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Objectives 
• Definition of inductance and continuity condition for inductors.  
• To understand the rise or fall of current in a simple series R L−  circuit excited 

with dc source.  
• Meaning of ' ( ) 'τ  for R LTime Constamt −  circuit and explain its relationship to 

the performance of the circuit. 
• Energy stored in an inductor 
• Definition of capacitance and Continuity condition for capacitors.  
• To understand the rise or fall voltage across the capacitor in a simple series R C−  

circuit excited with dc source.  
• Meaning of ' ( ) ' R Cτ  for Time Constamt −  circuit and explain its relationship to 

the performance of the circuit. 
• Energy stored in a capacitor 

 
 L.10.1 Introduction 
 
 So far we have considered dc resistive network in which currents and voltages 
were independent of time. More specifically, Voltage (cause  input) and current (effect 

 output) responses displayed simultaneously except for a constant multiplicative factor 
 (V R ).  Two basic passive elements namely, inductor 

→
→
R I= × ( )L  and capacitor ( ) are 
introduced in the dc network. Automatically, the question will arise whether or not the 
methods developed in lesson-3 to lesson-8 for resistive circuit analysis are still valid. The 
voltage/current relationship for these two passive elements are defined by the derivative 

(voltage across the inductor 

C

( )( ) L
L

di tv t L
dt

= , where =current flowing through the 

inductor ; current through the capacitor 

( )Li t

( )( ) C
C

dv ti t C
dt

= , = voltage across the 

capacitor) or in integral form as 

( )Cv t

0 0

1 1( ) ( ) (0) ( ) ( ) (0)
t t

L L L Ci t v t dt i or v t i t dt v
L C

= + = +∫ ∫ C  

rather than the algebraic equation (V IR= ) for all resistors. One can still apply the KCL, 
KVL, Mesh-current method, Node-voltage method and all network theorems but they 
result in differential equations rather than the algebraic equations that we have considered 
in resistive networks (see Lession-3 to lesson-8).  
 
 An electric switch is turned on or off in some circuit (for example in a circuit 
consisting of resistance and inductance), transient currents or voltages (quickly changing 
current or voltage) will occur for a short period after these switching actions. After the 
transient has ended, the current or voltage in question returns to its steady state situation 
(or normal steady value). Duration of transient phenomena are over after only a few 
micro or milliseconds, or few seconds or more depending on the values of circuit 
parameters (like , ,R L and C ).The situation relating to the sudden application of dc 
voltage to circuits possessing resistance ( R ), inductance ( L ), and capacitance (C ) will 
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now be investigated in this lesson. We will continue our discussion on transients 
occurring in a dc circuit. It is needless to mention that transients also occur in ac circuit 
but they are not included in this lesson.  
 
L.10.2  Significance of Inductance of a coil and dc transients 

in a simple R-L circuit 
 
 Fig.10.1 shows a coil of wire forming an inductance and its behavior is to resist 
any change of electric current through the coil. When an inductor carries current, it 
produces a certain amount of magnetic flux ( )Φ  in the core or space around it. The 
product of the magnetic flux  and the number of turns of a coil (an inductor) is called 
the ‘flux linkage’ of the coil. 

( )Φ

 

 
 Considering the physical fact that the voltage across the coil is directly proportional to 
the rate of change of current through the inductor and it is expressed by the equation 

( ) ( )( )
( ) /

di t e temf e t L L
dt di t dt

= = ⇒ =                                                               (10.1) 

where L  is the constant of proportionality called inductance of coil and it is measured in 
ecvolt s ond henry

ampere
−

=  ( H ). The direction of induced emf is opposite to that of current 

increases or decreases (Lenz’s Law)  

                                                       ( )( ) di te t L
dt

= −                                   (10.2)              

Let us assume that the coil of wire has '  turns and the core material has a relatively 
high permeability (or magnetic path reluctance is very low), so that the magnetic flux 
( ) produced due to current flowing through the coil is concentrated within the core 
area. The basic fundamental principle according to Faraday, the changing flux through 
the coil creates an induced emf and it is expressed as 

' N

Φ

( )e
( )( ) d te t N

dt
Φ

=−                                                                                   (10.3) 
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In words, Faraday’s law states that the voltage induced in a coil (inductor) is proportional 
to the number of turns that the coil has, and also to the rate of change of the magnetic flux 
passing through its coils. From equations (10.2) and (10.3), one can write the following 
relation 
 

( )N d t change in flux linkage NL
di change in current I
Φ Φ

= = =                                                    (10.4) 

The inductance of a coil can also be defined as flux (Φ ) linkage per unit of current 
flowing through the coil and it is illustrated through numerical example. 
 
Example-L.10.1: Consider two coils having the same number of turns ‘ ’. One coil is 
wrapped in a nonmagnetic core (say, air) and the other is placed on a core of magnetic 
material as shown in fig.10.2. Calculate the inductances of both coils for same amount of 
current flowing through them. 

N

 

 
 

Case-A: Nonmagnetic material 

Inductance of nonmagnetic material = 
4

1
1

200 (0.5 10 ) 5
2

NL m
I

−Φ × ×
= = = H  

Case-B: Magnetic material 

Inductance of magnetic material 2
2

200 (0.05) 5
2

NL H
I
×Φ ×

= = =  ( Note: ) 2 1L L>

 
L.10.2.1 Inductance calculation from physical dimension of coil  
 
 A general formula for the inductance of a coil can be found by using an 
equivalent  for magnetic circuit and the formula for reluctance. This topic 
will be discussed in detail in Lesson-21. Consider a solenoid-type electromagnet/toroid 

'Ohm s law
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with a length much greater than its diameter (at least the length is ten times as great as its 
diameter). This will produce an uniform magnetic field inside the toroid. The length ‘ l ’of 
a toroid is the distance around the center axis of its core , as indicated in fig.10.3 by 
dotted line. Its area ‘ A ’ is the cross-sectional area of the toroid, also indicated in that 
figure.  
 

 
 

Appling ampere-circuital law for magnetic circuit (see Lesson-21) one can write the 
following relation 

/N IN I H l H At m
l

= ⇒ =                                                                               (10.5)                              

We know, flux is always given by the product of flux density ( B ) and area ( A ) through 
which flux density ids uniform. That is,  

0( , r
N IB A H A A note
l

)μ μ μ μΦ= × = = = ×μ                                              (10.6)                               

 where B Hμ=  and H is the uniform field intensity around the mean magnetic path 
length ‘ l ’. Substituting the equation (10.6) into the defining equation for inductance, 
equation (10.4) gives 

2 2N N I A NL
I I l l

μ μΦ
= = =

A                                                                           (10.7)                               

Remark-1: The expression (10.7) is derived for long solenoids and toroids, computation 
of inductance is valid only for those types.  
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L.10.2.2 Continuity condition of Inductors 
 
 The current that flows through a linear inductor must always be a continuous. 
From the expression (10.1), the voltage across the inductor is not proportional to the 
current flowing through it but to the rate of change of the current with respect to 

time, ( )di t
dt

. The voltage across the inductor ( ) is zero when the current flowing through 

an inductor does not change with time. This observation implies that the inductor acts as 
a short circuit under steady state dc current. In other words, under the steady state 
condition, the inductor terminals are shorted through a conducting wire.  Alternating 
current (ac), on the other hand, is constantly changing; therefore, an inductor will create 
an opposition voltage polarity that tends to limit the changing current. If current changes 
very rapidly with time, then inductor causes a large opposition voltage across its 
terminals.  If current changes through the inductor from one level to another level 
instantaneously i.e. in sec., then the voltage across it would become infinite and 
this would require infinite power at the terminals of the inductor. Thus, instantaneous 
changes in the current through an inductor are not possible at all in practice. 

Lv

0dt

 
Remark-2: (i) The current flowing through the inductor cannot change instantaneously 
(i.e.  just right before the change of current = (0 )i − (0 )i +  just right after the change of 
current). However, the voltage across an inductor can change abruptly. (ii) The inductor 
acts as a short circuit (i.e. inductor terminals are shorted with a conducting wire) when 
the current flowing through the inductor does not change (constant). (iii) These properties 
of inductor are important since they will be used to determine “boundary conditions”.  
 
L.10.3  Study of dc transients and steady state response of a 

series R-L circuit.   
 
Ideal Inductor: Fig.10.4 shows an ideal inductor, like an ideal voltage source, has no 
resistance and it is excited by a dc voltage source . SV
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The switch ‘ ’ is closed at time ‘S 0t = ’ and assumed that the initial current flowing 
through the ideal inductor just before closing the switch is equal to zero. To find the 
system response ( ), one can apply KVL around the closed path. 

