
SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

1

2.1 Assemblies

2.2 Versioning

2.3 Attributes

2.4 Reflection

2.5 Viewing metadata

2.6 Type discovery – Reflecting on a type

2.7 Marshaling

2.8 Remoting – Understanding server object types – Specifying a server with an interface

 2.8.1 Building a server

 2.8.2 Building the client

2.9 Exception handling

2.10 Garbage collector.

2.1 ASSEMBLIES

Assemblies form the fundamental unit of deployment, version control, reuse, activation

scoping, and security permissions for a .NET-based application. Assemblies take the form of an

executable (.exe) file or dynamic link library (.dll) file, and are the building blocks of the .NET

Framework. They provide the common language runtime with the information it needs to be

aware of type implementations.

Assemblies can contain one or more modules. For example, larger projects may be planned in

such a way that several individual developers work on separate modules, all coming together to

create a single assembly.

Assemblies have the following properties:

 Assemblies are implemented as .exe or .dll files.

 Assembly can be shared between applications by putting it in the global assembly cache.

Assemblies must be strong-named before they can be included in the global assembly

cache.

 Assemblies are only loaded into memory if they are required. If they are not used, they

are not loaded. This means that assemblies can be an efficient way to manage resources

in larger projects.

 Obtain information about an assembly by using reflection. For more information, see

Reflection.

 If you want to load an assembly only to inspect it, use a method such as

ReflectionOnlyLoadFrom.

Two Types : Private Assemblies, used for single programs, and

 Global Assemblies shared among several applications.

http://msdn.microsoft.com/en-us/library/ms173183.aspx
http://msdn.microsoft.com/en-us/library/system.reflection.assembly.reflectiononlyloadfrom.aspx

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

2

Private Assemblies
Intended use by single applications. Building modules to group common functionality.

 Location is specified at compile time

 PATH is not checked while looking up files, neither set by Control Panel

'System' configuration nor set in a Console Window.

 Identified by name and version if required. But only one version at a time.

 Digital signature possible to ensure that it can't be tampered.

 Get smaller EXE files.

 Dynamic linking, i.e. loading on demand.

Global Assemblies
Publicly sharing functionality among different application.

 Located in Global Assembly Cache (GAC).

 Identified by globally unique name and version.

 Digital signature to ensure that it can't be tampered.

 Get smaller EXE files.

 Dynamic linking, i.e. loading on demand.

View Assemblies - The Intermediate Language Disassembler (ILDASM)

Display metadata of one of your .NET programs or libraries by the use of the ILDASM tool:

 C:\SS\> ildasm app1.exe

We can see the assembly's metadata with all the methods and types in a tree representation. If we

click on ' M A N I F E S T ' we get a window, which shows the manifest information whcich is

shown in Fig 2.1 and 2.2.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

3

Figure 2.1:Manifest Information

Figure 2.2:Manifest Information

 Table 2.1 Ggraphic symbols used in Assembly

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

4

Symbol Meaning

Namespace

Class

Interface

Enum

Method

Static method

Field

Event

Property

CREATE PRIVATE ASSEMBLY
Consider :

Hello.cs
There is a simple class providing a method to print out a 'Hello':

namespace csharp.test.app.greet

 {

 public class Hello {

 public void SayHello() {

 System.Console.WriteLine("Hello my friend, I am a DLL");

 }

 }

}

GoodBye.cs
Similar to Hello.cs but prints a 'Good bye':

namespace csharp.test.app.greet

{

 public class GoodBye {

 public void SayGoodBye() {

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

5

 System.Console.WriteLine("Good bye, I am a DLL too");

 }

 }

}

Hello.cs and GoodBye.cs will be put into a single Private Assembly. They must be in the same

namespace.

HowDoYouDo.cs
We are going to implement this source file as a Global Assembly:

using System.Reflection;

[assembly:AssemblyKeyFile("app.snk")] //attributes

[assembly:AssemblyVersion("1.0.0.0")] //attributes

namespace csharp.test.app

{

 public class HowDoYouDo {

 public void SayHowDoYouDo() {

 System.Console.WriteLine("How do you do, I am a Global Assembly");

 }

 }

}

With the Attributes at the top we specify the key file used to generate a hash code and to declare

the version.

Compile Classes to DLLs - The CSharp Compiler (CSC)
To compile our source files we use the C# Compiler (csc):

DotNet> csc /debug /t:module /out:bin\Hello.dll Hello.cs

DotNet> csc /debug /t:module /out:bin\GoodBye.dll GoodBye.cs

DotNet> csc /debug /t:module /out:bin\HowDoYouDo.dll HowDoYouDo.cs

 the /debug includes debug information.

 the /t (target) switch lets us create a DLL.

