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PREFACE

It is my great pleasure to present interactive Control system
components(csc) Demonstration modules developed for third year Electrical
Engineering students.

Hence ,this manual consists of a ready to use set of demonstrations,
illustrating the CSC concepts ,that can be beneficial to the students .
Students are advised to thoroughly go through this manual rather than only
topics mentioned in the syllabus as practical aspects are the key to
understanding and conceptual visualization of theoretical aspects covered in
the books.

Good Luck for your Enjoyable Laboratory Sessions.
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3. Lab Exercises

e Use of potentiometers as eroor detectors.
e Use of synchros as error dectectors.
e Determination of transfer function of
a) Armature control dc servomotor
b) Ac servomotor
e Time domain analysis of a second order system.
e Computer aided plotting of root-locus.
e Computer aided plotting of Nyquist and Bode- plots
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1. DOs and DON'Ts in Laboratory:

Do not handle different kit without reading the instructions/Instruction manuals
1. 6o through through the procedure and precautions given in manual.
4. Strictly observe the instructions given by the teacher/Lab Instructor.



2 Instruction for Laboratory Teachers::

1. Lab work completed during prior session ,should be corrected during the next lab session.
2. Students should be guided and helped whenever they face difficulties.

3. The promptness of submission should be encouraged by way of marking and evaluation patterns
that will benefit the sincere students.



EXPERIMENT No. 1

OBJECTIVE: -To use Potentiometer as an error detector

APPARATUS REQUIRED: -
¢ CRO
e Connecting leads
e Experimental Kit

THEORY: --A Potentiometer is an Electromechanical Transducer which converts

angular or linear displacement into proportional electrical v/g. When a reference v/g
applied across the fixed terminals of the Potentiometer the o/p v/g measured at variable

terminal is proportional to the input displacement.
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Fig.2: Connection Diagram for DC Excitation



PROCEDURE: -

For DC Excitation.

1.

NN (8 (8]

h

Connect the components as shown in figure.

. Set the excitation switch to DC.
. Keep pot 2 fixed at any position and do not disturb it position. Let this be 0,.

. Turn Potl in step of 20° (at one degree interval when there is a sudden change

n v/g)

. Plot Vo vs. 6,.0Observe Linearity and Rang
6.

Repeat for another position of Pot 2.

Error Detector Coefficient:-

Error Detector Coefficient =Slope (Ke) =

Change in o/p v/g (AVo)

Change in shaft position (A6.)
Where 6.= 06, - 0,

For AC Excitation

1. Display the carrier on the CRO and measure its amplitude and frequency.

2. Switch the excitation to AC now and observe Vo on the CRO while turning either
Pot 1 or Pot 2 very slowly. Use the internal carrier for external triggering of the
CRO. Notice and record how phase of Vo change when 0.= (01 - 0, change sign.

3. Record and plot peak to peak (or r.m.s) Vo as a function of e Note that information
about the sign of 6¢ 1s lost.

4. Next connect Vo to the mnput the BALANCE MODULATOR and its out put to the
DVM.

5. Record and plot the demodulator output Vpgy as a function of 6e. .~ Note that
information about the sign of 6¢ 1is restored. It may be noted that a non zero DC v/g

is present for 6, =0



OBSERVATION AND CALCULATION: -

Note down the value of 6, & 6, for every position of pot 1 in degrees. Also
note down the value of o/p v/g (Vo) in volts.
1.7 Observation Table: -
For DC Excitation

S.No | Pot-1 position 8;degree Pot-2 position 0. = 61- 8 Output v/g
9,=180° (Vo)
For AC Excitation
Pot position 83:1800
S.No Potl position Vo (rms) mv 8. = 6:-6; Output v/g

0 degree (Vo)
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Fig.4: Error Vs. Output with DC excitation

RESULT:
Graph of input and output characteristic has been observed.



POINTS FOR DISCUSSION:-

1. What 1s Potentiometer?

2. What 1s Resolution?

3. What 1s Linearity?

4. Application of Potentiometer.
5. Type of Potentiometer.

6. Life of Potentiometer.



2.SYNCHRO CHARACTERISTICS

Aim:  Study of synchro characteristics.
a) Study of synchro transmitter characteristics.
b) Study of synchro transmitter / receiver characteristics.

Apparatus: Synchro transmitter / receiver set-up, multimeter comnnecting wires etc.
Theory:

Principal: A synchro is an electromagnetic transducer commonly used to convert an angular position
of a shaft into an electric signal.

The basic synchro unit is usually called a synchro transmitter. Its construction is similar to that of
a three- phase alternator. The stator is of laminated silicon steel and is slotted to accommodate a
balanced three phase winding which is usually of concentric coil type and is Y-connected. The rotor
is of dumb-bell construction and is wound with a concentric coil. An a.c. voltage is applied to the
rotor winding through slip rings.

Constructional features of synchro fransmitter:

fig.-a
Stator
I < Rotor
Coil
I
Stator
Winding - -

Operation : Let an a.c. voltage
Vr (1) = Vr sin wct
fig-b



Be applied to the rotor coil which produces a sinusoid ally time varying flux directed along its axis
and distributed nearly sinusoid ally in the air gap along the stator periphery. As the air gap flux is
sinusoid ally distributed, the flux linking any stator coil is proportional to the cosine of the angle
between the rotor and stator coil axes and so is the voltage induced in each stator coil.

Let Vsln, Vs2n and Vs3n.

Be the voltage induced in the stator coil S1,52 and S3 with respect to the neutral.

Vsln = KVr sin wct cos ( 0-120)

Vs2n = = KVr sinwct cos O

Vs3n = KVr sin wet cos / ( 0+240)

The three terminal voltages of the stator are.
Vsls2 = Vsln - Vsln =/ 3KVr sin ( 0+ 240) sin wct.
Vs2s3 = Vs3n - Vs3n = / 3KVr sin ( 0+120 ) sin wct.
Vs3sl = Vs3n - Vsln = / 3KVr sin O sin wct.

Procedure:
(A):
1. Connect the system in main supply.
2. Starting from zero position note down the voltage between stator terminal i.e.
Vs2s1,Vsls3 and Vs2s3 in a sequential position.
3. Plot the graph of angular position Vs voltage of three winging i.e. terminal voltage.
(8):
1. Connect the system to the main supply .
2. Make connections between corresponding terminals of transmitter and receiver i.e.
connect S1- 51,52 - S2 and S3 - S3 of transmitter and receiver.
Switch on SW1and SW2.
4. Move the graph of angular displacement of transmitter to angular displacement in
receiver.

w



Nature of characteristics :

(A):

RMS
Voltage

Displacement
(in degrees)

0
l Angular -
0
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Transmitter

Receaiver
MNOTE: -Refer Magrath Gopal Boolk

Part-b diagram.

