
PRACTICAL 

file 
 

 

 

 

 

 

 

Department: Computer Science and Engineering 

Session:  January - June 

Subject:    System Programming 

Subject Code:        BTCS-409 

Semester:  4th 

 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

1. Create a menu driven interface for 
a) Displaying contents of a file page wise 
b) Counting vowels, characters, and lines in a file. 
c) Copying a file 
 
2. Write a program to check balance parenthesis of a given program. 
Also generate the error report. 
 
3. Write a program to create symbol table for a given assembly language 
program. 
 
4.Write a program to create symbol table for a given high-level language 
program. 
 
5.Implementation of single pass assembler on a limited set of 
instructions. 
 
6.Exploring various features of debug command. 
 
7.Use of LAX and YACC tools 
 

 

 

 

 

 

 

 

 

 

Syllabus 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

Sr. No. Topic 

1 Introducion to SP.and its components. 

2 Create a menu driven interface for 

a) Displaying contents of a file page wise 

b) Counting vowels, characters, and lines in 

a file. 

c) Copying a file 

 

3 Write a program to check balance 

parenthesis of a given program. Also 

generate the error report. 

 

4 Write a program to create symbol table for a 

given assembly language program. 

 

5 Write a program to create symbol table for a 

given high-level language program. 

 

6 Implementation of single pass assembler on 

a limited set of instructions. 

 

7 Exploring various features of debug 

command. 

 

8 Use of LAX and YACC tools. 

9 *Write a program to implement an absolute 

loader. 

 

*Learning Beyond Syllabus Write a program to implement an absolute loader. 

 

 

 

List of Practical 



  

 

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: INTRODUCTION OF SYSTEM PROGRAMMING. AND ITS COMPONENTS  

INTRODUCTION 

System programming (or systems programming) is the activity of computer programming system 

software. The primary distinguishing characteristic of systems programming when compared to 

application programming is that application programming aims to produce software which 

provides services to the user (e.g. word processor), whereas systems programming aims to 

produce software which provides services to the computer hardware (e.g. disk defragmenter). It 

requires a greater degree of hardware awareness.  

COMPONENTS 

Linker 

For modularity of the program, it is better to break programs into several modules (subroutines). 

It is even better to put common routine, like reading a hexadecimal number, writing a 

hexadecimal number etc. which could be used by a lot of other programs also into a separate file. 

These files are assembled (translated) separately. After each has been successfully assembled, 

they can be linked together to form a large file, which constitutes the computer program. The 

program that links several programs is called the linker. 

Loader 

A loader is a program that places programs into main memory and prepares them for execution. 

The loader's target language is machine language, its source language is nearly machine 

language. Loading is ultimately bound with the storage management function of operating 

systems and is usually performed later than assembly or compilation. The period of executions of 

user's program is called execution time. The period of translating a user's source program is 

called assembly or compile time. Load time refers to the period of loading and preparing an 

object program for execution 

Compiler  

A compiler is a computer program (or set of programs) that transforms source code written in a 

programming language (the source language) into another computer language (the target 

language, often having a binary form known as object code). The most common reason for 

wanting to transform source code is to create an executable program. 

Experiment 1 



  

The name "compiler" is primarily used for programs that translate source code from a high-level 

programming language to a lower level language (e.g., assembly language or machine code). If  

 

the compiled program can run on a computer whose CPU or operating system is different from 

the one on which the compiler runs, the compiler is known as a cross-compiler 

Assembler 

An assembler is a program that takes basic computer instruction and converts them into a pattern 

of bits that the computer's processor can use to perform its basic operations. Some people call 

these instructions assembler language and others use the term assembly language. 

Compiler 

A compiler is a computer program (or set of programs) that transforms source code written in a 

programming language (the source language) into another computer language (the target 

language, often having a binary form known as object code). The most common reason for 

wanting to transform source code is to create an executable program. 