 We are writing all our DLLs into a bin folder.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

6

Group DLLs in a Private Assembly - The Assembly Linker (AL)
Combine Hello.dll with GoodBye.dll and put them into a Private Assembly

 i.e GreetAssembly.dll, this is Step 1 in the Sample Application.

DotNet> al /t:library /out:bin\GreetAssembly.dll bin\Hello.dll bin\GoodBye.dll

With /t (target) generate here a library referencing the two other DLLs. This is also called a

Multi-Module Assembly. Again, we store all the binaries in a bin folder.

CREATE GLOBAL ASSEMBLY
Global Assemblies, also called Shared Assemblies, are used to provide globally

accessible libraries for different applications. These applications may be used by a single vendor

or may be publicly available to other vendors and companies. We do not have control who is

using our Global Assemblies.

Global Assemblies are presented in the Global Assembly Cache (GAC) which can be displayed

by Windows Explorer like in Fig 2.3.

Figure 2.3 : Global Assembly

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

7

The GAC can be found always in the 'assembly' sub folder inside %SystemRoot%, i.e. WINNT

for Windows 2000 and Windows NT.

2.2 VERSIONING

Version information for an assembly consists of the following four values:

 Major Version

 Minor Version

 Build Number

 Revision

We can specify all the values or can default the Build and Revision Numbers

by using the '*' as shown below:

[assembly: AssemblyVersion("1.0.*")]

•The build number is the number of days since 01/01/2000

•The revision number if the number of 2 seconds periods since 00:00 of this day

This feature is great if we need some atomic versionning of a particular library for instance. Each

program using this library has its own version and don’t risk to break working feature in future
release of this library. And if we want to force the use of a newer version of a library within a

particular application, we can use some assembly redirection.

using System;

using System.Reflection;

[assembly:AssemblyVersion("1.1.0.0")]

class Example

{

 static void Main()

 {

 Console.WriteLine("The version of the currently executing assembly is: {0}",

 Assembly.GetExecutingAssembly().GetName().Version);

 Console.WriteLine("The version of mscorlib.dll is: {0}",

 typeof(String).Assembly.GetName().Version);

 }

}

Output :
The version of the currently executing assembly is: 1.1.0.0

The version of mscorlib.dll is: 2.0.0.0

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

8

2.3 ATTRIBUTES
 An attribute is a mechanism to add declarative information to code elements (types,

members, assemblies or modules) beyond the usual predefined keywords. They are saved with

the metadata of the object and can be used to describe the code at runtime or to affect application

behaviour at run time through the use of reflection.

 An attribute is an object that represents data you want to

associate with an element in your program. The element to which you attach an attribute is

referred to as the target of that attribute.

Intrinsic Attributes

Attributes come in two flavors: intrinsic and custom. Intrinsic attributes are supplied as part of

the Common Language Runtime (CLR), and they are integrated into .NET. Custom attributes are

attributes you create for your own purposes.

Most programmers will use only intrinsic attributes, though custom attributes can be a powerful

tool when combined with reflection.

Attribute Targets

If you search through the CLR, you'll find a great many attributes. Some attributes are applied to

an assembly, others to a class or interface, and some, such as [WebMethod], to class members.

These are called the attribute targets. Possible attribute targets are given in Table 2.2.

Table 2.2 Possible attribute targets

Member

Name
Usage

All

Applied to any of the following elements: assembly, class, class member,

delegate, enum, event, field, interface, method, module, parameter, property,

return value, or struct

Assembly Applied to the assembly itself

Class Applied to instances of the class

ClassMembers
Applied to classes, structs, enums, constructors, methods, properties, fields,

events, delegates, and interfaces

Constructor Applied to a given constructor

Delegate Applied to the delegated method

Enum Applied to an enumeration

Event Applied to an event

Field Applied to a field

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

9

Interface Applied to an interface

Method Applied to a method

Module Applied to a single module

Parameter Applied to a parameter of a method

Property Applied to a property (both get and set, if implemented)

ReturnValue Applied to a return value

Struct Applied to a struct

Applying Attributes

You apply attributes to their targets by placing them in square brackets immediately before the

target item. You can combine attributes, either by stacking one on top of another:

[assembly: AssemblyDelaySign(false)]

[assembly: AssemblyKeyFile(".\\keyFile.snk")]

or by separating the attributes with commas:

[assembly: AssemblyDelaySign(false),

 assembly: AssemblyKeyFile(".\\keyFile.snk")]

The key fact about intrinsic attributes is that you know when you need them; the task will dictate

their use.

Custom Attributes

You are free to create your own custom attributes and use them at runtime as you see fit.

Suppose, for example, that your development organization wants to keep track of bug fixes. You

already keep a database of all your bugs, but you'd like to tie your bug reports to specific fixes in

the code.

