ELG 3120 Signals and Systems Chapter 3

Chapter 3 Fourier Series Representation of Period Signals

3.0 Introduction

Signals can be represented using complex exponentials — continuous-time and discrete-time
Fourier series and transform.

If the input to an LTI system is expressed as a linear combination of periodic complex
exponentials or sinusoids, the output can also be expressed in thisform.

3.1 A Historical Perspective

By 1807, Fourier had completed awork that series of harmonically related sinusoids were useful
in representing temperature distribution of a body. He claimed that any periodic signal could be
represented by such series — Fourier Series He also obtained a representation for aperidic
signals as weighted integrals of sinusoids— Fourier Transform.

Jean Baptiste Joseph Fourier

3.2 The Response of LTI Systemsto Complex Exponentials

It is advantageous in the study of LTI systems to represent signals as linear combinations of
basic signals that possess the following two properties:

The set of basic signals can be used to construct a broad and useful class of signals.
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The response of an LTI system to each signal should be simple enough in structure to provide
us with a convenient representation for the response of the system to any signal constructed
as alinear combination of the basic signal.
Both of these properties are provided by Fourier analysis.
The importance of complex exponentials in the study of LTI system is that the response of an
LTI system to a complex exponentia input is the same complex exponential with only a change
in amplitude; that is
Continuous time: €* ® H(s)e", (3.1)

Discrete-time: 2" ® H(z)z", (3.2

where the complex amplitude factor H(s) or H(2) will be in general be a function of the
complex variable s or z.

A signal for which the system output is a (possible complex) constant times the input is referred

to as an eigenfunction of the system, and the amplitude factor is referred to as the system’s
eigenvalue. Complex exponentials are eigenfunctions.

For aninput x(t) appliedto an LTI system with impulse response of h(t), the output is

0¥

y() = @, ht )x(t - t)elt = 5 hit )e* et

; (3.3
= N )est Vet = e & ht)e *
where we assume that the integral dj h(t )e ® dt converges and is expressed as
H(s) =, ht)e *t , (3.4)
the responseto €* is of the form
y(t) =H(s)e¥, (3.5)

It is shown the complex exponentials are eigenfunctions of LTI systems and H(s) for a
specific value of s isthen the eigenvalues associated with the eigenfunctions.

Complex exponential sequences are eigenfunctions of discrete-time LTI systems. That is,
suppose that an LTI system with impulse response h[n] has asitsinput sequence
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[n] = 2", (3.6)

where z is a complex number. Then the output of the system can be determined from the
convolution sum as

¥ ¥
a hkjz"* =z" § hk]z'* . (3.7)

k=-¥ k=-¥

Mn = & hik]xn- k] =

Assuming that the summation on the right-hand side of Eq. (3.7) converges, the output is the
same complex exponential multiplied by a constant that depends on thevalue of z. That is,

yinl=H(2)z", (3.8)

where H(2) = 5 hk]z . (3.9

K=-

It is shown the complex exponentials are eigenfunctions of LTI systems and H(z) for a
specific value of z isthen the eigenvalues associated with the eigenfunctions z".

The example here shows the usefulness of decomposing genera signals in terms of
eigenfunctions for LTI system analysis:

Let x(t) =a,e* +a,e* +a,e™, (3.10)

from the eigenfunction property, the response to each separately is

a,e* ® aH,(s)e*

3™ ® a,H,(s,)e”

3™ ® a;H,(s;)e™

and from the superposition property the response to the sum is the sum of the responses,

y(t) =agHy(s)e™ +aHo(s)e™ +agH(s5)e™, (3.11)

Generdly, if the input is alinear combination of complex exponentials,

x(t) = § ae™, (3.12)
k

the output will be
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y(t) = ék aH(s)e™, (3.13)
Similarly for discrete-time LTI systems, if the input is

x{n] = ék .z, (3.14)
the output is

Vinl =8 aH(z)z (3.15)

3.3 Fourier Seriesrepresentation of Continuous-Time Periodic Signals

3.31 Linear Combinations of harmonically Related Complex Exponentials

A periodic signal with period of T,

X(t) =x(t+T) forall t, (3.16)
We introduced two basic periodic signalsin Chapter 1, the sinusoidal signal

X(t) = cosw,t, (3.17)
and the periodic complex exponential

x(t) = e, (3.18)

Both these signals are periodic with fundamental frequency w, and fundamental period

T =2p /w,. Associated with the signal in Eq. (3.18) is the set of harmonically related complex
exponentials

f (1) =t = k@Mt k=0, %1 %2, ... (3.19)

Each of these signals is periodic with period of T (although for |k| 3 2, the fundamental period of

f, () is a fraction of T ). Thus, a linear combination of harmonically related complex
exponentials of the form

4/3 Yao



ELG 3120 Signals and Systems Chapter 3

+¥ . +¥ )
x(t) = 4 ae™ = § ae* @™, (3.20)
k=-¥

= k=-¥
isalso periodic with period of T.

k =0, x(t) isaconstant.

k=+1and k=-1, both have fundamental frequency equal to w, and are collectively
referred to as the fundamental components or the first harmonic components.

k =+2 and k =- 2, the components are referred to as the second harmonic components.

k =+Nand k =- N, the components are referred to as the Nth harmonic components.

Eq. (3.20) can aso be expressed as
§ - vt

X(t) =x*(t)= g a*, e, (3.21)
k=-¥

where we assume that x(t) isreal, that is, x(t) = x*(t).

