

LAB MANUAL

ADVANCE JAVA

Java is an object-oriented programming language developed by Sun Microsystems in the early 1990s. Java
applications are, in the official implementation, compiled to bytecode, which is compiled to native machine code
at runtime. Sun Microsystems provides a GNU General Public License implementation of a Java compiler and
Java virtual machine, in compliance with the specifications of the Java Community Process.

The language itself borrows much syntax from C and C++ but has a simpler object model and fewer low-level
facilities. JavaScript, a scripting language, shares a similar name and has similar syntax, but is not related to Java

Applet

Main article: Java applet

Java applets are programs that are embedded in other applications, typically in a Web page displayed in a Web
browser.

// Hello.java
import java.applet.Applet;
import java.awt.Graphics;

public class Hello extends Applet {
 public void paint(Graphics gc) {
 gc.drawString("Hello, world!", 65, 95);
 }
}

The import statements direct the Java compiler to include the java.applet.Applet and java.awt.Graphics
classes in the compilation. The import statement allows these classes to be referenced in the source code using the
simple class name (i.e. Applet) instead of the fully qualified class name (i.e. java.applet.Applet).

The Hello class extends (subclasses) the Applet class; the Applet class provides the framework for the host
application to display and control the lifecycle of the applet. The Applet class is an Abstract Windowing Toolkit
(AWT) Component, which provides the applet with the capability to display a graphical user interface (GUI) and
respond to user events.

The Hello class overrides the paint(Graphics) method inherited from the Container superclass to provide the
code to display the applet. The paint() method is passed a Graphics object that contains the graphic context
used to display the applet. The paint() method calls the graphic context drawString(String, int, int)
method to display the "Hello, world!" string at a pixel offset of (65, 95) from the upper-left corner in the
applet's display.

<!-- Hello.html -->
<html>
 <head>
 <title>Hello World Applet</title>
 </head>
 <body>
 <applet code="Hello" width="200" height="200">
 </applet>
 </body>
</html>

An applet is placed in an HTML document using the <applet> HTML element. The applet tag has three
attributes set: code="Hello" specifies the name of the Applet class and width="200" height="200" sets the

pixel width and height of the applet. (Applets may also be embedded in HTML using either the object or embed
element, although support for these elements by Web browsers is inconsistent.[5][6]) However, the applet tag is
deprecated, so the object tag is preferred where supported.

The host application, typically a Web browser, instantiates the Hello applet and creates an AppletContext for
the applet. Once the applet has initialized itself, it is added to the AWT display hierarchy. The paint method is
called by the AWT event dispatching thread whenever the display needs the applet to draw itself.

1. Drawing Lines

2. Drawing Other Stuff

3. Color ‐ introduces arrays

4. Mouse Input ‐ introduces showStatus() and Vector

5. Keyboard Input

6. Threads and Animation ‐ introduces System.out.println()

7. Backbuffers ‐ introduces Math.random() and Graphics.drawImage()

8. Painting

9. Clocks

10. Playing with Text ‐ introduces 2D arrays and hyperlinks

11. 3D Graphics ‐ introduces classes

12. Odds and Ends

Event handling

 In computer programming, an event handler is an asynchronous callback subroutine that handles inputs received
in a program. Each event is a piece of application-level information from the underlying framework, typically the
GUI toolkit. GUI events include key presses, mouse movement, action selections, and timers expiring. On a lower
level, events can represent availability of new data for reading a file or network stream. Event handlers are a
central concept in event-driven programming.

The events are created by the framework based on interpreting lower-level inputs, which may be lower-level
events themselves. For example, mouse movements and clicks are interpreted as menu selections. The events
initially originate from actions on the operating system level, such as interrupts generated by hardware devices,
software interrupt instructions, or state changes in polling. On this level, interrupt handlers and signal handlers
correspond to event handlers.

Created events are first processed by an event dispatcher within the framework. It typically manages the
associations between events and event handlers, and may queue event handlers or events for later processing.
Event dispatchers may call event handlers directly, or wait for events to be dequeued with information about the
handler to be executed.

Event-driven programming

Event-driven programming is a computer programming paradigm in which the flow of the program is
determined by user actions (mouse clicks, key presses) or messages from other programs. In contrast, in batch
programming the flow is determined by the programmer. Batch programming is the style taught in beginning
programming classes while event driven programming is what is needed in any interactive program. Event driven
programs can be written in any language although the task is easier in some languages than in others.