(0)i
( )i t vs t− −

KVL  

( ) 0S
di tV L
dt

− =   ( ) SVd i t
dt L

⇒ =                                                                        (10.8) 

( )

0 0

( ) ( ) (0)
i t t

s sV Vd i t dt i t t i
L L

= ⇒ = +∫ ∫   ( ) sVi t t
L

⇒ =     (note (0) 0i =  )                 (10.9) 

Equation (10.9) implies that the current through inductor increases with increase in time 
and theoretically it approaches to infinity as  but in practice, this is not really the 
case. 

t→ ∞

 
 Real or Practical inductor: 
 
 Fig.10.5 shows a real or practical inductor has some resistance and it is exactly 
equal to the resistance of the wire used to wind the coil.  
 

 
 

Let us consider a practical inductor is connected in series with an external resistance  
and this circuit is excited with a dc voltage  as shown in fig.10.6(a). 

1R

SV
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Our problem is to study the growth of current in the circuit through two stages, namely; 
(i) dc transient response (ii) steady state response of the system. 
 
D.C Transients: The behavior of the current ( ( ; charge ( ())i t ))q t  and the voltage  
in the circuit (like 

( ( ))v t
; :R L R C R L C− − − −  circuit) from the time ( (0 )t + ) switch is closed 

until it reaches its final value is called dc transient response of the concerned circuit. The 
response of a circuit (containing resistances, inductances, capacitors and switches) due to 
sudden application of voltage or current is called transient response. The most common 
instance of a transient response in a circuit occurs when a switch is turned on or off – a 
rather common event in an electric circuit. 
 
L.10.3.1 Growth or Rise of current in R-L circuit 
 
 To find the current expression (response) for the circuit shown in fig. 10.6(a), we 
can write the KVL equation around the circuit 
 

( )1
( )( ) ( ) 0 ( )S L L S

d i tV R R i t v t V R i t L
dt

− + − = ⇒ = +                                      (10.10) 

where  is the applied voltage or forcing function ,  is the resistance of the coil,  is 
the external resistance. One can combine the resistance of coil to the external 
resistance  in order to obtain a simplified form of differential equation. The circuit 
configuration shown in fig. 10.6(a) is redrawn equivalently in fig.10.6(b) for our 
convenience. The equation (10.10) is the standard first order differential equation and its 
solution can be obtained by classical method. The solution of first or second order 
differential equation is briefly discussed in Appendix (at the end of this lesson-10). The 
following relation gives the solution of equation (10.10) 

SV LR 1R

LR

1R

 
1( ) ( ) ( ) t

n fi t i t i t A e Aα= + = +                                                                        (10.11) 
 
Here,  is the complementary solution/natural solution of differential equation 
(10.10). It is also sometimes called as transient response of system (i.e. the first part of 

( )ni t
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response is due to an initial condition of the system or force free response). The second 
part  of eq. (10.11) is the particular integral solution/force response or steady state 
response of the system due to the forcing function (

( )fi t
( ) Sf t V= ) or input signal to the 

series R L−  circuit. It may be noted the term A  provide us the steady state solution of the 
first order differential equation while the forcing function (or input to the system) is  step 
function (or constant input). More specifically, for a linear system, the steady state 
solution of any order differential equation is the same nature of forcing function ( ( ))f t or 
input signal but different in magnitude. We have listed in tabular form the nature of 
steady state solution of any order differential equation for various types of forcing 
functions (see in Appendix). To get the complete solution of eq. (10.10), the values of 

1, A and Aα  are to be computed following the steps given below: 
 
Step-1: How to find the value of α ? 

 Assigning = 0 and introducing an operator SV d
dt

α =  in eq.(10.10) , we get a 

characteristic equation that will provide us the numerical value of α . This in turn, gives 
us the transient response of the system provided the constant 1A  is known to us. 

The Characteristic equation of (10.10) is 0 RR L
L

α α+ = ⇒ = − .  

Step-2:  How to obtain the constants 1A and A ? 
It may be noted that the differential eq. (10.10) must be satisfied by the particular integral 
solution or steady state solution . The value of at steady state condition (i.e. 

) can be found out using the eq.(10.11) and it is given below. 
( )fi t ( )fi t

t→ ∞
Using final condition ( ) t→ ∞

( )
( ) f

S f

d i t
V R i t L

dt
= +                                                                                 (10.12) 

 (note: at steady state ( t ) → ∞ ( ) tanfi t A cons t= =  from eq. (10.11))  
 

s
S

Vd AV R A L A
dt R

= + ⇒ =                                                                        (10.13) 

 
Using initial condition ( t = 0 ) 
 
Case-A: Assume current flowing through the inductor just before closing the switch ‘S” 
(at ) is 0t −= (0 ) 0i − = . 
( ) 10 (0 ) (0 )i i i A− += = = + A                                                                          (10.14) 

1 10 sVA A A A
R

= + ⇒ =− = −                                                                         

Using the values of 1, A and Aα  in equation (10.11), we get the current expression as 
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( ) 1
R tS LVi t e

R
−⎡ ⎤

= −⎢
⎣ ⎦

⎥                                                                                     (10.15) 

 
The table shows how the current i(t) builds up in a R-L circuit. 

Actual time (t) in sec Growth of current in inductor 
(Eq.10.15) 

0t =  (0) 0i =  
Lt
R

τ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 ( ) 0.632 sVi
R

τ = ×  

2t τ=  (2 ) 0.865 sVi
R

τ = ×  

3t τ=  (3 ) 0.950 sVi
R

τ = ×  

4t τ=  (4 ) 0.982 sVi
R

τ = ×  

5t τ=  (5 ) 0.993 sVi
R

τ = ×  

Note: Theoretically at time t  the current in inductor reaches its steady state value 
but in practice the inductor current reaches 99.3% of its steady state value at time 

→ ∞

5 (sec.)t τ= . 
 
The expression for voltage across the external resistance 1R  (see Fig. 10.6(a)) 

  = 1 1( ) 1
R ts L

R
Vv i t R e R
R

−⎡ ⎤
= = −⎢

⎣ ⎦
1⎥                                                                 (10.16) 

The expression for voltage across the inductor or coil 

( )1 1( ) ( ) ( ) 1
R ts L

coil inductor S R S
Vv t v t V v t V R e
R

−⎡ ⎤
= = − = − −⎢ ⎥

⎣ ⎦
                                 (10.17)      

 
Graphical representation of equations (10.15)-(10.17) are shown in Fig.10.7 for different 
choices of circuit parameters (i.e., L & R) 
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Case-B: Assume current flowing through the inductor just before closing the switch ‘S” 
(at ) is 0t −= 0(0 ) 0i i− = ≠ . 
Using equations (10.13) and (10.14), we get the values of 

1 0(0)SVA and A i A i SV
R R

= = − = − . Using these values in equation (10.11), the 

expression for current flowing through the circuit is given by 

0( ) 1
R RtS LVi t e i e

R
− −⎡ ⎤ ⎛

= − +⎜⎢ ⎥
⎣ ⎦ ⎝

t
L
⎞
⎟
⎠

                                                                   (10.18) 

The second part of the right hand side of the expression (10.18) indicates the current 
flowing to the circuit due to initial current of inductor and the first part due to the 
forcing function  applied to the circuit. This means that the complete response of the 
circuit is the algebraic sum of two outputs due to two inputs; namely (i) due to forcing 
function  (ii) due to initial current  through the inductor. This implies that the 
superposition theorem is also valid for such type of linear circuit. Fig.10.8 shows the 

0i

SV

SV 0i
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response of inductor current when the circuit is excited with a constant voltage source  
and the initial current through inductor is . 

SV

0i
 

 
 
Remark-3:  One can also solve this differential equation by separating the variables and 
integrating. 
 
Time constant ( )τ  for exponential growth response (τ ): We have seen that the 
current through inductor is represented by  

( ) 1
R tS LVi t e

R
−⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 

when a series R L−  circuit is excited by a constant voltage source ( ) and an initial 
current through the inductor  is assumed to be  zero. Further it may be noted that the 
current through the inductor (see fig.10.7) increases as time increases. The shape of 

SV

0i
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growing current before it reaches to a steady state value SV
R

⎛
⎜
⎝ ⎠

⎞
⎟ entirely depends on the 

parameters of  R L−  circuit (i.e. &R L ) that associated with the exponential term 
R t
Le

−⎛ ⎞
⎜
⎝ ⎠

⎟ . As ‘ t ’ grows larger and larger the transient, because of its negative exponential 

factor, diminishes and disappears, leaving only the steady state.  
 