Observation tables: -

(A)

L=y
Supply

|

Angular Displacement

VS1S2(V)

YS2SAV)

VSAS1(V)

Angular Displacement

Receiver Position




(B)

Conclusion: -(a) If angular displacement is changed depending on rotor position the voltages
are induced in stator coils.
(b)If Transmitter position is changed then receiver position is changed accordingly.



EXPERIMENT NO.
AIM:-Transfer function of armature control D.C. servomotor and A.C. servomotor
Appratus required :-

a) armature control dc servomotor.

S.No | Description Range Type Quantity
DC servo motor trainer -
1. . 1
kit
2. DC servo motor 1
3. Rheostat 500Q/1A 1
(0-DA MC 1
4. Ammeter (0-100) mA M 1
(0-300) V MC 1
Voltmeter (0=75) V M 1
: Stopwatch - 1
7. Patch cords - As required
THEORY:

In servo applications a DC motor is required to produce rapid accelerations from
standstill. Therefore the physical requirements of such a motor are low inertia and high
starting torque. Low inertia is attained with reduced armature diameter with a consequent
increase in the armature length such that the desired power output is achieved. Thus,
except for minor differences in constructional features a DC servomotor is essentially an
ordinary DC motor. A DC servomotor is a torque transducer which converts electrical
energy into mechanical energy. It is basically a separately excited type DC motor. The
torque developed on the motor shaft is directly proportional to the field flux and armature
current, Tm = Km® Ia. The back emf developed by the motor is Eb = Kb ® om.. In an
armature controlled DC Servo motor, the field winding is supplied with constant current
hence the flux remains constant. Therefore these motors are also called as constant
magnetic flux motors. Armature control scheme is suitable for large size motors.

ARMATURE CONTROLLED DC SERVOMOTOR:

1§ la
. > oA

Rf
; Load

input

VE = constant

=
Lt



http://2.bp.blogspot.com/-Uo9PAvVhnxE/TZBIp6svhNI/AAAAAAAAALM/m6OjDWF1Vyw/s1600/1.JPG

FORMULAE USED:

Transfer function of the armature controlled DC servomotor is given as
0(s) / Va(s) = Km/ [s (1+sta)(1+stm ) + (Kb Kt /RaB)]
where

Motor gain constant, Km = (K/RaB)
Motor torque constant, Kt =T/ la
Torque, TiInNmM=9.55Ep la

Back emf, Eb in volts = Va— la Ra
Va = Excitation voltage in volts

Back emf constant, K =Va/ ®

Angular velocity @ in rad/ sec = 2zN / 60

Armature time constant, Ta= La/Ra

Armature Inductance, La in H= Xvra / 2nf

XLa in Q =\(Za% - Ra?)

Zain Q =Va/ la2

Armature resistance,Ra in Q = Vat/ la
Mechanical time constant, tm=J/B

Moment of inertia, J in Kg m?/ rad = W x (60 / 2 )2 x dt/dN

N
Stray loss, W in Watts = W’ x [ €2 / (t1-t2) ]
Power absorbed, W’ in watts = Va la
t2 is time taken on load in secs
tl is time taken on no load in secs
dt is change in time on no load in secs
dN is change in speed on no load is rpm
N is rated speed in rpm

Frictional co-efficient, B in N-m / (rad / sec ) = W’ / (2rN / 60 )?
W?> =30 % of Constant loss
Constant loss = No load i/p — Copper loss

No load I/P =V (la+ If)

Copper loss = 122Ra

N is rated speed in rpm



PROCEDURE:

1. To determine the motor torque constant Ktand Back emf constant Kb:

e Check whether the MCB is in OFF position in the DC servomotor trainer kit

e Press the reset button to reset the over speed.

« Patch the circuit as per the patching diagram.

e Put the selection button of the trainer kit in the armature control mode.

e Check the position of the potentiometer; let it initially be in minimum position.

e Switch ON the MCB.

e Vary the pot and apply rated voltage of 220 V to the armature of the servomotor.
« Note the values of the armature current la, armature voltage Va, and speed N.

« Find the motor torque constant Ktand Back emf constant Ky using the above values.

Note:

If the voltmeter and ammeter in the trainer kit is found not working external meters

of suitable range can be used.

OBSERVATIONS:

S. No.

Armature Voltage,Va
V)

Armature Current,la
(A)

Speed,N
(rpm)




b)Determination of transfer function of A.C.servomotor

Appratus required:-

S.No | Description Range Type Quantity
AC servo motor trainer -
1. . 1
kit
2. AC servo motor 1
(0-1) A MC 1
3 Ammeter (0-100) mA M 1
(0-300) V MC 1
4. Voltmeter (0=75) V M 1
5. Patch cords - As required
THEORY:

An AC servo motor is basically a two phase induction motor with some special design
features. The stator consists of two pole pairs (A-B and C-D) mounted on the inner
periphery of the stator, such that their axes are at an angle of 90° in space. Each pole pair
carries a winding, one winding is called reference winding and other is called a control
winding. The exciting current in the winding should have a phase displacement of 90°. The
supply used to drive the motor is single phase and so a phase advancing capacitor is
connected to one of the phase to produce a phase difference of 90°.The rotor construction is
usually squirrel cage or drag-cup type. The rotor bars are placed on the slots and short-
circuited at both ends by end rings. The diameter of the rotor is kept small in order to
reduce inertia and to obtain good accelerating characteristics. The drag cup construction is
employed for very low inertia applications. In this type of construction the rotor will be in
the form of hollow cylinder made of aluminium. The aluminium cylinder itself acts as
short-circuited rotor conductors. Electrically both the types of rotor are identical.

WORKING PRINCIPLE

The stator windings are excited by voltages of equal magnitude and 90° phase difference. These
results in exciting currents i1 and i» that are phase displaced by 90°and have equal values. These
currents give rise to a rotating magnetic field of constant magnitude. The direction of rotation
depends on the phase relationship of the two currents (or voltages). This rotating magnetic field
sweeps over the rotor conductors. The rotor conductor experience a change in flux and so
voltages are induced rotor conductors. This voltage circulates currents in the short-circuited rotor
conductors and currents create rotor flux. Due to the interaction of stator & rotor flux, a
mechanical force (or torque) is developed on the rotor and so the rotor starts moving in the same
direction as that of rotating magnetic field.