You might add comments to your code along the lines of:

// Bug 323 fixed by Jesse Liberty 1/1/2005.

This would make it easy to see in your source code, but there is no enforced connection to Bug

323 in the database. A custom attribute might be just what you need. You would replace your

comment with something like this:

[BugFixAttribute(323,"Jesse Liberty","1/1/2005")

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

10

Comment="Off by one error"]

You could then write a program to read through the metadata to find these bug-fix notations and

update the database. The attribute would serve the purposes of a comment, but would also allow

you to retrieve the information programmatically through tools you'd create.

Declaring an Attribute

Attributes, like most things in C#, are embodied in classes. To create a custom attribute, you

derive your new custom attribute class from System.Attribute:

public class BugFixAttribute : System.Attribute

You need to tell the compiler with which kinds of elements this attribute can be used (the

attribute target). You specify this with (what else?) an attribute:

[AttributeUsage(AttributeTargets.Class |

 AttributeTargets.Constructor |

 AttributeTargets.Field |

 AttributeTargets.Method |

 AttributeTargets.Property,

 AllowMultiple = true)]

AttributeUsage is an attribute applied to attributes: a meta-attribute. It provides, if you will,

meta-metadata--that is, data about the metadata. For the AttributeUsage attribute constructor, you

pass two arguments. The first argument is a set of flags that indicate the target--in this case, the

class and its constructor, fields, methods, and properties. The second argument is a flag that

indicates whether a given element might receive more than one such attribute. In this example,

AllowMultiple is set to true, indicating that class members can have more than one

BugFixAttribute assigned.

Naming an Attribute

The new custom attribute in this example is named BugFixAttribute. The convention is to

append the word Attribute to your attribute name. The compiler supports this by allowing you to

call the attribute with the shorter version of the name. Thus, you can write:

[BugFix(123, "Jesse Liberty", "01/01/05", Comment="Off by one")]

The compiler will first look for an attribute named BugFix and, if it does not find that, will then

look for BugFixAttribute.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

11

Constructing an Attribute

Every attribute must have at least one constructor. Attributes take two types of parameters,

positional and named. In the BugFix example, the programmer's name and the date are positional

parameters, and comment is a named parameter. Positional parameters are passed in through the

constructor and must be passed in the order declared in the constructor:

public BugFixAttribute(int bugID, string programmer,

string date)

{

 this.bugID = bugID;

 this.programmer = programmer;

 this.date = date;

}

Named parameters are implemented as properties:

public string Comment

{

 get

 {

 return comment;

 }

 set

 {

 comment = value;

 }

}

It is common to create read-only properties for the positional parameters :

public int BugID

{

 get

 {

 return bugID;

 }

}

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

12

Using an Attribute

Once you have defined an attribute, you can put it to work by placing it immediately before its

target. To test the BugFixAttribute of the preceding example, the following program creates a

simple class named MyMath and gives it two functions. You'll assign BugFixAttributes to the

class to record its code-maintenance history:

[BugFixAttribute(121,"Jesse Liberty","01/03/05")]

[BugFixAttribute(107,"Jesse Liberty","01/04/05",

 Comment="Fixed off by one errors")]

public class MyMath

These attributes will be stored with the metadata. Example 18-1 shows the complete program.

Example 18-1: Working with custom attributes

namespace Programming_CSharp

{

 using System;

 using System.Reflection;

 // create custom attribute to be assigned to class members

 [AttributeUsage(AttributeTargets.Class |

 AttributeTargets.Constructor |

 AttributeTargets.Field |

 AttributeTargets.Method |

 AttributeTargets.Property,

 AllowMultiple = true)]

 public class BugFixAttribute : System.Attribute

 {

 // attribute constructor for

 // positional parameters

 public BugFixAttribute

 (int bugID,

 string programmer,

 string date)

 {

 this.bugID = bugID;

 this.programmer = programmer;

 this.date = date;

 }

http://oreilly.com/catalog/progcsharp/chapter/ch18.html#59172

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

13

 // accessor

 public int BugID

 {

 get

 {

 return bugID;

 }

 }

 // property for named parameter

 public string Comment

 {

 get

 {

 return comment;

 }

 set

 {

 comment = value;

 }

 }

 // accessor

 public string Date

 {

 get

 {

 return date;

 }

 }

 // accessor

 public string Programmer

 {

 get

 {

 return programmer;

 }

 }

 // private member data

 private int bugID;

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

14

 private string comment;

 private string date;

 private string programmer;

 }

 // ********* assign the attributes to the class ********

 [BugFixAttribute(121,"Jesse Liberty","01/03/05")]

 [BugFixAttribute(107,"Jesse Liberty","01/04/05",

 Comment="Fixed off by one errors")]

 public class MyMath

 {

 public double DoFunc1(double param1)

