
PRACTICAL

file

Department: Computer Science and Engineering

Session: January - June

Subject: Simulation and Modeling Lab

Subject Code: BTCS 607

Semester: 6th

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

1. Programming in MATLAB: Introduction, Branching statements,

loops, functions, additional data types, plots, arrays, inputs/outputs etc.

2. Introduction regarding usage of any Network Simulator.

3. Practical Implementation of Queuing Models using C/C++.

Syllabus

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

Sr. No. Topic

1. Introduction to MATLAB

2. Programming in Matlab:

Introduction, Branching statements,

loops, functions, additional data

types, plots, arrays, inputs/outputs

etc.

3. Program to display a Matrix

4. Program to Addition of matrix

5. Program to transpose of a Matrix.

6. Introduction regarding usage of any

Network Simulator.

7. Practical Implementation of

Queuing Models using C/C++.

8. *Applications of Matlab

*Learning Beyond Syllabus Applications of Matlab

List of Practical

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Introduction to MATLAB

MATLAB

MATLAB is widely used in all areas of applied mathematics, in education and research at

universities, and in the industry. MATLAB stands for MATrix LABoratory and the software is

built up around vectors and matrices. This makes the software particularly useful for linear

algebra but MATLAB is also a great tool for solving algebraic and differential equations and for

numerical integration. MATLAB has powerful graphic tools and can produce nice pictures in

both 2D and 3D. It is also a programming language, and is one of the easiest programming

languages for writing mathematical programs. MATLAB also has some tool boxes useful for

signal processing, image processing, optimization, etc.

How to start MATLAB

Mac: Double-click on the icon for MATLAB.

PC: Choose the submenu "Programs" from the "Start" menu. From the "Programs" menu, open

the "MATLAB" submenu. From the "MATLAB" submenu, choose "MATLAB".

Unix: At the prompt, type matlab.

You can quit MATLAB by typing exit in the command window.

MATLAB is a high-performance language for technical computing. It integrates computation,

visualization, and programming in an easy-to-use environment where problems and solutions are

expressed in familiar mathematical notation. Typical uses include:

 Math and computation

 Algorithm development

 Modeling, simulation, and prototyping

 Data analysis, exploration, and visualization

 Scientific and engineering graphics

 Application development, including Graphical User Interface building

MATLAB is an interactive system whose basic data element is an array that does not require

dimensioning. This allows you to solve many technical computing problems, especially those

with matrix and vector formulations, in a fraction of the time it would take to write a program in

a scalar noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide

easy access to matrix software developed by the LINPACK and EISPACK projects, which

together represent the state-of-the-art in software for matrix computation.

Experiment 1

MATLAB has evolved over a period of years with input from many users. In university

environments, it is the standard instructional tool for introductory and advanced courses in

mathematics, engineering, and science. In industry, MATLAB is the tool of choice for high-

productivity research, development, and analysis.

MATLAB features a family of application-specific solutions called toolboxes. Very important to

most users of MATLAB, toolboxes allow you to learn and apply specialized technology.

Toolboxes are comprehensive collections of MATLAB functions (M-files) that extend the

MATLAB environment to solve particular classes of problems. Areas in which toolboxes are

available include signal processing, control systems, neural networks, fuzzy logic, wavelets,

simulation, and many others.

The MATLAB System

The MATLAB system consists of five main parts:

The MATLAB language.

This is a high-level matrix/array language with control flow statements, functions, data

structures, input/output, and object-oriented programming features. It allows both "programming

in the small" to rapidly create quick and dirty throw-away programs, and "programming in the

large" to create complete large and complex application programs.

The MATLAB working environment.

This is the set of tools and facilities that you work with as the MATLAB user or programmer. It

includes facilities for managing the variables in your workspace and importing and exporting

data. It also includes tools for developing, managing, debugging, and profiling M-files,

MATLAB's applications.

Handle Graphics.

This is the MATLAB graphics system. It includes high-level commands for two-dimensional and

three-dimensional data visualization, image processing, animation, and presentation graphics. It

also includes low-level commands that allow you to fully customize the appearance of graphics

as well as to build complete Graphical User Interfaces on your MATLAB applications.

The MATLAB mathematical function library.