Mouse Input

The source code:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Mouse1 extends Applet
 implements MouseListener, MouseMotionListener {

 int width, height;
 int mx, my; // the mouse coordinates
 boolean isButtonPressed = false;

 public void init() {
 width = getSize().width;
 height = getSize().height;
 setBackground(Color.black);

 mx = width/2;
 my = height/2;

 addMouseListener(this);
 addMouseMotionListener(this);
 }

 public void mouseEntered(MouseEvent e) {
 // called when the pointer enters the applet's rectangular area
 }
 public void mouseExited(MouseEvent e) {
 // called when the pointer leaves the applet's rectangular area
 }
 public void mouseClicked(MouseEvent e) {
 // called after a press and release of a mouse button
 // with no motion in between
 // (If the user presses, drags, and then releases, there will be
 // no click event generated.)
 }
 public void mousePressed(MouseEvent e) { // called after a button is pressed down
 isButtonPressed = true;

 setBackground(Color.gray);
 repaint();
 // "Consume" the event so it won't be processed in the
 // default manner by the source which generated it.
 e.consume();
 }
 public void mouseReleased(MouseEvent e) { // called after a button is released
 isButtonPressed = false;
 setBackground(Color.black);
 repaint();
 e.consume();
 }
 public void mouseMoved(MouseEvent e) { // called during motion when no buttons are
down
 mx = e.getX();
 my = e.getY();
 showStatus("Mouse at (" + mx + "," + my + ")");
 repaint();
 e.consume();
 }
 public void mouseDragged(MouseEvent e) { // called during motion with buttons down
 mx = e.getX();
 my = e.getY();
 showStatus("Mouse at (" + mx + "," + my + ")");
 repaint();
 e.consume();
 }

 public void paint(Graphics g) {
 if (isButtonPressed) {
 g.setColor(Color.black);
 }
 else {
 g.setColor(Color.gray);
 }
 g.fillRect(mx-20, my-20, 40, 40);
 }
}

Try clicking and dragging on the resulting applet. Notice how the status bar in your web browser displays the
current mouse position -- that's due to the calls to showStatus(). (You might see some occasional flickering in
this applet. This problem will be addressed in an upcoming lesson.)

An interface in the Java programming language is an abstract type which is used to specify an interface (in the
generic sense of the term) that classes must implement. Interfaces are introduced with the interface keyword,
and may only contain function signatures and constant declarations (variable declarations which are declared to
be both static and final).

As interfaces are abstract, they cannot be instantiated. Object references in Java may be specified to be of
interface type; in which case they must be bound to null, or an object which implements the interface.

The primary capability which interfaces have, and classes lack, is multiple inheritance. All classes in Java (other
than java.lang.Object, the root class of the Java type system) must have exactly one base class (corresponding
to the extends clause in the class definition; classes without an extends clause are defined to inherit from
Object); multiple inheritance of classes is not allowed. However, Java classes may implement as many interfaces
as the programmer desires (with the implements clause). A Java class which implements an interface, but which
fails to implement all the methods specified in the interface, becomes an abstract base class, and must be
declared abstract in the class definition.

Defining an Interface

Interfaces must be defined using the following formula (compare to Java's class definition).

[visibility] interface Interface Name [extends other interfaces] {
 constant declarations
 abstract method declarations
}

The body of the interface contains abstract methods, but since all methods in an interface are, by definition,
abstract, the abstract keyword is not required.

Thus, a simple interface may be

public interface Predator {
 public boolean chasePrey(Prey p);
 public void eatPrey(Prey p);
}

 Implementing an Interface

The syntax for implementing an interface uses this formula:

... implements interface name[, another interface, another, ...] ...

Classes may implement an interface. For example,

public class Cat implements Predator {

 public boolean chasePrey(Prey p) {
 // programming to chase prey p
 }

 public void eatPrey (Prey p) {
 // programming to eat prey p
 }
}

If a class implements an interface and is not abstract, and does not implement a required interface, this will result
in a compiler error. If a class is abstract, one of its subclasses is expected to implement its unimplemented
methods.

Classes can implement multiple interfaces

public class Frog implements Predator, Prey { ... }

 Creating subinterfaces

Subinterfaces can be created as easily as interfaces, using the same formula are described above. For example

public interface VenomousPredator extends Predator, Venomous {
 interface body
}

is legal. Note how it allows multiple inheritance, unlike classes.