Definition of Time Constant ( )τ  of R L−  Circuit: It is the time required for any 

variable or signal (in our case either current ( ) or voltage ( )i t ( )1Rv or vL ) to reach 63.2% 

( i.e  the time at which the factor 1 100
Rt
Le

−⎛ ⎞⎟⎜ ⎟− ×⎜ ⎟⎜ ⎟⎜⎝ ⎠
 in eq.(10.15) becomes 

%) of its final value. It is possible to write an exact mathematical 

expression to calculate the time constant 

( )11 100 63.2e−− × =

( )τ of any first-order differential equation.  
 Let ‘ t ’ is the time required to reach 63.2% of steady-state value of inductor 
current (see fig. 10.6(a)) and the corresponding time ‘ ’ expression can be obtained  as t

1( ) 0.632* 1 0.632 1 0.368

(sec.)

R R Rt t tS S L L LV Vi t e e e e t
R R

L
R

τ

− − − −⎡ ⎤
= = − ⇒ = − ⇒ = = ⇒⎢ ⎥

⎣ ⎦

=

=
 

The behavior of all circuit responses (for first-order differential equation) is fixed by a 

single time constant τ (for R L−  circuit L
R

τ = ) and it provides information about the 

speed of response or in other words, it indicates how first or slow the system response 
reaches its steady state from the instant of switching the circuit. Observe the equation 
(10.15) that the smaller the time constant (τ ), the more rapidly the current increases and 
subsequently it reaches the steady state (or final value) quickly. On the other hand, a 
circuit with a larger time constant (τ ) provides a slow response because it takes longer 
time to reach steady state. These facts are illustrated in fig.10.7(a). In accordance with 
convenience, the time constant of an exponential term ( )( )0( ) 1 atsay p t p e −= − is the 

reciprocal of the coefficient ‘ a ’ associated with the ‘ t ’ in the power of exponential term. 
 
Remark-4: An interesting property of exponential term is shown in fig. 10.7(a). The time 
constant τ  of a first order differential equation may be found graphically from the 
response curve. It is necessary to draw a tangent to the exponential curve at time ‘ 0t = ’ 
and maintained the same slope until it intersects the steady state value of current curve at 

 point. A perpendicular is drawn from the point  to the time axis   and it intersects 
the time axis at 
P P

t τ= (see fig. 10.7(a)). Mathematically, this can be easily verified by 
considering the equation of a straight line tangent to the current curve at , given by 0t =
y mt=  where is the slope of the straight line, expressed as  m
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0

1
( ) |

R t
S L

S
t

Vd e
R Vd i tm

dt dt L

−

=

⎛ ⎞⎡ ⎤
−⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠= = =0|t =                                                  (10.19) 

Here, we designated the value of time ‘ ’ required to reach  from ‘ ’ to t y 0 SV units
R

, 

assuming a constant rate (slope) of growth. Thus, 

(sec.)S SV V Lt t
R L R

τ= ⇒ = =                                                                         (10.20) 

 It is often convenient way of approximating the time constant ( )τ  of a circuit from the 
response curve (see fig.10.7(a) for curve-2).  
 
L.10.3.2 Fall or Decay of current in a R-L circuit 
   
Let us consider the circuit shown in fig. 10.9(a). In this circuit, the switch ‘S’ is closed 
sufficiently long duration in position ‘1’. This means that the current through the inductor 

reaching its steady-state value ( 0
1

S S

L

V VI I
R R R

= =
+

=

R

) and it acts, as a short circuit i.e. the 

voltage across the inductor is nearly equal to zero since resistance . If the switch 
‘S’ is opened at time ‘t’=0 and kept in position ‘2’ for  as shown in fig. 10.9(b), this 
situation is referred to as a source free circuit. 

1LR
0t >
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Since the current through an inductor cannot change instantaneously, the current through 
the inductor just before (  and after ((0 )i − (0 )i +  opening the switch ‘S’ must be same. 
Because there is no source to sustain the current flow in inductor, the magnetic field in 
inductor starts to collapse and this, in turn, will induce a voltage across the inductor. The 
polarity of this induced voltage across the inductor is just in reverse direction compared 
to the situation that occurred during the growth of current in inductor (i.e. when the 
switch ‘S’ is kept in position ‘1’). This is illustrated in fig. 10.9(b), where the voltage 
induced in inductor is positive at the bottom of the inductor terminal and negative at the 
top. This implies that the current through inductor will still flow in the same direction, 
but with a magnitude decaying toward zero. Appling KVL around the closed circuit in 
fig. 10.9(b), we obtain 
 

( ) ( ) 0d i tL R i t
dt

+ =                                                                                        (10.21)  

 
The solution of the homogeneous (input free), first-order differential equation with 
constant coefficients subject to the initial (boundary) inductor current (initial condition, 

( 0 ) (0 ) SVi i I
R

− += = = ) is given by 

1( ) ( ) t
ni t i t A e α= =                                                                                         (10.22) 

   
where α  can be found from the characteristic equation of eq.(10.21) described by  
 

0 RL R
L

α α+ = ⇒ = −                                                                                (10.23) 

At time , the initial condition0t = (0 ) (0 ) SVi i
R

− += =  is used in equation (10.22) to 

compute the constant 1A  and it is given below. 
 

1 1(0 ) SVi A A I
R

= ⇒ = =  
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Using the values of 1A and α  in equation (10.22), we get final expression as 

( ) 0
R tS LVi t e for t

R
−

= ≥                                                                   (10.24)      

 
A sketch of  for  is shown in fig.10.10. Here, transient has ended and steady 
state has been reached when both current in inductor and voltage across the inductor 
including its internal resistance are zero. 

( )i t 0t ≥
( )i t

 
Time Constant ( )τ for exponential decay response: For the source free circuit, it is the 
time τ  by which the current falls to 36.8 percent of its initial value. The initial condition 
in this case (see fig. 10.9(a) is considered to be the value of inductor’s current at the 
moment the switch  is opened and kept in position ‘ ’. Mathematically, S 2 τ  is computed 
as 

( ) 0.368
R tS S LV Vi t e

R R
−

= × = ⇒  Lt
R

=                               (10.25) = τ
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Alternatively, the time constant for an exponential decay response of a circuit may be 
computed graphically by adopting the steps (see equations (10.19) and (10.20)) as 
discussed before. In fig.10.10, a tangent is drawn to the exponential decay curve at time 
‘ ’ and maintained the same slope until the straight line intercepts time axis at time 0t =
t τ= . Approximately, the value ofτ  can thus be found directly from graphical 
representation of exponential decay curve.   
 
L.10.3.3 Energy stored in an inductor 
 
Let us turn our attention to power and energy consideration for an inductor. The 
instantaneous power absorbed by the inductor is expressed by product of the current 
through inductor  and the voltage across it .    ( )i t ( )v t

( )( ) ( ) ( ) ( ) d i tp t v t i t i t L
dt

= =                                                                            (10.26) 

Since the energy is the product of power and time, the energy absorbed by an inductor 
over a period is expressed as  
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0 0

2 2
0

( ) 1( ) ( ) ( ) ( )
2

t t

L
t t

d i tW p t dt i t L dt L i t i t
dt

⎡ ⎤= = = −⎣ ⎦∫ ∫                                        (10.27) 

where we select the current through inductor at time ‘ 0t = −∞ ’ is . Then, we 

have 

( )i −∞ = 0

21 ( )
2LW Li= t  and from this relation we see that the energy stored in an inductor is 

always non-negative. At any consequent time at which the current is zero, no energy is 
stored in the inductor. The ideal inductor ( ) never dissipates energy, but only 
stores. In true sense, a physical or practical inductor dissipates a very small amount of 
stored energy due to its small series resistance.  

0LR = Ω

 
Example-L.10.2 Fig.10.11 shows the plot of current  through a series( )i t R L−  circuit 
when a constant forcing function of magnitude 50SV V=  is applied to it. Calculate the 
values of resistance R  and inductance L . 
 

 
 
Solution:  From fig.10.11 one can easily see that the steady state current flowing through 
the circuit is 10 A  and the time constant of the circuit 0.3 sec.τ =  The following 
relationships can be written as  

5010 5S
steady state

Vi R
R R

= ⇒ = ⇒ = Ω  

and 0.3 1.5
5

L L L H
R

τ = ⇒ = ⇒ =  

 
Example-L.10.3   For the circuit shown in Fig.10.12, the switch ‘ ’ has been closed for 
a long time and then opens at . 