The name "compiler" is primarily used for programs that translate source code from a high-level 

programming language to a lower level language 

Macro 

A macro in computer science is a rule or pattern that specifies how a certain input sequence 

(often a sequence of characters) should be mapped to a replacement output sequence (also often 

a sequence of characters) according to a defined procedure. The mapping process that 

instantiates (transforms) a macro use into a specific sequence is known as macro expansion. 

Macros are used to make a sequence of computing instructions available to the programmer as a 

single program statement, making the programming task less tedious and less error-prone. 

 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: Create a menu driven interface for 

a) Displaying contents of a file page wise 

b) Counting vowels, characters, and lines in a file. 

c) Copying a file 

#include<iostream.h> 

#include<conio.h> 

void main() 

{ 

//clear the screen. 

clrscr(); 

//declare variable type float and char 

float a,b,area; 

char ch; 

//Input the choice. 

cout<<"Enter c for circle"<<endl; 

cout<<"Enter s for square"<<endl; 

 

 

cout<<"Enter r for rectangle"<<endl; 

cout<<"Enter t for triangle"<<endl; 

cin>>ch; 

//conditional switch statement. 

switch (ch) 

{ 

case 'c': 

cout<<"Enter radius"<<endl; 

cin>>a; 

area=3.14*a*a; 

break; 

case 's': 

cout<<"Enter the side"<<endl; 

cin>>a; 

area=a*a; 

break; 

case 'r': 

cout<<"Enter the length"<<endl; 

cin>>a; 

cout<<"Enter the breadth"<<endl; 

cin>>b; 

area=a*b; 

break; 

Experiment 2 



  

case 't': 

cout<<"Enter the height"<<endl; 

cin>>a; 

cout<<"Enter the base"<<endl; 

cin>>b; 

area=0.5*a*b; 

break; 

default: 

cout<<"Syntax Error"; 

} 

//print the area. 

cout<<"Area is "<<area; 

//get character 

getch(); 

} 

 

 

 

 

 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: Write a program to check balance parenthesis of a given program. 

#include <iostream.h> 

 

#include <conio.h> 

#include "IntStack.h" 

#include <stdio.h> 

 

void main(void) 

{ 

    char bracket[20]; 

    gets (bracket); 

    char arr[6]; 

    int i=0; 

    while(i<20) 

    { 

        switch(bracket[i]) 

            { 

                case '[': 

                { 

                    arr[0]=1; 

                    break; 

                } 

                case '{': 

                { 

                    arr[1]=2; 

                    break; 

                } 

                case '(': 

                { 

                    arr[2]=3; 

                    

 break; 

                } 

                case ')': 

                { 

                    arr[3]=3; 

                    break; 

                } 

                case '}': 

                { 

                    arr[4]=2; 

                    break; 

                } 

Experiment 3 



  

                case ']': 

                { 

                    arr[5]=1; 

                    break; 

                } 

                default: 

                    cout<<""; 

        } 

        i++; 

    } 

    if(arr[3]==arr[2]) 

         

cout<<""; 

    else 

        cout<<" ) or ( is missing "<<endl; 

 

    if(arr[1]==arr[4]) 

        cout<<""; 

    else 

        cout<<" } or { is missing "<<endl; 

 

    if(arr[5]==arr[0]) 

        cout<<""; 

    else 

        cout<<" ] or [ is missing"<<endl; 

} 

OUTPUT:- 

Input  

() 

Output 

} or { is missing 

 ] or [ is missing 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

 
AIM: To write a program to generate the symbol table for the given assembly language. 

