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Justification of Learning the Subject: 

 
What is Discrete Mathematics?   

 

Consider an analog clock (One with hands that continuously rotate and show time in continuous 

fashion) and a digital clock (It shows time in discrete fashion). The former one gives the idea of 

Continuous Mathematics whereas the later one gives the idea of Discrete Mathematics. Thus, 

Continuous Mathematics deals with continuous functions, differential and integral calculus etc. 

whereas discrete mathematics deals with mathematical topics in the sense that it analyzes data  

whose values are separated (such as integers: Number line has gaps) 

 

Example of continuous math – Given a fixed surface area, what are the dimensions of a cylinder 

that maximizes volume? 

 

Example of Discrete Math – Given a fixed set of characters, and a length, how many different 

passwords can you construct?  How many edges in graph with n vertices?  How many ways to 

choose a team of two people from a group of n?   

 



Why do you learn Discrete Mathematics?   

 

This course provides some of the mathematical foundations and skills that you need in your 

further study of Information Technology and Computer Science & Engineering. These topics 

include: Logic, Counting Methods, Relation and Function, Recurrence Relation and Generating 

Function, Introduction to Graph Theory And Group Theory, Lattice Theory and Boolean Algebra 

etc. 

 

. 
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Unit I 
 

PROPOSITIONAL LOGIC AND COUNTING THEORY 

 
 

 OBJECTIVES:  

 

After going through this unit, you will be able to : 

  Define proposition & logical connectives. 

  To use the laws of Logic. 

  Describe the logical equivalence and implications. 

  Define arguments & valid arguments. 

              To study predicate and quantifier. 

  Test the validity of argument using rules of logic. 

  Give proof by truth tables. 

  Give proof by mathematical Induction. 

             Discuss Fundamental principle of counting. 

             Discuss basic idea about permutation and combination. 

             Define Pigeon hole principle. 

             Study recurrence relation and generating function. 

 

 

  INTRODUCTION : 

 
Mathematics is assumed to be an exact science.  Every statement in Mathematics 

must be precise.  Also there can’t be Mathematics without proofs and each proof needs 

proper reasoning.   Proper reasoning involves logic.   The dictionary meaning of 

‘Logic’ is the science of reasoning.   The rules of logic give precise meaning to 

mathematical statements.   These rules are used to distinguish between valid & invalid 

mathematical arguments. 

 

In addition to its importance in mathematical reasoning, logic has numerous 

applications in computer science to verify the correctness of programs & to prove the 

theorems in natural & physical sciences to draw conclusion from experiments, in 

social sciences & in our daily lives to solve a multitude of problems. 

 

 



 

The area of logic that deals with propositions is called the propositional calculus or 

propositional logic.  The mathematical approach to logic was first discussed by British 

mathematician George Boole; hence the mathematical logic is also called as Boolean 

logic. 

 

In this chapter we will discuss a few basic ideas. 

 

PROPOSITION (OR STATEMENT) 

 

A proposition (or a statement) is a declarative sentence that is either true or 

false, but not both. 

 
A proposition (or a statement) is a declarative sentence which is either true or 

false but not both. 

 
Imperative, exclamatory, interrogative or open sentences are not statements   in   

logic. 

 
 Example 1 : For Example consider, the following sentences. 

(i)      VSSUT is at Burla. 

(ii)        2 + 3 = 5 

(iii)       The Sun rises in the east. 

(iv) Do your home work. 

(v) What are you doing? 

(vi) 2 + 4 = 8 

(vii) 5 < 4 

(viii) The square of 5 is 15. 

ix) (ix)  x  3  2 

(x) May God Bless you! 

 
All of them are propositions except (iv), (v),(ix) & (x) sentences ( i), (ii) are true, 

whereas (iii),(iv), (vii) & (viii) are false. 

 
Sentence (iv) is command, hence not a proposition. ( v ) is a question so not a 

statement.  ( ix) is a declarative sentence but not a statement, since it is true or 

false depending on the value of x.  (x) is a exclamatory sentence and so it is not  

a statement. 

 

Mathematical identities are considered to be statements. Statements which are 

imperative, exclamatory, i n t e r roga t ive  or open are not statements in logic. 

 



 

Compound statements: 
 

Many propositions are composites that are, composed of sub propositions and 

various connectives discussed subsequently. Such composite propositions are 

called compound propositions. 

 
A proposition is said to be primitive if it cannot be broken down into simpler 

propositions, that is, if it is not composite. 

 
Example 2 : Consider, for example following sentences.  

a. “The sun is shining today and it is colder than 

yesterday” 

b. “Sita is intelligent and she studies every night.” 

 
Also the propositions in Example 1 are primitive propositions. 
 

LOGICAL OPERATIONS   OR   LOGICAL CONNECTIVES : 

 

The phrases or words which combine simple statements are called logical 

connectives. There are five types of connectives. Namely, ‘not’, ‘and’, ‘or’, 

‘if…then’, iff etc. The first one is a unitary operator whereas the other four are 

binary operators. 

In  the  following  table  we  list  some  possible  connectives,  their symbols & 

the nature of the compound statement formed by them. 