GENERAL SCHEMATIC OF AC SERVOMOTOR:

o
signhal g @ F——
b % B
(=] ———————
>
&
Control phase
L1}
Roto
Ref phase
<!I--[endif]-->

FORMULAE USED:
Transfer function, Gm (s) = Km/ (1+ stm)

Where
Motor gain constant, Km=K/Fo + F

KisAT/AC
Fois AT /AN
Torque, Tis9.81 X R (S1~S2)
R is radius of the rotor in m
Frictional co-efficient, F =W / (2rN / 60)?
Frictional loss, W is 30 % of constant loss in Watts
Constant loss in watts = No load input — Copper loss
No load i/p =V (Ir+Ic)
V is supply voltage, V
Ir is current through reference winding, A
Icis current through control winding, A
Copper loss in watts = Ic? Rc
Rc=174Q
N is rated speed in rpm

Motor time constant, tm=J/Fo + F
Moment of inertia J is nd* L r p / 32
d is diameter of the rotor in m ( Given d =39.5 mm)
Lr is length of the rotor in m (Given L r =76 mm)
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p is density = 7.8 X 102gm/m

PROCEDURE:

1.

DETERMINATION OF FRICTIONAL CO-EFFICIENT, F

Check whether the MCB is in OFF position.

Patch the circuit using the patching diagram.

Switch ON the MCB

Vary the control pot to apply rated supply voltage

Note the control winding current, reference winding current, supply voltage and

speed.

Find the frictional co-efficient using the above values

OBSERVATIONS:

Supply Voltage | Control winding Reference Winding | Speed
S.No. |V Current Ic Current Ir N
V) (A) (A) (rpm)

CALCULATIONS:

Determination Of Transfer Function Of AC Servo Motor




Experiment No.

Time Domain Specifications

Aim : Obtaining Rise Time, Peak Time, Maximum Overshoot, & Setting Time with MATLAB.
MATLAB can conveniently be used to obtain the rise time, peak time, maximum overshoot, & setting
time. Consider the system defined by

C(s) 25

R(s) s+ 6s5+25

MATLAB program 1 yields rise time, peak time, maximum overshoot, & setting time. A unit-step
response curve for this system is given in Figure 1 to verify the result obtained with MATLAB
Program 1

MATLAB Program 1
Yom-—--- This is a MATLAB program to find the rise time, peak time, %
maximum overshoot, & setting time of the second-order system % &
higher order system ------

Yo------ In this excample, we assume zeta= 0.6 and wn = 5 ------
num = [0 0 25];

den=[16 25];

1 =0:0.005:5;

[y x,t]= step(hum, den,t);
r = 1; while y(r) < 1.000%;r = r + 1; end;
rise_time = (r - 1)*0.005
rise_time =

0.5550
[ymax,tp] = max(y):
peak_time = (tp - 1)*0.005
peak_time =

0.7850
max_overshoot = ymax -1
max_overshoot =

0.0948
s = 1001; while y(s)> 0.98 & y(s) < 1.02; s =s - 1; end;
setting_time = (s-1)*0.005
setting_time = 1.1850

Step Response

—T T -‘

Amplitude

0 05 | 15 2 25 3 35 4 45 5§
Time (sec)



Experiment No.

Root Locus Plot - A
Aim : Plotting root locus using MATLAB

Concider the system shown in figure 6. plot root loci with a square aspect ratio so that a line with
slope 1 is a true 45 line. Choose the region of root-locus plot to be

-6<x<6, -6<x<6
where x & y are the real-axis coordinate & imaginery-axis coordinet, respectivly.

K(s + 3)
s(s+ )2+ 4s + 16)

|

To set the given plot region on the screen to be square, enter the command

V=[-6 6 -6 6]; axis (v); axis('square’)
With this command, the region of the plot is as specified & the line with slope 1 is at a true 45°, not
skewed by the irreguler shape of the screen.
For this problem, the dominator is given as a product as first and second order terms. So we mus
multiply this furms to get polyomial in s. the multiplication of this terms can be done easily by use
of the convolution command as shown next.

Y

Define :

A=s(s+1) a=[1 1 0]

B =s?+4s+16; b=[1 4 16]
Than we use the following command :

C = conv(a, b)

Note the conv(a, b) gives the product of two polynomial a & b. see the following comuter output:

a=[1 1 Q];

b=[1 4 16];

c=conv (a, b)

c=

152016 0

The denominator polynomials is thus found to be

den=[15 20 16 0]
to find the complex-conjugaate open-loop poles ( the root of s? + 4s. + 16 = 0), we may enter the
root command as follows:

R = root(b)

R =
-2.0000 + 3.464li
-2.0000 - 3.464li




Thus, the system has the following open loop zero & open loop poles:
Open loop zero: s=-3
Open loop zero: s=0, s=-1, s=-2+ j3.4641
MATLAB Program 6 will plot the root locus digram for this system. Yhe plot is showen in Figure 6

MATLAB Program 6

Yo-------- Root-locus plot -------

num=[0 O O 1 3];

den=[15 20 16 0]

recous(num,den)

v=[-6 6 -6 6]

axius(v); axis('square’)

grid;

title (Root-Locus Plot of G(s) = K(s + 3)/[s(s + 1)(s"2 + 45 +
16)1)

Root-Locus Plot of G(s) = K(s + 3)/[s(s + 1 }(s* + 45 + 16)]

6 T T

Imag Axis

* 0 2 4 6

Real Axis



Experiment No.

BODE PLOT:

Draw a Bode diagram of the open-loop transfer function G(s) of the closed-loop system shown
in Figure 13 Determine the gain margin, phase margin, phase-crossover frequency, and gain-
crossover frequency with MATLAB.

A MATLAB program to plot a Bode diagram and to obtain the gain margin, phase margin,
phase-crossover frequency, and gain-erossover frequency is shown in MATLAB Program13
The Bode diagram of G(s) is shown in Figure

2005+ 1)
S(s 4 SHs2 + 25+ 10)

G(s)

MATLAB Program13

num=1[0 0 0 20 20];

den = conv{[1 5 0],[1 2 10]);
sys = tf(num,den);

w = logspace(-1,2,100);
bode(sys,w)

[Gm,pm,wcp,weg] = margin(sys);
GmdB = 20*log10(Gm);

[GmdB pm wcp wegl

ans =

9.9293 103.6573 4.0131 0.4426

Bode Diagram
50_— T YT,I!I!I T T FIIII‘I] T T 2 I T
0 E\\—‘_«.ﬁ____,,\$ 9.9293 dB i brenbdbd
o Pei S i
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o
=
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5400 N R L1 fdfdil L4
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300 1 1 1111%11 L L 111l I L1 diia
107! 0.4426  10° 4.0131 10' 10

Frequency (rad/sec)



PI1D Controller Design

In this tutorial we will introduce a simple yet versatile feedback compensator structure, the
Proportional-Integral-Derivative (PID) controller. We will discuss the effect of each of the pid
parameters on the closed-loop dynamics and demonstrate how to use a PID controller to improve
the system performance.