**

A Java package is a mechanism for organizing Java classes into namespaces. Java packages can be stored in
compressed files called JAR files, allowing classes to download faster as a group rather than one at a time.
Programmers also typically use packages to organize classes belonging to the same category or providing similar
functionality.

Java source files can include a package statement at the top of the file to designate the package for the classes the
source file defines.

1. A package provides a unique namespace for the types it contains.
2. Classes in the same package can access each other's protected members.
3. A package can contain the following kinds of types.

Classes Interfaces Enumerated types Annotations

Using packages

In Java source files, the package that the file belongs to is specified with the package keyword.

package java.awt.event;

To use a package inside a Java source file, it is convenient to import the classes from the package with an import
statement. The statement

import java.awt.event.*;

imports all classes from the java.awt.event package, while

import java.awt.event.ActionEvent;

imports only the ActionEvent class from the package. After either of these import statements, the ActionEvent
class can be referenced using its simple class name:

ActionEvent myEvent = new ActionEvent();

Classes can also be used directly without an import statement by using the fully-qualified name of the class. For
example,

java.awt.event.ActionEvent myEvent = new java.awt.event.ActionEvent();

doesn't require a preceding import statement.

Package access protection

Classes within a package can access classes and members declared with default access and class members
declared with the protected access modifier. Default access is enforced when neither the public, protected
nor private access modifier is specified in the declaration. By contrast, classes in other packages cannot access
classes and members declared with default access. Class members declared as protected can only be accessed
from within classes in other packages that are subclasses of the declaring cla AR file being created.

 Package naming conventions

Packages are usually defined using a hierarchical naming pattern, with levels in the hierarchy separated by
periods (.) (pronounced "dot"). Although packages lower in the naming hierarchy are often referred to a
"subpackages" of the corresponding packages higher in the hierarchy, there is no semantic relationship between
packages. The Java Language Specification establishes package naming conventions in order to avoid the
possibility of two published packages having the same name. The naming conventions describe how to create
unique package names, so that packages that are widely distributed will have unique namespaces. This allows
packages to be easily and automatically installed and catalogued.

In general, a package name begins with the top level domain name of the organization and then the organization's
domain and then any subdomains listed in reverse order. The organization can then choose a specific name for
their package. Package names should be all lowercase characters whenever possible.

For example, if an organization in Canada called MySoft creates a package to deal with fractions, naming the
package ca.mysoft.fractions distinguishes the fractions package from another similar package created by
another company. If a US company named MySoft also creates a fractions package, but names it
com.mysoft.fractions, then the classes in these two packages are defined in a unique and separate namespace.

Arrays

1. Java has array types for each type, including arrays of primitive types, class andinterface types, as well as higher‐
dimensional arrays of array types.

2. All elements of an array must descend from the same type.
3. All array classes descend from the class java.lang.Object, and mirror the hierarchy of the types they contain.
4. Array objects have a read‐only length attribute that contains the number of elements in the array.
5. Arrays are allocated at runtime, so the specified size in an array creation expression may be a variable (rather than

a constant expression as in C).
6. Java arrays have a single dimension. Multi‐dimensional arrays are supported by the language, but are treated as

arrays of arrays.

// Declare the array - name is "myArray", element type is references to "SomeClass"
SomeClass[] myArray = null;
// Allocate the array
myArray = new SomeClass[10];
// Or Combine the declaration and array creation
SomeClass[] myArray = new SomeClass[10];
// Allocate the elements of the array (not needed for simple data types)
for (int i = 0; i < myArray.length; i++)
 myArray[i] = new SomeClass();

**********************8

For loop
for (initial-expr; cond-expr; incr-expr) {
 statements;
}

For-each loop

J2SE 5.0 added a new feature called the for-each loop, which greatly simplifies the task of iterating through every
element in a collection. Without the loop, iterating over a collection would require explicitly declaring an iterator:

public int sumLength(Set<String> stringSet) {
 int sum = 0;
 Iterator<String> itr = stringSet.iterator();
 while (itr.hasNext())
 sum += itr.next().length();
 return sum;
}

The for-each loop greatly simplifies this method:

public int sumLength(Set<String> stringSet) {
 int sum = 0;
 for (String s : stringSet)
 sum += s.length();
 return sum
}

Objects

 Classes

Java has nested classes that are declared within the body of another class or interface. A class that is not a nested
class is called a top level class. An inner class is a non-static nested class.