 

Sr. No. Connective Symbol Compound statement 

1 
 

2 
 

3 
 

4 
 
 

5 

AND 

OR 

NOT 

If....then 
 
 

If and only if (iff) 


 







 

 

         Conjunction 
 

Disjunction 
 

Negation 
 

Conditional or 

implication 
 

Biconditional 

 

Now we shall study each of basic logical connectives in details. 

 
 

Basic Logical Connectives: 

 
Conjunction (AND): 

 
If two statements are combined by the word “and” to form a compound 

proposition (statement) then the resulting proposition is called the conjunction of 

two propositions. 
 

Symbolically, if P & Q are two simple statements, then ‘P  Q’ denotes the 

conjunction of P and Q and is read as ‘P and Q. 

 

 
 



 

Since, P   Q is a proposition it has a truth value and this truth value 

depends only on the truth values of P and Q. 
 

Specifically, if P & Q are true then P   Q is true; otherwise P   Q i s  

 

false. 

 
The truth table for conjunction is as follows.  

 

P Q P  Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

F 

 

Example 3: 

 
Let P:  In this year monsoon is very good. 

 Q: The rivers are flooded. 

 

Then, P  Q:  In this year monsoon is very good and the rivers are flooded. 
 

 

Disjunction (OR) : 

 
Any  two  statements  can  be  connected  by  the  word  ‘or’  to  form  a 

compound statement called disjunction. 
 

Symbolically, if P and Q are two simple statements, then P  Q denotes 

the disjunction of P and Q and read as ' P or Q ' . 

 

The truth value of P  Q depends only on the truth values of P and Q. 

Specifically if P and Q are false then PQ is false, otherwise P  Q i s  true. 

 

The truth table for disjunction is as follows. 

P Q P  Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

T 

T 

F 



 

 

 
 

Example 4: 

 
P: Paris is in France 

Q  2  3  6 

then P  Q : Paris is in France or 2 + 3 = 6. 

Here, P  Q is true since P is true & Q is False. 
 

Thus, the disjunction P  Q is false only when P and Q are both false. 

 
 Negation (NOT) 

 
Given any proposition P, another proposition, called negation of P, can be 

formed by modifying it by “not”. Also by using the phrase “It is not the case that 

or”  “It is false that” before P we will able to find the negation. 

Symbolically, P Read as “not P” denotes the negation of P. the truth value of P 

depends on the truth value of P

If P is true then P is false and if P is false then P is true.  The truth table for 

Negation is as follows: 

 

P P 

T F 

F T 

 

Example 5: 

 
Let P: 3 is a factor of 12. 

Then Q = P: 3 is not a factor of 12. 

Here P is true & P is false. 
 

 Conditional or Implication: (If…then) 

 
If two statements are combined by using the logical connective 

‘if…then’ then the resulting statement is called a conditional statement. 



 

 

If P and Q are two statements forming the implication “if P then 

Q” then we denotes this implication P  Q . 

In the implication P  Q, 

P is called antecedent or hypothesis 

Q is called consequent or conclusion. 
 

The statement P  Q 

false. 

is true in all cases except when P is true and Q is 

 

The truth table for implication is as follows. 

 

P Q P  Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

T 

 

Since conditional statement play an essential role in mathematical 

reasoning a variety of terminology is used to express P  Q . 

i)  If P then Q 

ii)  P implies Q 

iii)  P only if Q 

iv)  Q if P 

v)  P is sufficient condition for Q 

vi)  Q when P 

vii)  Q is necessary for P 

viii)  Q follows from P 

ix)  if P, Q 

x)  Q unless P 
 

Converse, Inverse and Contra positive of a conditional statement :  

We can form some new conditional statements starting with a conditional 

statement PQ that occur so often. Namely converse, inverse, contra positive. 

Which are as follows:

 

1.   Converse:  If  P  Q 

converse of P  Q . 

is an  implication  then  Q  P is  called  the 

 

2.   Contra positive  :  If  P  Q is  an  implication  then  the  implication 

QP is called it’s contra positive. 



 

 

3.   Inverse:  If  P  Q 

inverse. 

 
Example 6: 

is an implication then PQ is called its 

 

Let P: You are good in Mathematics.       

Q: You are good in Logic. 

 

Then, P  Q : If you are good in Mathematics then you are good in Logic. 
 

1)  Converse: Q  P 
If you are good in Logic then you are good in Mathematics. 

 

2)  Contra positive: QP 

If you are not good in Logic then you are not good in Mathematics. 
 

3)  Inverse: PQ
If you are not good in Mathematics then you are not good in Logic. 

 
 Biconditional Statement:  Let P and Q be propositions. The 

biconditional statement  P  Q is the proposition " P  if and only if  Q " . 

The biconditional statement is true when P and Q have same truth values 

and is false otherwise. 
 

Biconditional statements are also called bi-implications.  It is also 

read as p is necessary and sufficient condition for Q. 

 
The truth table for biconditional statement is as follows. 

 

P Q P  Q 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

T 

 

Example 7 : Let P : Ram can take the flight. 