Replacing k by - k inthe summation, we have

+¥ )
x(t) = § a*., e, (3.22)

k=-¥
which , by comparison with Eqg. (3.20), requiresthat a, =a* _,, or equivalently
ar K= a K- (3.23)

To derive the alternative forms of the Fourier series, we rewrite the summation in Eq. (2.20) as

+¥ . .
X(t) = a, + é, [akejkwot +a e kem| (3.24)
k=1

Substituting a*, for a_,, we have

+¥ . )
x(t) =a, +Q [akeJkWOt +a*, g ke/m (3.25)
k=1

Since the two terms inside the summation are complex conjugate of each other, this can be
expressed as

g |
x(t) = a, + & 2Rea, " }. (3.26)
k=1
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If a, isexpressed in polar from as

a, = Akeij’

then Eq. (3.26) becomes
+¥ .
x(t) = a, + é ZRQ{A(e](kWOt‘Fqk)}l
k=1
That is
-5¥
X(t) =a, +2a A cos(kw,t +q,). (3.27)
k=1

It is one commonly encountered form for the Fourier series of real periodic signalsin continuous
time.

Another form is obtained by writing a, in rectangular form as
a, =B, +]jC,

then Eq. (3.26) becomes

+¥
X(t) =a, + Zé [Bk coskw,t- C, sin kwot]. (3.28)

k=1

For real periodic functions, the Fourier series in terms of complex exponential has the following
three equivalent forms:

+¥ +¥
[o) i O i

Xt) = 3 ae™ = g ae @™
k=-¥

k=-¥

+¥
X(t) = 8 +2a A CoS(kwt +qy)

k=1

+¥
X(t) = a, +2g [B, coskw,t - C, sin kw ]

k=1
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3.3.2 Determination of the Fourier Series Representation of a Continuous-Time Periodic
Signal

gt

+¥
Multiply both side of x(t) = § ae by € ™ we obtain

k=-¥

x(t)e ™t = a ae'"le Mt (3.29)

Integrating both sidesfromOto T =2p /w,, we have

T . +¥ , + LT <
Q x(e et = & a, é@e'k%t ‘”W"tdtu— a ak‘i"@ "k'”)wf’tdta, (3.30)
k=-¥
Note that
T iT k=n
hY e](k-n)wotdt - !
Q {0, ktn

So Eq. (3.30) becomes

1 J - jnwgt
" TTQ x(t)e ™dt, (3.31)
The Fourier series of a periodic continuous-time signal
Y Y
— jkwot — jk(2p /T)t
k=-¥ k=-¥
_1a x(t)e "'t = 1a X(t)e K@/ Mgt
TQ TQ (3:39

Eqg. (3.32) is referred to as the Synthesis equation, and Eq. (3.33) is referred to as analysis
equation. The set of coefficient {a,} are often called the Fourier series coefficients of the
spectral coefficientsof x(t) .

The coefficient a, isthe dc or constant component and isgiven with k =0, that is
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=—Qx)dt, (3:34)

—||H

Example: consider the signal x(t) =sinw,t.

. 1 . 1
sinw,t =2—je' o - 2—je wd

Comparing the right-hand sides of this equation and Eg. (3.32), we have

-1 a =+
T 1777
a =0, kt+lor -1

Example: The periodic square wave, sketched in the figure below and define over one period is

|L t|<T,

XV = o, T, <|t| <T/2'

(3.35)

The signal has afundamental period T and fundamental frequency w, =2p /T.

x(1)

I I
- 2T -T  T-T, T, T T 2T
2 2

To determine the Fourier series coefficients for x(t) , we use Eq. (3.33). Because of the
symmetry of X(t) about t=0, we choose - T/2E£t£T/2 as the interval over which the

integration is performed, although any other interval of length T isvalid the thus lead to the same
result.

For k=0,
1x T 2T,
a, = = 0T x(t)dt = —th = —, (3.36)

For k1 0, weobtain
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Tl
a, =13 e gy = — 1 oo
: jkw T

- T1

Epikwely _ 4 ikwoTy
__2 g® e (3.37)
kw,T 8 2j g

_ 2sin(kw,T,) _ sin(kw,T,)
kw, T kp

‘ll 111
aTTT

11 1l Il‘
TTT |||_4
(

0
b)

|---_8"'””!““'"8---.-

()

The above figure is abar graph of the Fourier series coefficients for afixed T, and several
valuesof T . For thisexample, the coefficients are real, so they can be depicted with asingle
graph. For complex coefficients, two graphs corresponding to the real and imaginary parts or
amplitude and phase of each coefficient, would be required.

3.4 Convergence of the Fourier Series

If a periodic signal Xx(t) is approximated by a linear combination of finite number of
harmonically related complex exponentials

N .
x, ()= § ae™. (3.38)

k=- N
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Let e, (t) denote the approximation error,

e, (t) = x(t) - X (t) = x(t) - 5 ae™" (3.39)

The criterion used to measure quantitatively the approximation error is the energy in the error
over one period:

Ey = Olew (1) dt. (3.40)

It is shown (problem 3.66) that the particular choice for the coefficients that minimize the energy
intheerror is

1 N N
a, :?Qx(t)e o it (3.41)

It can be seen that Eq. (3.41) isidentical to the expression used to determine the Fourier series
coefficients. Thus, if x(t) has aFourier series representation, the best approximation using only
afinite number of harmonically related complex exponentialsis obtained by truncating the
Fourier series to the desired number of terms.