S
0t =

  Version 2 EE IIT, Kharagpur 



 
 
Find, 
(i)    (ii)  (iii) (0 )abv − (0 ) , (0 )x Li i− − (0 )xi

+   (iv)  (0 )abv +  (v)  ( )xi t =∞  (vi) ( )abv t =∞   
(vii)  ( ) 0xi t for t >
 
Solution: When the switch  was in closed position for a long time, the circuit reached 
in steady state condition i.e. the current through inductor is constant and hence, the 
voltage across the inductor terminals  is zero or in other words, inductor acts as 
short circuit i.e., (i) . It can be seen that the no current is flowing through 

 resistor. The following are the currents through different branches just before the 
switch ‘ ’ is opened i.e., at 

S

a and b
(0 ) 0abv − = V

6Ω
S 0t −= . 
20(0 ) 4
5xi

− = = A and the current through 10Ω  resistor, 10
20(0 ) 2
10

i A−
Ω = =  . The 

algebraic sum of these two currents is flowing through the inductor i.e., (ii) 
. (0 ) 2 4 6Li A− = + =

 
When the switch ‘ ’ is in open position S
The current through inductor at time 0t +=  is same as that of current , since 
inductor cannot change its current instantaneously .Therefore, the current through  

(0 )Li
−

(0 )xi
+  

is given by 
(0 ) (0 ) 6x Li i+ += = A . 

Applying KVL around the closed loop at 0t +=  we get, 
 20  (0 ) (0 ) 20 6 5 (0 ) (0 ) 10x ab ab abi R v v v+ + + +− × = ⇒ − × = ⇒ =− V
The negative sign indicates that inductor terminal ‘ ’ as +ve terminal and it acts as a 
source of energy or mathematically, .  

b
(0 ) 10bav V+ =

At steady state condition ( ) the current through inductor is constant and hence 
inductor acts as a short circuit. This establishes the following relations: 

t →∞

( ) 0bav t V= ∞ =   and 20( ) 4
5xi t A=∞ = =                                                         (10.28) 
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The circuit expression  for   can be obtained using the KVL around the closed 
path (see fig.10.12). 

( )xi t 0t ≥

KVL equation: 

( )( ) 5 0x
S x

di tV i t L
dt

− × − =                                                                             

  ( )( ) 5 x
x S

di ti t L V
dt

× + =                                                                             (10.29) 

The solution of first order differential equation due to forcing function and initial 
condition is given by  

1( )
R t
L

xi t A e A
−

= +                                                                                       (10.30) 

 Initial and final conditions are:  (i) At 0t = ,  (ii) t , 
current through inductor 

(0) (0 ) (0 ) 6x L Li i i− += = = A →∞
( ) 4Li t A= ∞ =  (see Eq. 10.28). Using initial and final 

conditions equation (10.30) we get, 1 16 4A A and A A 2= − = ⇒ =  

From equation (10.30), we get the final expression as 
5
1( ) 4 2

t

xi t e
−

= + for . 0t ≥
 
Example: L.10.4 The switch ‘ ’ is closed in position ‘1’ sufficiently long time and then 
it is kept in position ‘ ’ as shown in fig.10.13. Compute the value of  (i) the 
instant just prior to the switch changing; (ii) the instant just after the switch changes. Find 

also the rate of change of current through the inductor at time 

S
2 Lv and iL

0t +=  
0

( ). ., l

t

di ti e
dt +=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.  

 

 
 

Solution: We assume that the circuit has reached at steady state condition when the 
switch was in position ‘1’. Note, at steady state the inductor acts as short circuit and 
voltage across the inductor is zero. 
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At , the current through and the voltage across the inductor are 0t −=
10(0 ) 10 5

10 10Li A− = × =
+

(0 ) 0Lv V− = and  respectively. When the switch is kept in 

position ‘ ’, current through the inductor cannot change instantaneously but this is not 
true for the voltage across the inductor. At 

2
0t += , one can write the following 

expressions: 
(0 ) 5Li A+ =  and  (‘b ’ is more + ve  potential than ‘ ’ 

terminal). Note that the stored energy in inductor is dissipated in the resistors. Now, the 
rate of change of current through inductor at time t

( )(0 ) 10 10 5 100Lv + =− + × = − V a

0 +=  is obtained as 

0 0

( ) ( ) 100100 25 ./ sec.
4

l l

t t

di t di tL V amp
dt dt+ += =

−
= − ⇒ = =−  

 
Example: L.10.5 Fig. 10.14(a) shows that a switch ‘ ’ has been in position ‘1’ for a 
long time and is moved in position ‘ ’ at time ‘

S
2 0t = ’. Find the expression  for . ( )v t 0t ≥

 

 
 

Solution: When the switch ‘ ’ is in position ‘1’, the current through inductor (using the 
fundamental property of inductor currents) at steady state condition (see fig.10.14(b)) is 

S

6 6 3
6 6LI A= × =
+

  (0 ) (0 ) 3L LI I A− + =⇒ =                                   (10.31) 
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The circuit for the switch ‘  is in position ‘ 2 ’ is shown in fig.10.14 (c). The current in 
inductor can be computed using following two different methods. 

S

 

 
 

Method-1: Using Thevenin’s theorem 
 
Convert the part of a circuit containing independent sources and resistances into an 
equivalent Thevenin’s voltage source as shown in fig.10.14.(d). 
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Using the KVL around the closed path is 

( )9 ( ) 2 5L
L

di ti t
dt

+ × =                                                                                     (10.32) 

The solution of the above equation is given by 
 

9
2

1( ) ( ) ( )
t

L ni t A e A i t i t
−

= + = + f                                                                     (10.33) 
where, = complementary/natural/transient solution of eq.(10.32) ( )ni t

            = particular/ steady state/final solution of eq.(10.32) ( )fi t

The constants 1A and A  are computed using the initial and final conditions of the circuit 
when the switch is kept in position ‘ ’. 2
At time , 0t =

1(0) (0 ) 3L Li i A+= = = + A                                                                              (10.34) 
At time t , the current in inductor reached its steady state condition and acts as a 
short circuit in a dc source network. The current through inductor is  

→ ∞

5( ) 0.555 .
3 6Li t amp i A= ∞ = = = =
+ f                                                             (10.35) 

Using the above two equations in (10.33), one can obtain the final voltage expression for 
voltage  across the terminals  ‘ ’ and  ‘ ’ as ( )v t a b
 

9
2( ) ( ) 5 ( ) 3 5 2.445 0.555 3

t

ab Lv t v t i t e
−⎛ ⎞

= = − × = − × + ×⎜ ⎟
⎝ ⎠

 = 
9
23.339 7.335

t
e
−⎛ ⎞

− ×⎜ ⎟
⎝ ⎠

V  

 
Method-2: Mesh current method 
 
Assign the loop currents in clockwise directions and redrawn the circuit as shown in Fig. 
10.14(e). The voltage across the terminals ‘ ’ and ‘ ’ can be obtained by solving the 
following loop equations.  

a b

 

  Version 2 EE IIT, Kharagpur 



 
 
Loop-1: 

( ) ( )1 1 2 1 2 1 2
110 6 ( ) 6 ( ) ( ) 0 10 12 ( ) 6 ( ) ( ) 10 6 ( )

12
i t i t i t i t i t i t i t− − − = ⇒ = − ⇒ = +  (10.36) 

Loop-2: 

( )2 2
2 2 1 1 2

( ) ( )6 ( ) 6 ( ) ( ) 0 6 ( ) 12 ( ) 2 0di t di ti t L i t i t i t i t
dt dt

− − − − = ⇒ − + + =                 (10.37) 

Using the value of  in equation (10.37) , we get 1( )i t
 

2
2

( )9 ( ) 2 5di ti t
dt

+ × =                                                                                     (10.38) 

To solve the above first order differential equation we must know inductor’s initial and 
final conditions and their values are already known (see,  and 2 2(0 ) (0 ) 3i i− +⇒ = = A

2
5( ) 0.555

3 6
i t amp= ∞ = =

+
. ). The solution of differential equation (10.38) provides an 

expression of current  and this, in turn, will give us the expression of . The 
voltage across the terminals ‘ ’ and ‘ ’ is given by 

2 ( )i t 1( )i t
a b

 
9

2 2
1 2

( )10 6 ( ) 6 ( ) 2 3.339 7.335
t

ab
di tv i t i t e

dt
−⎛ ⎞

= − × = + = − ×⎜ ⎟
⎝ ⎠

V  

where,  can be obtained by solving  equations (10.38) and (10.36). The 
expressions for  and hence  arte given below: 

2 1( ) , ( )i t i t

2 ( )i t 1( )i t
9
2

2 ( ) 2.445 0.555
t

i t e
−⎛ ⎞

= × +⎜ ⎟
⎝ ⎠

and ( )1 2
1( ) 10 6 ( )

12
i t i t= +  =  

9
21.11 1.2225

t
e
−⎛ ⎞

+⎜ ⎟
⎝ ⎠
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L.10.4 Capacitor and its behavior 
 
 Fig.10.15 shows a capacitor consists of two pieces of metal (the plates) separated 
from each other by a good insulator (the dielectric), with two wires (the leads) attached to 
the metal plates.  
 

