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Chapter 1 Signal and Systems 
 

1.1 Continuous-time and discrete-time Signals 
 

1.1.1 Examples and Mathematical representation 
 
Signals are represented mathematically as functions of one or more independent variables. Here 
we focus attention on signals involving a single independent variable. For convenience, this will 
generally refer to the independent variable as time.  
 
There are two types of signals: continuous-time signals and discrete-time signals. 
 
Continuous-time signal: the variable of time is continuous. A speech signal as a function of 
time is a continuous-time signal. 
 
Discrete-time signal: the variable of time is discrete. The weekly Dow Jones stock market index 
is an example of discrete-time signal. 

 
To distinguish between continuous-time and discrete-time signals we use symbol t to denote the 
continuous variable and n to denote the discrete-time variable. And for continuous-time signals 
we will enclose the independent variable in parentheses (•), for discrete-time signals we will 
enclose the independent variable in bracket [•]. 
 
A discrete-time signal ][nx  may represent a phenomenon for which the independent variable is 
inherently discrete. A discrete-time signal ][nx  may represent successive samples of an 
underlying phenomenon for which the independent variable is continuous. For example, the 
processing of speech on a digital computer requires the use of a discrete time sequence 
representing the values of the continuous-time speech signal at discrete points of time. 
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Fig. 1.1 Graphical representation of continuous-
time signal. 
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Fig. 1.2 Graphical representation of discrete-time 
signal. 
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1.1.2 Signal Energy and Power 
 
If )(tv  and )(ti  are respectively the voltage and current across a resistor with resistance R , then 
the instantaneous power is 
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The total energy expended over the time interval 21 ttt ≤≤  is 
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and the average power over this time interval is 
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For any continuous-time signal )(tx  or any discrete-time signal ][nx , the total energy over the 
time interval 21 ttt ≤≤  in a continuous-time signal )(tx  is defined as 
 

∫
2

1

2)(
t

t
dttx ,           (1.4) 

 
where x  denotes the magnitude of the (possibly complex) number x . The time-averaged power 

is ∫−
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. Similarly the total energy in a discrete-time signal ][nx  over the time 

interval 21 nnn ≤≤  is defined as 
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In many systems, we will be interested in examining the power and energy in signals over an 
infinite time interval, that is, for +∞≤≤∞− t  or +∞≤≤∞− n . The total energy in continuous 
time is then defined  
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and in discrete time 
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For some signals, the integral in Eq. (1.6) or sum in Eq. (1.7) might not converge, that is, if )(tx  
or ][nx  equals a nonzero constant value for all time. Such signals have infinite energy, while 
signals with ∞<∞E  have finite energy. 
 
The time-averaged power over an infinite interval 
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Three classes of signals: 
 
• Class 1: signals with finite total energy,       ∞<∞E  and zero average power,  
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• Class 2: with finite average power ∞P . If 0>∞P , then ∞=∞E . An example is the signal 

4][ =nx , it has infinite energy, but has an average power of ∞P =16. 
 
Class 3: signals for which neither ∞P  and ∞E  are finite. An example of this signal is ttx =)( . 
 

1.2 Transformations of the independent variable 
 
In many situations, it is important to consider signals related by a modification of the 
independent variable. These modifications will usually lead to reflection, scaling, and shift. 
 

1.2.1 Examples of Transformations of the Independent Variable 
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(Energy Signal)
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(Power Signal)
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Fig.1.3 Discrete-time signals related by a time shift. 
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Fig. 1.4 Continuous-time signals related by a time shift. 
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Fig. 1.5 (a) A discrete-time signal ][nx ; (b) its reflection, ][ nx −  about 0=n . 
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Fig. 1.6 (a) A continuous-time signal )(tx ; (b) its reflection, )( tx −  about 0=t . 
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Fig. 1.7 Continuous-time signals related by time scaling. 