 

#include<stdio.h> 

#include<conio.h> 

struct sym 

{ 

char lab[10]; 

int val; 

}; 

void main () 

{ 

FILE *f1; 

char la[10],op[10],opr[10],a[1000],c,key[10]; 

int i,j,lc=0,m=0,flag,ch=0; 

struct sym s[10]; 

clrscr(); 

f1=fopen("a1.txt","r"); 

c=fgetc(f1); 

i=0; 

printf ("\n SOURCE PROGRAM \n"); 

while(c!=EOF) 

{ 

a[i]=c; 

c=fgetc(f1); 

i++; 

} 

 

while(ch<4) 

{ 

printf("1-symbol table creation\n"); 

printf("2-serch\n"); 

printf("3-display\n"); 

printf(">3-Exit\n"); 

printf("enter ur choice\n"); 

scanf("%d",&ch); 

switch(ch) 

{ 

case 1: 

i=0; 

while(strcmp(op,"end")!=0) 

{ 

if(a[i]=='\t') 

{ 

strcpy(la," "); 

Experiment 4 



  

i++; 

} 

else 

{ 

j=0; 

while(a[i] !='\t') 

{ 

la[j]=a[i]; 

i++; 

j++; 

 

} 

la[j]='\0'; 

i++; 

} 

if(a[i]=='\t') 

{ 

strcpy(op," "); 

i++; 

} 

else 

{ 

j=0; 

while(a[i]!='\t') 

{ 

op[j]=a[i]; 

i++; 

j++; 

} 

op[j]='\0'; 

i++; 

} 

if(a[i]=='\t') 

{ 

strcpy(opr," "); 

i++; 

} 

else 

 

{ 

j=0; 

while(a[i]!='\n') 

{ 

opr[j]=a[i]; 

i++; 

j++; 

} 

opr[j]='\0'; 

i++; 

} 



  

j=0; 

if(strcmp(la," ")!=0) 

{ 

strcpy(s[m].lab,la); 

if(strcmp(op,"start")==0) 

{ 

lc=atoi(opr); 

s[m].val=lc; 

m++; 

printf("%s\t%s\t%s\n",la,op,opr); 

continue; 

} 

else if(strcmp(op,"equ")==0) 

{ 

s[m].val=atoi(opr); 

m++; 

 

} 

else if(strcmp(op,"resw")==0) 

{ 

s[m].val=lc; 

lc=lc+atoi(opr) *3; 

m++; 

} 

else if(strcmp(op,"resb")==0) 

 { 

s[m].val=lc; 

lc=lc+atoi(opr); 

m++; 

} 

else 

{ 

s[m].val=lc; 

lc=lc+3; 

m++; 

} 

} 

else 

lc=lc+3; 

printf("%s\t%s\t%s\n",la,op,opr); 

} 

break; 

case 2: 

printf("enter the lable to be searched\n"); 

 

scanf("%s",&key); 

flag=0; 

for(i=0;i<m;i++) 

{ 

if(strcmp(key,s[i].lab)==0) 



  

{ 

printf("%s\t%d\n",s[i].lab,s[i].val); 

flag=1; 

break; 

} 

else 

continue; 

} 

if(flag==0) 

printf("lable not found\n"); 

break; 

case 3: 

printf("\n symbol table \n"); 

for(i=0;i<m;i++) 

printf("\n%s\t%d\n",s[i].lab,s[i].val); 

break; 

} 

} 

} 

Output : 

add     start   1000 

           lda     one 

            

add     val 

           sta     two 

val      equ     10 

one     word    100 

two     resw    1 

          end     add 

1-symbol table creation 

2-serch 

3-display 

>3-Exit 

enter ur choice 

3 

symbol table 

add     1000 

val     10 

one     1009 

two     1012 

1-symbol table creation 

2-serch 

3-display 

>3-Exit 

enter ur choice 

2 

enter the lable to be searched 

val 

val     10 

1-symbol table creation 



  

 

2-serch 

3-display 

>3-Exit 

enter ur choice 

2 

enter the lable to be searched 

qw 

lable not found 

1-symbol table creation 

2-serch 

3-display 

>3-Exit 

enter ur choice 

4 

Result :- Thus we write a program to generate the symbol table for the given assembly 

language 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: Write a program to create symbol table for a given high-level language program. 