Classes can be declared with the following modifiers:

abstract – cannot be instantiated. Only interfaces and abstract classes may contain abstract methods. A concrete
(non‐abstract) subclass that extends an abstract class must override any inherited abstract methods with non‐
abstract methods. Cannot be final.

final – cannot be subclassed. All methods in a final class are implicity final. Cannot be abstract.

strictfp – all floating‐point operations within the class and any enclosed nested classes use strict floating‐point
semantics. Strict floating‐point semantics guarantee that floating‐point operations produce the same results on all
platforms.

Note that Java classes do not need to be terminated by a semicolon (";"), which is required in C++ syntax.

Method overloading is a feature found in various object oriented programming languages such as C++ and Java
that allows the creation of several functions with the same name which differ from each other in terms of the type
of the input and the type of the output of the function.

An example of this would be a square function which takes a number and returns the square of that number. In
this case, it is often necessary to create different functions for integer and floating point numbers.

Method overloading is usually associated with statically-typed programming languages which enforce type
checking in function calls. When overloading a method, you are really just making a number of different methods
that happen to have the same name. It is resolved at compile time which of these methods are used.

Method overloading should not be confused with ad-hoc polymorphism or virtual functions. In those, the correct
method is chosen at runtime.

***************8

Method overriding, in object oriented programming, is a language feature that allows a subclass to provide a
specific implementation of a method that is already provided by one of its superclasses. The implementation in
the subclass overrides (replaces) the implementation in the superclass.

A subclass can give its own definition of methods which also happen to have the same signature as the method in
its superclass. This means that the subclass's method has the same name and parameter list as the superclass's
overridden method. Constraints on the similarity of return type vary from language to language, as some
languages support covariance on return types.

Method overriding is an important feature that facilitates polymorphism in the design of object-oriented
programs.

Some languages allow the programmer to prevent a method from being overridden, or disallow method
overriding in certain core classes. This may or may not involve an inability to subclass from a given class.

In many cases, abstract classes are designed — i.e. classes that exist only in order to have specialized subclasses
derived from them. Such abstract classes have methods that do not perform any useful operations and are meant
to be overridden by specific implementations in the subclasses. Thus, the abstract superclass defines a common
interface which all the subclasses inherit.

 Examples

This is an example in Python. First a general class ("Person") is defined. The "self" argument refers to the
instance object. The Person object can be in one of three states, and can also "talk".

 class Person:
 def __init__(self):
 self.state = 0

 def talk(self, sentence):
 print sentence

 def lie_down(self):
 self.state = 0

 def sit_still(self):
 self.state = 1

 def stand(self):
 self.state = 2

Then a "Baby" class is defined (subclassed from Person). Objects of this class cannot talk or change state, so
exceptions (error conditions) are raised by all methods except "lie_down". This is done by overriding the methods
"talk", "sit_still" and "stand"

 class Baby(Person):
 def talk(self, sentence):
 raise CannotSpeakError, 'This person cannot speak.'

 def sit_still(self):
 raise CannotSitError, 'This person cannot sit still.'

 def stand(self):
 raise CannotStandError, 'This person cannot stand up.'

Many more methods could be added to "Person", which can also be subclassed as "MalePerson" and
"FemalePerson", for example. Subclasses of Person could then be grouped together in a data structure (a list or
array), and the same methods could be called for each of them regardless of the actual class; each object would
respond appropriately with its own implementation or, if it does not have one, with the implementation in the
superclass.

Exception handling

Exception handling is a programming language construct or computer hardware mechanism designed to handle
the occurrence of some condition that changes the normal flow of execution. The condition is called an
exception. Alternative concepts are signal and event handler.

In general, current state will be saved in a predefined location and execution will switch to a predefined handler.
Depending on the situation, the handler may later resume the execution at the original location, using the saved
information to restore the original state. For example, an exception which will usually be resumed is a page fault,
while a division by zero usually cannot be resolved transparently.

From the processing point of view, hardware interrupts are similar to resumable exceptions, except they are
usually not related to the current program flow.