 

1.2.2 Periodic Signals 
 

A periodic continuous-time signal )(tx  has the property that there is a positive value of T for 
which 

 
)()( Ttxtx +=  for all t         (1.11) 

 
From Eq. (1.11), we can deduce that if )(tx  is periodic with period T, then )()( mTtxtx +=  for 
all t  and for all integers m . Thus, )(tx  is also periodic with period 2T, 3T, …. The fundamental 
period 0T  of )(tx  is the smallest positive value of T for which Eq. (1.11) holds. 
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Fig. 1.8 Continuous-time periodic signal. 
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A discrete-time signal ][nx  is periodic with period N , where N is an integer, if it is unchanged 
by a time shift of N, 

 
][][ Nnxnx +=           (1.12) 

 
for all values of n. If Eq. (1.12) holds, then ][nx  is also periodic with period N2 , N3 , …. The 
fundamental period 0N  is the smallest positive value of N for which Eq. (1.12) holds. 
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Fig. 1.9 Discrete-time periodic signal. 
 

1.2.3 Even and Odd Signals 
 

In addition to their use in representing physical phenomena such as the time shift in a radar 
signal and the reversal of an audio tape, transformations of the independent variable are 
extremely useful in examining some of the important properties that signal may possess. 
 
Signal with these properties can be even or odd signal, periodic signal: 
 
An important fact is that any signal can be decomposed into a sum of two signals, one of which 
is even and one of which is odd. 
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Fig. 1.10 An even continuous-time signal; (b) an odd continuous-time signal. 
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which is referred to as the even part of )(tx . Similarly, the odd part of )(tx  is given by 
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Exactly analogous definitions hold in the discrete-time case. 
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Fig.1.11 The even-odd decomposition of a discrete-time signal. 

 

1.3 Exponential and sinusoidal signals 
 

1.3.1 Continuous-time complex exponential and sinusoidal signals 
 
The continuous-time complex exponential signal 
 

atCetx =)(            (1. 15) 
 
where C  and a  are in general complex numbers. 
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Real exponential signals 
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(a)       (b) 

Fig. 1.12 The continuous-time complex exponential signal atCetx =)( , (a) 0>a ; (b) 0<a . 
 
Periodic complex exponential and sinusoidal signals 
 
If a  is purely imaginary, we have 
 

tjetx 0)( ω=            (1.16) 
 
An important property of this signal is that it is periodic. We know )(tx  is periodic with period 
T  if  
 

TjtjTtjtj eeee 0000 )( ωω+ωω ==          (1.17) 
 
For periodicity, we must have 
 

10 =ω Tje            (1.18) 
 
For 00 ≠ω , the fundamental period 0T  is 
 

0
0

2
ω

π
=T            (1.19) 

 
Thus, the signals tje 0ω  and tje 0ω− have the same fundamental period. 
 
A signal closely related to the periodic complex exponential is the sinusoidal signal 
 

)cos()( 0 φ+ω= tAtx           (1.20) 
 
With seconds as the unit of t, the units of φ  and 0ω  are radians and radians per second. It is also 
known 00 2 fπω = , where 0f  has the unit of circles per second or Hz.  
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The sinusoidal signal is also a periodic signal with a fundamental period of 0T . 
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Fig. 1.13 Continuous-time sinusoidal signal. 

 
Using Euler’s relation, a complex exponential can be expressed in terms of sinusoidal signals 
with the same fundamental period: 
 

tjte tj
00 sincos0 ωωω +=          (1.21) 

 
Similarly, a sinusoidal signal can also be expressed in terms of periodic complex exponentials 
with the same fundamental period: 
  

tjjtjj ee
A

ee
A

tA 00

22
)cos( 0

ωφωφφω −−+=+        (1.22) 

 
A sinusoid can also be expresses as 
 

{ })(
0

0Re)cos( φωφω +=+ tjeAtA         (1.23) 
 
and 
 

{ })(
0

0Im)sin( φωφω +=+ tjeAtA         (1.24) 
 
Periodic signals, such as the sinusoidal signals provide important examples of signal with infinite 
total energy, but finite average power. For example: 
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Since there are an infinite number of periods as t ranges from ∞−  to ∞+ , the total energy 
integrated over all time is infinite. The average power is finite since 
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Harmonically related complex exponentials: 
 

tjk
k et 0)( ωφ = ,  ......,2,1,0 ±±=k         (1.28) 

 
0ω  is the fundamental frequency.  