Thelimitof E, as N® ¥ iszero.

One class of periodic signals that are representabl e through Fourier seriesis those signals which
have finite energy over aperiod,

dx(t)\zdt <¥ (3.42)

When this condition is satisfied, we can guarantee that the coefficients obtained from Eg. (3.33)
arefinite. We define

o) = x() - A ae™™ (3.43)
then
Olett)] ‘dt =0, (3.44)

10/3 Yao



ELG 3120 Signals and Systems Chapter 3

The convergence guaranteed when X(t) has finite energy over aperiod isvery useful. In this
case, we may say that x(t) and its Fourier series representation are indistinguishable.

Alternative set of conditions developed by Dirichlet that guarantees the equivalence of the signa
and its Fourier series representation:

Condition 1: Over any period, x(t) must be absolutely integrable, that is
¢|x(t)|dt <¥, (3.45)
This guarantees each coefficient a, will befinite, since

; 1
- Jkw,t — =
X(t)e dt =T Q|X(t)|dt <¥. (3.46)

al=1¢
K TQ

A periodic function that violates the first Dirichlet condition is
x(t):%, O<t<l.

Condition 2: In any finite interval of time, x(t) isof bounded variation; that is, there are no
more than afinite number of maxima and minima during a single period of the signal.

An example of afunction that meets Conditionl1 but not Condition 2:

xt) =sn®298  o<tel, (3.47)
el g

Condition 3: In any finite interval of time, there are only afinite number of discontinuities.
Furthermore, each of these discontinuitiesisfinite.

An example that violates this condition is a function defined as
X(t) =1, 0£t<4, x(t)=1/2, 4£t <6, x(t) =1/4, 6£t<7, x(t)=1/8, 7TE£t <75, etc.

The above three examples are shown in the figure below.
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o <
- 1‘ Q 1 )

1 2 t

The above are generally pathological in nature and consequently do not typically arisein
practical contexts.

Summary:

For a periodic signal that has no discontinuities, the Fourier series representation converges
and equalsto the original signal at all thevaluesof t.

For aperiodic signal with afinite number of discontinuities in each period, the Fourier series
representation equals to the original signal at all the values of t except the isolated points of
discontinuity.

Gibbs Phenomenon:

Near a point, where x(t) has a jump discontinuity, the partial sums x, (t) of a Fourier series

exhibit a substantial overshoot near these endpoints, and an increase in N will not diminish the
amplitude of the overshoot, although with increasing N the overshoot occurs over smaller and
smaller intervals. This phenomenon is called Gibbs phenomenon.
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A large enough vaue of N should be chosen so as to guarantee that the total energy in these

ripplesisinsignificant.

3.5 Properties of the Continuous-Time Fourier Series

Notation: suppose X(t) isaperiodic signal with period T and fundamental frequency w, . Thenif
the Fourier series coefficients of x(t) aredenoted by a,, we use the notation

x(t)~ %® a,,

to signify the pairing of a periodic signal with its Fourier series coefficients.
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3.5.1 Linearity

Let x(t) and y(t) denote two periodic signals with period T and which have Fourier series
coefficients denoted by a, and b, , that is

x(t)~ %® a,_and y(t)-~ %® b,
then we have

z(t) = Ax(t) + By(t)~ %® c, = Aa, +BD, . (3.48)

3.5.2 Time Shifting

When atime shift to aperiodic signal x(t), the period T of the signal is preserved.

If x(t)- %® a,, then we have

X(t- t,)- ¥%A® e Mg, . (3.49)

The magnitudes of its Fourier series coefficients remain unchanged.

3.4.3 Time Reversal
If x(t)-~ %® a,, then
X(-)~ %® a, . (3.50)

Time reversal applied to a continuous-time signal results in atime reversal of the corresponding
sequence of Fourier series coefficients.

If x(t) is even, that is x(t) = x(-t), the Fourier series coefficients are also even, a_, = a, .
Similarly, if x(t) is odd, that is x(-t) =- x(t) , the Fourier series coefficients are also odd,
a,=-a.

3.5.4 Time Scaling

+¥ .
If X(t) has the Fourier series representation X(t) = é a.e’ | then the Fourier series
k=-¥

representation of the time-scaled signal x(at) is
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+¥ .
x@at) = § ae e (3.51)

k=-¥

The Fourier series coefficients have not changes, the Fourier series representation has changed
because of the change in the fundamental frequency.

3.5.5 Multiplication

Suppose X(t) and y(t) aretwo periodic signalswith period T and that
x(t)~ %® a,,

y(t)- ¥3® b, .

Sincethe product x(t)y(t) isalso periodic with period T, its Fourier series coefficients h, is

XO)y()- %o h, = & ab,, . (352)

The sum on the right-hand side of Eq. (3.52) may be interpreted as the discrete-time convolution
of the sequence representing the Fourier coefficients of x(t) and the sequence representing the
Fourier coefficientsof y(t).

3.5.6 Conjugate and Conjugate Symmetry

Taking the complex conjugate of a periodic signal X(t) has the effect of complex conjugation
and time reversal on the corresponding Fourier series coefficients. That is, if

x(t)~ %® a,,
then
X* (t) -~ %® a* _, . (3.53)

If x(t) isred, that is, x(t) = x* (t), the Fourier series coefficients will be conjugate symmetric,
that is

a,=a*,. (3.54)
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From this expression, we nay get various symmetry properties for the magnitude, phase, real
parts and imaginary parts of the Fourier series coefficients of real signals. For example:

From Eq. (3.54), we seethat if x(t) isreal, a, isreal and |a_, | =|a,].

