t1.Rows.Add(r2);
DataRow r3=t1.NewRow();
r3[“Name”]= “aaa”;
//Value of ID field set automatically
//Add row to DataTable
t1.Rows.Add(r3);
//Create some more rows
t1.AcceptChanges();
}
}

5.5.1 Manipulating a DataTable
 A data table can be manipulated by three operation
 Selection
 Updation
 Deletion

SELECTION OF SPECIFIED ROWS

 *use the select() method
 *parameter sent to select() is a string that contains some conditional operation

select rows with 'name=aaa' from the table 2.1 (student) and extract ID for that students.

code:-
 string s1="name='aaa' ";
 DataRow[]r1=t1.select(s1);
 t1=>table reference
 if(r1.Length==0)
 MessageBox.Show("norecords");
 else
 {
 string str=null;
 for(int i=0;i<r1.Length;i++)
 {
 DataRow t=r1[i];
 str+=t["ID"]+"\n";
 }
 MessageBox.Show(str);
 }
 o\p

UpDation:

Searches the DataTable student for all rows where name is equal to aaa.Once you identify these
items, change the name from "aaa" to "ddd"
code:-
 string s1="Name='aaa' ";
 DataRow[] r1=t1.Select(s1);
 for(int=0;i<r1.Length;i++)
 {
 DataRow t=r1[i];
 t["name"]="ddd";
 r1[i]=t;
 }

Deletion of Rows
 * use the Delete() method.
 * specify the index representing the row to remove.

Eg..
 // delete the first row of the student table
 t1.Rows[0].Delete();
 t1.AcceptChanges();

5.6 DataView
 *View object is a stylized representation of a table.
 *DataView type allows you to programmaties extract a subset of data from a DataTable.
 *you can hold multiple views of same Table.
 eg:-
 *create two DataViews.
 View1 -> rows with name="aaa";
 View2 -> rows with name="bbb";
 *Bind those views to Data Grid (Container)

Source Code:
 Dataview v1,v2;
 Data Grid g1,g2;
 v1=new DataVeiw(t1);
 v2=new DataView(t1);
//t1 -> reference for student DataTable.
 v1.RowFilter="name='aaa'";
 v2.RowFilter="name='bbb'";
//RowFilter->propertyn gets or sets the expression used to filter which rows are viewed in DataView.
 g1=new DataGrid();
 g2=new DataGrid();
 g1.Data Source=v1;
 g2.Data Source=v2;
//g1->Contains View v1
//g2->Contains View v2
Members of DataView Type:
sort gets or sets the sort column or columns and sort order for the table.

Delete() Delets a row at a sepcified index.
RowFilter already explained.
AddNew() Adds a new row to the DataView.

5.7 DataSet:
 DataSet is an in-memory representation of any number of tables as well as any relationships
between three tables and any constraints

Members of DataSet:

DataSetName: Represents the friendly name of this DataSet.
Relations: Gets the collection of relations thart link tables and allows navigation from parent
 DataTables to child DataTables.
Tables : Provides access to the collection tables maintained by the DataSet.

Clear(): Completely clear the DataSet data.
Clone(): Clones the structure of the DataSet
GetChild Relations(): Returns the collection of child related that belong to the specified table.

Add Tables to DataSet:
Code: Data Set s1=new Data Set("Inventory");
 DataTable t1=new DataTable("customer");
 DataTable t2=new DataTable("orders");
//Add Tables to DataSet
 s1.Tables.Add(t1);
 s1.Tables.Add(t2);

Access Rows of the specified table:
 s1.Tables["orders"].Rows[1];
//access 1st row of orders table of DataSet s1.

5.8 Data Relation:
*Once a DataSet has been populated with a number of tables, you can programmatically model their
parent/child relationships.
*For a relationship to be established each table must have an identically named column of the same
data type
 DataSet s1:student,details

ID=>identically named named column of same datatype
Creation of Relation:
 Data Relation dr=new Data Relation("student
Details",s1.Tables["student"].columns["ID"],s1.Tables["details"].columns["ID"]);
s1.Relations.Add(dr);
Properties of DataRelation:

Obtains information about the child table in the relationship
Child Columns
ChildKeyConstraint
Child Table

obtain information about the parent table in the relationship

Parent Columns
ParentKeyConstraint
ParentTable

Relation Name Gets or sets the name the name of the relation

Navigation between Related Tables:-
By means of samples you will have a Data relation that allows you to

Design the form:-

 While clicking button "Details" get name from the students table and Languages know from the
Details Data table and display that using the message box.
sample code for eventhandler:-
public void b1-click(object sender,Event Args e)
{
string str=" ";
 DataRow r1=null;
DataRow[] r2=null;
int c1=int .parse(t1.Text);
r1 =s1.Tables["student"].Rows[c1];
str=r1["name"];
r2=r1.GetChildRows(s1.Relations["studentDetails"])
foreach(Data Row d in r2)
str+=d["lang"];
Message Box.Show(str);
}

5.9 Data Provider

*Used to access data from Data store.
*Major Types:
 *OleDb DataProvider
 *SQL Data Provider
*OleDb DataProvider:-
 Used to access data located in any data store that supports the classic OLEDB protocol

 NameSpace:-System.Data.OleDb;
*SQL Data provider:
 used to access data from SQL server data stores.
 NameSpace:-System.Data.SqlClient

ADO.NET Providers:-
1.Microsoft.JET.OLEDB.4.0 connect to an access database
2.MSDAORA connect to an Oracle server
3.SQLOLEDB connect to the SQL server.

