
SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.1 Overview of .NET

1.2 Advantages of .NET over the other languages

1.3 Overview of .NET binaries

1.4 Intermediate Language – Metadata

1.5. NET Namespaces

1.6 Common language runtime

1.7 Common type system

1.8 Common language specification

1.9 C# fundamentals

1.10C# class – object

1.11 string formatting

1.12 Types – scope – Constants

1.13 C# iteration – Control flow

1.14Operators

1.15 Array

1.16String

1.17 Enumerations

1.18 Structures

1.19Custom namespaces

1.20 Object oriented programming concepts -Class – Encapsulation

1.21 Inheritance

1.22 Polymorphic

1.23 Casting.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.1 Overview of .NET

What is .NET?

 .NET is a platform that provides a standardized set of services.

 It s just like Wi do s, e ept distri uted o er the Internet.

 It e ports a o o i terfa e so that it s progra s a e ru o a s ste
that supports .NET.

.NET Framework

 A specific software framework

 Includes a common runtime

 Programming model for .NET

 Platform for running .NET managed code in a virtual machine

 Provides a very good environment to develop networked applications and Web

Services

 Provides programming API and unified language-independent development

framework

The Core of .NET Framework: FCL & CLR

 Common Language Runtime

 Garbage collection

 Language integration

 Multiple versioning support

 Integrated security

 Framework Class Library

 Provides the core functionality:

ASP.NET, Web Services, ADO.NET, Windows Forms, IO, XML, etc.

A new software platform for the desktop and the Web.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

The .NET Framework is designed to fulfill the following objectives:

 To provide a consistent object-oriented programming environment where object code is

stored and executed locally, executed locally but Internet-distributed, or executed

remotely.

 To provide a code-execution environment that minimizes software deployment and

versioning conflicts.

 To provide a code-execution environment that promotes safe execution of code,

including code created by an unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates the performance problems of

scripted or interpreted environments.

 To make the developer experience consistent across widely varying types of

applications, such as Windows-based applications and Web-based applications.

 To build all communication on industry standards to ensure that code based on the .NET

Framework can integrate with any other code.

1.2 ADVANTAGES OF .NET OVER THE OTHER LANGUAGES

 Language Interoperability. (means .net supports more than 40 languages writing code

in one .net language can be used in other .net language)

 Language Independent platform.

 Through this technology one can develop web application as well window application

(desktop application).

 Provides cross language inheritance.

 Support side by side execution.

 Memory Leak and crash Protection.

 Powerful database-driven functionality.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

ADVANTAGES OVER C AND C++ :

 It is compiled to an intermediate language (CIL) independently of the language it was

developed or the target architecture and operating system

 Automatic garbage collection.

 Pointers no longer needed (but optional).

 Reflection capabilities .

 Don't need to worry about header files ".h"

 Definition of classes and functions can be done in any order

 Declaration of functions and classes not needed.

 There are no global functions or variables, everything belongs to a class

 All the variables are initialized to their default values before being used (this is

automatic by default but can be done manually using static constructors)

 Can't use non-Boolean variables (integers, floats...) as conditions. This is much more

clean and less error prone

 Apps can be executed within a restricted sandbox

ADVANTAGES OVER C++ AND JAVA

 Formalized concept of get-set methods, so the code becomes more legible

 More clean events management (using delegates)

ADVANTAGES OVER JAVA

 Usually it is much more efficient than java and runs faster

 CIL (Common (.NET) Intermediate Language) is a standard language, while java byte

codes aren't.

 It has more primitive types (value types), including unsigned numeric types.

 Indexers let to access objects as if they were arrays.

 Conditional compilation.

 Simplified multithreading.

 Operator overloading. It can make development a bit trickier but they are optional and

sometimes very useful.

 (limited) use of pointers if you really need them, as when calling unmanaged (native)

libraries which doesn't run on top of the virtual machine (CLR)

1.3 Overview of .NET binaries

 .NET binaries take the same file extension as classic COM binaries (*.dll or *.exe), they

have absolutely no internal similarities. For example, *.dll .NET binaries do not export methods

to facilitate communications with the classic COM runtime (given that .NET is not COM).

http://en.wikipedia.org/wiki/Reflection_\(computer_science\)

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Furthermore, .NET binaries are not described using IDL and are not registered into the system

registry. Perhaps most important, unlike classic COM servers, .NET binaries do not contain

platform-specific instructions, but rather platform-agnostic "intermediate language" (IL).

When a *.dll or *.exe has been created using a .NET-aware compiler, the resulting module is

bundled into an "assembly. As mentioned, an assembly contains CIL code, which is conceptually

similar to Java byte code in that it is not compiled to platform-specific instructions until

absolutely necessary. Typically "absolutely necessary" is the point at which a block of CIL

instructions (such as a method implementation) are referenced for use by the .NET runtime

engine.

 In addition to CIL instructions, assemblies also contain metadata that describes in vivid

detail the characteristics of every "type" living within the binary. For example, if you have a

class named Car contained within a given assembly, the type metadata describes details such as

Car's base class, which interfaces are implemented by Car (if any), as well as a full description of

each member supported by the Car type.

 Finally, in addition to CIL and type metadata, assemblies themselves are also described

using metadata, which is officially termed a manifest. The manifest contains information about

the current version of the assembly, culture information (used for localizing string and image

resources), and a list of all externally referenced assemblies that are required for proper

execution.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.4 Intermediate Language

This is the language code generated by the C# compiler or any .NET-aware compiler.

Intermediate Language: This converts native code into byte code, which is CPU –independent.

 i.e. machine understandable code.

MSIL is Microsoft Intermediate Language: When we compile .Net applications, its complied to

MSIL, which is not machine read language. Hence Common Language Runtime (CLR) with Just In

Time Complier (JLT) converts this MSIL to native code (binary code), which is machine language.

All .NET languages generate this code. This is the code that is executed during runtime.

This MSIL code can be viewed with the help of a utility called Intermediate Language

Disassembler (ILDASM). This utility displays the application's information in a tree-like fashion.

Because the contents of this file are read-only, a programmer or anybody accessing these files

cannot make any modifications to the output generated by the source code.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

To view the MSIL Code for a sample Hello C# program, open the Hello.exe file from the ILDASM

tool; it can be accessed via the Run command on the Start menu. Locate this tool manually.

Normally, it will be in the Bin folder of the .NET SDK installation. Figure 1 shows an outline of

this tool.

The main advantages of IL are:

1. IL is not dependent on any language and there is a possibility to create applications with

modules that were written using different .NET compatible languages.

2. Platform independence - IL can be compiled to different platforms or operating systems.

1.4 Meta data

 Metadata is machine-reada le i for atio a out a resour e, or data a out data.
In .NET, metadata includes type definitions, version information, external assembly references,

and other standardized information.