 
Example:  
 
Signal tjtj eetx 32)( +=  can be expressed as )5.0cos(2)()( 5.25.05.05.2 teeeetx tjtjtjtj =+= − , the 
magnitude of )(tx  is )5.0cos(2)( ttx = , which is commonly referred to as a full-wave rectified 
sinusoid, shown in Fig. 1.14. 
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Fig. 1.14 Full-wave rectified sinusoid. 
 
General complex Exponential signals 
 
Consider a complex exponential atCe , where θjeCC =  is expressed in polar and 0ωjra +=  is 
expressed in rectangular form. Then 
 

)sin()cos( 00
)()( 00 θωθωθωωθ +++=== ++ teCjteCeeCeeCCe rtrttjrttjrjat .  (1.29) 

 
Thus, for 0=r , the real and imaginary parts of a complex exponential are sinusoidal. 
For 0>r , sinusoidal signals multiplied by a growing exponential. 
For 0<r , sinusoidal signals multiplied by a decaying exponential. 
 
Damped signal – Sinusoidal signals multiplied by decaying exponentials are commonly refereed 
to as damped signal. 
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Fig. 1.15 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 

 

1.3.2 Discrete-time complex exponential and sinusoidal signals 
 
A discrete complex exponential or sequence is defined by 
 

nCnx α=][ ,           (1.30) 
 
where C  and α  are in general complex numbers. This can be alternatively expressed  
 

nCenx β=][ ,            (1.31) 
 

where βα e= . 
 
Real Exponential Signals 
 
If C  and α  are real, we have the real exponential signals. 
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Fig. 1.16 Real Exponential Signal nCnx α=][ : (a) α >1; (b) 0<α <1; (c) –1<α <0; (d) α <-1. 
 

Sinusoidal Signals 
 

njenx 0][ ω=            (1.32) 
 

njne nj
00 sincos0 ω+ω=ω          (1.33) 

 
Similarly, a sinusoidal signal can also be expresses in terms of periodic complex exponentials 
with the same fundamental period: 
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A sinusoid can also be expresses as 
 

{ })(
0

0Re)cos( φ+ω=φ+ω njeAnA         (1.35) 
 
and 
 

{ })(
0

0Im)sin( φ+ω=φ+ω njeAnA         (1.36) 
 
The above signals are examples of discrete signals with infinite total energy, but finite average 
power. For example: every sample of njenx 0][ ω=  contributes 1 to the signal’s energy. Thus the 
total energy +∞<<∞− n  is infinite, while the average power is equal to 1. 
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Fig.1.17 Discrete-time sinusoidal signal. 
 
 

General Complex Exponential Signals 
 
Consider a complex exponential nCα , where θjeCC =  and 0ωα=α je , then 
 

)(sin)cos( 00 θωαθωαα +++= njCjnCC nnn .      (1.37) 
 
Thus, for 1=α , the real and imaginary parts of a complex exponential are sinusoidal. 

For 1<α , sinusoidal signals multiplied by a decaying exponential. 

For 1>α , sinusoidal signals multiplied by a growing exponential. 
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(a) (b) 

 
Fig. 1.18 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 

 

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials 
 
There are a number of important differences between continuous-time and discrete-time 
sinusoidal signals. The continuous-time signals tje 0ω  are distinct for distinct values of 0ω . For 
discrete-time signals, however, these values are not distinct because the signal with 0ω  is 
identical to the signals with frequencies πω 20 ± , πω 40 ± , and so on, 
 

njnjnj eee 000 )4()2( ωπωπω == ±± .        (1.38) 
 
 
In considering discrete-time exponentials, we need only consider a frequency interval of π2 . In 
most occasions, we will use the interval πω 20 0 <≤  or πωπ <≤− 0 . 
 