This is a vast collection of computational algorithms ranging from elementary functions like

sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse,

matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB Application Program Interface (API).

This is a library that allows you to write C and Fortran programs that interact with MATLAB. It

include facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a

computational engine, and for reading and writing MAT-files.

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Programming in MATLAB

Branching

When an "Algorithm" makes a choice to do one of two (or more things) this is

called branching. The most common programming "statement" used to branch is

the "IF" statement.

The If Statement

In a computer program, the algorithm often must choose to do one of two things

depending on the "state" of the program. If the grade is greater than 90, then give

the student an A, otherwise if the grade is greater than 80, give the student a B,...

etc.

The most used way to make a decision in a program is the "IF" statement. The

statement looks like:

if (something is true)

 do this code;

 do all code before the end or else;

 do not do anything in the else "block" of code

 else

 % if the something is false (NOTE: we don't have to test this)

 do other code;

 end

The ELSE statement

The else statement shown above is optional... if "NOTHING" is to be done when

the condition is false, then the else statement should not be used! For example,

below we only congratulate our good students, we do not chastise our bad

students.

grade = % some_number;

 if (grade > 75)

Experiment 2

 fprintf('congrats, your grade %d is passing\n', grade);

 end

The ELSEIF statement

Because we often break problems into several sub paths, Matlab provides an

"elseif" control statement. For example, if we have 5 dollars go to the dollar

theater, "else if" we have 10 dollars go to the regular theater, "else if" you have 100

dollars, go to a Broadway play, else if you have 1000000 dollars, buy a theater...

The code in Matlab would look like:

 if (money < 5)

 do this;

 elseif (money < 10)

 do that;

 elseif (money < 1000)

 do a lot of stuff;;

 else

 do a default action when nothing above is true;

 end

Loop Control Statements

With loop control statements, you can repeatedly execute a block of code. There

are two types of loops:

 for statements loop a specific number of times, and keep track of each

iteration with an incrementing index variable.

For example, preallocate a 10-element vector, and calculate five values:

x = ones(1,10);

for n = 2:6

 x(n) = 2 * x(n - 1);

end

 while statements loop as long as a condition remains true.

For example, find the first integer n for which factorial(n) is a 100-digit

number:

n = 1;

http://www.mathworks.in/help/matlab/ref/for.html
http://www.mathworks.in/help/matlab/ref/while.html

nFactorial = 1;

while nFactorial < 1e100

 n = n + 1;

 nFactorial = nFactorial * n;

end

Each loop requires the end keyword.

It is a good idea to indent the loops for readability, especially when they are nested

(that is, when one loop contains another loop):

A = zeros(5,100);

for m = 1:5

 for n = 1:100

 A(m, n) = 1/(m + n - 1);

 end

end

You can programmatically exit a loop using a break statement, or skip to the next

iteration of a loop using a continue statement. For example, count the number of

lines in the help for the magic function (that is, all comment lines until a blank

line):

 fid = fopen('magic.m','r');

 count = 0;

 while ~feof(fid)

 line = fgetl(fid);

 if isempty(line)

 break

 elseif ~strncmp(line,'%',1)

 continue

 end

 count = count + 1;

 end

fprintf('%d lines in MAGIC help\n',count);

fclose(fid);

Useful functions and operations in MATLAB

Using MATLAB as a calculator is easy.

Example: Compute 5 sin(2.5
3-pi

)+1/75. In MATLAB this is done by simply typing

5*sin(2.5^(3-pi))+1/75

http://www.mathworks.in/help/matlab/ref/break.html
http://www.mathworks.in/help/matlab/ref/continue.html

at the prompt. Be careful with parantheses and don't forget to type * whenever you

multiply!

Note that MATLAB is case sensitive. This means that MATLAB knows a

difference between letters written as lower and upper case letters. For example,

MATLAB will understand sin(2) but will not understand Sin(2).

Here is a table of useful operations, functions and constants in MATLAB.