Q : Ram buy a ticket. 

Then P  Q is the statement. 

“Ram can take the flight iff Ram buy a ticket”. 

 
Precedence of Logical Operators: 
 

We c a n  c o n s t r u c t  c o m p o u n d  p r o p o s i t i o n s  u s i n g  t h e  

n e g a t i o n  operator and the logical operators defined so far.   We will 

generally use parentheses to specify the order in which logical operators in a 

compound proposition are to be applied.  In order to avoid an excessive number 

of parentheses. 



 

 

We sometimes adopt an order of precedence for the logical connectives.  The 

following table displays the precedence levels of the logical operators. 

 

Operator Precedence 


 


 




 

 

1 
 

2 
 

3 
 

4 
 

5 

 

LOGICAL EQUIVALANCE:  

 
Compound  propositions  that  have  the  same  truth  values  in  all possible 

cases are called logically equivalent. 

 
Definition: The compound propositions P and Q are said to be logically 

equivalent if P  Q is a tautology.  The notation P  Q denotes that P and Q 

are logically equivalent. 

 
Some equivalence statements are useful for deducing other equivalence statements.  

The following table shows some important equivalence. 

 
 Logical Identities or Laws of Logic: 

 

Name Equivalence 

1.   Identity Laws 
 

 
2.   Domination Laws 

 

 
3.   Double Negation 

 
4.   Idempotent Laws 

 

 
5.   Commutative Laws 

P  T  P 

P  F  P 

P  T  T 

P  F  F 

P   P 
 

P  P  P 

P  P  P 

P  Q  Q  P 

P  Q  Q  P 

6.   Associative Laws  P  Q   R  P  Q  R 

 P  Q   R  P  Q  R  



 
 

 

7.   Distributive Laws 
 
 
 

8.   De Morgan’s Laws 
 
 
 

9.   Absorption Laws 
 
 
 

10. Negation Laws 

(Inverse / Complement) 
 

11. Equivalence Law 

P  Q  R    P  Q    P  R 

P  Q  R    P  Q    P  R 


 P  Q  PQ 

 P  Q  PQ 

P   P  Q  P 

P   P  Q  P 
 

P  P  T 

P  P  F 

P  Q   P  Q   Q  P 


12. Implication Law  P  Q  P  Q 
 

13. Biconditional Property 
 

14. Contra positive o f  

Condit ional  statement 

 

P  Q   P  Q   P Q 


P  Q  QP 

 

 

Note that while taking negation of compound statement ‘every’ or 

‘All’ is interchanged by ‘some’ & ‘there exists’ is interchanged by ‘at least one’ & 

vice versa. 

 
Example 8: If P: “This book is good.” 

Q: “This book is costly.” 

Write the following statements in symbolic form. 

a)  This book is good & costly. 

b)  This book is not good but costly. 

c)  This book is cheap but good. 

d)  This book is neither good nor costly. 

e)  If this book is good then it is costly. 
 

Answers: 

a)  P  Q 

b)   P  Q 

c)  Q P 

d)   P Q 
 

e)  P  Q 
 

      Logical Equivalence Involving Implications : 

 
Let P & Q be two statements. 

 
The   following   table   displays   some   useful   equivalences   for implications 

involving conditional and biconditional statements. 

 



 

Sr. No. Logical Equivalence involving implications 

1 P  Q  P  Q 

2 P  Q  Q  P 

3 P  Q  P  Q 

4 P  Q   P  Q  

5  P  Q   P  Q 

6  P  Q   P  r   P  Q  r  

7  P  r   Q  r    P  Q   r 

8  P  Q  P  r   P  Q  r  

9  P  r   Q  r   P  Q  r 

10 P  Q   P  Q   Q  P  

11 P  Q  P  Q 

12 P  Q   P  Q   P Q  

13  P  Q  P  Q 

 
 

All these identities can be proved by using truth tables. 
 

 

NORMAL FORM AND TRUTH TABLES : 

 

Well ordered Formulas:  
A compound statement obtained from statement letters by using one or more 

connectives is called a statement pattern or statement form. thus,  if  P,  Q,  R,  …  

are  the  statements  (which  can  be  treated  as variables) then any statement 

involving these statements and the logical connectives ,,,,  is a 

statement form or a well ordered formula or statement pattern. 

 



 

Definition: A propositional variable is a symbol representing any proposition.  

Note that a propositional variable is not a proposition but can be replaced by a 

proposition. 

Any statement involving propositional variable and logical connectives is a well 

formed formula. 

Note: A wof is not a proposition but we substitute the proposition in place of 

propositional variable, we get a proposition. 
 

E.g.  P  Q  Q  R   Q,P  Q  etc. 
 

 

 Truth table for a Well Formed Formula: 
 

If we replace the propositional variables in a formula  by propositions, we get a 

proposition involving connectives.  If  involves n propositional constants, we get 

2n possible combination of truth variables of proposition replacing the variables. 

 

Example 9: Obtain truth value for    P  Q   Q  P  . 
Solution:  The truth table for the given well formed  formula is given below. 