 
 

A battery is connected across the capacitor to transport charge from one plate to the other 
until the capacitor charge voltage buildup is equal to the battery voltage V . The voltage 
across the capacitor depends on how much charge was deposited on the plates and also 
how much capacitance the capacitor has. In other words, there is a relationship between 
the voltage (V ), charge ( ) and capacitance ( ), they are related with a mathematical 
expression as 

Q C

(
( )

Q coulumbC
V volt

=
)                                                                                       (10.39) 

where = magnitude of charge stored on each plate, V = voltage applied to the plates 
and the unit of capacitance is in Farad. Although the capacitance  of a capacitor is the 
ratio of charge per plate to the applied voltage but it mainly depends on the physical 
dimension of the capacitor. If the area of the plates is larger, the more would be the 
amount of charge stored over the surface of the plates, resulting higher value of 
capacitance. On the other hand, if the spacing ‘ ’ between the plates is closer, 
accumulates more charge over the parallel plates and thus increases the value of the 
capacitance. The quality of dielectric material has an effect on capacitance between the 
plates. The good quality of dielectric material indicates that higher the permittivity, 
resulting greater the capacitance. The value of capacitance can be expressed in terms 
physical parameters of capacitor as 

Q
C

d

0 r AAC
d d

ε εε
= =   where A  is the area of each plate, is the distance between the plates, d

0ε (= ) is the permittivity of free-space, 128.85 10 −× rε = relative permittivity of dielectric 
material and is the capacitance in Farad. It is important to note that when the applied C
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voltage across the capacitor exceeds a certain value the dielectric material breaks down 
and loses it insulation property.   
 
L.10.4.1 Continuity condition of capacitors 
 
  To find the current-voltage relationship of the capacitor, one can take the 
derivative of both sides of Eq.(10.39) 

( ) ( ) ( )cd v t d q tC i t
dt dt

= =  ( )( ) cd v ti t C
dt

⇒ =                                                       (10.40) 

 
The voltage-current relation can also be represented by another form as 

0

0
1( ) ( ) ( )

t

c c
t

v t i t dt v t
C

= +∫  where is voltage across the capacitor at  time ‘ ’. It can 

be seen that when the voltage across a capacitor is not changing with time, or, in other 
words, the capacitor is fully charged and the current through the capacitor is zero (see 
Eq.10.40). This means that the capacitor resembles as an open circuit and blocks the flow 
of current through the capacitor. Equation (10.40) shows that an instantaneous ( ) 
change in capacitance voltage must be accompanied by an infinite current that requiring 
an infinite power source. In practice, this situation will not occur in any circuits 
containing energy storing elements. Thus, the voltage across the capacitor (or electric 
charge 

0( )cv t 0t

0tΔ =

( )q t ) cannot change instantaneously ( . ., 0 )i e tΔ = , that is we cannot have any 
discontinuity in voltage across the capacitor. 
 
Remark-5  
(i) The voltage across and charge on a capacitor cannot change instantaneously (i.e. 

 just right before the change of voltage = (0 )cv − (0 )cv +  just right after the change of 
voltage). However, current through a capacitor can change abruptly. (ii) The capacitor 
acts as an open circuit (i.e., when the capacitor is fully charged) when voltage across the 
capacitor does not change (constant). (iii) These properties of capacitor are important 
since they will be used to determine “boundary conditions”.  
 
L.10.4.2 Study of dc transients and steady state response of a series 

R-C circuit.   
 
Ideal and real capacitors: An ideal capacitor has an infinite dielectric resistance and 
plates (made of metals) that have zero resistance. However, an ideal capacitor does not 
exist as all dielectrics have some leakage current and all capacitor plates have some 
resistance. A capacitor’s leakage resistance is a measure of how much charge (current) it 
will allow to leak through the dielectric medium. Ideally, a charged capacitor is not 
supposed to allow leaking any current through the dielectric medium and also assumed 
not to dissipate any power loss in capacitor plates resistance. Under this situation, the 
model as shown in fig. 10.16(a) represents the ideal capacitor.  However, all real or 
practical capacitor leaks current to some extend due to leakage resistance of dielectric 
medium. This leakage resistance can be visualized as a resistance connected in parallel 
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with the capacitor and power loss in capacitor plates can be realized with a resistance 
connected in series with capacitor. The model of a real capacitor is shown in fig. 
10.16(b). 
 

 
 
In present discussion, an ideal capacitor is considered to study the behavior of dc 
transients in circuit.  R C−
 

 
 
L.10.4.3 Charging of a capacitor or Growth of a capacitor voltage in 

dc circuits 
 
Let us consider a simple series R C− circuit shown in fig. 10.17(a) is connected through a 
switch ‘S’ to a constant voltage source .  SV
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The switch ‘ ’ is closed at time ‘S 0t = ’ (see fig. 10.7(a)). It is assumed that the capacitor 
is initially charged with a voltage 0(0)cv v=  and the current flowing through the circuit at 
any instant of time ‘ ’ after closing the switch is . t ( )i t
 

 
 
The KVL equation around the loop can be written as  

( )( ) ( ) ( )c
S c S

d v tV R i t v t V R C v t
dt

= + ⇒ = + c                                                    (10.41) 

 
The solution of the above first-order differential equation (10.41) due to forcing function 

sV  is given by  
( ) ( )c cnv t v t= (natural response/transient response) + (steady-state response) ( )c fv t

       = 1
tA eα + A                                                                                          (10.42) 

The constants 1,A and A  are computed using the initial and boundary conditions. The 
value of α  is obtained from the characteristic equation given by (see in detail in 
Appendix) 

11 0RC
RC

α α+ = ⇒ =−  

Eq. (10.42) is then rewritten as 
1

1( )
t

RC
cv t A e A

−
= +

A
                                                                                       (10.43) 

At steady state, the voltage across the capacitor is ( )c c fv v∞ = =  which satisfy the 
original differential equation (10.41). i.e.,  
 

cf
S cf

d v d AV R C v R C A A V
dt dt

= + ⇒ + ⇒ S=  

Using the initial condition (at ) in equation (10.43), we get 0t =
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1 0

0 1 1 0 0(0) RC
c Sv v A e A A v A v

− ×
= = + ⇒ = − = −V   

 The values of 1 ,A A , and Eq. (10.43) together will give us the final expression for 
capacitor voltage as  

( )
1 1

0 0( ) ( ) 1
t t

RC RC RC
c S S c Sv t v V e V v t V e v e

− −⎛ ⎞
= − + ⇒ = − +⎜ ⎟⎜ ⎟

⎝ ⎠

1 t−

                     (10.44) 

Thus, 
0

1 1

0

0

( )
( ) 1 0

t t
c RC RC

c S

v t

v t
v t V e v e t

− −

<⎧
⎪

⎛ ⎞= ⎨ = − + >⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

 

Response of capacitor voltage with time is shown in fig. 10.18. 
 
Special Case:  Assume initial voltage across the capacitor at time ‘ ’ is zero i.e., 

. The voltage expression for capacitor at any instant of time can be written 
from Eq.(10.44) with . 