If x(t) isrea and even, we have a, =a_,, from Eq. (3.54) a, =a*,, so a, =a*, b the
Fourier series coefficients are real and even.
If x(t) isrea and odd, the Fourier series coefficients are real and odd.

3.5.7 Parseval’ s Relation for Continuous-Time periodic Signals

Parseval’ s Relation for Continuous-Time periodic Signalsis

L oo de= & faf, (355)
T K= ¥

Since

%‘Qakejkwot zdt :%C)|ak|2dt :|ak|2,

so that |ak|2 isthe average power in the kth harmonic component.

Thus, Parseval’s Relation states that the total average power in a periodic signal equals the sum
of the average powersin al of its harmonic components.
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3.5.8 Summary of Properties of the Continuous-Time Fourier Series

Chapter 3

Property Periodic Signal Fourier Series
Coefficients
X(t)( Periodicwith period T and a,
y(t)% fundamental frequency w, =20 /T | b,
Linearity AX(t) + By(t) Aa, +Bb,
Time Shifting X(t- t,) e M'a
Frequency shifting ™' x(t) Q.
Conjugation X* (1) a*
Time Reversal x(-t) a,
Time Scaling X(at), a >0 (Periodic with period T/a) a,
Periodic Convolution (‘px(t )y(t-t)dt Ta b,
Multiplication X(t) y(t) S
a ab,
1=-¥
Differentiation dx(t) V:0
7 kw,a, = jk—
| qt JKWod, =) T 3
Integration d x(t)dt (finite valued and periodiconly |21 0 2 1 9
fa-0) Eiow, 5 k@) 5
Conjugate Symmetry for X(t) real i a =a*
Real Signals
g i Re[ak} = Re[a k}
rim{a,} = - Im{a ,}
L Ja=lad
f ba, =-ba,
Real and Even Signals X(t) real and even a, real and even
Redl and Odd Signals X(t) real and odd a, purely imaginary and
Even-Odd Decomposition R oad
of Red Signa]s P ! Xe (t) = EV{X(t)} [X(t) real]
Y ) = od{x®} [x() real] Refa, }
jimfay}

Parseval’ s Relation for Periodic Signals
1 2 3 2

— Qx| dt =

7 OPf = Alal
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Example: Consider thesigna g(t) with afundamental period of 4.

g(t)

1/2 —

| | | | ‘
-2 -1 1 |2

— -1/2

The Fourier series representation can be obtained directly using the analysis equation (3.33). We
may also use the relation of g(t) to the symmetric periodic square wave X(t) discussed on page
8. Referring to that example, T =4 and T, =1,

gt) =x(t- - 1/2. (3.56)

The time-shift property indicates that if the Fourier series coefficients of x(t) are denoted by a,
the Fourier series coefficients of x(t - 1) can be expressed as

b, =ae ', (3.57)

The Fourier coefficients of the dc offset ing(t), that is the term —1/2 on the right-hand side of
Eq. (3.56) are given by

10, for kt O
k:|l

C )
1 for k=0
b2

(3.58)

Applying the linearity property, we conclude that the coefficients for g(t) can be expressed as

_}ake' kel2 = for k1 0
d, = : 3.59
“ iao-l, for k=0 (5.58)
I 2
replacing a, = w e'*’2 then we have
p
,i_—sm(pk/2) e’z fork! O
d =1 pk . (3.60)
10, for k=0
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Example: The triangular wave signal x(t) with period T =4, and fundamental frequency
w, =p /2 isshown in the figure below.

x(1)

The derivative of this function is the signal g(t) in the previous preceding example. Denoting
the Fourier series coefficients of g(t) by d, , and those of x(t) by e , based on the

differentiation property, we have
d, = jk(p/2e,. (3.61)

This equation can be expressed in terms of e, except when k =0. From Eq. (3.60),

2d, _2sn(pk/2) 2
- - ; 2 e '
o jke)

e = (3.62)

For k =0, g, can be ssimply calculated by calculating the area of the signal under one period and
divide by the length of the period, that is

e, =1/2. (3.63)

Example: The properties of the Fourier series representation of periodic train of impulse,

X(t) = éd(t- KT). (3.64)

K=-

We use Eq. (3.33) and select the integration interval to be - T/2E£t£T/2, avoiding the
placement of impulses at the integration limits.

_1 7 k(T g — L
a.k _?OI'IZd (t)e dt —?. (365)

All the Fourier series coefficients of this periodic train of impulse areidentical, real and even.
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The periodic train of impulse has a straightforward relation to square-wave signals such as g(t)
on page 8. The derivative of g(t) isthesignal q(t) shown in the figure below,

X(t)

N |
_|
N
_|

<
P E—
N
o
<« 4
N |
(—
(—

which can also interpreted as the difference of two shifted versions of the impulse train x(t) .
Thatis,

qt) =x(t+T)- x(t-T,). (3.66)

Based on the time-shifting and linearity properties, we may express the Fourier coefficients b, of
q(t) interms of the Fourier series coefficient of a, ; that is

bk: elkWOTlak - e lkWOTlak :? eJkVVOTl -e jkwoTy , (367)

Finally we use the differentiation property to get
b, = jkw,C,, (3.68)

where c, isthe Fourier series coefficientsof g(t). Thus
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b, _ 2jsin(kw,T,) _ 2sn(kw,T,)

- - , k10, (3.69)
jkw, jkw, T kw, T

C,=

C, can be solve by inspection from the figure:

2-I-l

= (3.70)

C =

Example: Suppose we are given the following facts about asignal x(t)

X(t) isared signal.