The discrete-time signal njenx 0][ ω=  does not have a continuously increasing rate of oscillation 
as 0ω  is increased in magnitude, but as 0ω  is increased from 0, the signal oscillates more and 
more rapidly until 0ω  reaches π , and when 0ω  is continuously increased, the rate of oscillation 
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decreases until 0ω  reaches π2 . We conclude that the low-frequency discrete-time exponentials 
have values of 0ω  near 0, π2 , and any other even multiple of π , while the high-frequencies are 
located near πω ±=0  and other odd multiples of π . 
 
In order for the signal njenx 0][ ω=  to be periodic with period 0>N , we must have 
 

njNnj ee 00 )( ωω =+ ,           (1.39) 
 
or equivalently 
 

10 =Nje ω .           (1.40) 
 
For Eq. (1.40) to hold, N0ω  must be a multiple of π2 . That is, there must be an integer m such 
that 
 

mN πω 20 = ,            (1.41) 
 
or equivalently 
 

N
m=

π
ω
2

0 .           (1.42) 

 
From Eq. (1.40), njenx 0][ ω=  is a periodic if πω 2/0  is a rational number and is not periodic 
otherwise. 
 
The fundamental frequency of the discrete-time signal njenx 0][ ω=  is 
 

mN
02 ωπ = ,           (1.43) 

 
and the fundamental period of the signal can be 
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The comparison of the continuous-time and discrete-time signals are summarized in the table 
below: 
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Table 1 Comparison of the signals tje 0ω  and nje 0ω . 
 

tje 0ω  nje 0ω  
Distinct signals for distinct values of 0ω  Identical signals for values of 0ω  separated 

by multiples of π2  
Periodic for any choice of 0ω  Periodic only if Nm /20 πω =  for some 

integers 0>N  and m . 
Fundamental frequency 0ω  Fundamental frequency m/0ω  
Fundamental period 

00 =ω : undefined 

00 ≠ω : 
0

2
ω

π  

 

Fundamental period 
00 =ω : undefined 

00 ≠ω : 






0

2
ω

π
m  

 
 
Example : Suppose that we wish to determine the fundamental period of the discrete-time signal 
 
 

njnj eenx )4/3()3/2(][ ππ +=          (1.45) 
 
Solution: 
 
The first exponential on the right hand side has a fundamental period of 3. The second 
exponential has a fundamental period of 8.  
 
For the entire signal to repeat, each of the terms in Eq. (1.45) must go through an integer number 
of its own fundamental period. The smallest increment of n the accomplished this is 24. That is, 
over an interval of 24 points, the first term will have gone through 8 of its fundamental periods, 
and the second term through three of its fundamental periods, and the overall signal through 
exactly one of its fundamental periods. 
 
Harmonically related periodic exponentials 
 

nNjk
k en )/2(][ πφ = , ......,1,0 ±=k         (1.46) 

 
In the continuous-time case, all of the harmonically related complex exponentials tNjke )/2( π , 

......,1,0 ±=k , are distinct. But this is not the case for discrete-time signals: 
 

][][ 2)/2()/2)(( neeen k
njnNkjnNNkj

Nk φφ πππ === +
+       (1.47) 

 
There are only N distinct period exponentials in the set given in Eq. (1.46). 
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1.4 The Unit Impulse and Unit Step Functions 
 
The unit impulse and unit step functions in continuous and discrete time are considerably 
important in signal and system analysis. 
 

1.4.1 The discrete-Time Unit Impulse and Unit Step Sequences 
 
Discrete-time unit impulse is defined as 
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
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Fig. 1.19 Discrete-time unit impulse. 
 

Discrete-time unit step is defined as 
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
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Fig. 1.20 Discrete-time unit step sequence. 
 