Operation, function or constant MATLAB

command

+ (addition) +

- (subtraction) -

× (multiplication) *

/ (division) /

|x| (absolute value of x) abs(x)

square root of x sqrt(x)

e
x
 exp(x)

ln x (natural log) log(x)

log10 x (base 10 log) log10(x)

sin x sin(x)

Cos x cos(x)

Tan x

tan(x)

cot x cot(x)

arcsin x asin(x)

arccos x acos(x)

arctan x atan(x)

arccot x acot(x)

n! (n factorial) gamma(n+1)

e (2.71828...) exp(1)

 (3.14159265...) pi

i (imaginary unit, sqrt(-1)) i

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Program to display a Matrix

Experiment 3

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Program to addition of Two Matrix

Experiment 4

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Program to transpose of a Matrix.

Experiment 5

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Introduction regarding usage of any Network Simulator.

OPNET provides a discrete event simulation engine. MATLAB is software for numerical

calculations and provides communication engineers with a vast library for implementing

communication systems such as channel models and beam forming algorithms. By integrating

MATLAB simulation with OPNET we are able to reuse the beam forming algorithms developed

in MATLAB and analyze their performance and effect on the upper layers

(specifically, data link and network layers) of the communication system. This would be difficult

to realize without a discrete event simulator. In this thesis, we have interfaced MATLAB and

OPNET so as to reuse the antenna beam steering algorithms, which were developed in

MATLAB, and use the graphics library of MATLAB to provide the capability to observe the

dynamic changes in the antenna patterns during simulation execution. For interfacing OPNET

and MATLAB, we made use of the MX interface provided by MATLAB, which allows C

programs to call functions developed in MATLAB. This is illustrated in Figure 3.1. For calling

MATLAB functions the user needs to include following files in the bind_shobj_libs environment

attribute.

1. libmat.lib

2. libeng.lib

3. libmex.lib

4. libmx.lib

The directory where the above files are present is included in bind_shobj_flags. After including

the necessary files into the include path, the MATLAB engine is started by OPNET simulation at

the beginning of the simulation by using the function engOpen(). This provides the OPNET

simulation with a pointer to a memory location that can be us ed to pass MATLAB commands to

the MATLAB engine. The engine pointer can be shared among different processes by declaring

Experiment 6

the engine pointer in a header file common to all process models. Variables can be exchanged

between OPNET and MATLAB using functions engPutArray() and engGetArray().

Network Modeling Using OPNET

OPNET is among the leading discrete event network simulators used both by the commercial and

research communities. It provides a comprehensive framework for modeling wired as well as

wireless network scenarios

Simulation models are organized in a hierarchy consisting of three main levels: the simulation

network, node models and process models. The top level refers to the simulation scenario or

simulation network. It defines the network layout, the nodes and the configuration of attributes of

the nodes comprising the scenario. OPNET ModelerTM uses an object-oriented approach for the

development of models and simulation scenarios. The models can be identified as a CLASS,

which can be reused any number of times in the simulation by creating its different

instantiations, just like the creation of objects in any object-oriented programming language.

Besides allowing the creation of multiple instances, OPNET allows the user to extend the

functionality of the basic models already available as part of the model library. Thus, by defining

the value of the attributes of the basic model the user can develop customized models following

particular standards or vendor specifications.

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Practical implementation of Queuing Models using C/C++

Program1

#ifndef SIMULATION

#include <iostream>

#include <queue>

#include <list>

#include <fstream>
using namespace std;
class SimulateClass

Experiment 7

{

private:

typedef list<int> eventList;

typedef queue<int> bankQueue;

void processArrival(int, ifstream& , eventList&, bankQueue&);

void processDeparture(int, eventList&, bankQueue&);
int arrivalCount;

void displaySimulation();

int waitingTime;

 int waitingTime;

int departureCalls;

 int newEvent;

 SimulateClass();

 void simulateBank();

};

#endif

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY
Affiliated to PTU, & Approved by AICTE

AIM : Applications of Matlab

You can use MATLAB for a range of applications, including signal processing and

communications, image and video processing, control systems, test and measurement,

computational finance, and computational biology. More than a million engineers and scientists

in industry and academia use MATLAB, the language of technical computing.

Numeric Computation

MATLAB provides a range of numerical computation methods for analyzing data, developing

algorithms, and creating models. The MATLAB language includes mathematical functions that

support common engineering and science operations. Core math functions use processor-

optimized libraries to provide fast execution of vector and matrix calculations.