Metadata describes contents in an assembly classes, interfaces, enums, structs, etc., and

their containing namespaces, the name of each type, its visibility/scope, its base class, the

terfa es it i ple e ted, its ethods a d their s ope, a d ea h ethod s para eters, t pe s
properties, and so on.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

.NET Metadata

Within the Common Language Runtime (CLR), metadata is data that describes the state of the

assembly and a detailed description of each type, attribute within the assembly. Metadata

includes the following information which is contained in a manifest. ILDASM is a .NET

dissembler which allows a developer to look at the metadata (manifest) of an assembly

Assembly Metadata: Identity, types, dependent assemblies, and security permissions required

for the assembly.

Type Metadata : Name, bases, interfaces, visibility and members.

Attributes : Descriptive elements that annotate assemblies, types, and members.

.NET Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with the

common language runtime. The class library is object oriented, providing types from which your

own managed code can derive functionality. This not only makes the .NET Framework types

easy to use, but also reduces the time associated with learning new features of the .NET

Framework. In addition, third-party components can integrate seamlessly with classes in the

.NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can

use to develop your own collection classes. The .NET Framework types enable you to

accomplish a range of common programming tasks, including tasks such as string management,

data collection, database connectivity, and file access. In addition to these common tasks, the

class library includes types that support a variety of specialized development scenarios. For

example, you can use the .NET Framework to develop the following types of applications and

services:

 Console applications.

 Windows GUI applications (Windows Forms).

 ASP.NET applications.

 XML Web services.

 Windows services.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.5 NAMESPACES

 C# does not come with a pre-defined set of languages specific classes, there is no C#

class library. C# uses the existing types supplied by the .NET framework.To keep all the types

within this binary well organized the .NET platform makes extensive use of namespace concept.

The difference between language specific library such as MFC, is that any language targeting

the .NET runtime brakes use of same namespace.

System is the root namespace for other .NET namespaces.

Namespaces are a way to group semantically related types.

 A declarative region that provides a way to keep one set of names separate from

another,i.e the names declared in one namespace will not conflict with with the same names in

another namespace.

Within an Namespace we can declare

 *classes *structures

 *delegates *Enumerations

 *Interfaces *and another Namespaces.

Pre defined .NET NAMESPACES:-

.NET namespace Meaning

System Contains low level classes dialing with primitive types

mathematical and manipulations

System.Collections This namespace defines a number of stock container

objects(ArrayList, Queue) as well as base types and interfaces

allow you to build customized collections

System.Data Used for database manipulations.

System.Diagnostics Used to debug & trace your code

Sysatem.Drawing Contains various primitives such as bitmaps, fonts, icons etc

System.IO Includes file IO, buffering

System.NET Contains types related to network programming

System.Security Contains numerous types dealing with permissions,

cryptography etc.

System.Threading Deals with threading issues

System.Web Deals with web Applications

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

.NET namespace Meaning

System.Windows.Forms Contains the types that facilitate the construction of windows,

dialogboxes etc.

syntax:

namespace name

{

….
….
….
}

Example:

usingSystem;

class AA

{

public static void Main()

{

Console.WriteLine("we are inside namespace system");

}

}

output:

we are inside namespace system

1.6 COMMON LANGUAGE RUNTIME

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execution, code

safety verification, compilation, and other system services. These features are intrinsic to the

managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust,

depending on a number of factors that include their origin (such as the Internet, enterprise

network, or local computer). This means that a managed component might or might not be

able to perform file-access operations, registry-access operations, or other sensitive functions,

even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable

embedded in a Web page can play an animation on screen or sing a song, but cannot access

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

their personal data, file system, or network. The security features of the runtime thus enable

legitimate Internet-deployed software to be exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type-and-code-verification

infrastructure called the common type system (CTS). The CTS ensures that all managed code is

self-describing. The various Microsoft and third-party language compilers generate managed

code that conforms to the CTS. This means that managed code can consume other managed

types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common software

issues. For example, the runtime automatically handles object layout and manages references

to objects, releasing them when they are no longer being used. This automatic memory

management resolves the two most common application errors, memory leaks and invalid

memory references.

The runtime also accelerates developer productivity. For example, programmers can write

applications in their development language of choice, yet take full advantage of the runtime,

the class library, and components written in other languages by other developers. Any compiler

vendor who chooses to target the runtime can do so. Language compilers that target the .NET

Framework make the features of the .NET Framework available to existing code written in that

language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today

and yesterday. Interoperability between managed and unmanaged code enables developers to

continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime

provides many standard runtime services, managed code is never interpreted. A feature called

just-in-time (JIT) compiling enables all managed code to run in the native machine language of

the system on which it is executing. Meanwhile, the memory manager removes the possibilities

of fragmented memory and increases memory locality-of-reference to further increase

performance.

Finally, the runtime can be hosted by high-performance, server-side applications, such as

Mi rosoft® “QL “er er™ a d I ter et I for atio “er i es II“ . This i frastru ture e a les ou
to use managed code to write your business logic, while still enjoying the superior performance

of the industry's best enterprise servers that support runtime hosting.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Common Language Runtime

 Manages running code – like a virtual machine

 Threading

 Memory management

 No interpreter: JIT-compiler produces native code – during the program

installation or at run time

 Fine-grained evidence-based security

 Code access security

 Code can be verified to guarantee type safety

 No unsafe casts, no un-initialized variables and no out-of-bounds array

indexing

 Role-based security

Managed Code

 Code that targets the CLR is referred to as managed code

 All managed code has the features of the CLR

 Object-oriented

 Type-safe

 Cross-language integration

 Cross language exception handling

 Multiple version support

 Managed code is represented in special Intermediate Language (IL)

Automatic Memory Management

 The CLR manages memory for managed code

 All allocations of objects and buffers made from a Managed Heap

 Unused objects and buffers are cleaned up automatically through Garbage

Collection

 Some of the worst bugs in software development are not possible with managed code

 Leaked memory or objects

 References to freed or non-existent objects

 Reading of uninitialised variables

 Pointerless environment

Multiple Language Support

 IL (MSIL or CIL) – Intermediate Language

 It is low-level (machine) language, like Assembler, but is Object-oriented

 CTS is a rich type system built into the CLR

 I ple e ts arious t pes i t, float, stri g, …

 And operations on those types

 CLS is a set of specifications that all languages and libraries need to follow

 This will ensure interoperability between languages

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Intermediate Language

 .NET languages are compiled to an Intermediate Language (IL)

 IL is also known as MSIL or CIL

 CLR compiles IL in just-in-time (JIT) manner – each function is compiled just before

execution

 The JIT code stays in memory for subsequent calls

 Recompilations of assemblies are also possible

1.7 COMMON TYPE SYSTEM (CTS)

 The common type system defines how types are declared, used, and managed in

the runtime, and is also an important part of the runtime's support for cross-language

integration.

The common type system performs the following functions:

 Establishes a framework that helps enable cross-language integration, type safety, and

high performance code execution.

 Provides an object-oriented model that supports the complete implementation of many

programming languages.

 Defines rules that languages must follow, which helps ensure that objects written in

different languages can interact with each other.