The discrete-time impulse unit is the first difference of the discrete-time step 
 

]1[][][ −−= nununδ ,          (1.50) 
 
The discrete-time unit step is the running sum of the unit sample: 
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∑
−∞=

=
n

m

mnu ][][ δ ,           (1.51) 

 
It can be seen that for 0<n , the running sum is zero, and for 0≥n , the running sum is 1. 
 

If we change the variable of summation from m to mnk −=  we have, ∑
∞

=

−=
0

][][
k

knnu δ . 

 
The unit impulse sequence can be used to sample the value of a signal at 0=n . Since ][nδ  is 
nonzero only for 0=n , it follows that 
 

][]0[][][ nxnnx δδ = .           (1.52) 
 
More generally, a unit impulse ][ 0nn −δ , then 
 

][][][][ 000 nnnxnnnx −=− δδ         (1.53) 
 
This sampling property is very important in signal analysis. 
 

1.4.2 The Continuous-Time Unit Step and Unit Impulse Functions 
 
Continuous-time unit step is defined as 
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Fig. 1.21 Continuous-time unit step function. 
 
The continuous-time unit step is the running integral of the unit impulse 
 

∫ ∞−
=

t
dtu ττδ )()( .          (1.55) 

 
The continuous-time unit impulse can also be considered as the first derivative of the continuous-
time unit step, 
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dt
tdu

t
)()( =δ .           (1.56) 

 
Since )(tu  is discontinuous at 0=t  and consequently is formally not differentiable. This can be 
interpreted, however, by considering an approximation to the unit step )(tu ∆ , as illustrated in the 
figure below, which rises from the value of 0 to the value 1 in a short time interval of length ∆ .  
 
 

)(tu ∆

1

∆0
t

∆0

∆

1

t

)(t∆δ

 
(a) (b) 

 
Fig. 1.22 (a) Continuous approximation to the unit step )(tu ∆ ; (b) Derivative of )(tu ∆ . 

 
 

The derivative is 
 

dt
tdu

t
)()( ∆

∆ =δ ,          (1.57) 

 





 ∆<≤

∆=∆

otherwise

tt
,0

0,1
)(δ ,          (1.58) 

 
as shown in Fig. 1.22. 
 
Note that )(t∆δ  is a short pulse, of duration ∆  and with unit area for any value of ∆ . As 0→∆ , 

)(t∆δ  becomes narrower and higher, maintaining its unit area. At the limit, 
 

)(lim)(
0

tt ∆→∆
= δδ ,           (1.59) 

 
)(lim)(

0
tutu ∆→∆

= ,           (1.60) 

 
and 
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dt
tdu

t
)()( =δ .            (1.61) 

 
Graphically, )(tδ  is represented by an arrow pointing to infinity at 0=t , “1” next to the arrow 
represents the area of the impulse. 
 

t

)(tδ
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0
t

)(tkδ

k
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Fig. 1.23 Continuous-time unit impulse. 
 
Sampling property of the continuous-time unit impulse: 
 

)()0()()( txttx δδ = ,           (1.62) 
 
Or more generally, 
 

)()()()( 000 tttxtttx −=− δδ          (1.63) 
 
Example: 
 
 Consider the discontinuous signal )(tx  

)(tx
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t
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-2

)(tx&

0

 
 
 

Fig. 1.24 The discontinuous signal and its derivative. 
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Note that the derivative of a unit step with a discontinuity of size of k gives rise to an impulse of 
area k at the point of discontinuity. 
 

1.5 Continuous-Time and Discrete-Time Systems 
 
A system can be viewed as a process in which input signals are transformed by the system or 
cause the system to respond in some way, resulting in other signals as outputs. 
 
Examples 
 

+
-

R

C)(tvs )(0 tv

+

-)(ti

 
(a) 

 

)(tf
 

 
(b) 

 
Fig. 1. 25 Examples of systems. (a) A system with input voltage )(tvs  and output voltage )(0 tv . 

(b) A system with input equal to the force )(tf and output equal to the velocity )(tv . 
 