 

P Q P  Q Q  P  

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

T 

T 

T 

F 

T 

T 

F 

F 

T 

 

 Tautology: 

 
A tautology or universally true formula is a well formed formula, whose truth 

value is T for all possible assignments of truth values to the propositional 

variables. 

 

Example 10  : Consider P  P , the truth table is as follows. 

 

P P P  P 

T 
 

F 

F 
 

T 

T 
 

T 

 

               P  P 

tautology. 

always takes value T for all possible truth value of P, it is a 

 

 

 

 

 



 

 Contradiction or fallacy: 

 
A contradiction or (absurdity) is a well formed formula whose truth value is 

false (F) for all possible assignments of truth values to the propositional 

variables. 

Thus, in short a compound statement that is always false is a contradiction. 

 

Example 11 : Consider the truth table for P  P . 

 

P P P  P 

T 
 

F 

F 
 

T 

F 
 

F 

 

P P always takes value F for all possible truth values of P, it is a 

Contradiction. 

 
 Contingency: 

 
A  well  formed  formula  which  is  neither  a  tautology  nor  a contradiction is 

called a contingency. 

 
Thus, contingency is a statement pattern which is either true or false depending 

on the truth values of its component statement. 
 

Example 12: Show that  p q  and pq are logically equivalent

. 

Solution : The truth tables for these compound proposition is as follows. 

 

1 2 3 4 5 6 7 8 

P Q P Q P  Q  P  Q  P  Q 6  7 

T 

T 

F 

F 

T 

F 

T 

F 

F 

F 

T 

T 

F 

T 

F 

T 

T 

T 

T 

F 

F 

F 

F 

T 

F 

F 

F 

T 

T 

T 

T 

T 

 

We can observe that the truth values of  p  q and p  q agree for all possible 

combinations of the truth values of p and q. 



 

 

It follows that  p  q   p  q  is a tautology; therefore the 

given compound propositions are logically equivalent. 
 

Example 13: Show that p  q and p  q are logically equivalent. 

 
Solution : The truth tables for these compound proposition as follows. 

 
p q p p  q p  q 

T 

T 

F 

F 

T 

F 

T 

F 

F 

F 

T 

T 

T 

F 

T 

T 

T 

F 

T 

T 

 

As the truth values of p  q and p  q are logically equivalent. 

 
Example  14 :  Determine  whether  each  of  the  following  form  is  a 

tautology or a contradiction or neither : 

i)   P  Q   P  Q 

ii)    P  Q  P  Q 

iii) P  Q    P  Q 

iv)   P  Q   P  Q 

v)   P   P  Q   Q



Solution: 

i)  The truth table for  p  q    p  q 




P q p  q p  q  p  q    p  q  

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

F 

T 

T 

T 

F 

T 

T 

T 

T 

 

Here all the entries in the last column are ‘T’. 

  p  q    p  q  is a tautology. 



 

 

ii)  The truth table for  p  q   p  q  is 

 

1 2 3 4 5 6  

p q p  q p q P  q 3  6 

T 

T 

F 

F 

T 

F 

T 

F 

T 

T 

T 

F 

F 

F 

T 

T 

F 

T 

F 

T 

F 

F 

F 

T 

F 

F 

F 

F 

 

The entries in the last column are ‘F’.  Hence   p  q   p  q   is a 

contradiction. 

 

iii) The truth table is as follows. 

 

p q p q p q p  q p q    p  q  

T 

T 

F 

F 

T 

F 

T 

F 

F 

F 

T 

T 

F 

T 

F 

T 

F 

F 

F 

T 

T 

F 

T 

T 

T 

T 

T 

T 

 

Here all entries in last column are ‘T’. 

 p q    p  q  is a tautology. 

 

 

iv)    The truth table is as follows. 

 

p q q p q p  q  p  q   p q  

T 

T 

F 

F 

T 

F 

T 

F 

F 

T 

F 

T 

F 

T 

F 

F 

T 

F 

T 

T 

F 

F 

F 

F 

 

All the entries in the last column are ‘F’. Hence it is contradiction. 

 

 

 

 

 



 

v)  The truth table for p   p  q   q 

 
 
 





p q q p q p   p  q  p   p  q   q  

T 

T 

F 

F 

T 

F 

T 

F 

F 

T 

F 

T 

F 

T 

T 

T 

F 

T 

F 

F 

T 

F 

T 

T 

 

The last entries are neither all ‘T’ nor all ‘F’. 

  p   p  q   q   is a neither tautology nor contradiction. It is a 

Contingency. 

 

PREDICATES AND QUANTIFIERS 
 
Predicates:  A predicate is a function from universe of discourse to truth values. 

Consider a sentence: x is greater than 2. Here is greater than 2 is the predicate and x 

is the subject or variable. 

 

If values are  assigned to  all the variables, the  resulting sentence is a proposition. 

e.g. 1.  x <  9 is a predicate 

2.   4 < 9 is a proposition 

Propositional Function: 

 
 A propositional function (or    an open sentence) defined on A is a predicate 

together with subjects. It is denoted by the expression P(x) which has the 

property that P(a) is true or false for each a  A . 