Key MATLAB commands used in this tutorial are: tf , step, pid, feedback , pidtool ,
pidtune

Contents

e PID Overview

e The Characteristics of P, I, and D Controllers
e Example Problem

o Open-Loop Step Response

e Proportional Control

o Proportional-Derivative Control

e Proportional-Integral Control

« Proportional-Integral-Derivative Control

o General Tips for Designing a PID Controller
e Automatic PID Tuning

PID Overview

In this tutorial, we will consider the following unity feedback system:

controller plant

P(s) z

F * e u

T » C(s)

The output of a PID controller, equal to the control input to the plant, in the time-domain is as
follows:

¥

w
k 4
L 4

; . le
u(t) = Kye(t) + K; f&:[!.]rﬂ. - HP%
dt

1)

First, let's take a look at how the PID controller works in a closed-loop system using the
schematic shown above. The variable (<) represents the tracking error, the difference between
the desired input value () and the actual output (¥). This error signal (<) will be sent to the PID
controller, and the controller computes both the derivative and the integral of this error signal.



The control signal () to the plant is equal to the proportional gain () times the magnitude of
the error plus the integral gain (/%) times the integral of the error plus the derivative gain (#4)
times the derivative of the error.

This control signal () is sent to the plant, and the new output (¥) is obtained. The new output (¥
) is then fed back and compared to the reference to find the new error signal (). The controller
takes this new error signal and computes its derivative and its integral again, ad infinitum.

The transfer function of a PID controller is found by taking the Laplace transform of Eq.(1).

K; ) K4s* + K,8 + K;
K=

@5 5

K= Proportional gain K:= Integral gain K= Derivative gain

We can define a PID controller in MATLAB using the transfer function directly, for example:

Kp = 1;

Ki = 1;

Kd = 1;

s = tf('s'");

C = Kp + Ki/s + Kd*s
C:

Continuous-time transfer function.

Alternatively, we may use MATLAB's pid controller object to generate an equivalent contin

C
C

pid (Kp, Ki, Kd)

1
Kp + Ki * ——— + Kd * s

with Kp = 1, Ki = 1, Kd = 1

Continuous-time PID controller in parallel form.

Let's convert the pid object to a transfer function to see that it yields the same result as above:

tf (C)
ans =

s™"2 + s + 1



Continuous-time transfer function.

The Characteristics of P, I, and D Controllers

A proportional controller (#5) will have the effect of reducing the rise time and will reduce but
never eliminate the steady-state error. An integral control (£%) will have the effect of
eliminating the steady-state error for a constant or step input, but it may make the transient
response slower. A derivative control (z) will have the effect of increasing the stability of the
system, reducing the overshoot, and improving the transient response.

The effects of each of controller parameters, &, K, and K;on a closed-loop system are
summarized in the table below.

CL RESPONSE | RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminate
Kd Small Change| Decrease Decrease No Change

Note that these correlations may not be exactly accurate, because #», K;, and K:are dependent
on each other. In fact, changing one of these variables can change the effect of the other two. For
this reason, the table should only be used as a reference when you are determining the values for
K;, Kpand Ka.

Example Problem

Suppose we have a simple mass, spring, and damper problem.

—}.x

N

The modeling equation of this system is



()M + bi + ka = F

Taking the Laplace transform of the modeling equation, we get

(4) M7 X () + bsX(s) + kX(s) = F(s)

The transfer function between the displacement X (sJand the input #'(s)then becomes

X{s) ]
5) F(s) Ms® +bs+k

Let
M =1 kg
b =10 N s/m
k = 20 N/m
F=1N

Plug these values into the above transfer function

X(s) 1
(6) Fis) s+ 10s+20

The goal of this problem is to show you how each of &, K;and K.contributes to obtain

Fast rise time
Minimum overshoot
No steady-state error

Open-Loop Step Response
Let's first view the open-loop step response. Create a new m-file and run the following code:
s = tf('s");

P 1/(s”2 + 10*s + 20);
step (P)



Step Response
0.0s T T T

0045 - -

004 + -

0.035 - -

003+ -

0025 - -

Amplitude

002+ -

0015 - -

0o+ -

0005 - -

) 1 1 1 1
1] 0.3 1 1.3 2 23

Time (zeconds)

The DC gain of the plant transfer function is 1/20, so 0.05 is the final value of the output to an
unit step input. This corresponds to the steady-state error of 0.95, quite large indeed.
Furthermore, the rise time is about one second, and the settling time is about 1.5 seconds. Let's
design a controller that will reduce the rise time, reduce the settling time, and eliminate the
steady-state error.

Proportional Control

From the table shown above, we see that the proportional controller (Kp) reduces the rise time,
increases the overshoot, and reduces the steady-state error.

The closed-loop transfer function of the above system with a proportional controller is:

X(s) K,
(7) Fls) & +10s+(20 + K,)

Let the proportional gain (#%) equal 300 and change the m-file to the following:

Kp = 300;
C = pid(Kp)
T = feedback(C*pP, 1)

t 0:0.01:2;



step (T, t)
C =

Kp = 300

P-only controller.

s™2 + 10 s + 320

Continuous-time transfer function.

Step Response
1 4 T T T T T T T T T

Amplitude

) 1 1 1 1 1 1 1 1 1
1] 0.z 0.4 (IR s 1 1.2 1.4 1.6 1.8 2

Time (zeconds)

The above plot shows that the proportional controller reduced both the rise time and the steady-
state error, increased the overshoot, and decreased the settling time by small amount

Proportional-Derivative Control

Now, let's take a look at a PD control. From the table shown above, we see that the derivative
controller (Kd) reduces both the overshoot and the settling time. The closed-loop transfer
function of the given system with a PD controller is:



X(s) Kgs + K,
(8) Fls) s +(104+Kg)s +(20+ K,)

Let Ksequal 300 as before and let Kgequal 10. Enter the following commands into an m-file and
run it in the MATLAB command window.

Kp = 300;

Kd = 10;

C = pid(Kp, 0,Kd)

T = feedback(C*P,1)

t = 0:0.01:2;
step (T, t)
C:

Kp + Kd * s

with Kp = 300, Kd = 10

Continuous-time PD controller in parallel form.

s™"2 + 20 s + 320

Continuous-time transfer function.
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This plot shows that the derivative controller reduced both the overshoot and the settling time,
and had a small effect on the rise time and the steady-state error.

Proportional-Integral Control

Now, let's take a look at a PD control. From the table shown above, we see that the derivative
controller (Kd) reduces both the overshoot and the settling time. The closed-loop transfer
function of the given system with a PD controller is:

X(s) Kys + K,
(8) Fls) & +(10+ Kg)s +(20+ K,)

Let Ksequal 300 as before and let Ksequal 10. Enter the following commands into an m-file and
run it in the MATLAB command window.

Kp = 300;

Kd = 10;

C = pid(Kp, 0,Kd)

T = feedback(C*p, 1)
t = 0:0.01:2;

step (T, t)
C:



Kp + Kd * s

with Kp = 300, Kd = 10

Continuous-time PD controller in parallel form.