 Encapsulates data structures.

 All .NET languages have the same primitive data types. An int in C# is the same as an int

in VB.NET

 When communicating between modules written in any .NET language, the types are

guaranteed to be compatible on the binary level

 Types can be:

 Value types – passed by value, stored in the stack

 Reference types – passed by reference, stored in the heap

 Strings are a primitive data type now.

There are two general types of categories in .Net Framework that Common Type System

support. They are value types and reference types. Value types contain data and are user-

defined or built-in. they are placed in a stack or in order in a structure. Reference types store a

refere e of the alue s e or address. The are allo ated i a heap stru ture. There are
many other types that can be defined under Value types and Reference types.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Type System

 Value types

 Directly contain data

 Cannot be null

 Reference types

 Contain references to objects

 May be null

 int i = 123;

 string s = "Hello world";

 Value types

 Primitives int i;

 Enums enum State { Off, On }

 Structs struct Point { int x, y; }

 Reference types

 Classes class Foo: Bar, IFoo {...}

 Interfaces interface IFoo: IBar {...}

 Arrays string[] a = new string[10];

 Delegates delegate void Empty();

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Type classification

CTS Structure Types

The concept of a structure is also formalized under the CTS.In general, a structure can be

thought of as a lightweight class type having value semantics. For example, CTS structures may

define any number of parameterized constructors (the no-argument constructor is reserved). In

this way, you are able to establish the value of each field during the time of construction.

While structures are best suited for modeling geometric and mathematical types, the following

type offers a bit more pizzazz.

// Create a C# structure.

struct Baby

{

// Structures can contain fields.

public string name;

// Structures can contain constructors (with arguments).

public Baby(string name)

{ this.name = name; }

// Structures may take methods.

public void Cry()

{ Console.WriteLine("Waaaaaaaaaaaah!!!"); }

 public bool IsSleeping() { return false; }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

 public bool IsChanged() { return false; }

}

Here is our structure in action (assume this logic is contained in some Main() method):

// Welcome to the world Max Barnaby!!

Baby barnaBaby = new Baby("Max");

Console.WriteLine("Changed?: {0} ", barnaBaby.IsChanged());

Console.WriteLine("Sleeping?: {0} ", barnaBaby.IsSleeping());

// Show your true colors Max...

for(int i = 0; i < 10000; i++)

barnaBaby.Cry();

As you will see, all CTS structures are derived from a common base class: System.ValueType.

This base class configures a type to behave as a stack-allocated entity rather than a heap-

allocated entity. CTS permits structures to implement any number of interfaces; however,

structures may not function as the base type to other classes or structures and are therefore

explicitly "sealed."

CTS Enumeration Types

 Enumerations are a handy programming construct that allows you to group

name/value pairs under a specific name.ific name. For example, assume you are creating a

video game application that allows the user to select one of three player types (Wizard, Fighter,

or Thief). Rather than keeping track of raw numerical values to represent each possibility, you

could build a custom enumeration:

// A C# enumeration.

public enum PlayerType

{ Wizard = 100, Fighter = 200, Thief = 300 } ;

By default, the storage used to hold each item is a System.Int32 (i.e., a 32-bit integer), however

it is possible to alter this storage slot if need be (e.g., when programming for a low memory

device such as a Pocket PC). Also, the CTS demands that enumerated types derive from a

common base class,System.Enum.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.8 COMMON LANGUAGE SPECIFICATION (CLS)

 To fully interact with other objects regardless of the language they were

implemented in, objects must expose to callers only those features that are common to all the

languages they must interoperate with. For this reason, the Common Language Specification

(CLS), which is a set of basic language features needed by many applications, has been defined.

The CLS rules define a subset of the Common Type System; that is, all the rules that apply to the

common type system apply to the CLS, except where stricter rules are defined in the CLS. The

CLS helps enhance and ensure language interoperability by defining a set of features that

developer can rely on to be available in a wide variety of languages. The CLS also establishes

requirements for CLS compliance; these help you determine whether your managed code

conforms to the CLS and to what extent a given tool supports the development of managed

code that uses CLS features.

If your component uses only CLS features in the API that it exposes to other code (including

derived classes), the component is guaranteed to be accessible from any programming

language that supports the CLS. Components that adhere to the CLS rules and use only the

features included in the CLS are said to be CLS-compliant components.

Most of the members defined by types in the .NET Framework Class Library are CLS-compliant.

However, some types in the class library have one or more members that are not CLS-

compliant. These members enable support for language features that are not in the CLS. The

types and members that are not CLS-compliant are identified as such in the reference

documentation, and in all cases a CLS-compliant alternative is available. For more information

about the types in the .NET Framework class library, see the .NET Framework Class Library.

The CLS was designed to be large enough to include the language constructs that are commonly

needed by developers, yet small enough that most languages are able to support it. In addition,

any language constructs that makes it impossible to rapidly verify the type safety of code was

excluded from the CLS so that all CLS-compliant languages can produce verifiable code if they

choose to do so. For more information about verification of type safety, see Managed

Execution Process.

The Common Language Specification (CLS), which is a set of basic language features needed by

many .Net applications to fully interact with other objects regardless of the language in which

they were implemented. The CLS represents the guidelines defined by for the .NET Framework.

These specifications are normally used by the compiler developers and are available for all

languages, which target the .NET Framework.

The CLS helps enhance and ensure language interoperability by defining a set of features that

developer can rely on to be available in a wide variety of languages.

http://msdn.microsoft.com/en-us/library/zcx1eb1e.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msdn.microsoft.com/en-us/library/k5532s8a.aspx
http://msdn.microsoft.com/en-us/library/k5532s8a.aspx

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

 Any language that conforms to the CLS is a .NET language

 A language that conforms to the CLS has the ability to take full advantage of the

Framework Class Library (FCL)

 CLS is standardized by ECMA

.NET Languages

 Languages provided by Microsoft

 C++, C#, J#, VB.NET, JScript

 Third-parties languages

 Perl, P tho , Pas al, APL, COBOL, Eiffel, Haskell, ML, O ero , “ he e, “ alltalk…

 Advanced multi-language features

 Cross-language inheritance and exceptions handling

 Object system is built in, not bolted on

 No additional rules or API to learn

1.9 C# Language Fundamentals
 Mixture between C++, Java and Delphi

 Component-oriented

 Properties, Methods, Events

 Attributes, XML documentation

 All in one place, no header files, IDL, etc.