0t =

0(0) 0cv v= =

0(0) 0cv v= =

Voltage across the capacitance 
1

( ) 1
t

RC
c Sv t V e

−⎛ ⎞
= −⎜⎜

⎝ ⎠
⎟⎟                                (10.45) 

Voltage across the resistance   
1

( ) ( )
t

RC
R S c Sv t V v t V e

−

= − =                          (10.46) 

Charging current through the capacitor 
1

( )
t

RCSR Vvi t e
R R

−

= =                    (10.47) 

Charge accumulated on either plate of capacitor at any instant of time is given by   
 

1 1

( ) ( ) 1 1
t t

RC RC
c Sq t C v t C V e Q e

− −⎛ ⎞ ⎛ ⎞
= = − = −⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠
⎟⎟                                            (10.48) 

where  is the final charge accumulated in the capacitor at steady state ( i.e., t ). 
Once the voltage across the capacitor  is known, the other quantities (like, 

) can easily be computed using the above expressions. Fig. 10.19(a) 
shows growth of capacitor voltage for different choices of circuit parameters 
(assumed that the capacitor is initially not charged).  A sketch for 

Q →∞
( )cv t

( ), ( ), ( )Rv t i t and q t
( )cv t

( ) ( )q t and i t  is shown 
in fig. 10.19(b).  
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Following the definition given in section L.10.3.1, time constant of each of the 
exponential expressions described in Eqs. 10.45 to 10.48 may be found as RCτ =  (for 

circuit). RC
 
L.10.4.4 Discharging of a capacitor or Fall of a capacitor voltage in dc 

circuits 
  
 Fig. 10.17(b) shows that the switch ‘ ’ is closed at position ‘1’ for sufficiently 
long time and the circuit has reached in steady-state condition. At ‘

S
0t = ’ the switch’ ’ is 

opened and kept in position ‘ 2 ’ and remains there. Our job is to find the expressions for 
(i) voltage across the capacitor 

S

( )cv  (ii) voltage across the resistance ( (iii) current 
through the capacitor (discharging current) (iv) discharge of charge 

)Rv
( ( ))i t ( ( ))q t through 
the circuit. 
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Solution: For , the switch ‘ ’ in position 1. The capacitor acts like an open circuit 
to dc, but the voltage across the capacitor is same as the supply voltage . Since, the 
capacitor voltage cannot change instantaneously, this implies that 

0t < S

SV

(0 ) (0 )c c Sv v− += =V   
When the switch is closed in position ‘ ’, the current  will flow through the circuit 
until capacitor is completely discharged through the resistance

2 ( )i t
R . In other words, the 

discharging cycle will start at . Now applying KVL around the loop, we get 0t =
( ) ( ) 0c

c
d v tR C v t

dt
+ =                                                                                  (10.49) 

The solution of input free differential equation (10.49) is given by  
1( ) t

cv t A e α=                                                                                               (10.50) 
where the value of α  is obtained from the characteristic equation and it is equal to 

1
RC

α = − . The constant 1A  is obtained using the initial condition of the circuit in 

Eq.(10.50). Note, at ‘ ’( when the switch is just closed in position ‘ ’) the voltage 
across the capacitor  . Using this condition in Eq.(10.50), we get 

0t = 2
( )cv t V= S

1 0

1 1(0) RC
c Sv V A e A

− ×
= = ⇒ = SV  

Now the following expressions are written as 

Voltage across the capacitance 
1

( )
t

RC
c Sv t V e

−

=                                         (10.51) 

Voltage across the resistance 
1

( ) ( )
t

RC
R c Sv t v t V e

−

= − = −                            (10.52) 

Charging current through the capacitor 
1

( )
t

RCSR Vvi t e
R R

−

= = −                 (10.53) 

An inspection of the above exponential terms of equations from (10.51) to (10.53) reveals 
that the time constant of  circuit is given by  RC
                                                         RCτ = (sec.) 
This means that at time t τ= , the capacitor’s voltage  drops to 36.8% of its initial value 
(see fig. 10.20(a)). For all practical purposes, the dc transient is considered to end after a 
time span of 5

cv

τ . At such time steady state condition is said to be reached. Plots of above 
equations as a function of time are depicted in fig. 10.20(a) and fig. 10.20(b) respectively. 
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L.10.5 Energy stored in a capacitor 
 
 The ideal capacitor does not dissipate any of the energy supplied by the source. It 
stores energy in the form of an electric field between the conducting plates. Let us 
consider a voltage source  is connected to a series SV R C−  circuit and it is assumed that 
the capacitor is initially uncharged. The capacitor voltage  and current  
waveforms during the charging period are shown in fig.10.21 (see the expressions (10.45) 
and (10.47)) and instantaneous power (

( ( ))cv t ( ( ))ci t

( ) ( ) ( )c cp t v t i t= × ) supplied to the capacitor is 
also shown in the same figure. 
 

  Version 2 EE IIT, Kharagpur 



 
 

 Let us consider the instantaneous power supplied to the capacitor is given by 
             ( ) ( ) ( )c cp t v t i t= ×                                                                            (10.54) 
Now, the energy supplied to the capacitor in  second is given by dt

( )( ) ( ) ( ) ( )c
c c c

d v tw p t dt v t C dt C v t dv t
dt

Δ = × = × = c                                           (10.55) 

Total energy supplied to the capacitor in t  seconds is expressed as  
( ) 2

2

(0) 0

1 1 ( )( ) ( ) ( ) ( )
2 2

c

c

v t v

c c c
v

q tw t C v t dv t C v Joules
C

=

=

= = =∫                                        (10.56) 

(Note initial voltage across capacitor is zero and ( )q t  is the charge accumulated on each 
plate at a time  ) . t
 
When the capacitor is fully charged, its terminal voltage is equal to the source voltage . 
The amount of energy stored in capacitor in the form of electric field is given by 

SV

2
21 1 (

2 2S
QW C V Joule
C

= = )s                                                                         (10.57) 
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where  is the final charge accumulated on each plate of the capacitor at steady state ( 
i.e., ) i.e., when the capacitor is fully charged.  

Q
t→∞

 
Example: L.10.6 The switch ‘ ’ shown in fig.L.10.22 is kept open for a long time and 
then it is closed at time ‘ ’. Find (i) 

S
0t = (0 )cv −  (ii)  (0 )cv +  (iii)  (iv)  (v)  (0 )ci

− (0 )ci
+

0

( )c

t

dv t
dy +=

(vi) find the time constants of the circuit before and after the switch is closed 

(iv)  ( )cv ∞

 
 

Solution: As we know the voltage across the capacitor cannot change 
instantaneously due to the principle of conservation of charge. Therefore, the voltage 
across the capacitor just before the switch is closed 

( )cv t

(0 )cv − = voltage across the capacitor 
just after the switch is closed (0 )cv +  = (note the terminal ‘ a ’ is positively charged. 
It may be noted that the capacitor current before the switch ‘ ’ is closed is . 
On the other hand, at , the current through 10

40 V
S (0 ) 0ci A− =

0t = Ω  resistor is zero but the current 
through capacitor can be computed as 

(0) 40(0 ) 6.66
6 6

c
c

vi + = = = A  (note, voltage across the capacitor cannot change 

instantaneously at instant of switching). The rate of change of capacitor voltage at time 
‘ ’  is expressed as 0t =
 

0

( ) (0 ) (0 ) 6.66(0) 1.665 / sec.
4

c c c
c

t

dv t dv iC i volt
dt dt C+

+ +

=

= ⇒ = = =  

 
Time constant of the circuit before the switch was closed = 10 4 40sec.RCτ = = × =  Time 

constant of the circuit after the switch is closed is 10 6 4 15sec.
10 6ThR Cτ ×

= = × =
+

 (replace 

the part of the circuit than contains only independent sources and resistive elements by an 
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equivalent Thevenin’s voltage source. In this case, we need only to find the Thevenin 
resistance ThR ). 
 
Note: When the switch is kept in closed position, initially the capacitor will be in 
discharge state and subsequently its voltage will decrease with the increase in time. 
Finally, at steady state the capacitor is charged with a voltage  

40( ) 6 15
10 6cv t V=∞ = × =

+
(theoretically, time required to reach the capacitor voltage  at 

steady value is 5 5 15 75 sec.τ = × = ).   
 