 

#include<stdlib.h>   

#include<stdio.h> 

#include <iostream.h> 

#include <conio.h> 

void main() 

{ 

char a; 

int i; 

 

for(i=0;i<255;i++) 

{ 

a = i; 

cout<<"\nSymbol "<<i<<" = "<<a; 

} 

getch(); 

} 

OUTPUT:- 

Symbol 0 = 

Symbol 1 = ☺ 

Symbol 2 = ☻ 

Symbol 3 = ♁ 

Symbol 4 = ♂ 

Symbol 5 = ♀ 

Symbol 6 = ☿ 

Symbol 7 = 

Symbol 8 = 

Symbol 9 = 

Symbol 10 = 

 

Symbol 11 = ☾ 

Symbol 12 = ☽ 

Symbol 13 = 

Symbol 14 = ♫ 

Symbol 15 = ☼ 

Symbol 16 = ► 

Symbol 17 = ◄ 

Symbol 18 = ↕ 

Symbol 19 = ‼ 

Symbol 20 = ¶ 

Symbol 21 = § 

Symbol 22 = ▬ 

Symbol 23 = ↨ 

Experiment 5 



  

Symbol 24 = ↑ 

Symbol 25 = ↓ 

Symbol 26 = 

 

Result:- :- Thus we write a program to generate the symbol table for the given high-level 

language program. 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: Implementation of single pass assembler on a limited set of instructions. 

 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

#include<string.h> 

void main() 

{ 

FILE *pf,*fp; 

 struct instruction 

 { 

   char label[10]; 

   char opcode[10]; 

   char operand[10]; 

 }il; 

 

struct symtab 

 { 

   char name[10]; 

   int address; 

 }s[20]; 

 

struct optab 

 { 

   char opn[20]; 

   char mc[20]; 

 

 }o[5]={{"ADD","14"},{"LDA","50"},{"STA","02"}, 

 {"JSUB","12"},{"JEQU","04"}}; 

 

struct object 

 { 

  int address; 

  char objcode[20]; 

 }obj; 

 

int locctr=0,i,j,no,f,length,ns=0,n,v,l; 

char *p; 

clrscr(); 

fp=fopen("assemble.txt","r"); 

pf=fopen("object.txt","w+"); 

fscanf(fp,"%s%s%s\n",il.label,il.opcode,il.operand); 

if(strcmp(il.opcode,"START")==0) 

 { 

Experiment 6 



  

   locctr=atoi(il.operand); 

   v=locctr; 

   fscanf(fp,"%s%s%s\n",il.label,il.opcode,il.operand); 

 } 

else 

   locctr=0; 

while(strcmp(il.opcode,"END")!=0) 

 { 

   f=1; 

   if(strcmp(il.label,"-")!=0) 

   

 { 

     for(i=0;i<ns;i++) 

     { 

      if(strcmp(il.label,s[i].name)==0) 

      { 

 f=0; 

 printf("There is an error due to the duplication"); 

 exit(0); 

 } 

     } 

     if(f==1) 

     { 

       strcpy(s[ns].name,il.label); 

       s[ns].address=locctr; 

       ++ns; 

     } 

   } 

   if(strcmp(il.opcode,"RESW")==0) 

   { 

     strcpy(obj.objcode,"X"); 

     length=3*atoi(il.operand); 

     locctr+=length; 

   } 

   else if(strcmp(il.opcode,"WORD")==0) 

   { 

     strcpy(obj.objcode,"00000"); 

     strcat(obj.objcode,il.operand); 

     

 length=3; 

     locctr+=length; 

   } 

   else if(strcmp(il.opcode,"RESB")==0) 

   { 

     strcpy(obj.objcode,"N"); 

     length=atoi(il.operand); 

     locctr+=length; 

   } 

   else if(strcmp(il.opcode,"BYTE")==0) 

   { 



  

     strcpy(obj.objcode,"454f46"); 

     n=strlen(il.operand); 

     length=n-3; 

     locctr+=length; 