 Can be embedded in ASP+ pages

 Everything really is an object

 Pri iti e t pes are t agi

 Unified type system == Deep simplicity

 Improved extensibility and reusability

C# Language – Example

using System;

class HelloWorld

{

 public static void main()

 {

 Co sole.WriteLi e Hello, orld! ;
 }

}

Code Compilation and Execution

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

ASSEMBLIES

 DLL or EXE file

 Smallest deployable unit in the CLR

 Have unique version number

 No version conflicts (known as DLL hell)

 Contains IL code to be executed

 Security boundary – permissions are granted at the assembly level

 Type boundary – all types include the assembly name they are a part of

 Self-describing manifest – metadata that describes the types in the assembly

1.10 Classes

A class is a construct that enables you to create your own custom types by grouping

together variables of other types, methods and events. A class is like a blueprint. It defines the

data and behavior of a type. If the class is not declared as static, client code can use it by

creating objects or instances which are assigned to a variable. The variable remains in memory

until all references to it go out of scope. At that time, the CLR marks it as eligible for garbage

collection. If the class is declared as static, then only one copy exists in memory and client code

can only access it through the class itself, not an instance variable.

Declaring Classes

Classes are declared by using the class keyword, as shown in the following example:

Public class Customer

{

 //Fields, properties, methods and events go here...

}

https://msdn.microsoft.com/en-IN/library/98f28cdx.aspx
javascript:void\(0\)
https://msdn.microsoft.com/en-IN/library/0b0thckt.aspx

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

The class keyword is preceded by the access level. Because public is used in this case,

anyone can create objects from this class. The name of the class follows the class keyword. The

remainder of the definition is the class body, where the behavior and data are defined. Fields,

properties, methods, and events on a class are collectively referred to as class members.

Creating Objects

Although they are sometimes used interchangeably, a class and an object are different

things. A class defines a type of object, but it is not an object itself. An object is a concrete

entity based on a class, and is sometimes referred to as an instance of a class.

Objects can be created by using the new keyword followed by the name of the class that

the object will be based on, like this:

Customer object1 = new Customer();

When an instance of a class is created, a reference to the object is passed back to the

programmer. In the previous example, object1 is a reference to an object that is based

on Customer. This reference refers to the new object but does not contain the object data

itself. In fact, you can create an object reference without creating an object at all:

Customer object2;

This syntax is not recommended for creating object references because trying to access

an object through such a reference will fail at run time. However, such a reference can be made

to refer to an object, either by creating a new object, or by assigning it to an existing object,

such as this:

Customer object3 = new Customer();

Customer object4 = object3;

This code creates two object references that both refer to the same object. Therefore,

any changes to the object made through object3 will be reflected in subsequent uses ofobject4.

Because objects that are based on classes are referred to by reference, classes are known as

reference types.

https://msdn.microsoft.com/en-IN/library/yzh058ae.aspx
javascript:void\(0\)
https://msdn.microsoft.com/en-IN/library/51y09td4.aspx

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.11 String Formatting

String.Format Method

Converts the value of objects to strings based on the formats specified and inserts them into

another string.

Formatting Console Output

 .NET introduces a new style of string formatting, slightly reminiscentof the C printf() function,

but without the cryptic %d, %s, or %c flags. A simple example follows

static void Main(string[] args)

{

...

int theInt = 90;

double theDouble = 9.99;

bool theBool = true;

// The '\n' token in a string literal inserts a newline.

Console.WriteLine("Int is: {0}\nDouble is: {1}\nBool is: {2}",

theInt, theDouble, theBool);

}

The first parameter to WriteLine() represents a string literal that contains optional

placeholders designated by {0}, {1}, {2}, and so forth (curly bracket numbering always begins

with zero). The remaining parameters to WriteLine() are simply the values to be inserted into

the respective placeholders (in this case, an int, a double, and a bool).

:

// Fill placeholders using an array of objects.

 object[] stuff = {"Hello", 20.9, 1, "There", "83", 99.99933} ;

 Console.WriteLine("The Stuff: {0} , {1} , {2} , {3} , {4} , {5} ", stuff);

It is also permissible for a given placeholder to repeat within a given string. For example, if you

are a Beatles fan and want to build the string "9, Number 9, Number 9" you would write

 Console.WriteLine("{0}, Number {0}, Number {0}", 9);

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.12 SCOPE

Definition

The scope of a variable, sometimes referred to as accessibility of a variable, refers to where the

variable can be read from and/or written to, and the variable's lifetime, or how long it stays in

memory. The scope of a procedure or method refers to where a procedure can be called from or

under what context you are allowed to call a method.

 Scoping terms

Term Used With… Visibility

Public Variables/Properties/Methods/Types Anywhere in or outside of a

project

Private Variables/Properties/Methods/Types Only in the block where

defined

Protected Variables/Properties/Methods Can be used in the class

where defined. Can be used

within any inherited class.

Friend Variables/Properties/Methods Can only be accessed by

code in the same

project/assembly.

ProtectedFriend Variables/Properties/Methods Combination of Protected

and Friend

Constants

 The variables whose values do not change during the execution of a program are

known as constants.

 Const keyword is used to declare constants.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

 Eg: Const int n = 10;

 Note: Names of constants take the same form as variables names

 After declaration of constants they should not be assigned any other value

 Constants can not be decalred inside a method. They should be declared onlyt at class

level

1.13 Control Structures

ITERATION STATEMENTS

Iterative statements repeat a particular statement block until a condition has been satisfied.

Following types of iterative statements are there in C#.

1. While

2. Do While

3. For

4. For each

While Statement

The statement block of while statement is executed while the boolean expression is true. It may

execute zero or more times. If the boolean expression is false initially, the statement block is

not executed.

int i = 9;

int j = 7;

int sum = 0;

while (j < i)

{

sum += j;

j++;

}

The value in the sum variable will be 15 as this loop will continue 2 times only. As soon as the

value of j will reach to 9 the condition j < i will return false and the loop will break.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

The while statement is used to iterate while the condition evaluates to true.

Do While Statement

Do While is almost similar to While statement except it validate its Boolean expression after the

statement block. It guarantees that the statement block shall run at least once for sure. Further

iterations of the statement block continues while the Boolean expression is true.

int i = 9;

int j = 10;

int sum = 0;

do

{

sum += j;

j++;

} while (j < i);

The value in the sum variable will be 10 as j is already greater than i so after first time entering

into the loop, the boolean validation (j < i)will return false and loop will break. The above code

block may not be the good example of the do while loop; do while can be used to ask for the

desired input from the user. If we are not getting the desired input, we can continue asking the

question in the while statement block.

For Statement

The For statement iterate a code block until a specified condition is reached similar to while

statement. The only difference of for statement has over while statement is that for

statement has its own built-in syntax for intiliazing, testing, and incrementing/decrementing (3

clauses) the value of a counter.

The first clause is the initialize clause in which the loop iterators are declared.

The second clause is the boolean expression that must evaluate to a boolean type and the

statement block is repeated until this expression is false.

The third clause is to increment/decrement the value that is executed after each iteration.

All three clauses must be separated by a semicolon (;) and are optional. For statement block is

repeated zero or more times based on the boolean expression validation (second clause).

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

int j = 10;

int sum = 0;

for (int i = 0; i < j; i++)

{

sum += i;

}

The value of sum variable will be 45 (0+1+2+3+4+5+6+7+8+9). It will add all the number from 0

to 9 because once it will reach 10 (third clause increase the value of i after each iteration), the

second clause (boolean expression) will not satisfy and loop will break.