Exception safety

A piece of code is said to be exception-safe if run-time failures within the code will not produce ill-effects, such
as memory leaks, garbled data or invalid output. Exception-safe code must satisfy invariants placed on the code
even if exceptions occur. There are several levels of exception safety:

• failure transparency, operations are guaranteed to succeed and satisfy all requirements even in presence of
exceptional situations. (best)

• commit or rollback semantics, operations can fail, but failed operations are guaranteed to have no side effects.
• basic exception safety, partial execution of failed operations can cause side effects, but invariants on the state are

preserved (that is, any stored data will contain valid values).
• minimal exception safety, partial execution of failed operations may store invalid data but will not cause a crash.
• no exception safety, no guarantees are made. (worst)

Usually at least basic exception safety is required. Failure transparency is difficult to implement, and is usually
not possible in libraries where complete knowledge of the application is not available.

 Exception support in programming languages
 Exception handling syntax

Many computer languages, such as Ada, C++, Common Lisp, D, Delphi, Eiffel, Java, Objective-C, Ocaml, PHP
(as of version 5), Python, REALbasic, ML, Ruby, and all .NET languages have built-in support for exceptions

and exception handling. In those languages, the advent of an exception (more precisely, an exception handled by
the language) unwinds the stack of function calls until an exception handler is found. That is, if function f
contains a handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in
h, then functions h and g will be terminated and H in f will handle E.

Excluding minor syntactic differences, there are only a couple of exception handling styles in use. In the most
popular style, an exception is initiated by a special statement (throw, or raise) with an exception object. The
scope for exception handlers starts with a marker clause (try, or the language's block starter such as begin) and
ends in the start of the first handler clause (catch, except, rescue). Several handler clauses can follow, and each
can specify which exception classes it handles and what name it uses for the exception object.

A few languages also permit a clause (else) that is used in case no exception occurred before the end of the
handler's scope was reached. More common is a related clause (finally, or ensure) that is executed whether an
exception occurred or not, typically to release resources acquired within the body of the exception-handling
block. Notably, C++ lacks this clause, and the Resource Acquisition Is Initialization technique is used to free such
resources instead.

In its whole, exception handling code might look like this (in pseudocode):

try {
 line = console.readLine();
 if (line.length() == 0) {
 throw new EmptyLineException("The line read from console was empty!");
 }
 console.printLine("Hello %s!" % line);
} catch (EmptyLineException e) {
 console.printLine("Hello!");
} catch (Exception e) {
 console.printLine("Error: " + e.message());
} else {
 console.printLine("The program ran successfully");
} finally {
 console.printLine("The program terminates now");
}

As a minor variation, some languages use a single handler clause, which deals with the class of the exception
internally.

Checked exceptions

The designers of Java devised[1][2] checked exceptions[3] which are a special set of exceptions. The checked
exceptions that a method may raise constitute part of the type of the method. For instance, if a method might
throw an IOException instead of returning successfully, it must declare this fact in its method header. Failure to
do so raises a compile-time error.

This is related to exception checkers that exist at least for OCaml. The external tool for OCaml is both transparent
(i.e. it does not require any syntactic annotations) and facultative (i.e. it is possible to compile and run a program
without having checked the exceptions, although this is not suggested for production code).

The CLU programming language had a feature with the interface closer to what Java has introduced later. A
function could raise only exceptions listed in its type, but any leaking exceptions from called functions would
automatically be turned into the sole runtime exception, failure, instead of resulting in compile-time error.

Later, Modula-3 had a similar feature.[4] These features don't include the compile time checking which is central
in the concept of checked exceptions and hasn't as of 2006 been incorporated into other major programming
languages than Java.[5]

 Pros and cons

Checked exceptions can, at compile time, greatly reduce (but not entirely eliminate) the incidence of unhandled
exceptions surfacing at runtime in a given application; the unchecked exceptions (RuntimeExceptions and
Errors) can still go unhandled.

However, some see checked exceptions as a nuisance, syntactic salt that either requires large throws declarations,
often revealing implementation details and reducing encapsulation, or encourages the (ab)use of poorly-
considered try/catch blocks that can potentially hide legitimate exceptions from their appropriate handlers.

Others do not consider this a nuisance as you can reduce the number of declared exceptions by either declaring a
superclass of all potentionally thrown exceptions or by defining and declaring exception types that are suitable for
the level of abstraction of the called method, and mapping lower level exceptions to these types, preferably
wrapped using the exception chaining in order to preserve the root cause.

A simple throws Exception declaration or catch (Exception e) is always sufficient to satisfy the checking.
While this technique is sometimes useful, it effectively circumvents the checked exception mechanism, so it
should only be used after careful consideration.