   } 

   else 

   { 

     length=3; 

     locctr+=length; 

     for(i=0;i<5;i++) 

     { 

       if(strcmp(il.opcode,o[i].opn)==0) 

       { 

  no=0; 

  for(j=0;j<ns;j++) 

  { 

   

 if(strcmp(il.operand,s[j].name)==0) 

   { 

    no++; 

    strcpy(obj.objcode,o[i].mc); 

    itoa(s[j].address,p,10); 

    strcat(obj.objcode,p); 

    break; 

   } 

  } 

  if(no==0) 

  { 

  printf("There is an undefined symbol"); 

  exit(0); 

  } 

       } 

     } 

   } 

   obj.address=locctr-length; 

   fprintf(pf,"%d %s %s\n",obj.address,obj.objcode); 

   fscanf(fp,"%s %s %s\n",il.label,il.opcode,il.operand); 

   } 

l=locctr-v; 

fclose(pf); 

fclose(fp); 

printf("The one pass assembler is run successfully\n"); 

printf("The length of the program is %d\n",l); 

printf("SYMBOL TABLE\n"); 

 

printf("NAME\t\tADDRESS\n"); 

printf("~~~~\t\t~~~~~~~\n"); 

for(i=0;i<ns;i++) 

 { 

 printf("%s\t\t%d\n",s[i].name,s[i].address); 



  

 } 

getch(); 

 } 

 

INPUT FILE(assemble.txt) 

 

ADDN START 1000 

FIRST WORD 5 

TWO WORD 8 

RESULT RESW 2 

TEMP BYTE C'EOF' 

PROG LDA FIRST 

- ADD TWO 

- STA RESULT 

- END PROG 

OUTPUT(OBJECT.TXT) 

ADDR CODE 

1000 000005  

1003 000008  

1006 X  

1012 454f46  

1015 501000  

 

1018 141003  

1021 021006 

Result :- Thus we write a C program to Implement Single pass Assembler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

 
AIM: Exploring various features of debug command.  

 

All commands are available when the full debugger is in use. 

Restrictions 

If you have a Command Level or Break/End Restart feature in effect, or the break key is 

disabled, the available options are restricted to: 

a Abort program 

q Quit program 

c 
Continue (may be allowed, depends on reason debug was entered) end Terminate 

debugger 

o Log off 

Note that there are several ways in which the break key can be disabled. You can use 

commands such as INHIBIT-BREAK-KEY or BREAK- KEY-OFF. In these cases, the 

debugger is never entered. Another way is to execute a BREAK OFF statement within the 

program. In this case, the debugger will still be invoked if a run-time error occurs - such as 

trying to read a record from a non-file variable. 

 Command List 

? 

Display a help screen showing all available debug commands and the program status. 

>filename 

Open and truncate the file filename and send it the current breakpoints and trace table 

entries. This can be used in future to replicate the current environment by the use of the 

command. note that you may write debugger scripts yourself with an editor rather than use 

the > command. 

<filename 

Open the file filename, then read and execute each line as if it has been entered at the 

keyboard. Any current trace or breakpoint table entries are deleted then replaced by those 

recorded in filename. 

 

 

!command 

Spawn another process and execute the command. The previous command thus used can 

also be recalled and executed by the !! command. 

<Ctrl>+D 

Display the next 11 lines of source in the current file. 

Nn 

Set the current display line to line nn in the current file and then display the line. Note that 

the program execution counter remains unchanged, it is only the display pointer that is 

changed. A command such as s (see later) will correctly execute the next line in the 

programmed sequence, not the newly displayed line. 

#text 

Ignored, and so can be used as a comment line in debugger scripts later executed with the 

command. 