10 s + 300

s™"2 + 20 s + 320

Continuous-time transfer function.

Ztep Responze
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This plot shows that the derivative controller reduced both the overshoot and the settling time,
and had a small effect on the rise time and the steady-state error

Proportional-Integral-Derivative Control

v Before going into a PID control, let's take a look at a P1 control. From the table, we see that an
integral controller (Ki) decreases the rise time, increases both the overshoot and the settling time,
and eliminates the steady-state error. For the given system, the closed-loop transfer function with
a PI control is:



X(s) K, + K;
(9) F(s) & +10s® + (20 + K, s+ K;)

Let's reduce the #pto 30, and let K:equal 70. Create an new m-file and enter the following
commands.

Kp = 30;

Ki = 70;

C = pid(Kp,Ki)

T = feedback(C*P,1)
t = 0:0.01:2;

step (T, t)

CcC =

1
Kp + Ki * —--
S

with Kp = 30, Ki = 70

Continuous-time PI controller in parallel form.

30 s + 70

s*3 + 10 s*2 + 50 s + 70

Continuous-time transfer function.
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Run this m-file in the MATLAB command window, and you should get the following plot. We
have reduced the proportional gain (Kp) because the integral controller also reduces the rise time
and increases the overshoot as the proportional controller does (double effect). The above
response shows that the integral controller eliminated the steady-state error.

General Tips for Designing a PID Controller

When you are designing a PID controller for a given system, follow the steps shown below to
obtain a desired response.

Obtain an open-loop response and determine what needs to be improved

Add a proportional control to improve the rise time

Add a derivative control to improve the overshoot

Add an integral control to eliminate the steady-state error

Adjust each of Kp, Ki, and Kd until you obtain a desired overall response. You can
always refer to the table shown in this "PID Tutorial" page to find out which controller
controls what characteristics.

ko E

Lastly, please keep in mind that you do not need to implement all three controllers (proportional,
derivative, and integral) into a single system, if not necessary. For example, if a Pl controller
gives a good enough response (like the above example), then you don't need to implement a
derivative controller on the system. Keep the controller as simple as possible.



Automatic PID Tuning

MATLAB provides tools for automatically choosing optimal PID gains which makes the trial
and error process described above unnecessary. You can access the tuning algorithm directly
using pidtune or through a nice graphical user interface (GUI) using pidtool.

The MATLAB automated tuning algorithm chooses PID gains to balance performance (response
time, bandwidth) and robustness (stability margins). By default the algorthm designs for a 60
degree phase margin.

Let's explore these automated tools by first generating a proportional controller for the mass-
spring-damper system by entering the following commands:

pidtool (P, 'p'")

The pidtool GUI window, like that shown below, should appear.
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Notice that the step response shown is slower than the proportional controller we designed by
hand. Now click on the Show Parameters button on the top right. As expected the proportional
gain constant, Kp, is lower than the one we used, Kp = 94.85 < 300.



We can now interactively tune the controller parameters and immediately see the resulting
response int he GUI window. Try dragging the resposne time slider to the right to 0.14s, as
shown in the figure below. The response does indeeed speed up, and we can see Kp is now
closer

to the manual value. We can also see all the other performance and robustness parameters for the
system. Note that the phase margin is 60 degrees, the default for pidtool and generally a good
balance of robustness and performance.
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(baseline) Now let's try designing a PID controller for our system. By specifying the previously
designed or controller, C, as the second parameter, pidtool will design another PID controller

(instead of P or PI) and will compare the response of the system with the automated controller
with that of the baseline.

pidtool (P,C)
We see in the output window that the automated controller responds slower and exhibits more

overshoot than the baseline. Now choose the Design Mode: Extended option at the top, which
reveals more tuning parameters.
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Now type in Bandwidth: 32 rad/s and Phase Margin: 90 deg to generate a controller similar in
performance to the baseline. Keep in mind that a higher bandwidth (0 dB crossover of the open-
loop) results in a faster rise time, and a higher phase margin reduces the overshoot and improves
the system stability.

Finally we note that we can generate the same controller using the command line tool pidtune
instead of the pidtool GUI

opts = pidtuneOptions ('CrossoverFrequency',32, 'PhaseMargin', 90);
[C, info] = pidtune (P, 'pid', opts)
c =

1
Kp + Ki * -—- + Kd * s
S

with Kp = 320, Ki = 169, Kd = 31.5
Continuous-time PID controller in parallel form.

info =
Stable: 1
CrossoverFrequency: 32

PhaseMargin: 90
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(g) Environmental test-chamber temperature control system
(h) An automatic positioning system for a missile launcher
(£) An automatic speed control for a field-controlled dc motor
(j) The attitude control system of a typical space vehicle
(k) Automatic position-control system of a high =peed automated train system
({) Human heart using a pacemaker
(m) An elevator-position control system used in high-rise multilevel buildings.

There are two control system configurations: open-loop control zystem and clozed-loop
control system.

() Block. Ablock is a set of elements that can be grouped together, with overall charac-
teristics described by an input/output relationship as shown in Fig. 1.3. A block diagram is a
simplified pictorial representation of the cause-and-effact relationship between the inputis)
and outputiz) of a physical system.

o] Physical components .
puts ——  iintheblock [ OWPUE

Block

Fig. 1.3 Block diagram

The simplest form of the block diagram is the single block as shown in Fig. 1.3. The input
and output characteristics of entire groups of elements within the block can be described by an
appropriate mathematical expressions as shown in Fig. 1.4,

. Mathematical .
Ipus — expression L, Oupus
— F——

Fig. 1.4 Block representation

(6) Transfer Function. 'T'he transter function is a property of the system elements only,
and is not dependent on the excitation and initial conditionz. The transfer function of a system
{or a block) is defined as the ratio of output to input as shown in Fig. 1.5

toput Transfer fimction Output

hk

L

Fig. 1.5 Transfer function

Cutpuat

Transfer function =
Input



(c) Open-loop Controel System. Open-loop control systems represent the simplest form
of comtrolling devices. A peneral block diagram of open-loop system is shown in Fig. 1.6.

Dlsturbgnee Dlsterbgres
tnput 1 input 2
Dis) Duis)

Relerence Tegut Eqls) . i Uutput
Input — transelucar » Ligls) Cantrolled
Ris) virlable

Contrgller Blant or

process

Fig. 1.6 General block diagram of open-loop control system

(d) Closed-loop (Feedback Control) System. Closed-loop control systems derive their
valuable accurate reproduction of the input from feedback comparizon. The general architec-
ture of a closed-loop control system is shown in Fig. 1.7. A system with one or more feedback
paths is called a closed-loop system.