For Each Statement

For Each statement is designed to loop through a similar type of items in a collection. As each

element is enumerated, the identifier is assigned the new element, and the statement block is

repeated. The scope of the identifier is within the for each statement block. The identifier must

be of the same type extracted from the collection and is read-only.

string[] days = { "sunday", "monday", "tuesday" };

string output = string.Empty;

foreach (string s in days)

{

output = string.Concat(output, s + " > ");

}

The identifier of the above foreach loop is string s (because days array contains string so

identifier must be of the same type). The value of the output variable will be "sunday > monday

> tuesday > ". In the days array, we have three strings and in the for each loop we are

concatenating all the items of the loop.

Use of break and continue

If we want to break the loop for some reason (may be after looping and validating the item, we

got the desired result); we can use break (break;) statement to prematurely exist from the loop.

If we want to skip a particular iterations and continue next iteration; we can use continue

(continue;) statement. Continue statement transfers the control to the end of the statement

block where the next execution continues.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.14 OPERATORS

 An operator is a symbol that tells the computer to perform mathematical or logical

manipulations.

 Operators are used in programs to manipulate data and programs.

• The Operators +,-,* and / all work the sdame way as they do in other languages.

• These can operate any built-in numeric data type.we cannot use these operators in

Boolean type.

Arithmetic Operators are used as:

 a-b a+b

 a*b a/b

 a%b -a*b

Here a and b may be variables or constants and are known as Operands.

Integer Arithmetic

• When both the operands in a single arithmetic expression such as a+b are

integers,the expression is called an integer expression,and the operation is called

integer arithmetic.

• Integer arithmetic always yields an integer value.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Example:

a=14 and b=4

a-b=10

a+b=18

a*b=56

a/b=3

Real Arithmetic

• An arithmetic Operation involving only real operands is called real arithmetic.

• A real operand may assume values either in decimal or exponential notation.

• Modulus operand returns the floating-point equivalent of an intiger division.

Example:

 a=20.5

 b=6.4

 a+b=26.9

 a-b=14.1

 a*b=131.2

 a/b=3.203125

Mixed-mode Arithmetic

• When one of the operands is real and other is integer, the expression is called a mixed-

mode arithmetic expression.

Example:

 15/10.0 produces the result 1.5

 15/10 produces the result 1

Relational Operators

• We often compare two quantities and depending on their relation, take certain

decisions,For example,we may compare the age of two persons or the price of

two items and so on.These Comparisions can be done with the help of relational

operators.

Example:

 a<b or x<20

 Expression containing a relational operator is termed as a relational expression. The

value of a relational expression is either true or false. For example, Relational expression are

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

used in decision statements such as if and while to decide the course of action of a running

program.

Logical Operators

• The logical operators && and ll are used when we want to form compound

condition by combining two or more relations. An example is:

 a>b && x==10

• An expression of this kind which combines two or more relational expression is

termed as a logical expression or a compound expression. Like the simple relational

expressions, a logical expression also yields a value of true or false.

Assignment Operators

• Assignment operators are used to assign the value of an expression to a variable.

• Assig e t operator, = .

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Example:

v OP=exp

Where v is a variable ,exp is an expression and op is a C# binary operator.

• The operator OP= is known as the shorthand assignment operator.

• The shorthand operator y+=x ea s add +1 to or i re e t +1 . X +=3;

• The use of shorthand assignment operators has three advantages

 *What appears on the left-hand side need not be repeated and therefore it

becomes easier to write

 *The statement is more concise and easier to read

 *The use of shorthand operators results in a more efficient code.

Increment and Decrement Operators

• There are the increment and decrement operators:

 ++ and --

• The operator ++ adds 1to the operand while—subtracts 1.

• Both are unary operators and are used in the following form:

 ++m; or m++;

 --m; or m--;

 ++m; is equivalent to m=m+1; (or m + = 1;)

 --m; is equivalent to m=m-1; (or m - = 1;)

• We use the increment and decrement operators extensively in for and while loops,

• While ++m and m++ mean the same thing when they form statements independently,

they behave differently when they are used in expressions on the right-hand side of an

assignment statement, Consider the following:

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

 m=5;

 y= ++m;

Example:

 m=10

 n=20

 ++m=11

 n++=20

 m=11

 n=21

Conditional Operator

• The character pair ?: is a temporary operator available in C#. This operator is used to

construct conditional expressions of the form

 exp1?exp2:exp3

 where exp1,exp2,exp3 are the expressions.

• The operator?: works as follows: exp1 is evaluated first. If it is true, then the expression

exp2 is evaluated and becomes the value of the conditional expression. if exp 1 is

false,exp3 is evaluated and its value becomes the value of the conditional expression.

Note that only one of the expressions (either exp2 or exp3) is evaluated .For example,

consider the following statements:

a=10;

b=15;

x=(a>b) ? a:b; equivalent to,

 if (a > b)

 x=a;

 else

 x=b;

Bitwise Operators

C# supports the operators that may be used for manipulation of the data at bit level. These

operators may be used for testing the bits or shifting them to the right or left. Bitwise operators

may not be applied to floating point data.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Special operators

C# supports the following special operators:

Is (relational operator)

as (relational operator)

typeof (type operator)

sizeof (size operator)

new (object creator)

.(dot) (member-access operator)

Checked (overflow checking)

Unchecked (prevention of overflow checking)

 1.15 Array

 Array is the group of related data items. Length property is used to find and the length of

the array.

One dimensional Array:

 Syntax: datatype[] arrayname = new datatype[size];

eg: int[] a = new int[10];

Initialization of One Dimensional Array:

 int[] a={10, 20, 30};

Accessing array elements:

 a[1] => 1
st
 element of array a

Eg:Program to find sum of Array elements

using System;

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

class DemoArray

 {

 public static void Main()

 {

 int[] a={10,20,30};

 int s=0;

 for(int i=0; i<3; i++)

 s=s+a[i];

 Console.WriteLine("Sum is "+s);

 }

 }

Output : Sum is 60

Multi Dimensional Array:

 Contains many rows.

Syntax:

 datatype[,] arrayname=new datatype [row size][column size];

eg:

 int [,] a=new int [2][3];

Accessing array elements:

 a[2,3]=> 2
nd

 row, 3
rd

 element

Eg:Program to print elements of two dimensional array

 class TDArray

 {

 public static void Main()

 {

 int[,] a={{10,20},{30,40}};

 for (int i=0; i<a.GetLength(0); i++)

 {

 for (int j=0; j<a.GetLength(1); j++)

 {

 Console.Write(a[i,j]);

 }

 Console.WriteLine("\n");

 }

 }

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Output :
 10 20

 30 40

Jagged Array:
 Jagged Array contains some numbers of inner arrays, each of which may have a Unique

Upper Limit.

Syntax:

int[][] JA=new int[2][];

 Ex:

 JA[0]=new int[2];

 JA[1]=new int[3];

 Now the jagged array contains 2 rows.