X(t) isperiodic with period T =4, and it has Fourier series coefficients a, .
a, =0 for k>1.

The signal with Fourier coefficients b, =e"'™/?a_, isodd.

1 2,1
de(t)| dt_E

Show that the information is sufficient to determine the signal x(t) to within asign factor.

o > wWwDdPE

According to Fact 3, x(t) has at most three nonzero Fourier series coefficients a,: a,, a,
and a, . Since the fundamental frequency w, =2p /T =2p /4=p /2, it follows that

x(t) =a, +a,e™?*+a e 2, (3.71)

Since x(t) is real (Fact 1), based on the symmetry property a, is real and a, =a* ;.
Consequently,

x(t) =a, +a,e™? + (aie“’”z)* =a, + 2Re{a1e"’”2}. (3.72)

Based on the Fact 4 and considering the time-reversal property, we note that a_, corresponds
to x(-t). Also the multiplication property indicates that multiplication of kth Fourier series

by e ®’2corresponds to the signal being shifted by 1 to the right. We conclude that the
coefficients b, correspond to the signal x(- (t - 1)) = x(- t +1), which according to Fact 4

must be odd. Since x(t) isrea, x(-t+1) must aso be real. So based the property, the
Fourier series coefficients must be purely imaginary and odd. Thus, b, =0, b, =-b,.

Since time reversal and time shift cannot change the average power per period, Fact 5 holds
evenif x(t) isreplacedby x(-t+1). Thatis

1 2 1
—OX(-t+1) dt==. 3.73
ZOXCtDdt=2 (373)
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Using Parseval’ srelation,
Ib,|* +[o.,|* =1/2. (3.74)

Since b, =-b,, we obtain |b1| =1/2. Since b, is known to be purely imaginary, it must be
either b, = j/2 orb, =-j/2.

Finally we translate the conditions on b, and b, into the equivalent statement on a, and
a, . First, since b, =0, Fact 4 impliesthat a, = 0. With k =1, this condition implies that
a=e®?p,=-jb,=jb. Thus, if we take b, = j/2, a, =-1/2, from Eq. (3.72),
X(t) =- cos(pt/2) . Alternatively, if we take b, =- j/2, the a, =1/2, and therefore,
X(t) = cos(pt/2) .

3.6 Fourier Series Representation of Discrete-Time Periodic Signals

The Fourier series representation of a discrete-time periodic signal is finite, as opposed to the
infinite series representation required for continuous-time periodic signals

3.6.1 Linear Combination of Harmonically Related Complex Exponentials
A discrete-time signal X{n] is periodic with period N if
Xn]=xn+N]. (3.75)

The fundamental period is the smallest positive N for which Eqg. (3.75) holds, and the
fundamental frequency isw, =2p /N ..

The set of al discrete-time complex exponentia signals that are periodic with period N is given
by

f [n]=eMn =gk k=0+1,+2..., (3.76)

All of these signals have fundamental frequencies that are multiples of 2p /N and thus are
harmonically related.

There are only N distinct signals in the set given by Eq. (3.76); this is because the discrete-time
complex exponentials which differ in frequency by amultiple of 2p areidentical, thatis,

fn] =f [N (3.77)
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The representation of periodic sequences in terms of linear combinations of the sequences f , [n]
is
jkwgn

=§ a k@M (3.79)

qn=a af,[n]=a ae
k k k

Since the sequences f , [n] are distinct over arange of N successive values of k, the summation in

Eq. (3.78) need include terms over this range. We indicate this by expressing the limits of the

summation as k =(N). That is,

xnl= a af,[nl= a ae™" =g ae"®""

k=(N) k=(N) k=(N) (3.79)

Eq. (3.79) isreferred to as the discrete-time Fourier series and the coefficients a, as the Fourier
series coefficients.

6.2 Determination of the Fourier Series Representation of a Periodic Signal

The discrete-time Fourier series pair:

o o i n _ n
xinl= a af.[nl= a ae™" =3 a e ®mn (3.80)
k=(N) k=(N) k=(N)
- - : 3.81
i é x[n]e jkwgn :i é x[nje jk(2p /N)n (3.81)
N n=(n) N n=(n)

Eq. (3.80) is caled synthesis equation and Eqg. (3.81) is called analysis equation.

Example: Consider the signal x{n] =sinw,n, (3.82)

Xn] isperiodiconly if 2p /w, isan integer, or aratio of integer. For the case the when 2p /w,
isaninteger N, that is, when

2
Wo = (3.83)

X[ n] is periodic with the fundamental period N. Expanding the signal as a sum of two complex
exponentials, we get
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X[n]:i_ei('c‘p/N)n _ i_e-j(Zp/N)n, (384)
2] 2]
From Eq. (3.84), we have
1 1
- 4. =-—, 3.85
8 =5 A= o (3:85)

and the remaining coefficients over the interval of summation are zero. As discussed previoudly,
these coefficients repeat with period N.