 
The set A is called domain of P(x) and the set Tp of all elements of A for which P (a) 

is true is called the truth set of P(x).  

 Propositional functions can be converted to proposition by two aspects  

(i) By assigning exact value to the variable and (ii) using quantification. 

e.g. Let A = {x / x is an integer < 8} 

Here P(x) is the sentence “x is an integer less than 8”. 

The common property is “an integer less than 8”. 

 P(1) is the statement “1 is an integer less than 8”. 

 P(1) is true. 



 

Quantifiers: 

 
Quantification is the way by which a Propositional function can be turns out  to 

be a proposition. The expressions ‘for  all’ and ‘there exists’ are called 

quantifiers. The process of applying quantifier to a variable is called 

quantification of variables. 

Universal quantification: 
 

The universal quantification of a predicate P(x) is the statement, “For all values 

of x, P(x) is true.” 
 

 

The universal quantification of P(x) is denoted by  v  for all x P(x). 
 

The symbol  v  is called the universal quantifier. 

e.g. 

 
1)  The sentence P(x) : - (-x) = x is a predicate that makes sense for real 

numbers x.  The universal quantification of P(x),  v  x P(x) is a true 

statement because for all real numbers, -(- x) = x. 

 

2) Let Q(x) : x + 1 < 5, then  v Q(x) : x + 2 < 5 is a false statement, as 

Q(5) is not true. Universal quantification can also be stated in English as 

“for every x”, “every x”, or “for any x.” 

 
Existential quantification - 
The existential quantification of a predicate P(x) is the statement 

“There exists a value of x for which P(x) is true.” 

The e x i s t e n t i a l  q u a n t i f i c a t i o n  o f  P (x) i s  d e n o t e d   xP( x) .   The 

symbol   is called the existential quantifier. e.g. 

 

1)  Let Q : x + 1< 4 . The existential quantification of Q(x), xQ( x) 

is a true statement, because Q(2) is true statement. 

 2)                The statement  y, y + 2 = y is false. There is no value of y for 

which the propositional function y+2 = y produces a true statement. 

Negation of Quantified statement : 

   x p( x )=  v  x   p(x) 

and    v x p(x)=   x  p(x) 



 

This is true for any proposition p(x).  

For example, The negation of all men are mortal is: There is a man who is not mortal. 

Example 15 : 

Express the statement using quantifiers: “Every student in your school has a 

computer or has a friend who has a computer.” 

 
Solution : 

 
Let c(x) : “x has a computer” 

F(x,y) : “x and y are friends” 

 
Thus, We have 

v x(c( x)    y(c( y)   F ( x, y)) 

 
THEORY OF INFERENCE FOR THE PREDICAT CALCULAS 

 

If an implication P    Q is a tautology where P and Q may be compound statements 

i n v o l v i n g  any number of propositional variables we say that Q logically follows 

from P. Suppose P(P1 ,P2 .......Pn )   Q . Then this implication is true regardless of the 

truth values of any of its components.  In  this  case,  we  say  that  Q  logically  

follows  from  P1, P2…..,Pn. 

Proofs in mathematics are valid arguments that establish the truth of mathematical 

statements. 

To deduce new statements from statements we already have, we use   rules   of 

i n f e r e n c e    which   are t e m p l a t e s    for c o n s t r u c t i n g    valid 

arguments. Rules of inference are our basic tools for establishing the truth of 

statements. The rules of inference for statements involving existential and 

universal quantifiers play an important role in proofs in Computer Science and 

Mathematics, although they are often used without being explicitly mentioned. 

 
 Valid Argument: 

An argument in propositional logic is a sequence of propositions. All propositions 

in the argument are called hypothesis or Premises.The final proposition is called 

the conclusion. An  argument   form  in  propositional   logic  is  a  sequence   of 

compound propositions - involving propositional variables. 

An   argument   form   is   valid   if   no   matter   which   particular propositions are 

substituted for the propositional variables in its premises, the conclusion is true if 

the premises are all true. 

 



 

Thus we say the conclusion C can be drawn from a given set of premises or the 

argument is valid if the conjunction of all the premises implies the conclusion is 

a tautology. 

 
Rules of Inference for Propositional logic 

 
We can always use a truth table to show that an argument form is valid.  Arguments 

b a s e d  o n  t a u t o l o g i e s  r e p r e s e n t  u n i v e r s a l l y  c o r r e c t  method 

o f  r e a s o n i n g .  Their  validity  depends  only  on  the  form  of statements  

involved  and  not  on  the  truth  values  of  the  variables  they contain such 

arguments are called rules of inference. 

 
These  rules  of  inference  can  be  used  as  building  blocks  to construct more 

complicated valid argument forms 

 
e.g. 

Let  P: “You have a current password” 

Q: “You can log onto the network”. 

 
Then, the argument involving the propositions, 

“If  you  have  a  current  password,  then  you  can  log  onto  the network”. 

 
“You have a current password” therefore: You can log onto the network” has 

the form … 

. 