One prevalent view is that unchecked exception types should not be handled, except maybe at the outermost
levels of scope, as they often represent scenarios that do not allow for recovery: RuntimeExceptions frequently
reflect programming defects[7], and Errors generally represent unrecovereable JVM failures. The view is that,
even in a language that supports checked exceptions, there are cases where the use of checked exceptions is not
appropriate.

Questions and Exercises: Object-Oriented Programming Concepts

Questions

• Real‐world objects contain ___ and ___.
• A software object's state is stored in ___.
• A software object's behavior is exposed through ___.
• Hiding internal data from the outside world, and accessing it only through publicly exposed methods is known as

data ___.
• A blueprint for a software object is called a ___.
• Common behavior can be defined in a ___ and inherited into a ___ using the ___ keyword.
• A collection of methods with no implementation is called an ___.
• A namespace that organizes classes and interfaces by functionality is called a ___.
• The term API stands for ___?

Program-1

Aim- Write a program to show “Welcome to Dronacharya College of Engg.”

public class demo
{
public static void main(String[]args)
{
System.out.println("Welcome to Dronacharya College of Engg.");
}
}

Output-

Program-2

Aim:- Write a program for finding greatest number among 3 numbers in java.

import java.util.*;
public class hello
{
public static void main(String[]args)
{
int a,b,c;
Scanner j=new Scanner(System.in);
a=j.nextInt();
b=j.nextInt();
c=j.nextInt();
if(a>b && a>c)
{
System.out.println("a is greater");
}
else
if(b>a && b>c)
{
System.out.println("b is greater");
}
else
if(c>a && c>b)
{
System.out.println("c is greater");
}
else
{
System.out.println("All are equals");
}
}

}

Output:-

Program-3

Aim:-a) Write a program for overloading in java.

public class hell
{
public void area()
{
System.out.println("ajay");
}
public void area(int a)
{
System.out.println("anshul");
}
public void area(int a, int b)
{
System.out.println("amit gulati");
}
public void area(float c)
{
System.out.println("deepak");
}
public void area(String d)
{
System.out.println("ankur");
}
public static void main(String[]args)
{
hell hi=new hell();
hi.area();
hi.area(10);
hi.area(10,5);

hi.area(12.45f);
hi.area("14454");
}
}

Output:-

b) Write a program for overriding in java.

class demo
{
public void area()
{
System.out.println("ajay");
}
public void area(int a)
{
System.out.println("anshul");
}
public void area(int a, int b)
{
System.out.println("amit gulati");
}
public void area(float c)
{
System.out.println("ankur");
}
public void area(String d)
{
System.out.println("ashish");
}}
public class hell extends demo
{
public void area()
{
System.out.println("%%%%%%%%%%%");
}
public void area(int a)

{
System.out.println("/////////////");
}
public void area(int a, int b)
{
System.out.println("***********");
}
public void area(float c)
{
System.out.println("++++++++++++");
}
public void area(String d)
{
System.out.println("&&&&&&&&&&&&");
}
public static void main(String[]args)
{
hell hi=new hell();
hi.area();
hi.area(10);
hi.area(10,5);
hi.area(12.45f);
hi.area("14454");
} }

Output:-

Program-4

Aim:- Write a program of Exception Handling showing that if user enter name “Rahul” and age “40” then show a
message that “you are rahul” else shows “there is an error” in java.

Code:-
import java.util.*;
class Customexception extends Exception
{
Customexception()
{
 System.out.println("there is an error");
}
}
public class demo
{
public static void main(String[]se)
{
Scanner b=new Scanner(System.in);
System.out.println("enter the age");
String a=b.next();
System.out.println("enter the name");
String d=b.next();
try
{
if(a.equals("40") && d.equals("rahul"))
{
System.out.println("you are rahul");
}
else
{
throw new Customexception();

}
}
catch(Exception e)
{
System.out.println();
}
}
}

Output:-

Program-5

Aim:- Write a program of Multithreading in java.