The Fourier series coefficients for thisexamplewith N =5 areillustrated in the figure below.

o=

*e e
9

When 2p /w, isaratio of integer, that is, when
_2pM
0T TN (3.86)
Assuming the M and N do not have any common factors, X[n] has a fundamental period of N.
Again expanding x{n] asasum of two complex exponentials, we have

(3.87)

ie- jM(2p/N)n

2]

1 .
n :_e]M(Zp/N)n_
Anl =,

From which we determine by inspection that a,, =(1/2j), a_,, =-(1/2]j), and the remaining
coefficients over one period of length N are zero. The Fourier coefficients for this example with

M =3 and N =5 aredepicted in the figure below.

ol

N

3458686 8 9101 13 k

s
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Example: Consider the signal

Xn] = 1+sm€§—p9n+3coaéloo &P PO

TN+ cosc_;—n +=
N g N g 2g

Expanding this signal in terms of complex exponential, we have

+9 e]p/29e]2(2p/N)n éﬁ-e jp/29€ ]2(2p/N)n.

x[n] =1+ (§ +i)ei(2p/N)n + (§_ i)e i(2p/N)n
2 2] 2 @ e2 @

2]

Thus the Fourier series coefficients for thissignal are

a, =1,
_3,1.3 1

qToTo T2 2
3 1 3

a,=5-5-=5%t51,
2 2 2 2
1.

aZ_EJ’
1.

a-z_'EJ

with a, =0 for other values of k in the interval of summation in the synthesis equation. The real

and imaginary parts of these coefficients for N =10, and the magnitude and phase of the
coefficients are depicted in the figure below.

Re {a}

2N -N 0 N 2N k

Im (a}

1
Ll L L]
8 I o I I PR I B T B
1

(@)

25/3 Yao



ELG 3120 Signals and Systems Chapter 3

ia

0

oS

[

N 2N k

a,

)

Example: Consider the square wave shown in the figure below.

2011 O 11

o 1

1for - N, £n£ N,, wechoose the length-N interval of summation to include

Because X n] =
therange - N, £n£ N,. The coefficients are given
— 1 y - jk(2p/N)n
-+ a ’ (3.88)
N .-
Let m=n+ N,, we observe that Eq. (3.88) becomes
Yao
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18" - jk(2p I N)(m- Ny) 1 jk(2p IN)N 9" - jk(2p /N)m
a=—ae v=—e ra e , (3.89)
n=0 n=0
jk2p (2N, +1) /N 24 ;
a, = LokamnE- e 0_ 1 sn2pk(N, +1/2)/N] 3oy yon L (300)
N é 1- e K@M 5N sin(pk/ N)
and
+
- 2N, 1, k=0, £N, £2N, ... (3.91)

k

The coefficients a, for 2N, +1=15 are sketched for N =10, 20, and 40 in the figure below.

The partial sums for the discrete-time square wave for M =1, 2, 3,and 4 are depicted in the
figure below, where N =9, 2N, +1=5.

We see for M =4, the partial sum exactly equalsto Xn]. In contrast to the continuous-time
case, there are no convergence issues and there is no Gibbs phenomenon.
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X M=1

4

[

| “l

] | PYY | {

~18 -9 0 9 18 n
(@
Xin] M=2

-18 -9 0 9 18 n
(b)
xIn] M=3

-18 -9 0 9 18 n
©
Xnl M=4

~18 -9 0 9 18 n
(d)

3.7 Propertiesof Discrete-Time Fourier Series

Property Periodic Signal Fourier Series Coefficients
X[n]i Periodicwith period N and & .
Y Periodicwith period N
y[n]g fundamenta | frequency w, =2p b,
Linearity AX[n] + By[n] Aa, +Bb,
Time Shifting xn- n] e k@ Nty
Frequency shifting M@ /NNy a,
Conjugation X*[n] a*_,
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Time Reversal X- n] a,
Time Scaling [n]_p{n/ni,if nisamultiplef n 1 a¥iewed as periodicg
Xm 10, if nisamultiplef n makg with period mN
(Periodic with period mN )
Periodic Convolution a Xriyin- r] Na, b,
r=[N]
Multiplication X nly[n] o
a albk-l
|=<N>
Differentiation x(n]- Xn-1] (1- & K@)y,
Integration n ;
= & X(K] (finite valued and periodic g 19
k=-¥ el-e a
onlyif a, =0)
Conjugate Symmetry for Xn] red a =a*

Real Signals

i K

! Refa,}=Rea.,}
Himfa,} = - imfa.,)
: la ] =la|

f ba, =-ba,

Real and Even Signals

Real and Odd Signals
Even-Odd Decomposition
of Real Signals

X[ n] real and even

X n] real and odd
1 x[n] = Bv{x{n]} [Xn] real]
ix[n] =od{x{nl} [xn] real]

a, real and even
a, purely imaginary and odd
Refa,}
jim{a,}

Parseval’ s Relation for Periodic
Signals

1 o o

—aMn = a

T n=<N>

2
a|

n=<N >

3.7.1 Multiplication

nylnl- %@ g ab,,|

|=<N>

(3.92)

Eq. (3.92) is analogous to the convolution, except that the summation variable is now restricted
to in interval of N consecutive samples. This type of operation is referred to as a Periodic
Convolution between the two periodic sequences of Fourier coefficients.

The usual form of the convolution sum, where the summation variable rangesfrom - ¥ to +¥ ,
is sometimes referred to as Aperiodic Convolution.