P Q 

P 

 Q 

Where  is the symbol that denotes ‘therefore we know that when P & Q are proposition 
variables, the statement ((P   Q) P)Q is a tautology

. 

So, this is valid argument and hence is a rule of inference, called modus ponens or the 

law of detachment. 

 
(Modus ponens is Latin for mode that affirms) 

The most important rules of inference for propositional logic are as follows….. 

 



 

 
 

 

Example16: 

Test the validity of the following arguments : 

1.  If milk is black then every crow is white. 

2.  If every crow is white then it has 4 legs. 

3.  If every crow has 4 legs then every Buffalo is white and brisk. 

4.  The milk is black. 

5.  So, every Buffalo is white. 



 

 

Solution : 
 

 

Let  P : The milk is black 

Q : Every crow is white 

R : Every crow has four legs. 

S : Every Buffalo is white 

T : Every Buffalo is brisk 

The given premises are 

(i)  P  Q 

(ii)  Q  R 

(iii)  R  ST 

(iv)  P 

The conclusion is S. The following steps checks the validity of argument. 

1.  P  Q   premise (1) 

2.  Q  R   Premise (2) 

3.  P  R   line 1. and 2. Hypothetical syllogism (H.S.) 

4.  R  ST 

5.  P  ST 

 Premise (iii) 

 Line 3. and 4.. H.S. 

6.  P   Premise (iv) 

7.  ST               Line 5, 6 modus ponens 

8.  S  Line 7, simplification 

 The argument is valid 

 
Example17 : 

Consider the following argument and determine whether it is valid or not. Either I will 

get good marks or I will not graduate. If I did not graduate I will go to USA. I get 

good marks. Thus, I would not go to USA. 

Solution : 

Let  P : I will get good marks. 

Q : I will graduate. 

R : I will go to USA 

The given premises are 

i)  P V  Q 

ii)   Q  R 

iii)  P 

 
The conclusion is  R. 

 



 

What are proofs? 

 
A proof is a clear explanation, accepted by the mathematical community, of why 

something is true. 

Ancient Babylonian and Egyptian mathematics had no proofs, just examples and methods. 

Proofs in the way we use them today began with the Greeks and Euclid 

 

Methods of Proof: 

 There are different methods of proof as follows: 

 Direct method 

 Indirect method. 

 Contradiction method. 

 Vacuous method. 

 Method of induction etc 

Already you have the idea about above mentioned methods. Let us discuss 

method of induction.  

MATHEMATICAL INDUCTION 

Here we discuss another proof technique. Suppose the statement to be proved 

can be put in the from  P(n),  n n0.  where n0  is some fixed integer. 

That is suppose we wish to show that P(n) is true for all integers n  n0.  

 

 

The following result shows how this can be done. 

Suppose that 

(a)  P(n0) is true and 

(b)  If P(K) is true for some K  n0, then P(K + 1) must also be 

true. The P(n) is true for all n  n0. 

 
This result is called the principle of Mathematical induction. 

 
Thus  to  prove  the  truth  of  statement    nn0.  P(n),  using  the 

principle of mathematical induction, we must begin by proving directly that 

the first proposition P(n0) is true. This is called the basis step of the induction 

and is generally very easy. 

Then we must prove that P(K)  P(K + 1) is a tautology for any choice 

of K  n0. Since, the only case where an implication is false is if the antecedent 



 

is true and the consequent is false; this step is usually done by showing that if 

P(K) were true, then P(K + 1) would also have to be true. This step is called 

induction step. 

In short we solve by following steps. 

1.  Show that P(1) is true. 

2.  Assume P(k) is true. 

3.  Prove that P(k +1) is true using 

P(k) Hence P(n) is true for every n. 

Example 18 : 

Using principle of mathematical induction prove that 

(i) 1 + 2 + 3 + ... + n = n (n + 1) / 2 

(ii) 1
 2

 + 2
 2
 + 3

 2
 + ... + n

 2
 = n (n + 1) (2n + 1)/ 6  

(iii) 1
 3

 + 2
 3
 + 3

 3
 + ... + n

 3
 = n

 2
 (n + 1) 

2
 / 4  

(iv)  3
 n

 > n
 2
 for n = 1, n = 2  

(v)  3
 n

 > n
 2
 for n a positive integer greater than 2. 

(vi) For  any positive integer number n , n
 3

 + 2 n is divisible by 3  

 

Solution (i) 

Let the statement P (n) be  

 

1 + 2 + 3 + ... + n = n (n + 1) / 2  

STEP 1: We first show that p (1) is true.  

 

Left Side = 1  

 

Right Side = 1 (1 + 1) / 2 = 1  

Both sides of the statement are equal hence p (1) is true.  

STEP 2: We now assume that p (k) is true  

 

1 + 2 + 3 + ... + k = k (k + 1) / 2  

and show that p (k + 1) is true by adding k + 1 to both sides of the above 

statement  

 

1 + 2 + 3 + ... + k + (k + 1) = k (k + 1) / 2 + (k + 1)  

 

= (k + 1)(k / 2 + 1)  

 

= (k + 1)(k + 2) / 2  



 

The last statement may be written as  

 

1 + 2 + 3 + ... + k + (k + 1) = (k + 1)(k + 2) / 2  

Which is the statement p(k + 1).  

 Hence , by method of induction P(n) is true for all n. 

Solution (ii) 

Statement P (n) is defined by  

 

1
 2

 + 2
 2
 + 3

 2
 + ... + n

 2
 = n (n + 1) (2n + 1)/ 2  

STEP 1: We first show that p (1) is true.  

 

Left Side = 1
 2

 = 1  

 

Right Side = 1 (1 + 1) (2*1 + 1)/ 6 = 1  

Both sides of the statement are equal hence p (1) is true.  

STEP 2: We now assume that p (k) is true  

 

1
 2

 + 2
 2
 + 3

 2
 + ... + k

 2
 = k (k + 1) (2k + 1)/ 6  

and show that p (k + 1) is true by adding (k + 1)
 2

 to both sides of the above 

statement  

 

1
 2

 + 2
 2
 + 3

 2
 + ... + k

 2
 + (k + 1)

 2
 = k (k + 1) (2k + 1)/ 6 + (k + 1)

 2
  

Set common denominator and factor k + 1 on the right side  

 

= (k + 1) [ k (2k + 1)+ 6 (k + 1) ] /6  

Expand k (2k + 1)+ 6 (k + 1)  

 

= (k + 1) [ 2k
 2

 + 7k + 6 ] /6  

Now factor 2k
 2

 + 7k + 6.  

 

= (k + 1) [ (k + 2) (2k + 3) ] /6  

We have started from the statement P(k) and have shown that  

 

1
 2

 + 2
 2
 + 3

 2
 + ... + k

 2
 + (k + 1)

 2
 = (k + 1) [ (k + 2) (2k + 3) ] /6  

Which is the statement P(k + 1).  

Hence , by method of induction P(n) is true for all n. 

 



 

Solution (iii) 

Statement P (n) is defined by  

 

1
 3

 + 2
 3
 + 3

 3
 + ... + n

 3
 = n

 2
 (n + 1) 

2
 / 4  

STEP 1: We first show that p (1) is true.  

 

Left Side = 1
 3

 = 1  

 

Right Side = 1
 2

 (1 + 1) 
2
 / 4 = 1  

hence p (1) is true.  

STEP 2: We now assume that p (k) is true  

 

1
 3

 + 2
 3
 + 3

 3
 + ... + k

 3
 = k

 2
 (k + 1) 

2
 / 4  

add (k + 1)
 3

 to both sides  

 

1
 3

 + 2
 3
 + 3

 3
 + ... + k

 3
 + (k + 1)

 3
 = k

 2
 (k + 1) 

2
 / 4 + (k + 1)

 3
  

factor (k + 1) 
2
 on the right side  

 

= (k + 1) 
2
 [ k

 2
 / 4 + (k + 1) ]  

set to common denominator and group  

 

= (k + 1) 
2
 [ k

 2
 + 4 k + 4 ] / 4  

 

= (k + 1) 
2
 [ (k + 2) 

2
 ] / 4  

We have started from the statement P(k) and have shown that  

 

1
 3

 + 2
 3
 + 3

 3
 + ... + k

 3
 + (k + 1)

 3
 = (k + 1) 

2
 [ (k + 2) 

2
 ] / 4  

Which is the statement P(k + 1).  

Hence , by method of induction P(n) is true for all n. 

Solution (iv) 

Statement P (n) is defined by  
 
n 3 + 2 n is divisible by 3  

STEP 1: We first show that p (1) is true. Let n = 1 and calculate n 3 + 2n  
 
1 3 + 2(1) = 3  
 

 



 

 
3 is divisible by 3  

hence p (1) is true.  

STEP 2: We now assume that p (k) is true  
 
k 3 + 2 k is divisible by 3  
 
is equivalent to  
 
k 3 + 2 k = 3 M , where M is a positive integer.  

We now consider the algebraic expression (k + 1) 3 + 2 (k + 1); expand it and group like 
terms  
 
(k + 1) 3 + 2 (k + 1) = k 3 + 3 k 2 + 5 k + 3  
 
= [ k 3 + 2 k] + [3 k 2 + 3 k + 3]  
 
= 3 M + 3 [ k 2 + k + 1 ] = 3 [ M + k 2 + k + 1 ]  

Hence (k + 1) 3 + 2 (k + 1) is also divisible by 3 and therefore statement P(k + 1) is true.  

Hence , by method of induction P(n) is true for all n. 

Solution (v) 

Statement P (n) is defined by  

 

3
 n

 > n
 2
  

STEP 1: We first show that p (1) is true. Let n = 1 and calculate 3
 1

 and 1
 2
 and 

compare them  

 

3
 1

 = 3  

 

1
 2

 = 1  

3 is greater than 1 and hence p (1) is true.  

Let us also show that P(2) is true.  

 

3
 2

 = 9  

 

2
 2

 = 4  

Hence P(2) is also true.  