Experiment 7 



  

a{-nn} {mm} 

Kills the program and any parent process or program that called it. The program aborts 

with an exit code of 203, and the kill signal is sent to any parent process. The nn value is 

used to change the exit code, whilst the mm value changes the signal number sent with the 

kill command. Operation of this command can be altered by setting the Command Level 

Restart option - see the Systems Housekeeping chapter of the System Administrators 

Reference Manual for more details. 

b 

Display all currently active breakpoints. 

b {-t} nn{,file} 

Set a breakpoint at line nn in the current file or that specified by the file modifier. If the -t 

option is specified then the breakpoint will cause a display of all the trace variables rather 

than halting the program. 

b {-t} varname 

This form of the b command will cause the debugger to be entered whenever the contents 

of the specified variable are changed. 

b {-t} ex1 op ex2 {AND|OR .....} 

Set a breakpoint at the line whose value is obtained by performing the operation op on 

expressions ex1 and ex2. The operator can be one of eq, !=, <>equal is also available. See 

later for a full description of expressions. The -t option will cause the debugger to display 

all the trace points rather than halting program execution. 

c 

Continue execution of the program. 

d {-tbed} {*nn} 

Delete breakpoint and/or trace table entries, and will normally prompt for confirmation. 

The t and b switches refer to trace and breakpoints respectively. The * switch deletes all of 

the specified entries without prompting. The nn switch deletes the entry nn in the given 

trace or breakpoint table, also without prompting. The d and e switches respectively 

disable or enable the given entry without removing it from the table. 

 

e name 

Edit the file specified by name. This file is then the file used by other debug commands 

such as <Ctrl>+D. 

end 

Synonym for "quit". 

f {on|off} 

A debug breakpoint is set for a filename change. This break can be set to on or off. If the 

program is continued (C command) the debugger will be entered the next time the source 

file changes. 

h {-rs{n}} {nn|on|off } 

Displays a history of the source lines executed, and current status of the debugger 

commands used. The on and off switches toggle the recording of lines executed, and when 

on, the nn value gives the number of executed lines to display (1024 maximum). The -r 

switch displays in reverse order, and -s{n} shows n source lines. 

j {-g} 

The j command displays a complete history of both GOSUB and external subroutine calls. 

When issued without options the command will only display information about the current 

program or subroutine. The -g (global) option will show a breakdown of the entire 

application. 



  

l {-acf{nn}} text 

Locate the string text in the current file. The switches used are: a to look for every 

occurrence; c to make the search case insensitive; nn to limit the search to the next nn 

lines; f to start the search from the start of the file. The command l/ will execute the 

previous locate. 

m 

Displays the current memory status. Shows space allocated by the function malloc(). 

n {nn} 

Displays the next nn lines of source from the current file, which is automatically loaded by 

the debugger if the p command has been used or it resides in the current working 

directory. 

off 

Enter o or off to log off. If you enter off (or OFF), the effect is immediate. If you enter o (or 

O), you will be prompted for confirmation. The same restrictions apply as for the OFF 

command; if there are non-jBASE programs active, OFF will only terminate jBASE 

programs until it encounters the first non-jBASE program - probably the login shell. 

p {pathlist} 

Defines the list of directories and pathnames (delimited by :) that the debugger will then 

search to find source codes. p without a pathlist displays the current Path. 

q {nn} 

Quit the program. nn is the termination status returned to any calling program. 

r device 

The debugger will take all input from, and send all output to, the specified device. Note that 

if the device is  

 

another terminal (or Xterm shell), that you will need to prevent the target shell from 

interfering with the input stream by issuing the sleep command to it. A large value should 

be used or the sleep should be issued repeatedly in a loop. 

s {-t{m}d} {nn} 

Continue execution of jBC code in single line steps before returning to debug. The value nn 

changes the number of lines executed before returning to debug. The -t switch is used to 

display the trace table after every line executed, rather than wait for entry to debug. The d 

switch sets a delay before executing each line of code. m is used to set the delay in seconds 

(default is 5 deci-seconds). 