29/3
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3.7.2 First Difference

XN - x(n- 1= e [1- e K@M ), |

(3.93)

3.7.3 Parseval’ s Relation

1

= AN = dlad
n=<N> k=<N>

(3.94)

3.7.4 Examples

Example: Consider the signal shown in the figure below.

x[n]

IR

Xz[N]
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The signal x{n] may be viewed as the sum of the square wave x,[n] with Fourier series
coefficients b, and x,[n] with Fourier series coefficients c, .

a, =b, +c,, (3.95)
The Fourier series coefficientsfor x,[n] is

i 1sin(3pk/5)
_ 15 €in(pk/5)

 — |
!
T

fork® 0, +5, £10, ....
b (3.96)

, fork=0, £5, £10, ....

ulw

The sequence x,[n] has only a dc value, which is captured by its zeroth Fourier series
coefficient:

14
G =za x[n] =1, (3.97)
n=0

Since the discrete-time Fourier series coefficients are periodic, it followsthat ¢, =1 whenever k
is an integer multiple of 5.

i%w:/a fork1 0, +5, +10, ....
A =lg SnPKTS) (3.98)
1=, fork =0, +5, +10, ....
15

Example: Suppose we are given the following facts about a sequence X n] :

1. Xn] isperiodic with period N = 6.

2. & An=2.

3. &l (-1"xnl=1.

4. x[n] has minimum power per period among the set of signals satisfying the preceding three
conditions.

5
From Fact 2, we have a, :%é_ X[ n] :%.
n=0

| | 1 |
Notethat (-1)" =e '™ =¢ /®'%*" e seefrom Fact 3that a, :Eé- Tx(nje 1N =

ok

From Parseval’ s relation, the average power in X[n] is
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P=3

5
[«
k=0

2
2|

Since each nonzero coefficient contributes a positive amount to P, and since the values of a,and
a, are specified, the value of P is minimized by choosing a, = a, =a, = a; =0. It follows that
i 1.1
nj=a, +a.e®™ ==+=(-1",
Xn] =g, +a, i

which is shown in the figure below.

1/2
x[n]

1/6 S

TLTIT I

3.8 Fourier Seriesand LTI Systems

We have seen that the response of a continuous-time LTI system with impulse response h(t) toa
complex exponential signal € isthe same complex exponential multiplied by a complex gain:

y(t) = H(s)e",
where

H(s) = O, ht )e*at | (3.99)

In particular, for s= jw , the output is y(t) = H(jw)e™ . The complex functions H(s) and
H(jw) &e caled the system function (or transfer function) and the frequency response,

respectively.

By superposition, the output of an LTI system to a periodic signal represented by a Fourier series

+¥ +¥

) i [] i . .

x(t) = q ae’ = q a,e @™ isgiven by
k=-¥ k=-¥
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+¥ .
y) = & aH(jkw,)e™ .

k=-¥

That is, the Fourier series coefficients b, of the periodic output y(t) are given by

b, =a H(jkw,),

Chapter 3

(3.99)

(3.100)

Similarly, for discrete-time signals and systems, response h[n] to a complex exponential signal

e isthe same complex exponential multiplied by a complex gain:
yinl = H(jkw,)e™"",

where

H(e") = 5 h[nje ™ .

n=-¥

+3
Example: Suppose that the periodic signal x(t) = § a.e*® with a, =1, a,=a,

k=-3

1
aZ:a_z—E and a; =a,

h(t) = e ‘u(t)

(3.101)

(3.102)

I
N

= % iIsthe input signal to an LTI system with impulse response

To calculate the Fourier series coefficients of the output y(t) , we first compute the frequency

response:

1_ ele™ 1
1+ jw

H(jw) = Qe'e ™t =
The output is

+3
y(t) = & be"™

k=-3

where b, =a,H(jkw,)=a H(jk2), so that

b, =0, &

_1 1
4%1+szij = 4&1

0
- JZpB
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1 1 O le 1 O
b, :_gl —z=, b, :_g ——
481+ |4p g 4¢l- |4 g

h =12 1
s 4§1+J6p@ <728 e

Example: Consider an LTI system with impulse response h[n] =

the input

Xn]= cosge’z%g.
eN g

Writethe signal X[ n] in Fourier seriesform as
1

X[n] e](2p/N)n + 2@ J(2p/N)n
2

Also the transfer function is

¥ ¥
H(ejw):éane-jwn:é(ae.jw)n: l_jW.
n=0 n=0 l-ae

The Fourier series for the output

1 (. . 1 . .
nl==H e]2p/N J(2p/N)n+_H e—JZp/N e—J(Zp/N)n
Ml =5 He® ™ s e )

_1lee Qe 12 1 O _izpinyn
2 ae aelW* 281-ae g
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(3.106)
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3.9 Filtering

Filtering — to change the relative amplitude of the frequency componentsin asignal or eliminate
some frequency components entirely.

Filtering can be conveniently accomplished through the use of LTI systems with an appropriately
chosen frequency response.

LTI systems that change the shape of the spectrum of the input signal are referred to as
frequency-shaping filters.

LTI systems that are designed to pass some frequencies essentially undistorted and significantly
attenuate or eliminate others are referred to asfrequency-selective filters.