Experiment 8

http://www.mathworks.in/discovery/scientific-computing.html

Available methods include:

 Interpolation and regression

 Differentiation and integration

 Linear systems of equations

 Fourier analysis

 Eigenvalues and singular values

 Ordinary differential equations (ODEs)

 Sparse matrices

MATLAB add-on products provide functions in specialized areas such as statistics,

optimization, signal analysis, and machine learning.

Refinement of gridded data using 2-D cubic interpolation.

Data Analysis and Visualization

MATLAB provides tools to acquire, analyze, and visualize data, enabling you to gain insight

into your data in a fraction of the time it would take using spreadsheets or traditional

programming languages. You can also document and share your results through plots and reports

or as published MATLAB code.

Acquiring Data

MATLAB lets you access data from files, other applications, databases, and external devices.

You can read data from popular file formats such as Microsoft Excel; text or binary files; image,

http://www.mathworks.in/cmsimages/69789_wl_MATLAB_fig2_wl.jpg

sound, and video files; and scientific files such as netCDF and HDF. File I/O functions let you

work with data files in any format.

A mixed numeric and text file for import into MATLAB using the Import Tool. MATLAB

automatically generates a script or function to import the file programmatically.

Using MATLAB with add-on products, you can acquire data from hardware devices, such as

your computer's serial port or sound card, as well as stream live, measured data directly into

MATLAB for analysis and visualization. You can also communicate with instruments such as

oscilloscopes, function generators, and signal analyzers.

Analyzing Data

MATLAB lets you manage, filter, and preprocess your data. You can perform exploratory data

analysis to uncover trends, test assumptions, and build descriptive models. MATLAB provides

functions for filtering and smoothing, interpolation, convolution, and fast Fourier transforms

(FFTs). Add-on products provide capabilities for curve and surface fitting, multivariate statistics,

spectral analysis, image analysis, system identification, and other analysis tasks.

http://www.mathworks.in/test-measurement/
http://www.mathworks.in/products/curvefitting/
http://www.mathworks.in/products/image/
http://www.mathworks.in/products/sysid/
http://www.mathworks.in/cmsimages/69790_wl_MATLAB_fig3_wl.jpg
http://www.mathworks.in/cmsimages/69791_wl_MATLAB_fig4_wl.jpg

Fitting a surface to data with a custom model using MATLAB and Curve Fitting Toolbox.

Visualizing Data

MATLAB provides built-in 2-D and 3-D plotting functions, as well as volume visualization

functions. You can use these functions to visualize and understand data and communicate results.

Plots can be customized either interactively or programmatically.

The MATLAB plot gallery provides examples of many ways to display data graphically in

MATLAB. For each example, you can view and download source code to use in your MATLAB

application.

Editing the title of a surface contour plot using the MATLAB interactive plotting environment.

Documenting and Sharing Results

You can share results as plots or complete reports. MATLAB plots can be customized to meet

publication specifications and saved to common graphical and data file formats.

You can automatically generate a report when you execute a MATLAB program. The report

contains your code, comments, and program results, including plots. Reports can be published in

a variety of formats, such as HTML, PDF, Word, or LaTeX.

http://www.mathworks.in/discovery/gallery.html
http://www.mathworks.in/cmsimages/69792_wl_MATLAB_fig5_wl.jpg

MATLAB program (left) published as HTML (right) using the MATLAB Editor. Results that

display in the Command Window or as plots are captured and included, and the code comments

are turned into section

Programming and Algorithm Development

MATLAB provides a high-level language and development tools that let you quickly develop

and analyze algorithms and applications.

 Key Features

 Numeric Computation

 Data Analysis and Visualization

 Programming and Algorithm Development

 Application Development and Deployment

Programming and Algorithm Development

MATLAB provides a high-level language and development tools that let you quickly develop

and analyze algorithms and applications.

The MATLAB Language

The MATLAB language provides native support for the vector and matrix operations that are

fundamental to solving engineering and scientific problems, enabling fast development and

execution.

With the MATLAB language, you can write programs and develop algorithms faster than with

traditional languages because you do not need to perform low-level administrative tasks such as

declaring variables, specifying data types, and allocating memory. In many cases, the support for

http://www.mathworks.in/products/matlab/description1.html
http://www.mathworks.in/products/matlab/description2.html
http://www.mathworks.in/products/matlab/description3.html
http://www.mathworks.in/products/matlab/description5.html
http://www.mathworks.in/cmsimages/69793_wl_MATLAB_fig6_wl.jpg

vector and matrix operations eliminates the need for for-loops. As a result, one line of MATLAB

code can often replace several lines of C or C++ code.