 {

 return param1 + DoFunc2(param1);

 }

 public double DoFunc2(double param1)

 {

 return param1 / 3;

 }

 }

 public class Tester

 {

 public static void Main()

 {

 MyMath mm = new MyMath();

 Console.WriteLine("Calling DoFunc(7). Result: {0}",

 mm.DoFunc1(7));

 }

 }

}

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

15

Output :
Calling DoFunc(7). Result: 9.3333333333333339

As you can see, the attributes had absolutely no impact on the output. In fact, for the moment,

you have only my word that the attributes exist at all. A quick look at the metadata using

ILDasm does reveal that the attributes are in place, however, as shown in Figure 2.4.

Figure 2.4. The metadata in the assembly

2.4 REFLECTION

 The classes in the Reflection namespace, along with the System.Type and

System.TypedReference classes, provide support for examining and interacting with the

metadata.

Reflection is generally used for any of four tasks:

Viewing metadata :

 This might be used by tools and utilities that wish to display metadata.

Performing type discovery :

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

16

 This allows you to examine the types in an assembly and interact with or instantiate

those types. This can be useful in creating custom scripts. For example, you might want to allow

your users to interact with your program using a script language, such as JavaScript, or a

scripting language you create yourself.

Late binding to methods and properties :
 This allows the programmer to invoke properties and methods on objects dynamically

instantiated based on type discovery. This is also known as dynamic invocation.

Creating types at runtime (Reflection Emit) :
 The ultimate use of reflection is to create new types at runtime and then to use

those types to perform tasks. You might do this when a custom class, created at runtime, will run

significantly faster than more generic code created at compile time.

2.5 VIEWING METADATA :

public static void Main()

{

 // get the member information and use it to

 // retrieve the custom attributes

 System.Reflection.MemberInfo inf = typeof(MyMath);

 object[] attributes;

 attributes =

 inf.GetCustomAttributes(

 typeof(BugFixAttribute), false);

 // iterate through the attributes, retrieving the

 // properties

 foreach(Object attribute in attributes)

 {

 BugFixAttribute bfa = (BugFixAttribute) attribute;

 Console.WriteLine("\nBugID: {0}", bfa.BugID);

 Console.WriteLine("Programmer: {0}", bfa.Programmer);

 Console.WriteLine("Date: {0}", bfa.Date);

 Console.WriteLine("Comment: {0}", bfa.Comment);

 }

}

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

17

Output:
BugID: 121 Programmer: Jesse Liberty Date: 01/03/05 Comment:

BugID: 107 Programmer: Jesse Liberty Date: 01/04/05 Comment: Fixed off by one errors

2.6 TYPE DISCOVERY

REFLECTING ON AN ASSEMBLY

namespace Programming_CSharp

{

 using System;

 using System.Reflection;

 public class Tester

 {

 public static void Main()

 {

 // what is in the assembly

 Assembly a = Assembly.Load("Mscorlib.dll");

 Type[] types = a.GetTypes();

 foreach(Type t in types)

 {

 Console.WriteLine("Type is {0}", t);

 }

 Console.WriteLine(

 "{0} types found", types.Length);

 }

 }

}

 Output :

Type is System.TypeCode

Type is System.Security.Util.StringExpressionSet

Type is System.Runtime.InteropServices.COMException

Type is System.Runtime.InteropServices.SEHException

Type is System.Reflection.TargetParameterCountException

Type is System.Text.UTF7Encoding

Type is System.Text.UTF7Encoding+Decoder

Type is System.Text.UTF7Encoding+Encoder

Type is System.ArgIterator

1426 types found ……………………………..

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

18

This example obtained an array filled with the types from the Core Library and printed them one

by one. The array contained 1,426 entries on my machine.

REFLECTING ON A TYPE :

namespace Programming_CSharp

{

 using System;

 using System.Reflection;

 public class Tester

 {

 public static void Main()

 {

 // examine a single object

 Type theType =

 Type.GetType(

 "System.Reflection.Assembly");

 Console.WriteLine(

 "\nSingle Type is {0}\n", theType);

 }

 }

}

Output:

Single Type is System.Reflection.Assembly

2.7 MARSHALLING
 Marshaling is the process of creating a bridge between managed code and

unmanaged code; it is the homer that carries messages from the managed to the unmanaged

environment and reverse. It is one of the core services offered by the CLR (Common Language

Runtime.).NET code are called “managed” because it is controlled (managed) by the CLR.
Other code that is not controlled by the CLR is called unmanaged.

Marshalling Types During Platform Invoke (P/Invoke) on the Microsoft .NET Compact

Framework.