Example: L.10.7 The circuit shown in Fig.10.23 has been established for a long time. 
The switch is closed at time 0t = . Find the current (i) 

1 2(0 ), (0 ),i i+ +
3

0

(0 ), de

t

dvi and
dt +

+

=

(ii) at steady state the voltage across the capacitors, 

. 1 2 3( ), ( ) ( )i i and i∞ ∞ ∞

 

 
 

Solution:  (i) At  no current flowing through the circuit, so the voltage at points ‘b ’ 
and ‘ ’ are both equal to 50  When the switch ‘ ’ closes the capacitor voltage 
remains constant and does not change its voltage instantaneously. The current 

through branch must then equal to zero, since voltage at terminal ‘b ’ is 
equal to = , current through b

0t −=
d .volt S

1 (0 )i + a b−
(0 )bv + 50 .volt c−  is also zero.  One can immediately find 
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out the current through  equal to c e− 2
50(0 ) 1
50

i + = = A

A

. Appling KCL at point ‘c ’, 

 which is the only current flow at 3 (0 ) 1i + = 0t += around the loop ‘ . Note 
the capacitor across ‘ ’ branch acts as a voltage source, the change of capacitor 

voltage 

d c e d− − −
d e−

36
0

1 (0 ) 2 / sec.
500 10

de

t

dv i k volt
dt +

+
−

=

= =
×

  

(ii) at steady state the voltage across each capacitor is given  
50 50 16.666 .150 volt= × =  

At steady state current delivered by the source to the different branches are given by  
50( ) 0.333 ; ( ) 0.333 ( ) 01 2 3150i A i A and i∞ = = ∞ = ∞ = A  

 
Example: L.10.8 The circuit shown in fig. 10.24(a) is switched on at time . How 
long it takes for the capacitor to attain 70  of its final voltage? Assume the capacitor is 
initially not charged. Find also the time constant (

0t =
%

τ ) of the circuit after the switch is 
closed.  
 

 
 
The circuit containing only resistive elements and independent current source (i.e., non-
transient part of the circuit) is converted to an equivalent voltage source which is shown 
in fig.10.24(b).  
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Fig.10.24(c) shows the capacitorC  is connected across the Thevenin’s voltage terminals 
‘ a ’ and ‘b ’ in series with Thevenin’s resistance ThR . 
 

 
 

The parameters of Thevenin’s voltage source are computed below: 
 

200 1 100 50
200 100 100ThV V= × ×

+ +
=    and   100 300 75

100 300ThR ×
= = Ω

+
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Using KVL around the closed path, one can find the current through the capacitor and 
hence, the voltage across the capacitor. 
 

( )50 75 ( ) ( ) 0.75 ( )c
c

dv ti t v t v t
dt

= × + = + c                                                          (10.58) 

The solution of the differential equation is given by 
 

1

1( )
t

RC
cv t A e A

−

= +

)

                                                                                    (10.59) 
 
Using the initial and boundary conditions of the circuit, we obtain the final expression of  
voltage across the capacitor as ( )cv t

( 1.33( ) 50 1 t
cv t e−= −                                                                                                    (10.60) 

Let ‘ t ’ is the time required to reach the capacitor voltage  of its final (i.e., steady 
state) voltage. 

70%

( )1.3350 0.7 35 50 1 0.91sec.te t−× = = − ⇒ =  
 
Example: L.10.9 The switch ‘  of the circuit shown in fig.10.25(a) is closed at position 
‘1’ at . 

S
0t =

 

 
 
Find  voltage  and current  expressions for . Assume that the capacitor is initially 
fully uncharged (i.e., . ). 

( )cv t ( )ci t 0t ≥
(0) 0cv =

(i) find the mathematical expressions for  and   if the switch ‘ ’ is 
thrown into position ‘ ’ at 

( )cv t ( )ci t S
2 t τ= (sec.) of the charging phase. 

(ii) plot the waveforms obtained in parts (i) to (ii) on the same time axis for the 
voltage  and the current using the identified polarity of voltage and 
current directions. 

( )cv t ( )ci t
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Solution: (i) The current source is converted to an equivalent voltage source and it is 
redrawn in fig.10.25(b) when the switch ‘ ’ is in position ‘1’.   S
 

 
 
KVL around the closed path: 

40 10 ( ) ( ), ( ) s .ci t v t where i t i in mA= × +  
( )40 10 ( )c

c
dv tC v

dt
= × + t                                                                               (10.61) 

The voltage expression across the capacitor using the initial and boundary conditions of 
the circuit, one can write  as ( )cv t
 

(3 6
11

10 10 10 10 10( ) 40 1 40 1 40 1
tt tRC

cv t e e e
−−− × × × −

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

)                         (10.62) 

10
1040 ( ) 40( ) 4 ( )

10 10

t
tc

c
v t ei t e in mA

−
−−

= = = ×                                               (10.63) 

Note that the time constant of the circuit in part (i) is 100 sec.RC mτ = =  
(ii) The switch ‘ ’ is thrown into position ‘ ’ at S 2 0.1sec.t τ= =  and the corresponding 
circuit diagram is shown in fig.10.25(c). 
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Note, at time 0.1sec.t τ= = , the capacitor is charged with a voltage = 

 and at the same time (( )10 0.1( 0.1) 40 1 40 0.632 25.28cv eτ − ×= = − = × = V 0.1sec.t τ= = ) 

the current in capacitor is  = 104 te −× ( )4 0.368 1.472 in mA× = . Considering the 
fig.10.25(c), one can write KVL around the closed path 

( )( ) 0c
c

dv tv t C R
dt

+ × eq =                                                                            (10.64) 

where 4 6 10eqR k= + = Ω  and  the capacitor is now in discharging phase. 
The solution of Eq.(10.64) can be found using the initial and final voltage of the capacitor 
(initial voltage ( 0.1) 25.28cv t Vτ= = = ,  ( ) 0cv t Vτ− = ∞ = ) and it is given by 
 

( )
( )

1
10( ) ( 0.1) 25.28eq

t
R C t

c cv t v e e
τ

ττ
− −

− −= = × = ×                                                      (10.65) 
Discharging current expression is given by (note, current direction is just opposite to the 
assigned direction and it is taken into account with a –ve sign) 
 

( )
( )

10
10( ) 25.28( ) 2.528 ( )

10

t
tc

c
eq

v t ei t e in mA
R

τ
τ

− −
− −×

= − = − = − ×                             (10.66) 

 
(Note, the above two expressions are valid only for t τ≥ ) 
The circuit responses for charging and discharging phases in (i) and (ii) are shown in 
fig.10.25 (d).  
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Remark-6 Note that the current through the capacitor (see fig. 10.25(d)) can change 
instantaneously like the voltage across the inductor.  

Appendix-A 

L.10.A Solution of nth order linear time invariant differential equation excited by forcing 
function. 

 Let us consider a linear time invariant circuit having several energy source 
elements is described by the following dynamic equation. 

1 2

1 2 1 01 2 ( )
n n n

n n nn n n n

d x d x d x dxa a a a a x f
dt dt dt dt

− −

− −− −+ + + + + =i i i t

n

                                   (10.A1) 

where  are constant coefficients associated in the differential 
equation and they are dependent on circuit parameters (like,

1 2 3 1, , , ,na a a a a−i i i
, ,R L and C  for electric 

circuit) but independent of time, ( )f t  is the forcing or driving function and ( )x t  is the 
solution of differential equation or response of the system. We shall discussion the 
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solution of differential equation restricted to second order differential, say  in 
equation (10.A1). 

2n=

2

2 1 02 ( )d x dxa a a x f
dt dt

+ + = t                                                                                   (10.A2) 

The solution of this differential equation provides the response of circuit and it is given 
by 

( ) ( ) ( )n fx t x t x t= +                                                                                                (10.A3) 

where ( )nx t  is the natural response of circuit, obtained by setting , and ( ) 0f t = ( )fx t  is 
the forced response that satisfies the original differential equation (10.A2). 

By setting  in equation (10.A2), as given in equation (10.A4), the force free 
equation is obtained. 

( ) 0f t =

2

2 1 02 0d x dxa a a x
dt dt

+ + =          (Homogeneous equation)                                     (10.A4) 

The solution of such differential equation (or homogeneous equation) is known as natural 
solution or complementary solution or transient solution and it is denoted by ( )nx t . To get 
the natural solution ( )nx t  of equation (10.A4) the following steps are considered. 

Let us use the following operators  
2

2
2;d d d d

dt dt dt dt
α α⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

in equation (10.A4) and results an equation given by 

( )2
2 1 0 0a a a xα α+ + =  

Since 0x ≠ , the above equation can be written as 

( 2
2 1 0 0a a aα α+ + =)                                                                                           (10.A5) 

which is known as characteristic equation  for a circuit whose force free equation is 
Eq.(10.A4). The natural or transient solution of Eq.(10.A4) is expressed by the 
exponential terms as given below. 