 1
st
 row contains 2 elements,

 2
nd

 row contains 3 elements.

Length Property:
 For one and multi dimensional arrays, the length property returns no. of elements in that

array.

 Length can be used for Jagged Arrays. Here it is possible to obtain the length of each

individual array.

Eg:

 JA.Length = 2[no. of rows]

 JA[1].Length = 2[no. of elements in 1
st
 row

Note:

 By default the values of array elements are zero.

Methods of class System.Array:

C# array is derived from System.Array (.Net Base Type). Hence C# arrays can use the members

of System.Array.

Binary Search()

Reverse()

Clear()

Sort()

 eg: int a=(40, 20, 30, 10}

 int i=Array.BinarySearch(a,20)

 Now i=1

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

 Array.Sort(a)

 Now a= {10, 20, 30, 40}

 Array.Reverse(a)

 Now a={40, 30, 20, 10}

 Array.Clear(a, 0, 2)

 Now a={0, 0, 20, 10}

1.16 String
One of the data type is string. Used to store strings.Strings are objects.Hence it is a reference

type.

Declaration of strings:
 string s1= ”Hello”;
 String is derived from the base class System.String (.Net base type). By means of index,

you can access individual character but cant modify it.

[Eg: s1[0]='H']

Methods of class System.String:

 (1) public static string Copy(string s1)

 Used to copy the string.

 Eg: string s1=”Hello”

 string s2=String.Copy(s1);

 s2=”Hello”.

(2)public static int Compare(string s1, string s2, bool ignorecase)

 Used to compare strings.

 ignorecase --> true =>ignore case

 ignorecase --> false => wont ignore case

 eg: string s1=”abc”

 string s2=”ABC”

 int i=String.Compare(s1,s2,false)

 i=65-97= -32 [s1<s2]

 (3) public static string concat (string s1, string s2)

 Used to concatenate two strings.

 Eg: string s1 = “Good”

 string s2 = “Morning”

 string s3 = String.concat(s1,s2);

 Now string3 = Good Morning

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

(4) public int IndexOf(string str or char c)

 =>Searches the invoking string for the substring or character and returns the index

of the first match.

 Eg: string s1=”Good”;
 int i = s1.Index Of(‘o');
 Now i=1

 (5) public int LastIndexOf(string str) or (char c)

 => Searches the invoking string for the substring or character and returns the

index of the last match.

 Eg: string s1 = “Good”

 int i = s1.LastIndexOf ('o');

 Now i = 2

 (6)public bool StartsWith(String str)

 Used to check whether the string starts with given substring.It returns true or

false.

 Eg: string s1=”Good”

 bool b = s1.StartsWith(“Good”);
 b=true

 (7) public bool EndsWith(string str)

 Used to check whether string ends with the given substring.

Eg: string s1=”Good Morning”;
bool b=s1.EndsWith(“ING”);
b=false

(8) public string Tolower() & Toupper()

 Used to convert characters from uppercase to lowercase

 eg: String S1 = “Good”;
 String S2 = S1.ToLower();

 S2 = good

 String S3 = S2.ToUpper();

 S3 = GOOD

(9) Public string Replace(character to be replaces, character for replacement)

 Used to replace one character with other.

 Eg: String S1 = “Geed”;
 String S2 = S1.replace('e', 'o');

 S2 = Good

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

(10) public string insert(string str, int location)

 Used to insert the string at the specified location

 Eg:

String S1 = This Good

 12345

 String S2 = S1.insert(“is”, 5);
 S2 = This is good.

(11) public string remove(int start, int count)

 Used to remove the count no of character from the given string starting from the

location specified by start.

 Eg: String S1 = “This is good”;
 String S2 = S1.remove(5,2);

 S2 = This good

1.17 ENUMERATIONS

An ENUMERATION provides an efficient way to define a set of named integral constants that

may be assigned to a variable.

 The Enumeration list is a comma separated list of identifiers.

 By default,the value of the first enumeration symbol is 0.

syntax:

 enum name [enumeration list];

Exmaple

using System;

class Program

{

enum Importance

 {

 None,

 Trivial,

 Regular,

 Important,

 Critical

 };

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

static void Main()

{

Importance value = Importance.Critical;

if (value == Importance.Trivial)

{

Console.WriteLine("Not true");

}

else if (value == Importance.Critical)

{

Console.WriteLine("True");

}

}

}

Output : True

1.18 STRUCTURE

Definition

Structure is a value data type . It is used to store mixed data types. It provides a unique way of

packing different data types together. It is convenient tool for handling a group of logically

related data items.

Syntax :

struct struct-name

 {

 data type member1;

 data type member2;

 }

 eg:

 struct Student

 {

 public string name;

 public int rollnumber;

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Program for displaying student detail using structure

 using System;

 public struct Student

 {

 public string name;

 public int rollnumber;

 }

 class Csstruct

 {

 public static void Main ()

 {

 Student S1;

 S1.name = "lakshmi";

 S1.rollnumber = 101;

 Console.WriteLine(S1.name+"\t"+S1.rollnumber);

 }

 }

Output : lakshmi 101

Features of C# structure

Structures support defined constructors, but not destructors. The default constructor is

automatically defined and cannot be changed.

Structures can have methods.

Structure Variable can be passed as a parameter to any member function.

Class versus Structure
classes are reference types and structs are value types

structures do not support inheritance

structures cannot have default constructor

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Program for displaying student details by defining constructors

 eg:

 struct Student

 {

 public string name;

 public int rollno;

 }

 class CsStruct

 {

 public static void Main ()

 {

 Student S1= new student(“lakshmi”, 101);
 Console.WriteLine(S1.name+”\t”+S1.rollno);
 }

 }

Output : lakshmi 101

Program for displaying student details by defining methods inside the structure.

eg:

 struct student //structure

 {

 public string name;

 public void Display(string n, int r) // method

 {

 name =n;

 rollno =r;

 }

 }

 class csstruct

 {

 public static void Main()

 {

 student s1 = new student(); //structure object

 s1. Display (“lakshmi”,101)
 Console.WriteLine(s1.name);

 Console.WriteLine(s1.rollno);

 }

 }

Output : lakshmi 101

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Program for displaying student details by passing structure as parameters to any member

function.

 Eg:

 struct student

 {

 string name;

 int rollno;

 }

 class csstruct

 {

 public static Void display(student s1)

 //sturcture cannot be inherited they can be passed as parameter

 {

 Console.WriteLine(s1.name+”\t”+s1.rollno);
 }

 public static Void Main()

 {

 student s1;

 s1.name = “lakshmi”;
 s1.rollno = 101;

 display(s1);

 }

 }

Output : lakshmi 101

Syntax for Copying one structure to another:

 eg: student s1,s2;

 s2=s1;//now s1 is copied to s2.