Disturbance Disturbance
input | input 2
Dy(s) Dais)
+ +
Beference + + Chitput
1 G X Bumolled
R(s) er Plant or SWRHINE | yariable
Forward process Junction C{S:l
path
Feedback
H(s) | path
Crutput
transducer or
SENS0T

Fig. 1.7 General block diagram of closed-loop control system
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Fig. 1.12 Multivariable control system
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Feeodback is the property of a closed-loop svstem, which allows the output to be compared
with the input to the system such that the appropriate control action may be formed as some
function of the input and output.

For more accurate and more adaptive control, a link or feedback must be provided from
output to the input of an open-loop control system. So the controlled signal should be fed back
and compared with the reference input, and an actuating signal proportional to the difference
of input and output must be sent through the system to correct the error. In general, feedback
is gaid to exist in a system when a closed sequence of cause-and-effect relations exists between
system variables. A closed-loop idle-speed control system is shown in Fig. 1.13. The reference
input N, sets the desired idle-speed. The engine idle speed N should agree with the reference
value N, and any difference such as the load-torque T is sensed by the speed-transducer and the
error detector. The controller will operate on the difference and provide a signal to adjust the
throttle angle to correct the error.

Fig. 1.13 Closed-loop idle-speed control system

Control svstems engineering consists of analyvsis and design of control systems configu-
rations. Control syvstems are dynamic, in that they respond to an input by first undergoing a

transient response before attaining a steady-state response which corresponds to the input.
There are three main objectives of control systems analysis and design. They are:

1. Producing the response to a transient disturbance which is acceptable

2. Minimizing the steady-state errors: Here, the concern iz about the accuracy of the
steady-state response

3. Achieving stabilify; Control systems mmst be designed to be stable. Their natural re-
sponse should decay to a zero values as time approaches infinity, or oscillate.

System analysis means the investigation, under specified condition, of the performance
of a system whose mathematical model 1= known. Analvsis is investigation of the properties and
performance of an existing control system.

By svnthesiz weo mean using an explicit procedure to find a system that will perform in a
specified way. Svefem design refers to the procesz of finding a svstem that accomplishes a given
task. Design is the selection and arrangement of the control system components to perform a
prescribed task. The design of control svstems is accomplished in two ways : design by analvsis
in which the characteristics of an existing or standard system configuration are modified, and
design by synthesis, in which the form of the control system is obtained directly from its speci-
fications.



In this zection, we present some of the many available commands in MATLARB for read-
ing data from an external file into a MATLAB matrix, or writing the numbers computed in
MATLAB into such an external file.

2.18.1 The fopen Statement

To have the MATLAB read or write a separate data file of numerical values, we need to
connect the file to the executing MATLAB program. The MATLABR functions used are summa-

rized in Table 2.32.
Table 2.32 MATLAB functions used for input/output
Function Description
fopen Connects an existing file to MATLARB or to create a new file from MATLAB.
fid = fopeni'Filename’, permizsion code);
where, if fopen is succeszsful, fid will be returned as a positive integer greater
than 2. When unsuccessful, a value of - 1 is returned. Both the file name and the
permission code are string constants enclosed in single quotes. The permizsion
code can be a variety of flags that specify whether or not the file can be written
to, read from, appended to, or a combination of these. Some common codes are:
Code Meaning
- read only
W write only
r+ read and write
‘a+’ read and append
The fopen statement positions the file at the beginning.
(Conid.)
Function Description
felose IMzconmects a file from the operating MATLAB program. The use is felosedfid),

fascanf

fprintf

where fid is the file identification number of the file returned by
fopen.felose*all’y will close all files.

Reads opened files. The use is
A = fscanfifid, FORMAT, SIZE)

where FORMAT specifies the types of numbers (integers, reals with or without
exponent, character strings) and their arrangement in the data file, and op-
tional SIZE determines how many quantities are to be read and how they are to
be arranged into the matrix A. If SIZE is omitted, the entire file 1= read. The
FORMAT ficld iz a string (enclozed in single quotes) specifving the form of the
numbers in the file. The fvpe of each number is characterized by a percent =ign
(%), followed by a letter (i or d for integers, e or ffor floating-point numbers with
or without exponentz). Betweon the percent sigm and the tvpe code, one can
insert an integer specifying the maximum width of the field.

Writes files previously opened.
fprintfifid, FORMAT, A)
where fid and FORMAT have the same meaning as for fscanf, with the excep-

tion that for output formats the string must end with “n, designating the end of
a line of output.




MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polyno-
mialz, BizVA(s) as follows:

Bisl num _ hils" +H20:" 4.+ bn)
Als)  den  a(l)s" +al2)s™ +...+aln)
where a(1) # 0 and num and den are row vectors. The coefficients of the numerator and denomi-
nator of Bis¥A(z) are specified by the num and den vectors.
Hence num = [b(1) B2 ... Bin)]
den = [a(1) al2) ... ainl]
The MATLAB command
r, p, B = residusinum, den)

iz u=ed to determine the residues, poles, and direct terms of a partial-fraction expansion of the
ratio of two polynomials B(s) and Ais) is then given by

Bis) _ Ris) + ril) . ri2) .. rin}
Als) s—p(l)  s—-p(2) 7 s-pln)
The MATLAR command [num, den] = residue(r, p, k) where r, p, k are the output from
MATLAPR converts the partial fraction expansion back to the polynomial ratio Biz VA=)

The command printsys (num,den, ‘s') prints the num/den in terms of the ratio of poly-
nomials in 5.

The command ilaplace will find the inverse Laplace transform of a Laplace function.



Finding Leros and Poles of HisyAls)

The MATLAR command [z, p, k] = tf2zpinum,den) iz used to find the zeros, poles,
gain K of BisMA(s).

If the zeros, poles, and gain K are given, the following MATLAB command can be us:
find the original num/den:

[num, den] = zp2tf (z, p, k)
Example 2.7. Conszider the function

nis]
H{S] = E
where nig) =g + 67 + 52" 1 4z 4+ 3
disi=55+ Te? + 657 + 557 1 de 4+ 7
(a) Find ni— 10), ni- 5), ni— 3} and n/- 1)
(b) Find di— 10), di- 5), di— 3} and di- 1)
(c) Find Hi— 10, H{- 5), H{- 3) and H{- 1)
Solution:
(@) ==n=[1654373] n=5"44+68"3+Hs"2+45+3
>>d=[1T6547T]; Tod=s"b+Ts 4 4+Bs 3 +8a"2+ 45+ 7
== n2 = polyval(n, [- 10])
n = 4463
== inll = polyvalin, [— 10])
nnll = 4463
== nnh = polyval(n, [- 5])
nnd =—17
== nnd = polyval(n, [- 3])
nnd = —45
== anl = polyvalin, [- 1]}
nnl=-1
(B) == dnll = polyvalid, [- 107)
dnll = — 35533
== dnb = polyvalld, [- 5])
dnb =612
»> dnd = polyvalld, [- 3]}
dn3d = 202
== dnl=polyvalid, [- 1]
dnl=58
() == Hnl0 = nn10dn10
Hnl0 =—0.1256
== Hnb = nni'dnb
Hnb =—0.0278