Data type representations in the Microsoft® .NET Compact Framework differ from those in

unmanaged code. Converting between the managed and unmanaged representations is called

marshaling and is automatic for most simple data types.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

19

Marshaling is the act of taking data from the environment you are in and exporting it to another

environment. In the context of .NET, marhsaling refers to moving data outside of the app-

domain you are in, somewhere else.

Marshalling Value and Reference Types :
Value Types : STACK

Reference Types : HEAP

Value types are marshaled to unmanaged code on the stack. Reference types are passed by

address. This means a pointer is passed on the stack, and the pointer contains the address of the

marshaled data on the heap.

BLITTABLE : A type is considered blittable if it has a common representation in managed and

unmanaged code memory.

 NON-BLITTABLE : Non-blittable types require custom marshaling to convert between the

unmanaged and managed representations.

Value Types
The data types outlined in the table below are automatically marshaled by value using P/Invoke.

The table also shows the unmanaged equivalents in C/C++.

 Common Value Types that are Automatically Marshaled

C# Visual Basic .NET Native C/C++ Size (bits)

int Integer int 32

short Short short 16

bool Boolean BYTE 8

char Char WCHAR 16

Take the following C/C++ function as an example. The function accepts three integer parameters

and calculates their arithmetic mean:

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

20

extern "C" _declspec(dllexport) int mean(int x, int y, int z)

{

 return (x + y + z) / 3;

}

This method can be declared and called in a Smart Device application. The following code

calculates the mean of 1, 3 and 5 (that is, 3) and displays it in a Message Box:

using System.Runtime.InteropServices;

.

.

.

[DllImport("MarshalByValueDemo.dll")]

extern static int mean(int x, int y, int z);

.

.

.

int avg = mean(1, 3, 5);

MessageBox.Show(String.Format("The mean is {0}", avg));

It is worth noting; only value types of 32 bits or less can be marshaled automatically. Long types

(64-bit integer) and floating-point types (float and double) cannot be marshaled by value into

unmanaged code. You should pass these values by reference.

Reference Types
In the .NET Compact Framework, reference types are, by default, passed by reference.When

parameters are passed by reference, a pointer to the parameters on the managed heap is passed to

the unmanaged code.

Since the unmanaged code receives a pointer, it is possible for the method to modify the data

held on the managed heap. The .NET Compact Framework also supports passing value types by

reference, using the ref keyword in C# and ByRef in Visual Basic .NET.

The following example takes three double parameters, passed by reference, and returns the

arithmetic mean through a fourth parameter, also passed by reference.

extern "C" _declspec(dllexport) void mean(double* x, double* y, double* z,

 double* mean)

{

 *mean = (*x + *y + *z) / 3.0;

}

To call this from managed code:

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

21

[DllImport("MarshalByRefDemo.dll")]

extern static void mean(ref double x, ref double y, ref double z, ref

 double mean);

.

.

.

double x = 1.0;

double y = 3.0;

double z = 5.0;

double avg = 0.0;

mean(ref x, ref y, ref z, ref avg);

MessageBox.Show(String.Format("The mean is {0}", avg));

MARSHALLING ARRAYS

 In C/C++, arrays are representations as pointers to a contiguous region of memory with

the array elements addressed as offsets from this pointer, starting with zero.

The marshaler in the .NET Compact Framework Common Language Runtime (CLR) ensures

that managed arrays adhere to this format when passed to unmanaged code.

 In this C/C++ example, an array is passed into a function and is searched to locate the smallest

value:

extern "C" _declspec(dllexport) int MinArray(int* pData, int length)

{

 // Initialise minData to the first element of the pData Array

 int minData = pData[0];

 int pos;

 // Loop through the array

 for(pos = 1; pos < length; pos++)

 {

 // If the current element is less than minData,

 // set minData to the value of current element

 if(pData[pos] < minData)

 minData = pData[pos];

 }

 return minData;

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

22

}

The following code declares the above method and calls it from C#:

[DllImport("MarshalArray.dll")]

extern static int MinArray(int[] pData, int length);

.

.

.

int[] sampleData = int[] {5, 1, 3 };

int result = MinArray(sampleData, sampleData.Length);

MessageBox.Show(String.Format("Smallest integer is {0}, result));

2.8 NET REMOTING OVERVIEW
.NET Remoting is a Microsoft application programming interface (API) for interprocess

communication

.NET remoting enables you to build widely distributed applications easily, whether application

components are all on one computer or spread out across the entire world. You can build client

applications that use objects in other processes on the same computer or on any other computer

that is reachable over its network. You can also use .NET remoting to communicate with other

application domains in the same process.

To use .NET remoting to build an application in which two components communicate directly

across an application domain boundary, you need to build only the following:

 A remotable object.

 A host application domain to listen for requests for that object.