A continuous-time system is a system in which continuous-time input signals are applied and 
results in continuous-time output signals. 
 

Continuous-time
system

)(tx )(ty
 

 
A discrete-time system is a system in which discrete-time input signals are applied and results in 
discrete-time output signals. 
 

Discrete-time
system

][nx ][ny
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1.5.1 Simple Examples of Systems 
 
Example 1: Consider the RC circuit in Fig. 25 (a). 
 
The current )(ti  is proportional to the voltage drop across the resistor: 

R
tvtv

ti Cs )()()( −
= .           (1.64) 

 
The current through the capacitor is  
 

dt
tdv

Cti C )()( = .          (1.65) 

 
Equating the right-hand sides of Eqs. 1.64 and 1.65, we obtain a differential equation describing 
the relationship between the input and output: 
 

)(1)(1)(
tv

RC
tv

RCdt
tdv

sC
C =+ ,         (1.66) 

 
 
Example 2: Consider the system in Fig. 25 (b), where the force )(tf as the input and the velocity 

)(tv as the output. If we let m denote the mass of the car and vρ  the resistance due to friction. 
Equating the acceleration with the net force divided by mass, we obtain 
 

[ ])()(1)(
tvtf

mdt
tdv

ρ−=  ⇒  )(1)()(
tf

m
tv

mdt
tdv

=+
ρ .    (1.67) 

 
Eqs.1.66 and 1.77 are two examples of first-order linear differential equations of the form: 
 

 )()()(
tbxtay

dt
tdy

=+ .          (1.66) 

 
Example 3: Consider a simple model for the balance in a bank account from month to month. 
Let ][ny  denote the balance at the end of nth month, and suppose that ][ny  evolves from month 
to month according the equation: 
 

][]1[01.1][ nxnyny +−= ,          (1.67) 
 
or  
 

][]1[01.1][ nxnyny =−− ,         (1.68) 
 
where ][nx  is the net deposit (deposits minus withdraws) during the nth month ]1[01.1 −ny  
models the fact that we accrue 1% interest each month. 
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Example 4: Consider a simple digital simulation of the differential equation in Eq. (1.67), in 
which we resolve time into discrete intervals of length ∆  and approximate )(/)( tdtdv  at ∆= nt  
by the first backward difference, i.e., 

∆
∆−−∆ ))1(()( nvnv

Let )(][ ∆= nvnv  and )(][ ∆= nfnf , we obtain the following discrete-time model relating the 
sampled signals ][nv  and ][nf , 

][
)(

]1[
)(

][ nf
m
∆

nv
m

m
nv

∆+
=−

∆+
−

ρρ
. (1.69) 

Comparing Eqs. 1.68 and 1.69, we see that they are two examples of the first-order linear 
difference equation, that is, 

][]1[][ nbxnayny =−+ . (1.70) 

Some conclusions: 

• Mathematical descriptions of systems have great deal in common;
• A particular class of systems is referred to as linear, time-invariant systems.
• Any model used in describing and analyzing a physical system represents an idealization of

the system.

1.5.2 Interconnects of Systems 

System1 System1Input Output

(a) 

System1

System 2

+Input Output

(b) 
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System1

System 3

Input Output+

System 2

 
(c) 

 
Fig. 1.26 Interconnection of systems. (a) A series or cascade interconnection of two systems; (b) 
A parallel interconnection of two systems; (c) Combination of both series and parallel systems. 

 
 

System1Input Output

System 2

+

 
 

Fig. 1.27 Feedback interconnection.  
 

V ±

Rs

Vi

s

+

-
A

R1
R2

Vf
R L

Vo

•

 
(a) 

 

FB

BASIC
AMPLIFIER

A

FEEDBACK
NETWORK

+
+

-

sv

Feedback
Signal

Lf vv β=

Lv

iL vAv =
fsi vvv −=

 
(b) 
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Fig. 1.28 A feedback electrical amplifier. 
 