== Hnd = nnd/dnd

Hnd = - 02228
== Hnl = nnldnl
Hnl =-0.1250

Example 2.8. Generate a plot of
yix) = e gin o
where w = 15 rad /s, and 0 =x = 15, Use the colon notation to generafe the x vecfor in increments
af 0. 1.
Solution.
==x=[0:01:15]
== w =15
=5 ¥ = expl— 0.7%c) *sinfw*x);
== plotix, ¥)
== titleyix) = M0 AT sin\omega x")
== xlabel’x’)
== ylabel(y')

yix)= e e sin ox
1 t t
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Fig. E 2.8.

Example 2.9. Generate a plof of
yix) = e ™™ cos ox
where o= 10rad /s, and 0 =x = 15, Use the colon notation fo generate the x vecfor in increments
af (.05,
Solution.
==x=[0:0.1:15];

== w = 10;



== ¥ = expl— 0.6%) *coslw*x);

== plotix, ¥)
== titlel*yix) = ™0™ M6 x cogomega x7)
== xlabel(*x")
== ylabal(*y"}
yixi= e " gin o
i T T
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Obfain the plot of the points for 0 ¢ =67 when the coordinates x.y.z are

A A AT T A AT WL R AR LN REAT prea s e

miven as a funciion of the parameter t as follms:

x = Jt sin(3t)

y =+t cos(3t)
z=0.8¢f



Solution.
% Line plots
>> £ =[0:0.1:6%pi];
>> x = sqri(t).*sin(3*t);
>> y = sqrif(t).*cos(3*1);
>>z = 0.8%;
>> plot3(x, v, z, ‘%', Tinewidth’, 1)
>> grid on
>> xlabel (%); ylabel (%) ; zlabel (')

Fig. E 2.12.
Example 2.13. Obfain the mesh and surface plots for the function z =

S'ijg

over the
¥

domain -2 =x <fand 2 <y =8
Solution.
% Mesh and surface plots
x=—2:01:6;
==y=2:01:8;
= [x, ¥] = meshgridix, ¥);
=» 2 = PPy AR M 4+ v M2
== meshix, v, z)
== xlabel("); ¥label(*y'); zlabel(z")
== surflx, ¥, z)
== xlabel("); ¥label(*y'); zlabel(z")



Fig. E 2.13()

Locusz is defined as a set of all points satisfying a set of conditions. The torm roof refers to
the roots of the characteriztic equation, which are the poles of the closed-loop transfer function.
These poles define the time response of the system and hence the performance and stability of
the syvstem. Hence, root-locis defines a graph of the poles of the closed-loop transfer function as
the system parameter, such as the gain is varied.

Evan’s root locus method, or simply root-locus method, gives all closed-loop poles graphi-
cally, using the knowledge provided by the open-loop poles and open-loop zeros. A root-locus
plot iz composed of as many individual loci as there are poles. Individual loci are referred to as
branches of the root locus.



The poles of a transfer function can be shown graphically in the s-plane by means of a
pole-zero map. The root locus method iz an analytical method for displaying the location of the
poles of the closed-loop transfer function

[
1+GH

as a function of the gain factor K of the open-loop transfer function GH. The method is called
the root locus analvsis. The root locus analysis has the advantage that this method requires
only the location of the poles and zeros of GH known and the factorization of the characteristic
polynomial i not required. The method gives accurate time-domain response as well as fre-
quency response information.

The root-locus method is based on the fact that the values of s that make the tranzfor
function around the loop equal — 1 must satisfy the characteristic equation of the system. The
locus of roots of the characteristic equation of the closed-loop system as the gain is varied from
zero to infinity gives the root-loci plot. The root locus plot indicates the contributions of each
open-loop pole or zero to the locations of the closed-loop poles.

The root locus method allows the prediction of the effects on the location of the closed-
loop poles of varying the gain value or adding open-loop poles and/or open-loop zeros. Fig. 3.1
shows a canonical feedback control svstem whose closed-loop transfer function is given by

= - = 317
R 1+GH ¢ )
R— G > C
H |«
Fig. 2.1.
If the open-loop transfer function GH is represented by
KN
GH=— a.18
D i |

Where D and N are finite polynomials in the complex variable s, and K is the open-loop gain
factor, then the closed-loop transfer function can be written as

C & GD

R 1+EN/D - D+DN

The roots of the characteristic equation gives the closed-loop poles. That is
D+EN=0 (3.20)
As the open-loop gain factor K is varied, the location of these roots in the s-plane changes.
A locus of these roots plotted in the s-plane as a function of K is known as a roof locus. We
ohzerve from Eq. (3.4) that when K = 0, the roots of the polynomial I gives the poles of the open-
loop transfer function GH. On the other hand, as K becomes very large, then the roots will
become those of the polynomial N (the open-loop zeros). Hence, the loci of the closed-loop poles

originate from the open-loop poles and terminate at the open-loop zeros ad K varies from zero to
infinity.

(3.19)




Conzider the syvstem equation

Kis+zls+z)...ls+2)

1+ =10 (3.21)
g+pis+p)...ls+p,)
Equation (3.17) can be written as
num
1+K—— =0 3.22
+K (3.22)

Where num is the numerator of the polynomial and den is the denominator polynomial, and K
is the gain (K = 0). The vector K containg all the gain values for which the closed loop poles are

to be computed.
The root loci is plotted by using the MATLAB command
rlocus (mum, den)

The gain vector K is supplied by the user.

The matrix r and gain vector K are obtained by the following MATLAB commands:
[r, ] = rlocus (num, den)
[r, ] = rlocus (num, den, &)
[r. k] = rlocus iA, B, C, I

Ir, k] = rlocus (A, B, C, D, K) (3.23)

[r, k] = rlocus (sy=)

In Eqns. (3.23), r has length K rows and length [den — 1] columns containing the complex

root locations.
For plotting the root loci, the MATLAR command plot (r, © *) i2 used.
The following MATLAB command are used for plotting the root loci
with mark 0" or “x":
r = rlocus (num, den)
plot (r, 0" or plot (r, %"

MATLAE provides its own set of gain values used to compute a root locus plot. It also

uses the automatic axis scaling features of the plot command.

Polar plot iz a plot of the magnitude | Gjjm)H(jw)| and phase angle | Gjw)H{jw)| in polar
coordinates for various values of frequencies ranging from 0 to o then — = to 0.