 A client application domain that makes requests for that object.

Remoting is a framework built into Common Language Runtime (CLR) in order to provide

developers classes to build distributed applications and wide range of network services.

Remoting provides various features : Object Passing, Proxy Objects,Activation, Stateless and

Stateful Object, Lease Based LifeTime and Hosting of Objects in IIS.

The namespaces that one typically uses in C# distributed object applications are the following:

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

23

 When using one of the major IDE’s (Visual Studio or C# Builder), it is important to add

the reference system.remoting.dll to the build if it is not already present.

 In C#, using distributed objects does not require stubs or interfaces as in Java. The CLR

provides full support for remote object calls. Using distributed objects does not depend on the

system registry for information about the remote classes. This information is encapsulated in a

.DLL file that must be added as a reference when compiling the client code.

 Classes derived from System.MarshalByRefObject cause the distributed object system

to generate proxy objects on the client that encapsulate the low-level socket protocol. When the

client sends a message to a remote object, it is the proxy that processes this message and sends

serialized information across the network. The same works in reverse when proxy objects de-

serialize information that is returned from the server.

 Channel objects are the mechanism used to transfer messages between client and

server. The .NET framework provides two bidirectional channels:

System.Runtime.Remoting.Channels.http.HttpChannel and

System.Runtime.Remoting.Channels.Tcp.TcpChannel.

 The http channel uses SOAP (Simple Object Access Protocol) and the tcp channel uses a

binary stream. This latter method is more efficient because it avoids the need to encode and

decode SOAP messages.

 A channel must be registered before it can be used. The ChannelServices class is

used to accomplish this as follows:

ChannelServices.RegisterChannel(someChannel);

The general steps involved in writing a distributed application are summarized below :

Writing the Server
1. Construct the server class.

2. Select a method for hosting the server object(s) on the server. Typically a short

 application is created that launches the server and makes the server object

 available to the client(s).

3. The server object typically waits for one or more client objects to communicate

 with it.

Writing the Client
1. Identify the remote server object to the client.

2. Connect the server to the client through a channel.

3. The client must activate the remote object and create a reference to it.

4. Communication to the remote object(s), once activated, is similar to sending

 messages to local objects.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

24

Let us consider a simple client server application.

Remoting Object
This is the object to be remotely access bynetwork applications. The object to be accessed

remotely must bederived by MarshalByRefObject and all the objects passed by value mustbe

serializable.

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

namespace RemotingSamples

{

public class RemoteObject : MarshalByRefObject

{

///constructor

public RemoteObject()

{ Console.writeline("Remote object activated"); }

///return message reply

public String ReplyMessage(String msg)

{

Console.WriteLine("Client : "+msg);//print given message on console

return "Server : Yeah! I'm here"; }

}

}

2.8.1 Server
This is the server application used toregister remote object to be access by client application.

First, of all choose channel to use and register it, supported channels are HTTP,TCP and SMTP.

I have used here TCP. Then register the remote object specifying its type.

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

25

namespace RemotingSamples

{

public class Server

{

 ///constructor

public Server()

{ }

 ///main method

public static int Main(string [] args)

{

//select channel to communicate

TcpChannel chan = new TcpChannel(8085);

//register channel

ChannelServices.RegisterChannel(chan);

//register remote object

RemotingConfiguration.RegisterWellKnownServiceType(

Type.GetType("RemotingSamples.RemoteObject,object"),

 "RemotingServer",

 WellKnownObjectMode.SingleCall);

//inform console

Console.WriteLine("Server Activated");

return 0;

}

} }

2.8.2 Client
 This is the client application and it willcall remote object method. First, of all client must

select the channelon which the remote object is available, activate the remote object andthan call

proxy’s object method return by remote object activation.

using System;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

using RemotingSamples;

namespace RemotingSamples

{

public class Client

{

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

26

///constructor

public Client()

{ }

///main method

public static int Main(string [] args)

{

//select channel to communicate with server

TcpChannel chan = new TcpChannel();

ChannelServices.RegisterChannel(chan);

RemoteObject remObject = (RemoteObject)Activator.GetObject(

 typeof(RemotingSamples.RemoteObject),

 "tcp://localhost:8085/RemotingServer");

if (remObject==null)

Console.WriteLine("cannot locate server");

else

remObject.ReplyMessage("You there?");

return 0;

}

} }

Deployment :

To deploy this distributed application, the following sequence of steps must be followed:

1.The remote object must be compiled as follows to generate remote object.dll which is used to

 generate server and client executable.

 csc /t:library /debug /r:System.Runtime.Remoting.dll remoteobject.cs

2.The server must be compiled as follows to produce server.exe.

csc /debug /r:remoteobject.dll /r:System.Runtime.Remoting.dll server.cs

3. The client must be compiled as follows in order to produce client.exe

csc /debug /r:remoteobject.dll /r:System.Runtime.Remoting.dll client.cs

2.9 EXCEPTION HANDLING :

An exception handling is an error that occurs at runtime. Using c# exception handling, you can

handle runtime errors in a structured and controlled manner. Exception handling streamlines

error-handling by allowing your program to define a block of code, called an exception handler,

that is executed automatically when an error occurs. It is not necessary to check the success or

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

27

failure of each specific operation or method call manually. If an error occurs, it will be processed

by the exception handler.