S {-t{m}d} {nn} 

Same as s except this will 'step over' subroutine calls, the code within the subroutine will 

not be displayed. 

t 

Display the current trace table. 

t {-fg} expr 

Add the value specified by expr to the trace table. When debug is entered, all the values in 

the table are displayed. The f switch is used to fully evaluate expr, whilst the g switch 

extends the display of expr to all levels. 

v {-gmsrv} {expr} 

Evaluate expr and display the result. The effects of the switches are: g to extend the display 

of expr to all data areas. m to allow variable modification within expr. When a variable is 

modified with the m option binary characters may be entered using the octal sequence 

\nnn. The sequence \010 would therefore be replaced by CHAR(8) in the modified variable. 

The sequence \\ evaluates to the single character \ and a sequence such as \x evaluates to the 

single character x (i.e. the \ will be lost). 



  

To set a variable to null assign it the value: \0 

Example: 

jBASE debugger->v -m COLOR 

  COLOR                               : GREEN = \0 

jBASE debugger->V COLOR 

  COLOR                               : 

jBASE debugger-> 

To set a variable to character zero, i.e. CHAR (0), assign it the value: \00 

w nn 

Display a window of source code. The default is 9 lines with 4 before and after the current 

one. The value nn is used to change this parameter. 

 

 

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: Use of LAX and YACC tools. 

 

 
 

 

 

 

Experiment 8 



  

 

 

 
 



  

 



  

 



  

 



  

 



  

 



  

 



  

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY  
Affiliated to PTU, & Approved by AICTE 

 

AIM: To write a program to Implement absolute Loader  

 

#include <stdio.h> 

#include <conio.h> 

void main() 

{ 

 FILE *txt; 

 char c,programe[10],startadd[5],length[5]; 

 char *addr; 

 int i,a,b; 

clrscr(); 

txt=fopen("absinp.txt","r"); 

c=getc(txt); 

 if(c=='H') 

 { 

  fscanf(txt,"%s %d %s",programe, &addr ,length); 

  printf("\n\n STARTING ADDRESS =%u",addr); 

 } 

 while(c!='T') 

 c=getc(txt); 

if(c=='T') 

{ 

 for(i=0;i<9;i++) 

 c=getc(txt); 

 

 c=getc(txt); 

 while(c!='\n') 

  

{ 

  a=((int)c-48); 

  a*=10; 

  c=getc(txt); 

  b=((int)c-48); 

  *addr = a+b; 

  printf("\n\nADDRESS = %u VALUE STORED =%d",addr,*addr); 

  addr++; 

  c=getc(txt); 

 } 

} 

getch(); 

} 

INPUT: 

H COPY 5000 1E 

T 5000 1E 141033482039001036281030301015482061 

E 5000 

OUTPUT: 

STARTING ADDRESS = 5000 

 

Experiment 9 



  

ADDRESS = 5000 VALUE STORED = 14 

 

ADDRESS = 5001 VALUE STORED = 10 

 

ADDRESS = 5002 VALUE STORED = 33 

 

ADDRESS = 5003 VALUE STORED = 48 

 

 

ADDRESS = 5004 VALUE STORED = 20 

 

ADDRESS = 5005 VALUE STORED = 39 

 

ADDRESS = 5006 VALUE STORED =  0 

 

ADDRESS = 5007 VALUE STORED =  10 

 

ADDRESS = 5008 VALUE STORED =  36 

 

ADDRESS = 5009 VALUE STORED = 28 

 

ADDRESS = 5010 VALUE STORED = 10 

 

ADDRESS = 5011 VALUE STORED = 30 

 

ADDRESS = 5012 VALUE STORED = 30 

 

ADDRESS = 5013 VALUE STORED = 10 

 

ADDRESS = 5014 VALUE STORED = 15  

 

ADDRESS = 5015 VALUE STORED = 48 

 

ADDRESS = 5016 VALUE STORED = 20 

 

ADDRESS = 5017 VALUE STORED = 61 

 

Result: Thus we write a program to Implement a Absolute Loader 
 