 Syntax for using Struct variable as a member for another structure

 eg:

 struct M

 {

 public int x;

 }

 struct N

 {

 public M m;

 public int Y;

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.19 DEFINING CUSTOM NAMESPACES

We can also define our own namespaces using the keyword namespace.

Syntax :

 namespace namespace_name

 {

 public class calss1{}

 …….
 public class class2{}

 }

Example program for defining custom namespace named Myshapes

 using System;

 namespace Myshapes //Myshapes is the user defined namespace

 {

 public class circle

 {

 public void display()

 {

 Console.WriteLine(“You have called display method of circle “);
 }

 }

 public class square

 {

 public void display()

 {

 Console.WriteLine(“You have called display method of square “);
 }

 }

 }

Program for accessing custom namespace Myshapes

 eg:

 using System;

 using Myshapes; //import the desired namespace

 class ex

 {

 public static void Main()

 {

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

 circle c = new circle(); //circle object of the desired class

 square s = new square();

 c.display();

 s.display();

 }

 }

 Output : You have called display method of circle

 You have called display method of square

Resolving Name classes across Namespaces

 Fully qualified name resolves the name clash across multiple namespaces

 eg:

 One more Namespace My3DShapes that also contain the same class cirlce.

 using System;

 Namespace My3Dshapes

 {

 public class circle

 {}

 public class Square

 {}

 }

Now we can differentiate circle class of MyShapes and My3DShapes by means of fully

qualifed names.

 Eg:

 using MyShapes;

 using My3DShapes;

 class ex

 {

 PSVM()

 {

 MyShapes.Circle c1 = new MyShapes.circle();

 My3DShapes.Circle c2 = new My3DShapes.Circle();

 }

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Nested namespace

Namespaces can also be nested within other namespaces

Syntax

 using System;

 namespace A

 {

 namespace B

 {

 define classes //here B within A known as nested Namespaces

 }

 }

 1.20 Object Oriented Programming with C#

There are three major object oriented concepts

Encapsulation

Inheritance

Polymorphism

Encapsulation

This is the languages ability to hide unnecessary implementation details from the end user.

Binding of data and functions into the single unit is also known as Encapsulation.

public data members of the class can be accessed by means of object.

Eg:

 class F

 {

 public int a = 20;

 }

 class F1

 {

 public static void Main()

 {

 F b = new F();

 Console.WriteLine(“Value of a is “ , b.a);
 }

 }

 }

 Output : Value of a is 20

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

There are two ways to access private data numbers
By means of defining two public methods

By means of defining properties

Accessing private data by means of defining public methods
 Eg:

 using System;

 class A

 {

 Private int a;

 public void set1(int x)

 {

 a = x;

 }

 public int get1()

 {

 return(a);

 }

 }

 class B

 {

 public static void Main()

 {

 A a1 = new A();

 a1.set1(10);//access private data by means of public method.

 Console.WriteLine(”Value of private data a is ” + (a1.get1());
 }

 }

Output : Value of private data a is 10

Accessing private data by means of defining properties

This is also used to access private data. Instead of using two public methods for getting and

setting values for private data, we can use single property.

 Syntax:

 type name

 {

 get {}

 set {}

 }

 Type --> type of the property

 Name --> name of the property

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Once the property has been defined, any use of name results in a call to its appropriate accessor.

The set accessor automatically receives a parameter called calue that contains the value being

assigned to the property.

 To manipulate internal data using single variable

 eg:

 using System;

 class A

 {

 Private int a;

 no modifier int prop //syntax for property

 {

 get

 {

 return(a);

 }

 set

 {

 a = value;

 }

 } //property

 } //class

 class B

 {

 public static void Main()

 {

 A a1 = new A();

 a1.prop(10);//call set accessor of property prop and set value of private data

 Console.WriteLine(“Value is “+a1.Prop)//call get accessor of property prop

 }

 }

Three Types of properties
Read Only Property

Write Only Property

Static Property

If the property contains only get block then that property is known as read only property.

 Eg:

 int Prop

 {

 get{}

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

If the property contains only set block then that property is known as write only property

 Eg:

 int Prop

 {

 Set

 {

 Private data = value;

 }

 }

Static property

 If the property is defined as static then that can be accessed by means of class name.

 Eg:

 class A

 {

 Private static int a;

 public static int prop

 {

 get

 {

 return(a);

 }

 set

 {

 a = value;

 }

 }

 }

 class B

 {

 public static void Main()

 {

 A.prop =10;// set accessor of static property prop is called with class name .

 Console.WriteLine(“Value is “+A.prop); // call get accessor of static property prop

 }

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.21 Inheritance

This concept is mainly used for code reuse . Inheritance comes in two flavours

is-a relationship (classical inheritance)

has-a relationship(containment)

Classical inheritance
 Defnition:- the basic idea behind is that new classes may leverage the functionality of

other classes.

 Eg:

 class A --> baseclass, parent class, super class

 class B --> derived class, child class, sub class

Now the derived class that incorporate all the data and methods of its base class, have its own

data member. Now B is a type of A .Classical inheritance can be implemented in different

combinations.

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Containment inheritance:

 Containership between class A & B

 Ex:

 class A

 {

 }

 class B

 {

 A a; //a is contained in B

 }

 the relationship between A and B is has a relationship.

General form of defining sub-class:-
 Syntax:

 class derived class name:base class name

 {

 variable declaration;

 method declaration;

 }

 ex:

 class A

 {

 }

 class B:A

 {

 }

Example program for single inheritance
 class A

 {

 public void display1()

 {

 Console.WriteLine(“Base class”);
 }

 }

 class B:A

 {

 public void display2()

 {

 Console.WriteLine(“Derived class”);
 }

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

class C

 {

 public static void Main()

 {

 B b1 = new B();

 b1.display1();

 b1.display2();

 }

 }

OUTPUT :
 Base Class

 Derived class

Base Keyword

Used to call base class constructor from derived class

Used to access base class data member from derived class

Example program to call base class constructor from derived class

 class A

 {

 public int i;

 public A(int x)

 {

 i = x;

 }

 }

 class B:A

 {

 public int i1;

 public B(int x, int y):base(x)//call the base class constructor

 {

 i1 =y;

 }

 }

 class C

 {

 public static void Main()

 {

 B b1 = new B(10,20);

 Console.WriteLine(“Value of i is “ +b1.i);
 Console.WriteLine(“Value of i1 is “+b1.i1);
 }

 }

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

OUTPUT :
 Value of i is 10

 Value of i1 is 20

Note: if the base class and derived class has the same member, then the base class member can

be accessed from the derived class using the keyword base.

Example program to access base class data member from derived class

 class A

 {

 public int i = 10;

 }

 class B:A

 {

 public int i = 20;

 public void display();

 {

 Console.WriteLine(“Value of base class i “+base.i);
 Console.WriteLine(“Value of derived class i”+i);
 }

}

 class c

 {

 public static void Main()

 {

 B b1 = new B();

 b1.display();

 }

 }

OUTPUT :
 Value of base class i 10

 Value of derived class i 20

Prevent inheritance using keyword sealed:-
 sealed class A

 {}

 class B:A//error because A cannot be inherited

 {}

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

1.22 Polymorphism

When a message can be processed in different ways is called polymorphism. Polymorphism

means many forms.