The System.Exception Class:

In c#, exception are represented by classes. All exception classes must be derived from the built-

in class Exception,which is part of System namespace. Thus all exception are subclasses of

Exception.

From Exception are derived SystemException and ApplicationException. These support the

two general catagories of exception:

 Those generated by the c# runtime system

 Those generated by application program

C# defines built-in exception that are derived from SystemException. For example, when

division-by-zero is attempted, a DivideByZero Exception is generated.

Exception Handling Fundamentals:

C# exception handling is managed via four keywords: try, catch, throw and finally.

Program statements that you want to monitor for exceptions are contained within a try block. If

an exception occurs within the try block, it is thrown. Your code can catch exception using

catch and handle it in some rational manner. To manually throw an exception, use the keyword

throw. Any code that absolutely must be executed upon exiting from a try block is put in a

finally block.

Using try and catch:

At the core of exception handling are try and catch. These keywords work together. You can’t
have a try without a catch, or a catch without a try. The general form is:

try{

//block of code to monitor for errors

}

catch(ExcepType1 exOb) {

//handler for ExcepType1

}

catch(ExcepType2 exOb) {

//handler for ExcepType2

}

Here when the exception is thrown, it is caught by its corresponding catch statement, which then

processes the exception. As the general form shows, there can be more than one catch statement

associated with a try. The type of exception determines which catch statement is executed. If no

exception is thrown, then a try block ends normally and all the catch statements are bypassed.

The catch statements are executed only if an exception is thrown.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

28

Exception Example :

Following is a simple example that illustrates how to watch for and catch an exception:

using System;

class Except

{

public static void Main()

{

int x=Int 32 Parse(Console.ReadLine());

int y=Int 32 Parse(Console.ReadLine());

int[] a ={10,5,3,4};

try

{

int z=x\y;

Console.WriteLine(z);

int b=a[3]+a[4];

Console.WriteLine(b);

}

}

catch(Exception e)

{

Console.WriteLine(“error”);
}

}

Output:

x=15

y=3

z=5

Using Multiple Catch Statements:

You can associate more than one catch statement with a try. However each catch statement

must catch a different type of exception. The general form of multiple catch statement is:

catch(arithmetic Exception e1)

{

}

catch(ArrayIndexOutOfBoundException e2)

{

}

catch(Exception e3)

{

}

Following is a simple example that illustrates how to use multiple catch statements:

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

29

using System;

class Except

{

public static void Main()

{

int x=Int 32 Parse(Console.ReadLine());

int y=Int 32 Parse(Console.ReadLine());

int[] a ={10,15,20,3};

try

{

int z=x\y;

Console.WriteLine(z);

int b=a[3]+a[4];

Console.WriteLine(b);

}

catch(arithmetic Exception e1)

{

Console.WriteLine(“Arithmetic Exception);
}

catch(ArrayIndexOutOfBoundException e2)

{

Console.WriteLine(“ArrayOutOfBoundException”);
}

}

}

Output:

x=10

y=2

z=5

ArrayOutOfBoundException

Throwing An Exception:

It is possible to manually throw an exception by using the throw statement.its general form is

shown here:

Throw expectOb;

The expectOb must be an object of an exception class derived from Exception.

Following is a simple example that illustrates the throw statement by manually throwing a

DivideByZeroException:
using System;

class Throwdemo

{

public static void Main()

{

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

30

try

{

Console.WriteLine(“Before throw”);
throw new DivideByZeroException();

}

catch (DivideByZeroException)

{

Console.WriteLine(“Exception caught”);
}

Console.WriteLine(“After try/catch block”);
}

}

}

Output:

Before throw

Exception caught

After try/catch block

Rethrowing an Exception:

An exception caught by one catch statement can be rethrown so that it can be caught by an outer

catch. The most likely reason to rethrow an exception is to allow multiple handlers access to the

exception. To rethrow an exception, you simply specify throw, without specifying an exception.

That is, you use the form of throw:

throw;

If you rethrow an exception,it will not be recaught by the same catch statement. It will propagate

to the next catch statement.