1 2
1 2( ) t t

nx t A e A eα α= +                                                                                         (10.A6) 

where 1 and 2α α  are the roots of characteristic equation (10.A5). The roots of second 
order characteristic equation with real coefficients is either real or complex occur in 
conjugate pairs. The constants 1 2A and A are evaluated from initial or boundary 
conditions of circuit. The principles of continuity of inductance current and capacitance 
voltage are used to establish the required boundary conditions.  
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If ( )nx t  is the natural or transient solution of unforced (or homogeneous) equation 
differential, it must satisfy its own differential equation  

2

2 1 02 0n n
n

d x dxa a a x
dt dt

+ + =                                                                                     (10.A7) 

Further, if ( ) ( ) ( )n fx t x t x t= +  is the complete solution of given differential Eq.(10.A2), it 
must satisfy its own equation  

( ) ( ) ( )
2

2 1 02 ( )n f n f
n f

d x x d x x
a a a x x

dt dt
+ +

+ + + f t=                                                  (10.A8) 

Using the equation (10.A7) in Eq.(10.A8), we get 
2

2 1 02 ( )f f
f

d x dx
a a a x

dt dt
+ + = f t                                                                                (10.A9) 

The above equation implies that ( )fx t  is the forced solution or steady state solution of 
second order differential equation (10.A2). Steady state solution of some common 
forcing functions is listed in Table (assume ). 0 , 0 002 1a a and a> > >

Table: Steady state solution ( )x tf  for any order differential equation excited by some 

common forcing function. 

Type of forcing function ( )f t (input) Steady state solution ( )fx t (output) 
• ( )f t K= (constant) • ( )fx t A= (constant) 
• ( )f t K= t  • ( )fx t At B= +  

• 2( )f t K t=  • 2( )fx t At Bt C= + +  

• ( ) atf t K e=  • ( ) at
fx t Ae=  

• ( ) sinf t b= t  • ( ) sin cosfi t A b t B b t= +  
• ( )f t cosb t=  • ( ) sin cosfi t A b t B b t= +  

• ( ) sinatf t e b= t  • ( )( ) sin cosat
fi t e A bt B bt= +  

• ( ) cosatf t e b= t  • ( )( ) sin cosat
fi t e A bt B bt= +  

Coefficients involve in the steady state solution can be found out by using the boundary 
conditions of the circuit.  

Remark-7  
(i) Eq. (10.A2) is the differential equation description of a linear circuit, superposition 
may be used to find the complete solution of a forcing function which is sum of natural 
and steady state responses. (ii) Eq.(10.A6) is the natural solution of force-free linear 
differential equation. Note that the constants 1 and 2α α  are the roots of the characteristic 
equation (10.A5) and they are entirely depending on the circuit parameters. The roots of 
the characteristic equation may be classified as 
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Case-1: Real or Complex but distinct 

The natural solution of homogeneous equation (10.A4) is given as 
1 2

1 2( ) t t
nx t A e A eα α= +  

Case-2: Roots are repeated (i.e. 1 2α α α= =  or multiplicity of roots of order 2) 
The natural solution of homogeneous equation (10.A4) is given as 

0 1( ) t
nx t e α tβ β= +  

Using initial and final conditions of the circuit, 0 and 1β β  constants are computed. 
More discussions on these issues can be seen in Lesson-11. 
 
L.10.6 Test your understanding       ( Marks: 70)         
 
T.10.1 Inductor tends to block  ----------- current but pass ---------- current. 

T.10.2 The basic fundamental principle that explains the action of an inductor is known 
as ------------- law. 

T.10.3 Exponential waveforms start ------  and finish ---------------. 

T.10.4 A transient approximately always has a duration of -------- time constants.   

T.10.5  After the first time constant, a transient goes through ---------- % of its steady 
state value. 

T.10.6 -------- through inductor cannot change --------- but -------- across the inductor 
can --------- instantaneously at the switching phase.   

T.10.7 A simple series R L−  circuit is excited with a constant voltage source, the 
speed of response depends on ---------- and ------- of the circuit. 

T.10.8 The energy stored in an inductor in the form of ---------------. 

 

T.10.9 In a first order circuit if the resistor value is doubled, the time constant is halved 
for an -------- circuit. 

T.10.10 An inductor acts as ----------- for a ---------- current through it.  

T.10.11  Once a capacitor has been charged up, it is able to act like a --------. 

T.10.12  If the spacing between the plates is doubled, the capacitance value is ----------. 

T.10.13  After a capacitor is fully charged in a dc circuit, it ---------- dc current. 

T.10.14  The time rate of change of capacitor voltage is represented by the  ------- tangent 
line to the -versus- t  curve. ( )cv t

T.10.15  Immediately after a switch has been thrown, a capacitor’s ---------- must 
maintain the same value that excited just before the switching instant.  

T.10.16 At the instant of switching, current through the capacitor -------------
instantaneously. 
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T.10.17 At steady state condition in a dc circuit, the capacitor acts as an ----- circuit. 

T.10.18  A first order circuit with a single resistor, if the resistor is doubled in value, the 
time constant is also ----- for an R C− circuit. 

T.10.19  Time constant of a first order system is the measure of ----------- response of the 
circuit. 

T.10.20 The energy stored in a capacitor in the form of -------------- .             [ 1 20× ] 

T.10.21  For the circuit of fig.10.26, find (i) 1(0 ) , (0 )Li i− −  (ii)   (iii) 
 (iv) 

1(0 ) , (0 )Li i+ +

)1( ) , (Li t i t= ∞ = ∞ (0 ), ( )ab abv v t+ = ∞ . 

 
 

(Ans. ( ) 0 , 0.666 ( ) 1.333 , 0.666 ( ) 2 , 0 ( ) 1.332 , 0i A ii A A iii A A iv V V− )                [8] 
 
T.10.22  For the circuit shown in Fig.10.12, the switch ‘ ’ has been opened for a long 
time and then closes at t=0. 

S

 
Find, 
(i)    (ii)  (iii) (0 )abv − (0 )xi

− (0 )xi
+   (iv)  (0 )abv +  (v)  ( )xi t =∞  (vi)   (vii) 

 
(abv t =∞)

( ) 0xi t for t >
(Ans.                 [10] 
 
T.10.23  In the circuit shown in fig.10.27, the switch was initially open and no current 
was flowing in inductor ( L ). The switch was closed at 0t =  and than re opened at 2t τ=  

sec. At , 0t =
( )

Li
d t

dt
 was 50 /A s . 
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 Find, 

       (i)     The value of L  
(ii) Find the current and voltage  expressions for . Assume, no 

current was flowing through the inductor at 
( )Li t ( )bcv t 0t ≥

0t =  (i.e., . ). (0) 0Li =
(iii) Find the mathematical expressions for  and if the switch ‘ ’ is 

reopened at 
( )Li t ( )bcv t S

2t τ= (sec.). 
(iv) Plot the waveforms obtained in parts (ii) to (iii) on the same time axis (time→  

in ms.) for the current  and the voltage considering the indicated 
current directions and identified polarity of voltage across the b  terminals. 

( )Li t ( )bcv t
c−

(Ans. (i) 0.3 H   (ii) ( )40 40( ) 1.25 1 ., ( ) 15t t
L bci t e amp v t e− −= × − = ×      

 (iii) ( )40( ) 1.081 ,t
Li t e τ− −= × ( )40 2( ) 12.96 t

bcv t e τ− −= × ,  2for t τ≥ .)      [10] 
 
T.10.24  At steady state condition, find the values of 1 2 3 4 5 1, , , , ,I I I I I V  and for 
the circuit shown in fig.10.28. 

2V

 

 
 

(Ans. 1 2 5 4 3 1 21 , 0, 40 30I I I A I I V V and V V= = = = = = = )                                 [6] 
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T.10.25  Switch ‘ ’ shown in fig.10.29 is kept in position ‘1’for a long time.  S
 

 
 

When the switch is thrown in position ‘ ’, find at steady state condition 2
 (i) the voltage across the each capacitor (ii) the charge across the each capacitor (iii) the 
energy stored by the each capacitor  

(Ans. (i) 
2

( ) ( ) ( )
2 2
V Vi ii C iii C

8
V )                                                                      [6] 

 

T.10.26 For the circuit shown in fig.10.30, Switch ‘ ’ is kept in position ‘1’ for a long 
time and then it is thrown in position ‘ ’ at time 

S
2 0t = . Find (a) the current expression 

 for  (b) calculate the time constants of the circuit before and after the switching 
phases. 
( )i t 0t ≥

 

 
 
(Ans.

510( ) ( ) 1.5 0.5 ta i t e −= + ( ) 12b sμ (before the switch is opened), ( ) 10b sμ  (after 
the switch is opened, i.e., when the switch is in position ‘ ’))         [10] 2
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