Bode plot i= a plot of magnitude | GljmHijm)| in decibels versus logm and phase angle

| G{jw)H{jw) | verzus log w in rectangular coordinates.

Magnitude versus phaze angle plot or gain-phase plot iz a plot of magnitude | Giliw)Hifuw) |
in decibels versus phase angle | Gliim)H{jm) | in rectangular coordinates with frequency as vary-
ing parameter.

In practice the frequency-functions of the system are so complex and long that the char-
acteristic of the system cannot be determined at the desired frequency just only by inspection of
the system frequency function. Hence the frequency functions of systems are plotted in graphi-
cal forms, which indicate the system characteristics. Any curve giving information regarding
the gain or phase shift of the frequency function is known as the frequency response of the



gystem. In polar-plots the amplitude of (#jw) i plotted a2 the digtance from origin while the
phaze-angle iz plotted as angular displacement from right hand horizontal axis on the polar
graph. These plots are simple to construct and easily provide the information regarding the
magnitude and phase-angle of G{jw) at any desired frequency as compared to rectangular-plots
because polar-plot contains the ready information of both the parameters, amplitnde and phase
angle.

A transfer function &{z) may be represented in the frequency domain as a sinuscidal
transfer function by substituting jw for 5 in the expression for (7(5). The resulting form G{jm) i=
a complex function of the single variable m. Thus it can be plotted in 2-dimensions with o as a
parameter and written in the following equivalent. form:

Polar form: Gijo) = | Gliwdl [ dlom)]
Euler form: Gijw) = | Gijw)| (cos ¢lw) + 7 sin dlwm))

Here | G{jw) | iz the magnitude of complex function and & w) is the phase angle = argplw).

Bode diagrams are rectangular plots. Bode diagram are also known as logarithmic plot
and conzist of two graphs: the first one i= a plot of the logarithmic of the magnitude of a sinuscidal
transfer function, the second one is a plot of the phase angle. Both these graphs are plotted
against the frequency on a logarithmic scale. Bode analysis is similar to Nyquist analysiz in
that here also the graphical representation of the open-loop frequency responze function GmlH ),
iz employved. Bode-plot conzists of two graphs: the magnitude of Glow)lH{m), and the phase angle
of Gljw)H(jw), both plotted as a function of frequency w. Logarithmic scales are used for the
frequency axes and for | GijwiH{jw)l. Bode plots illustrate the relative stability of a system.

The following frequency-domain specifications are used:

If the Nygquist-plot does not cross the critical point (— 1 + 0], the system iz found to be
stable. The frequency (w, ) at which the magnitude | GjwiHjw) | equals to one iz called the gain-
crosg over frequency. If the plot at @, 1= rotated through an angle ¢ in clockwize direction, the
point @ = wy; and critical point (— 1 + j;) are coincident and this indicates that the closed-loop
system i8 marginally stable. Any further rotation leads to instability. The angle 4 is known as
phase-margin. Intersection of the plot with negative real axis corresponds to frequency w = w,.
The phase-angle at w = wy is

| G Hjieog )| = — 1807 (3.24)

Hence, the closeness of Nyquist plot to critical point (— 1 + ), decides the relative stabil-
ity of the systems. The closer the Nyquist plot to the critical point (— 1 + j;) the system tends
towards instability.

(zain margin is a factor by which the gain of a stable svstem i= allowed to increase before

the system reaches instability. Gain margin is defined as the magnitude of reciprocal of the
open-loop transfer function evaluated at the frequency w; at which the phase angle is — 180°.

1
" 1G(w, ) Hje,) |

where wy is the phase cross over frequency.

GM (3.25)

Phaszse margin of a stable system is the amount of additional phase lag required to bring
the system to point of instahbility. It is defined a=s

PM =180 + |GV jony JH joy )] (3.26)
where | Gijeoy ) Hijoy )| = 1 and oy is called the gain-crossover frequency.
For a stable system both GM and PM should be positive.



Bode plot conzists of two graphs in rectangular coordinates. These are (i) the magnitude
of G{ju)Hijw) in db versus log, o, (i) the phase angle of G{jwlH{jw) versus log, m.

The general open-loop transfer function of a feedback control system may be represented
by

Hl+ 8T N1 +8T,) e
gL+ STLNL +5T,) 06" + 2B, s + o))

Here the highest power of 5 in the numerator iz lower than that of the denominator. Now
substituting s = jw, we get

Gl=)Hiz) = (3.27)

Hil+ juT, N1+ joT,)..Jo

e ) H | jen) = (3.28)
GUolHy (o™l + joT, i1+ joT,).. ]l - o 25w, n)
Hence, the magnitude is
. ) B+ juT 1+ juTi .. ol
| = 3.29
CUHGO = 1T 5 ol T Tk — & + 25mo] (6.29)
and the phase is
| GljwiH(jw)| = | tan™ T + tan™ T, — 90N — tan~' T, ... tan-" —2as®
(g} — e}
(3.30)
The magnitude can be represented in decibel form as
20 log,, | GliwIH{jw)| = 20 log,, k + 20 log,, | 1 + joT, |
+20log 11 + jwTy | — 20N logyg Liml — 20 log, 11
w — ' 2w m
n + n
+joly | ...... 20 log o —m: (3.31)

Equation (3.31) shows that the frequency function of an open-loop transfer function
(7 jm)H(fm) has factors as follows:

(z) Constant gain factor &

(h) Poles at origin due to factor withN=0 1,2 ..

i o)™
(¢) Zeros on real axis due to (1 + jwT)

() Poles on real axis due to ; (3.32)
(1+ jwT)

(e) Complex comjugate poles due to 0
(o] — o'l + 250, w)

Bode plots of continmous-time frequency response functions can be constructed by sum-
ming the magnitude and phase angle contributions of each pole and zero. The asymptotic ap-



proximations of these plots are often sufficient. The asymptotic Bode plots for Gl {(ju) are
ohtained by adding the graphs of each of the terms (a) to (e). For example, the Bode plot for gain
term £ is obtained from the expressions
El g =201og,, k
lE=0 (3.33)
Thus, the magnitude and phase angle for the term K is independent of the frequency.
Hence, the Bode plot for this term is a horizontal straight line, as shown in Fig. 3.2.

E
. 20 logyg [Ks|
=
= * logll w
{a) Gain plot
120 4 _
Eg=10
i
=
g
# ¥
| o logl @
=%
~180 K5 -0
(&) Phase plot
Fig. 3.2

From the frequency response-function for a pole of order N at origin or Ulj" , the Bode
-y

=-20

plots are inclined straight lines. Here the magnitude in decibels (dB) = 20 log, ol
Juf

1

N logypo and the phaze-angle ‘ G = — 90 N. The Bode plots are shown in Fig. 3.3.
Wi
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