Following is a simple example that illustrates the rethrowing of an exception:

using System;

class rethrow

{

Int x=0,y=0;

{

public void div()

{

try

{

int z=x/y;

throw new DivideByZeroException();

}

catch

{

throw; //rethrow the exception

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

31

}

}

}

class excep

{

public static void Main()

{

rethrow r=new rethrow();

try

{

r.div();

}

catch(DivideByZeroException e)

{

Console.WriteLine(“Exception received”);
}

}

}

Output:

Exception received

Using finally:

Sometimes you will want to define a block of code that will execute when a try/catch block is

left. Such types of circumtances are common in programming, and c# provides a convenient way

to handle them using finally keyword. To specify a block of code execute when a try/catch

block is exited, include a finally block at the end of a try/catch sequence. The general form of a

try/catch that includes finally is shown here:

try

{

catch(ExcepType1 exOb)

{

}

Catch(ExcepType2 exOb)

{

}

.

.

.

finally

{

}

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

32

The finally block will be exceuted whenever exceution leaves a try/catch block, no matter what

conditions cause it. That is, whether the try block ends normally or because of an exception, the

last code executed is that defined by finally. The finally block is also executed if any code within

the try block or any of its catch statements returns from the method.

Following is a simple example that illustrates the use of finally keyword:

using System;

class finally

{

public static void Main()

{

int x=10,y=0;

int[]a={10,15};

try

{

int z=x/y;

int b=a[1]+a[2];

}

catch(Arithmetic Exception e1)

{

Console.WrieLine(“Divide by Zero”);
}

finally

{

Console.WrieLine(“Error”);
}

}

}

Output : Divide by Zero Error

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

33

Commonly Used Exception:

Exception

ArrayTypeMismatchExecption

DivideByZeroException

IndexOutOfRangeException

InvalidCastExecption

OutOfMemoryException

OverflowException

NullReferenceException

StackOverflowException

Meaning

Type of value being stored is incompatiable with

the type of the array.

Division by zero attempted

Array index is out of bounds

A runtime cast is invalid

A call to new fails because insufficient free

memory exists

An arithmetic overflow occurred

An attempt was made to operate on a null

reference that is,a reference that does not refer to

an object

The stack was overrun

2.10 Garbage Collection

Object lifetime in C#

 Memory allocation for an object should be made using

the “new” keyword

 Objects are allocated onto the managed heap, where

they are automatically deallocated by the runtime at

“some time in the future”

 Garbage collection is automated in C#

Note : Allocate an object onto the managed heap using the new

keyword and forget about it

Object creation

 When a call to new is made, it creates a CIL “newobj” instruction to the code module

public static int Main (string[] args)

{

Car c = new Car(“Viper”, 200, 100); }

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

34

Tasks taken by CIL newobj instruction

 Calculate the total amount of memory required for the object.

 Examine the managed heap to ensure enough room for the object.

 Return the reference to the caller, advance the next object pointer to point to the next

available slot on the managed heap.

Rule: If the managed heap does not have sufficient memory to allocate a requested

object, a garbage collection will occur.

Garbage collection steps
1. The garbage collector searches for managed objects that are referenced in managed

Code - mark

2. The garbage collector attempts to finalize objects that are unreachable - Sweep

3. The garbage collector frees objects that are unmarked and reclaims their memory -

Sweep

Building finalizable objects
//System.Object

 public class Object

 {

 ...

 protected virtual void Finalize() { }

 }

 Override Finalize() to perform any necessary memory cleanup for your type

 A call to Finalize () occurs:

 natural garbage collection

 GC.Collect()

 Application domain is unloaded from the memory

The System.GC type
 Provide a set of static method for interacting with garbage collection

 Use this type when you are creating types that make use of unmanaged resource.

SATHYABAMA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT II Subject Code : SCSX1008

35

When to override System.Object.Finalize()
The only reason to override Finalize() is if your C# class is making use of unmanaged resources

via PInvoke or complex COM interoperability tasks (typically via the

System.Runtime,InteropServices.Marshal type). It is illegal to override Finalize() on structure

types.

Building Disposable Objects
 Another approach to handle an object’s cleanup.
 Implement the IDisposable interface

 Object users should manually call Dispose() before allowing the object reference to drop

out of scope

 Structures and classes can both support Idisposal (unlike overriding Finalize())

.

	2.1 ASSEMBLIES
	Intrinsic Attributes
	Attribute Targets
	Applying Attributes

	Custom Attributes
	Declaring an Attribute
	Naming an Attribute
	Constructing an Attribute
	Using an Attribute

	The System.Exception Class:
	Exception Handling Fundamentals:
	Using try and catch:
	Exception Example :
	Using Multiple Catch Statements:
	Throwing An Exception:
	Rethrowing an Exception:
	Using finally:
	Commonly Used Exception:

