EXPERIMENT NO.6

TITLE: OP-AMP AS INTEGRATOR.

OBJECTIVES:

- 1. To assemble the circuit of integrator using op-amp IC 741.
- 2. To observe and plot the output voltage waveform of integrator for sine wave and square wave input.

LAB REQUIREMENTS:

Breadboard, Op-amp IC 741, Resistors (R1/RF), Capacitor(Cf), DC regulated Dual power supply (0-30V), Function Generator, CRO/DSO and connecting wires/Probes.

CIRCUIT DIAGRAM:

Practical Integrator:

THEORY:

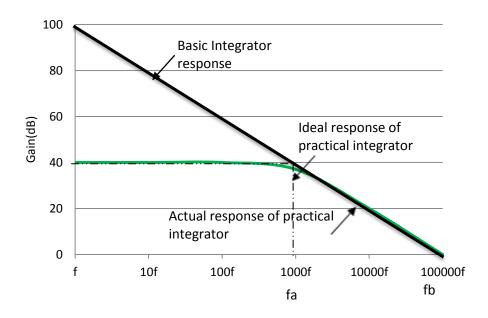
A circuit in which the output voltage waveform is the integral of the input voltage waveform is known as integrator. Such circuit is obtained by using a basic inverting amplifier configuration if the feedback resistor R_F is replaced by a capacitor C_F . The output voltage of the integrator circuit is given as-

$$v_o = -\frac{1}{R_1.C_F} \int_0^t v_{in} \ dt + C$$

Where C is the constant of integration and is proportional to the value of output voltage v_o at time t=0 sec.

The frequency (f_b) at which the gain of integrator is 0dB is given by-

$$f_b = \frac{1}{2\pi . R_1. C_F}$$


When $v_{in}=0$, the basic integrator works as an open loop amplifier because capacitor C_F acts as open circuit to the input offset voltage v_{io} which produces error voltage at the output of integrator. Hence to reduce the effect of error voltage at the output, a resistor R_F is connected across the feedback capacitor C_F . Thus R_F limits the low frequency gain and minimizes variations in the output voltage.

The gain limiting frequency of the (fa) of the practical integrator is given by-

$$f_b = \frac{1}{2\pi . R_F. C_F}$$

The circuit acts as an integrator between fa and fb.

Frequency Response of basic and practical integrator:

EXPERIMENTAL PROCEDURE:

- 1. Refer the Pin Diagram of op-amp IC741 & assemble the basic integrator circuit as per circuit diagram on the breadboard.
- 2. Apply V_{CC} & V_{EE} = ±15V from DC regulated dual power supply.
- 3. First calculate the frequency 'fb' by using the formula stated above.
- 4. Now apply AC input sine wave signal of suitable amplitude & frequency $\leq fb$ from the function generator.
- 5. Observe the output voltage waveform on oscilloscope.
- 6. Similarly, Now apply AC input sine wave signal of suitable amplitude & frequency $\leq fb$ from the function generator.
- 7. Now connect resistor R_F across C_F.

- 8. Observe the effect of $R_{\text{\tiny F}}$ on the output voltage waveform.
- 9. Note down the readings in the observation table.
- 10. Plot the input & output voltage waveform on graph paper.

OBSERVATION TABLE:

Sr. No.	Input Voltage Amplitude (Vp-p)	Input Voltage Frequency	R1	C1	R _F	Output Voltage Amplitude (Vp-p)	
1							
2							
3							
4							
5							

CALCULATIONS:

RESULT:

1.	For a sine wave input to an op-amp integrator produces											
	output.											
2.	For	a	square	wave	input	to	an	op-amp	integrator			
	produces				output.	output.						

EVALUATION (BY TEACHER):

Excellent/Good/Average/Poor