1.6 Basic System Properties 
 

1.6.1 Systems with and without Memory 
 
A system is memoryless if its output for each value of the independent variable as a given time is 
dependent only on the input at the same time. For example: 
 

22 ])[][2(][ nxnxny −= ,          (1.71) 
 
is memoryless.  
 
A resistor is a memoryless system, since the input current and output voltage has the relationship: 

 
 

)()( tiRtv = ,                 (1.72) 
 
where R  is the resistance. 
 
One particularly simple memoryless system is the identity system, whose output is identical to its 
input, that is 
 

)()( txty = ,   or  ][][ nxny =  
 
An example of a discrete-time system with memory is an accumulator or summer. 
 

][]1[][][][][
1

nxnynxkxkxny
n

k

n

k

+−=+== ∑∑
−

−∞=−∞=

, or      (1.73) 

 
][]1[][ nxnyny =−− .          (1.74) 

 
Another example is a delay 
 

]1[][ −= nxny .          (1.75) 
 
A capacitor is an example of a continuous-time system with memory, 
 
 

ττ∫ ∞−
=

t
di

C
tv )(1)( ,               (1.76) 

 

+

-

)(tv

)(ti

+

-

)(tv

)(ti
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where C is the capacitance. 
 

1.6.2 Invertibility and Inverse System 
 
A system is said to be invertible if distinct inputs leads to distinct outputs. 
 

Systemx[n]
y[n]

w[n]=x[n]
Inverse
system

 
 
 

y(t)=2x(t)x(t)
y(t)

w(t)=x(t)w(t)=0.5y(t)
 

 
 

x[n]
y(t)

∑
− ∞=

=
n

k

kxny ][][ ]1[][][ −−= nynynw ][][ nxnw =

 
 

Fig. 1.29 Concept of an inverse system.  
 

Examples of non-invertible systems: 
 

0][ =ny , 
 
the system produces zero output sequence for any input sequence. 
 

)()( 2 txty = ,  
 
in which case, one cannot determine the sign of the input from the knowledge of the output. 
 
Encoder in communication systems is an example of invertible system, that is, the input to the 
encoder must be exactly recoverable from the output. 
 

1.6.3 Causality 
 
A system is causal if the output at any time depends only on the values of the input at present 
time and in the past. Such a system is often referred to as being nonanticipative, as the system 
output does not anticipate future values of the input. 
 
The RC circuit in Fig. 25 (a) is causal, since the capacitor voltage responds only to the present 
and past values of the source voltage. The motion of a car is causal, since it does not anticipate 
future actions of the driver. 
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The following expressions describing systems that are not causal: 
 

]1[][][ +−= nxnxny ,                (1.77) 
 
and 
 

)1()( += txty .                (1.78) 
 
All memoryless systems are causal, since the output responds only to the current value of input. 
 
Example : Determine the Causality of the two systems: 
 
(1) ][][ nxny −=  
(2) )1cos()()( += ttxty  
 
Solution: System (1) is not causal, since when 0<n , e.g. 4−=n , we see that ]4[]4[ xy =− , so 
that the output at this time depends on a future value of input. 
 
System (2) is causal. The output at any time equals the input at the same time multiplied by a 
number that varies with time. 
 

1.6.4 Stability 
 
A stable system is one in which small inputs leads to responses that do not diverge. More 
formally, if the input to a stable system is bounded, then the output must be also bounded and 
therefore cannot diverge. 
 
 
Examples of stable systems and unstable systems:  
 

+
-

R

C)(tvs )(0 tv

+

-)(ti

 
)(tf

 
(a)       (b) 

 
The above two systems are stable system. 
 

The accumulator ∑
−∞=

=
n

k

kxny ][][  is not stable, since the sum grows continuously even if ][nx  is 

bounded. 
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Check the stability of the two systems: 
 
• S1; )()( ttxty = ; 
• S2: )()( txety =  
 
• S1 is not stable, since a constant input 1)( =tx , yields tty =)( , which is not bounded – no 

matter what finite constant we pick, )(ty  will exceed the constant for some t. 
 