Example: A first-order low-pass filter with impulse response h(t) = e ‘u(t) cuts off the high
frequencies in a periodic input signal, while low frequency harmonics are mostly left intact. The
frequency response of thisfilter

1
1+ jw

H(j = ete™dt =
jw) = Q€e t = (3.107)

We can see that as the frequency w increase, the magnitude of the frequency response of the
filter |H (jw)| decreases. If the periodic input signal is a rectangular wave, then the output signal

will have its Fourier series coefficients b, given by

sin(kw,T,)

b =aH(jkw,)=———212 k10 3.108
k H(jkwy) kp (L+ jkw,) ( )
b, =aoH(0)=%- (3.109)

The reduced power at high frequencies produced an output signal that is smother than the input
signal.

\ 4
—
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3.10 Examples of continuous-Time Filters Described By Differential
Equations

In many applications, frequency-selective filtering is accomplished through the use of LTI
systems described by linear constant-coefficient differential or difference equations. In fact,
many physical systems that can be interpreted as performing filtering operations are
characterized by differential or difference equation.

3.10.1 A simple RC Lowpass Filter

The first-order RC circuit is one of the electrical circuits used to perform continuous-time
filtering. The circuit can perform either Lowpass or highpass filtering depending on what we
take as the output signal.

+ Vr (t) -

AAAA .
() Lo

If we take the voltage cross the capacitor as the output, then the output voltage is related to the
input through the linear constant-coefficient differential equation:

RC% +Vv_(t) = v (t). (3.111)

Assuming initial rest, the system described by Eq. (3.111) isLTI. If the input is v,(t) = e, we
must have voltage output v, (t) = H (jw)e™ . Substituting these expressions into Eq. (3.111), we
have

RC%[H (jw)e™ |+ H(jw)e™ = e, (3.112)
or
RCjwH (jw)e™ + H (jw)e™ = e, (3.113)
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1

Thenwehave H(jw) = ——.
1+ RCjw

Te amplitude and frequency response H(jw) isshown in the figure below.

iHGw)

—1/RC 0

We can aso get the impul se response
1

h(t) =——e " u(t),

(t) C (t)

and the step response is

h(t) = (1- e "")u(),

The fundamental trade-off can be found

by comparing the figures:

To pass only very low freguencies,
1/ RC should be small, or RC should

be large.

To have fast step response, we need a

smaller RC.

The type of trade-off

between

Chapter 3

(3.114)

(3.115)

(3.116)

als A=

behaviors in the frequency domain
and time domain is typical of the
issues arising in the design analysis of
LTI systems.

l
|
|
|
]
T

37/3

Yao



ELG 3120 Signals and Systems Chapter 3

3.10.2 A Simple RC Highpass Filter

If we choose the output from the resistor, then we get an RC highpass filter.

3.11 Examples of Discrete-Time Filter Described by Difference Equations
A discrete-time LTI system described by the first-order difference equation
yin]- ayin- =xXn] . (3.116)

Form the eigenfunction property of complex exponential signals, if xn]=e™" , then
yin] = H(e™)e'"", where H(e'") isthe frequency response of the system.

HEe")=—— (3.117)
1- ae™™
The impul se response of the system is
xn] =a"u[n]. (3.118)
The step responseis
1_ an+1
sin] = unj. (3.119)

(&)

From the above plots we can see that for a=0.6 the system acts as a Lowpass filter and
a=-0.6, the system is a highpass filter. In fact, for any positive value of a<1, the system
approximates a highpass filter, and for any negative value of a > -1, the system approximates a
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highpass filter, where |a| controls the size of bandpass, with broader pass bands as |g| in
decreased.

The trade-off between time domain and frequency domain characteristics, as discussed in
continuous time, also exists in the discrete-time systems.

3.11.2.2 Nonrecursive Discrete-Time Filters

The genera form of an FIR norecursive difference equation is
§
yinl = a bo{n- k[. (3.120)
k=-N

It is a weighted average of the (N+M +1) values of Xn], with the weights given by the
coefficients b, .

One frequently used example is a moving-average filter, where the output of y[n] is an average
of valuesof Xn] inthevicinity of n, - the result corresponding a smooth operation or lowpass
filtering.

An example: y[n]:%(x[n-1]+x[n]+x[n+ﬂ). (3.121)

The impulse responseis

h[n]:%(d[n- 1] +d[n] +d[n+1]), (3.122)

and the frequency response

H(e™) :%(eiw +lee ). (3.123)
[H(e!)|

Magnitude of the fre-
quency response of a three-point
moving-average lowpass filter.

—27 -n
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A generalized moving average filter can be expressed as

1 g

y[ n] = mkja_'kaX[ n- k] . (3124)

The frequency responseis

M
o)

wy—_ 1 - iwk — jw[(N-M)/2] Sin[W(M +N +1)/2]
TN S TN snwi2)

(3.125)

The frequency responses with different average window lengths are plotted in the figure below.

[H(e™)|
1
—r — /2 0] w2 v
w
()
IHE™)|
]
b Y — ™ L. 1
| 1 1 |
—ar —n/2 0 /e T
)

(b)

Magnitude of the frequency response for the lowpass moving-
average filter of eq. (3.162): () M = N =16; (b) M = N = 32.

FIR norecursive highpass filter

An example of FIR norecursive highpassfilter is
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oy =200 001,

The frequency responseis

H(ejW) :%(1_ e jW): jejW/ZSin(W/Z).

| He™) |

1 =

Chapter 3

(3.126)

(3.127)

! Frequency response of

41/3

. a simple highpass filter.

Yao



