<u>TITLE</u>: INTERPRETATION OF DATA SHEETS AND CHARACTERISTICS OF AN OP-AMP.

OBJECTIVES:

- 1. To extract from data sheets some of the basic op-amp characteristics such as typical applications, absolute maximum ratings, connection diagram and electrical characteristics.
- 2. To define the terms input offset voltage, input offset current, CMRR, Large Signal Voltage Gain and slew rate & state their typical values for 741C.

LAB REQUIREMENT:

Datasheet of op-amp IC 741.

INTERPRETATION OF A TYPICAL SET OF DATA SHEETS:

Manufacturers supply datasheets for the IC they produce. These data sheets provide wealth of information: absolute maximum ratings, intended applications, performance limitation, pin diagrams, equivalent circuits of the devices and more. To get the most use out of these data sheets, we must be able to interpret properly the information presented in them. Proper interpretation of the data sheet not only help you to understand the characteristics of op-amp but should also help you to select proper op-amp for a desired application.

How to read the data sheets of op-amp IC $\mu A741?$

With reference to the data sheets of op-amp IC μ A741, information on the data sheets is broken down into following groups:

- 1. At the top of the datasheet is a device number and brief description of the basic types of the device such as frequency compensated op-amp, low power op-amp or low cost programmable op-amp.
- 2. A general description is given that includes the construction process of the device, intended applications and list of main features.
- 3. Absolute maximum ratings for the proper operation of the device are then specified. These values are limiting values of the device which should not be exceeded.
- 4. Pin configuration, package types and order information is given.
- 5. The internal schematic diagram is shown.
- 6. Electrical Characteristics and parameter values under specific conditions are also given.
- Typical Performance curve such as voltage gain v/s supply voltage, output voltage swing as a function of frequency and power consumption as a function of temperature are provided.
- 8. Finally, typical applications and test circuits for the device are illustrated.

µA741 FREOUENCY-COMPENSATED OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The μ A741 is a high performance monolithic operational ampliture constructed on a single silicon chip, using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications.

Notes on following pages.

CONNECTION DIAGRAMS

(TOP VIEW)

8 LEAD METAL CAN

ALC: N

*Planar is a patented Fairchild process

ut Offset Voltage	THE PARTY OF THE P				
	$R_{\rm s} \leq 10 \ {\rm k}\Omega$		2.0	6.0	m۷
ut Offset Cuont	-		20	200	nA
ut Bias Current			80	500	nA
ut Resistance		0.3	2.0		MΩ
ut Capacitance			1.4		pF
et Voltage Adjustment Range			±15		тяV
ut Voltage Range		±12	±13		۷
nmon Mode Rejection Ratio	$R_{\rm s} \leq 10 \ {\rm k}\Omega$	70	90		dB
ply Voltage Rejection Ratio	$R_{s} \leq 10 \ k\Omega$		30	150	μ V /
ge-Signal Voltage Gain	$R_{L} \geq 2 k\Omega$, $V_{out} = \pm 10 V$	20,000	200,000		
put Voltage Swing	$R_{L} \ge 10 \ k\Omega$	±12	±14		v
	$R_{L} \geq 2 \ k\Omega$	±10	±13		v
put Resistance			75		Ω
put Short-Circuit Current			25		mA
ply Current			1.7	2.8	mA
ver Consumption			50	85	m₩
nsient Response (unity gain) Scotling	$V_{in} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega, C_{L} \leq 10$	00 pF			
herebeet			0.3		μs 0/
w Pata	P > 2 kg		5.0		70 V/
* note	$R_{L} \ge 2 R_{12}$		0.5		ν /μ
The following specifications apply	for $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$:				
ut Offset Voltage				7.5	m¥
ut Offset Current				300	nA
ut Bias Current				800	nA
ge-Signal Voltage Gain	$R_{L} \geq 2 k\Omega, V_{out} = \pm 10 V$	15,000			
OPEN LOOP VOLTAGE G	TYPICAL PERF 393 AIN OUTPUT	ORMANCE CURVES	; iNP(UT COMMON MODE	
SUPPLY VOLTAGE	SUPP	LY VOLTAGE	FUNCTIO	N OF SUPPLY VOL	TAGE
10 t 25 C	40 0°C «1 × 40°C		16 0'C 5TA - 40	rc l	
w + + + + + + + + + + + + + + + + + + +	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ະ "		
*	28		12	+	
	\$		2 u		
3			ĝ -		
				A + I -	<u> </u>
n			° 2		
	u#741	741هي	•		μ.74
0 2 4 6 8 10 12 14 16 Supply voltage (* v i	01 C D5 M (15 20 LY VOLTAGE - <u>+</u> .V	,	LU 15 SUPPLY VOLTAGE - ± V	70
Carlo and a subscription of \$1	3 00 M				

	<u>Foll</u>	owing	<u>poi</u>	nts	s can be out	ine	d from the da	<u>ita sh</u>	eets	of op-	amp IC μ/	<u> 4741-</u>
1.	The Fairchild 741 is											
2.	The	741	is	а	monolithic	IC	constructed	by	a s	pecial	process	called
	۱ 						, 	It		is		suited
	for										applic	ations.
3.	The f	featur	es of	f th	e 741 are as	follo)WS:					
4.	Abso	olute n	naxii	mu	m ratings are	e spe	ecified for					
5.	The 2	741 ia	ava	ilał	ole in all thre	e pa	ckages:					
6.	The e	equiva	alent	t cii	rcuit diagran	- 1 illu	strates					
7.	For l	IC 74:	1C, t	wo	sets of elec	trica	al specificatio	ons are	e giv	ven i.e.	One set a	applies
	at)	whereas t	he ot	ther	set	applies t	to the
	com	nercia	al tei	mp	erature rang	e fro	om					
8.	The	electr	ical j	par	ameters mei	ntion	ned in the dat	a shee	ets a	re app	licable at	supply
	volta	iges of	f							_·		
<u>De</u>	finiti	<u>ons o</u>	<u>f Ele</u>	ecti	rical Parame	eter	<u>s & their typi</u>	ical va	lue	<u>s for 74</u>	<u>41C:</u>	
1.	Inpu	t Offs	set V	olt	age:							

2. Input Offset Current:

3.	CMRR:
_	
4.	Large Signal Voltage Gain:
F	Slow Date:
э.	Siew Rate:

EVALUATION(FOR TEACHER):

Excellent/Good/Average/Poor