5.9 .1 OLeDb Data Provider:

Members of System.Data.OleDb:-
OleDbCommand Represents a SQL query command to be made to a data source
OleDb Connection Represents an open connection to a data source
OleDb DataReader provides a way of reading a forward-only stream of data records from a data
source
OleDb DataAdapter represents a set of data commands and a data connection used to fill and update
the contents of a Data Set.
Create connections:-
 OleDb Connection cn=new OleDb Connection();
cn.Connection String="Provider=SQLOLEDB.1;"+"User ID=sa;pwd;"+@"Data Source=c: \sample;";
cn.Open();
 cn.Close();

Members of the OleDb Connection:-
connection string: Gets or sets the string used to open a session with a data store.
Database : gets the name of the database maintained by the connection object.
DataSource : Gets the location of the dta base maintained by the connection object.
Open() : opens a data base connection
Provider : Gets the name of the provider maintained by the connection
 object.
Close() : closes the connection to the datasource.

OleDb Command:-
 By using OleDb Command class you can submit SQL queries to the database.
eg:-
//specify SQL command and connection as
//Constructor parameters.
 String str="select*from student where name='aaa'";
OleDbCommand co=new OleDbCommand(str,cn);
//specifySQL command and connection via properties.
 string str1="select *from student where name='aaa'";
OleDb Command co=new OleDb Command();
co.connection=cn;
co.commandText=str1

Members of OleDb Command Type:-

Command text Gets or sets the SQL command text to run against the data
source

Connection Gets or sets the OleDb connection

ExecuteReader() Returns an instance of an OleDb DataReader which provides
forward only ,read only acess to underlying data.

ExecuteNonQuery() This method issues the command text to the data store
without returning on OleDbDataReader type

Code to Access data from data store
Using System.Data;
Using System;
Class Data
{
 Public static void Main()
 {
 //Make connections
 OleDbConnections cn=new OieDbConnection();
 Cn.ConnectionString=”Provider=SQLOLEDB.1”;+”UserID
 =pa;Pwd”; +”DataSource=c:\Sample”;
 Cn.Open();
 //create SQL Command
 String str=”Select * from student”;
 OleDbCommand co=new OleDbCommand(str,cn);
 //obtain DataReader via ExecuteReader()
 OleDbDataReader re;
 Re=co.ExecuteReader();
 //obtain the records through DataReader
 while(re.Read())
 {
 Console.WriteLine(re[“ID”]);
 }
}

 5.9.2 OleDbDataReader

 DataReaders are useful only when submitting SQL selection statements to underlying data store.

Program:

using System;

using System.Data.OleDb;
class Data
{
 //close the DataReader and connection
re.close();
cn.close();
}
}

Inserting ,updatingand deleting records using OleDbCommand

Insertion:

String str=”Insert into Inventory”+”(name,ID)values”+”(‘aaa’,’123’);
OleDbCommand co=new OleDbCommand(str,cn);
Co.ExecuteNonQuery();

Updation:

String str=”Update student set name=”bbb” where name=’aaa’”;
OleDbCommand co=new OleDbCommand(str,cn);
Co.ExecuteNonQuery();

Deletion:
String str=”Delete from student where name=’aaa’”;
OleDbCommand co=new OleDbCommand(str,cn);
Co.ExecuteNonQuery();

Example

5.10 SqlProvider
 Used to access data from SQl database.

Syntax for creating Sql Provider is similar to OleDb provider.Instead of OleDb write Sql
 Eg: OleDbConnection->SqlConnection
 OleDbCommand ->SqlCommand

Example
using System;
using System.Data;
using System.Data.SqlClient;

class MainClass
{
 static void Main(string[] args)
 {

 string connString = "server=(local)\\SQLEXPRESS;database=MyDatabase;Integrated Security=SSPI;";

 string sql = @"select * from employee";

 SqlConnection conn = null;
 SqlDataReader reader = null;

 try
 {
 conn = new SqlConnection(connString);
 conn.Open();

 SqlCommand cmd = new SqlCommand(sql, conn);
 reader = cmd.ExecuteReader();

 Console.WriteLine("Querying database {0} with query {1}\n", conn.Database, cmd.CommandText);

 while(reader.Read()) {
 Console.WriteLine("{0} | {1}", reader["FirstName"].ToString().PadLeft(10) , reader[1].ToString().Pa
dLeft(10));
 }
 }catch (Exception e)
 {
 Console.WriteLine("Error: " + e);
 }
 finally
 {
 reader.Close();
 conn.Close();
 }
 }
}