MATLAB provides features of traditional programming languages, including flow control, error

handling, and object-oriented programming (OOP). You can use fundamental data types or

advanced data structures, or you can define custom data types.

A communications algorithm that generates 1024 random bits, converts the vector to a

transmitted signal, adds complex Gaussian noise, and plots the result in nine lines of MATLAB

code.

You can produce immediate results by interactively executing commands one at a time. This

approach lets you quickly explore multiple options and iterate to an optimal solution. You can

capture interactive steps as scripts and functions to reuse and automate your work.

MATLAB add-on products provide built-in algorithms for signal processing and

communications, image and video processing, control systems, and many other domains. By

combining these algorithms with your own, you can build complex programs and applications.

Development Tools

MATLAB includes a variety of tools for efficient algorithm development, including:

 Command Window - Lets you interactively enter data, execute commands and

programs, and display results

 MATLAB Editor - Provides editing and debugging features, such as setting breakpoints

and stepping through individual lines of code

 Code Analyzer - Automatically checks code for problems and recommends

modifications to maximize performance and maintainability

 MATLAB Profiler - Measures performance of MATLAB programs and identifies areas

of code to modify for improvement

Additional tools compare code and data files, and provide reports showing file dependencies,

annotated reminders, and code coverage.

http://www.mathworks.in/cmsimages/69794_wl_MATLAB_fig7_wl.jpg

MATLAB program running in debug mode to diagnose problems.

Application Development and Deployment

MATLAB tools and add-on products provide a range of options to develop and deploy

applications. You can share individual algorithms and applications with other MATLAB users or

deploy them royalty-free to others who do not have MATLAB.

Designing Graphical User Interfaces

Using GUIDE (Graphical User Interface Development Environment), you can lay out, design,

and edit custom graphical user interfaces. You can include common controls such as list boxes,

pull-down menus, and push buttons, as well as MATLAB plots. Graphical user interfaces can

also be created programmatically using MATLAB functions.

GUIDE layout of a wind analysis user interface (top) and the completed interface (bottom).

Deploying Applications

To distribute an application directly to other MATLAB users, you can package it as a MATLAB

app, which provides a single file for distribution. Apps automatically install in the MATLAB

apps gallery for easy access.

To share applications with others who do not have MATLAB, you can use application

deployment products. These add-on products automatically generate standalone applications,

http://www.mathworks.in/discovery/matlab-gui.html
http://www.mathworks.in/discovery/matlab-apps.html
http://www.mathworks.in/discovery/matlab-apps.html
http://www.mathworks.in/discovery/matlab-apps.html
http://www.mathworks.in/desktop-web-deployment/
http://www.mathworks.in/desktop-web-deployment/
http://www.mathworks.in/desktop-web-deployment/
http://www.mathworks.in/cmsimages/69795_wl_MATLAB_fig8_wl.jpg
http://www.mathworks.in/cmsimages/69796_wl_MATLAB_fig9_wl.jpg

shared libraries, and software components for integration in C, C++, Java, .NET, and Excel

environments. The executables and components can be distributed royalty-free.

MATLAB Production Server™ lets you run MATLAB programs packaged with MATLAB

Compiler™ within your production systems, enabling you to incorporate numerical analytics in

web, database, and enterprise applications.

Generating C Code

You can use MATLAB Coder™ to generate standalone C code from MATLAB code. MATLAB

Coder supports a subset of the MATLAB language typically used by design engineers for

developing algorithms as components of larger systems. This code can be used for standalone

execution, for integration with other software applications, or as part of an embedded

application.

MATLAB code (left) and code generation report (right) showing generated C code.

http://www.mathworks.in/products/matlab-production-server/
http://www.mathworks.in/products/compiler/
http://www.mathworks.in/products/compiler/
http://www.mathworks.in/products/compiler/
http://www.mathworks.in/products/matlab-coder/
http://www.mathworks.in/cmsimages/69797_wl_MATLAB_fig10_wl.jpg