• S2 is stable. Assume the input is bounded Btx <)( , or BtxB <<− )(  for all t. We then see 

that )(ty  is bounded BB etye <<− )( . 
 

1.6.5 Time Invariance 
 
A system is time invariant if a time shift in the input signal results in an identical time shift in 
the output signal. Mathematically, if the system output is )(ty  when the input is )(tx , a time-
invariant system will have an output of )( 0tty −  when input is )( 0ttx − . 
 
Examples:  
 
• The system )](sin[)( txty =  is time invariant. 
 
• The system ][][ nnxny =  is not time invariant. This can be demonstrated by using 

counterexample. Consider the input signal ][][1 nnx δ= , which yields 0][1 =ny . However, 
the input ]1[][2 −= nnx δ  yields the output ]1[]1[][2 −=−= nnnny δδ . Thus, while ][2 nx  is 
the shifted version of ][1 nx , ][2 ny  is not the shifted version of ][1 ny . 

 
• The system )2()( txty =  is not time invariant. To check using counterexample. Consider 

)(1 tx  shown in Fig. 1.30 (a), the resulting output )(1 ty  is depicted in Fig. 1.30 (b). If the 
input is shifted by 2, that is, consider )2()( 12 −= txtx , as shown in Fig. 1.30 (c), we obtain 
the resulting output )2()( 22 txty =  shown in Fig. 1.30 (d). It is clearly seen that 

)2()( 12 −≠ tyty , so the system is not time invariant. 
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-2 2

)(1 tx

1

-1 1

1

)(1 ty

0 4

1

)2()( 12 −= txtx

 
(a)    (b)    (c) 

0 2

1

)(2 ty

  1 3

1

)2(2 −ty

 
(d)     (e) 

 
Fig. 1.30 Inputs and outputs of the system )2()( txty = . 

1.6.6 Linearity 
 

The system is linear if 
 
• The response to )()( 21 txtx +  is )()( 21 tyty + - additivity property 
• The response to )(1 tax  is )(1 tay - scaling or homogeneity property. 
 
The two properties defining a linear system can be combined into a single statement: 
 
• Continuous time: )()()()( 2121 tbytaytbxtax +→+ , 
• Discrete time: ][][][][ 2121 nbynaynbxnax +→+ . 
 
Here a  and b  are any complex constants. 
 
Superposition property: If ...,3,2,1],[ =knxk  are a set of inputs with corresponding outputs 

...,3,2,1],[ =knyk , then the response to a linear combination of these inputs given by 
 

...][][][][][ 332211 +++== ∑ nxanxanxanxanx
k

kk ,      (1.79) 

 
is 
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...][][][][][ 332211 +++== ∑ nyanyanyanyany
k

kk ,     (1.80) 

 
which holds for linear systems in both continuous and discrete time. 
 
For a linear system,  zero input leads to zero output. 
 
Examples:  
 
• The system )()( ttxty =  is a linear system. 
• The system )()( 2 txty =  is not a liner system. 
• The system { }][Re][ nxny = , is additive, but does not satisfy the homogeneity, so it is not a 

linear system. 
• The system 3][2][ += nxny  is not linear. 3][ =ny  if 0][ =nx , the system violates the “zero-

in/zero-out” property. However, the system can be represented as the sum of the output of a 
linear system and another signal equal to the zero-input response of the system. For system 

3][2][ += nxny , the linear system is  
 

][2][ nxnx → , 
 

and the zero-input response is 
 

3][0 =ny  
 
as shown in Fig. 1.31. 
 

Linear system +

)(0 ty

)(ty)(tx

 
 

Fig. 1.31 Structure of an incrementally linear system. )(0 ty  is the zero-input response of the 
system. 

 
The system represented in Fig. 1.31 is called incrementally linear system. The system responds 
linearly to the changes in the input. 
 
The overall system output consists of the superposition of the response of a linear system with a 
zero-input response.  
 