Code-
public class demo implements Runnable
{
String nn;
demo(String s)
{
nn=s;
Thread b=new Thread(this);
b.start();
}
public void run()
{
try
{
for(int i=0;i<5;i++)
{
System.out.println("Thrad name is "+nn);
Thread.sleep(500);
}
}
catch(InterruptedException e)
{}
}
public static void main(String[]se)
{
demo j=new demo("hello");
demo h=new demo("bye");

}
}

Output:-

Program-6
Aim- Write a program in java to show the connectivity with JDBC.
Code-
import java.sql.*;
class abc
{
public static void main(String args[])
{
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
System.out.println("abc");
Connection conn=DriverManager.getConnection("jdbc:odbc:as");
System.out.println("sql warning");
Statement struct=conn.createStatement();
ResultSet rs=struct.executeQuery("select * from table1");
while(rs.next()){
System.out.println(rs.getString(1));
System.out.println(rs.getString(2));
System.out.println(rs.getString(3));
}rs.close();
struct.close();
conn.close();
}catch(ClassNotFoundException s)
{
System.out.println("class not found");
}catch(SQLException ae)
{
System.out.println("sql exception found");
}

}
}

Output-

Program-7
Aim:- a) Write a program for overloading in Eclipse
Code-
public class demo
{

 public void hi()
 {
 System.out.println("default");
 }
 public void hi(int a)
 {
 System.out.println("integer parameter");
 }
 public void hi(String k)
 {
 System.out.println("String Parameter");
 }

 public static void main(String[] args) {
 demo j =new demo();
 j.hi();
 j.hi(12);
 j.hi("hello");
 }

}

Output-

b) Write a program for overriding in Eclipse

Code-

class hh{
public void hi()
{
System.out.println("Parent Class");
}
public int dis(int a, int b)
{
 return(a+b);
}
}
public class demo extends hh
{
 public void hi()
 {
 System.out.println("child class");
 }
 public int dis(int a, int b)
 {
 return(a-b);
 }

 public static void main(String[] args) {
 demo j =new demo();
 System.out.println(j.dis(50, 10));
 }
}

Output-

Program-8

Aim- Write a program to implement JTree.

import javax.swing.*;
import javax.swing.tree.*;
public class TreeComponent{
 public static void main(String[] args) {
 JFrame frame = new JFrame("Creating a JTree Component!");
 DefaultMutableTreeNode parent = new DefaultMutableTreeNode("Color", true);
 DefaultMutableTreeNode black = new DefaultMutableTreeNode("Black");
 DefaultMutableTreeNode blue = new DefaultMutableTreeNode("Blue");
 DefaultMutableTreeNode nBlue = new DefaultMutableTreeNode("Navy Blue");
 DefaultMutableTreeNode dBlue = new DefaultMutableTreeNode("Dark Blue");
 DefaultMutableTreeNode green = new DefaultMutableTreeNode("Green");
 DefaultMutableTreeNode white = new DefaultMutableTreeNode("White");
 parent.add(black);
 parent.add(blue);
 blue.add(nBlue);
 blue.add(dBlue);
 parent.add(green);
 parent.add(white);
 JTree tree = new JTree(parent);
 frame.add(tree);
 // frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 // frame.setUndecorated(true);
 //frame.getRootPane().setWindowDecorationStyle(JRootPane.PLAIN_DIALOG);
 frame.setSize(200,200);
 frame.setVisible(true);
 }}

Output-

Program-9

Aim- Write a program to implement Jtable

import javax.swing.*;
import java.awt.*;
import javax.swing.table.*;

public class JTableComponent{
 public static void main(String[] args)
{
 new JTableComponent();
 }
 public JTableComponent(){
 JFrame frame = new JFrame("Creating JTable Component Example!");
 JPanel panel = new JPanel();
 String data[][] = {{"vinod","BCA","A"},{"Raju","MCA","b"},
 {"Ranjan","MBA","c"},{"Rinku","BCA","d"}};

 String col[] = {"Name","Course","Grade"};
 JTable table = new JTable(data,col);
 panel.add(table,BorderLayout.CENTER);

frame.add(panel);
 frame.setSize(300,200);
 frame.setVisible(true);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

Output-

Program-10
Aim- Write a program of an applet that receives two numerical values as the input from user and displays
the sum of these two numbers.

package javaapplication6;

import java.applet.Applet;

import java.awt.*;

public class NewApplet extends Applet

{

TextField t1,t2;

 public void init()

 {

 t1=new TextField(8);

 t2=new TextField(8);

 add(t1);

 add(t2);

 t1.setText("0");

 t2.setText("0");

 }

public void paint (Graphics g)

{ int a,b;

 a=Integer.parseInt(t1.getText());

 b=Integer.parseInt(t2.getText());

 int c=a+b;

 String s=Integer.toString(c);

 g.drawString("the sum is",20,30);

 g.drawString(s,50,50);

}}

Output-