Polymorphism is one of the fundamental concepts of OOP.

Polymorphism provides following features:

 It allows you to invoke methods of derived class through base class reference during

runtime.

 It has the ability for classes to provide different implementations of methods that are

called through the same name.

Polymorphism is of two types:

1. Compile time polymorphism/Overloading

2. Runtime polymorphism/Overriding

Compile Time Polymorphism

Compile time polymorphism is method and operators overloading. It is also called early binding.

In method overloading method performs the different task at the different input parameters.

Runtime Time Polymorphism

Runtime time polymorphism is done using inheritance and virtual functions. Method overriding

is called runtime polymorphism. It is also called late binding.

When overriding a method, you change the behavior of the method for the derived

class. Overloading a method simply involves having another method with the same prototype.

Following are examples of methods having different prototypes:

void area(int side);

void area(int l, int b);

void area(float radius);

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Program for Method Overloading (Compile Time Polymorphism)

using System;

 class Program

 {

 public void display(string name)

 {

 Console.WriteLine("Your name is : " + name);

 }

 public void display(int age, float marks)

 {

 Console.WriteLine("Your age is : " + age);

 Console.WriteLine("Your marks are :" + marks);

 }

 }

 static void Main(string[] args)

 {

 Program obj = new Program();

 obj.display("George");

 obj.display(34, 76.50f);

 Console.ReadLine();

 }

 }

}

Method Overriding(Run time Polymorphism)

When a derived class inherits from a base class, it gains all the methods, fields, properties and

events of the base class. To change the data and behavior of a base class, you have two choices:

you can replace the base member with a new derived member, or you can override a virtual

base member.

Replacing a member of a base class with a new derived member requires the new keyword. If a

base class defines a method, field, or property, the new keyword is used to create a new

http://msdn.microsoft.com/en-us/library/51y09td4\(v=vs.80\).aspx

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

definition of that method, field, or property on a derived class. The new keyword is placed

before the return type of a class member that is being replaced. For example:

public class BaseClass

{

 public void DoWork() { }

 public int WorkField;

 public int WorkProperty

 {

 get { return 0; }

 }

}

public class DerivedClass : BaseClass

{

 public new void DoWork() { }

 public new int WorkField;

 public new int WorkProperty

 {

 get { return 0; }

 }

}

When the new keyword is used, the new class members are called instead of the base class

members that have been replaced. Those base class members are called hidden members.

Hidden class members can still be called if an instance of the derived class is cast to an instance

of the base class. For example:

DerivedClass B = new DerivedClass();

B.DoWork(); // Calls the new method.

BaseClass A = (BaseClass)B;

A.DoWork(); // Calls the old method.

In order for an instance of a derived class to completely take over a class member from a base

class, the base class has to declare that member as virtual. This is accomplished by adding

the virtual keyword before the return type of the member. A derived class then has the option

of using the override keyword, instead of new, to replace the base class implementation with

its own. For example:

http://msdn.microsoft.com/en-us/library/9fkccyh4\(v=vs.80\).aspx
http://msdn.microsoft.com/en-us/library/ebca9ah3\(v=vs.80\).aspx

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

public class BaseClass

{

 public virtual void DoWork() { }

 public virtual int WorkProperty

 {

 get { return 0; }

 }

}

public class DerivedClass : BaseClass

{

 public override void DoWork() { }

 public override int WorkProperty

 {

 get { return 0; }

 }

}

Fields cannot be virtual; only methods, properties, events and indexers can be virtual. When a

derived class overrides a virtual member, that member is called even when an instance of that

class is being accessed as an instance of the base class. For example:

DerivedClass B = new DerivedClass();

B.DoWork(); // Calls the new method.

BaseClass A = (BaseClass)B;

A.DoWork(); // Also calls the new method.

Virtual methods and properties allow you to plan ahead for future expansion. Because a virtual

member is called regardless of which type the caller is using, it gives derived classes the option

to completely change the apparent behavior of the base class.

Virtual members remain virtual indefinitely, no matter how many classes have been declared

between the class that originally declared the virtual member. If class A declares a virtual

member, and class B derives from A, and class C derives from B, class C inherits the virtual

member, and has the option to override it, regardless of whether class B declared an override

for that member. For example:

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

public class A

{

 public virtual void DoWork() { }

}

public class B : A

{

 public override void DoWork() { }

}

public class C : B

{

 public override void DoWork() { }

}

A derived class can stop virtual inheritance by declaring an override as sealed. This requires

putting the sealed keyword before the override keyword in the class member declaration. For

example:

public class C : B

{

 public sealed override void DoWork() { }

}

In the previous example, the method DoWork is no longer virtual to any class derived from C. It

is still virtual for instances of C, even if they are cast to type B or type A. Sealed methods can be

replaced by derived classes using the new keyword, as the following example shows:

public class D : C

{

 public new void DoWork() { }

}

In this case, if DoWork is called on D using a variable of type D, the new DoWork is called. If a

variable of type C, B, or A is used to access an instance of D, a call to DoWork will follow the

rules of virtual inheritance, routing those calls to the implementation of DoWork on class C.

A derived class that has replaced or overridden a method or property can still access the

method or property on the base class using the base keyword. For example:

http://msdn.microsoft.com/en-us/library/88c54tsw\(v=vs.80\).aspx

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

public class A

{

 public virtual void DoWork() { }

}

public class B : A

{

 public override void DoWork() { }

}

public class C : B

{

 public override void DoWork()

 {

 // Call DoWork on B to get B's behavior:

 base.DoWork();

 // DoWork behavior specific to C goes here:

 // ...

 }

}

}

1.23 Type conversion and casting

 When ever smaller datatype is assigned to larger datatypes then conversion is performed

automatically. Known as widening conversion.

 Eg: int l;

 byte b;

 l = b //automatic conversion

When larger datattype is assigned to smaller type then casting should be performed known as

narrowing conversion.

 Eg: int i;

 byte b;

 b = (byte)i; //casting

SATHYABAMA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE MATERIAL

Subject Name : C# AND .NET UNIT I Subject Code : SCSX1008

 Faculty Of Computing

Boxing & Unboxing

Boxing:

 Any type value a reference can be assigned to an object without an explicit conversion is

known as Boxing.

 Eg: int i = 10;

 object o = i; //Boxing

UnBoxing:

 Unboxing is the process of converting the object type back to value type.

 Eg: int i1 = (int)o;

	1.4 Intermediate Language
	.NET Framework Class Library
	Features of the Common Language Runtime
	Declaring Classes
	Creating Objects
	While Statement
	Do While Statement
	For Statement
	For Each Statement
	Use of break and continue

	Runtime Time Polymorphism
	Following are examples of methods having different prototypes:
	Method Overriding(Run time Polymorphism)