STEP 2: We now assume that p (k) is true  

 

3
 k

 > k
 2
  



 

Multiply both sides of the above inequality by 3  

 

3 * 3
 k

 > 3 * k
 2
  

The left side is equal to 3
 k + 1

. For k >, 2, we can write  

 

k
 2

 > 2 k and k
 2

 > 1  

We now combine the above inequalities by adding the left hand sides and the 

right hand sides of the two inequalities  

 

2 k
 2

 > 2 k + 1  

We now add k
 2

 to both sides of the above inequality to obtain the inequality  

 

3 k
 2

 > k
 2
 + 2 k + 1  

Factor the right side we can write  

 

3 * k
 2

 > (k + 1)
 2

  

If 3 * 3
 k

 > 3 * k
 2

 and 3 * k
 2

 > (k + 1)
 2 then 

 

 

3 * 3
 k

 > (k + 1)
 2

  

Rewrite the left side as 3
 k + 1

  

 

3
 k + 1

 > (k + 1)
 2

  

Which proves that P(k + 1) is true  

Hence , by method of induction P(n) is true for all n. 

Solution (vi) 

Statement P (n) is defined by  
 
n! > 2 n  

STEP 1: We first show that p (4) is true. Let n = 4 and calculate 4 ! and 2 n and compare 
them  
 
4! = 24  
 
2 4 = 16  

24 is greater than 16 and hence p (4) is true.  

STEP 2: We now assume that p (k) is true  

 

k! > 2
 k

  



 

Multiply both sides of the above inequality by k + 1  

 

k! (k + 1)> 2
 k

 (k + 1)  

The left side is equal to (k + 1)!. For k >, 4, we can write  

 

k + 1 > 2  

Multiply both sides of the above inequality by 2
 k

 to obtain  

 

2
 k

 (k + 1) > 2 * 2
 k

  

The above inequality may be written  

 

2
 k

 (k + 1) > 2
 k + 1

  

We have proved that (k + 1)! > 2
 k

 (k + 1) and 2
 k

 (k + 1) > 2
 k + 1

 we can now 

write  

 

(k + 1)! > 2
 k + 1

  

We have assumed that statement P(k) is true and proved that statement P(k+1) is 

also true.  

Hence , by method of induction P(n) is true for all n. 

 



 

COUNTING: 

Broadly speaking combinatory(counting)  is the branch of mathematics dealing 

with order and patterns without regard to the intrinsic properties of the objects under 

consideration. 

 

FUNDAMENTAL PRINCIPLE COUNTING (FPC): 

 The two main counting rules: The Multiplication Rule states that if one can do a 

job by doing two tasks one after the other, and there are ‘m’ ways to do the first task and 

then ‘n’ ways to do the second, then there are ‘mn’ ways to do the whole job. 

For Example, suppose there are 3 routes from Burla to Sambalpur and 4 routes from 

Sambalpur to Cuttack, then by FPC the total number of ways for performing journey 

from Burla to Cuttack is 12. 

The Addition Rule, states that if one can do a job by doing one or the other (but not 

both) of two tasks, and there are m ways to do then first task and n ways to do the 

second, then there are m+n ways to do the whole job. 

PERMUTATIONS AND COMBINATIONS: 

Permutation is the arrangement of objects with ordering, whereas combination is the 

selection of objects without ordering. 

Permutation Formula: 

(i) The permutation of n – things taken r at a time without repetition is  

P(n, r) = n!/(n - r)! 

n = the total number of items you have from which to take 

r = the number you are actually going to use. 

(ii) The permutation of n – things taken r at a time with repetition is  

P(n, r) = rn  

(iii) The permutation of n – things taken all at a time with repetition is  

P(n,n) = n! 

Factorial Rule: For n items, there are n! (pronounced n factorial) ways to arrange them. 

n! = (n)(n - 1)(n - 2). . . (3)(2)(1) 

For example:   

3! = (3)(2)(1) = 6  

4! = (4)(3)(2)(1) = 24  

5! = (5)(4)(3)(2)(1) = 120  



 

6! = (6)(5)(4)(3)(2)(1) = 720  

Note: 0!=1 

Example 2:  

Let’s say you have four friends, but only need to text three of them when order matters.  

Find the number of ways to text your friends.  

Solution: 

4! 24
P(4,3) = = = 24

(4 - 3)! 1!
 

There are 24 ways to test three out of your four friends if order matters. 

 Combination Formula: 

The permutation of n – things taken r at a time is: 

 

n = the total number of items you have from which to choose 

r = the number you are actually going to use. 

Example 3:  

The art club has 4 members. They want to choose a group of three to compete in a 

regional competition. How many ways can three members be chosen? 

Solution: 

  

There are 4 ways to chose 3 people for the competition when order is not important 

 

 

 

 

 



 

 The pigeonhole principle (PHP): 

 The general rule states when there are k pigeonholes and there are k+1 pigeons, then 

they will be 1 pigeonhole with at least 2 pigeons. A more advanced version of the 

principle will be the following: If mn + 1 pigeons are placed in n pigeonholes, then there 

will be at least one pigeonhole with m + 1 or more pigeons in it. 

 For Example, 13 people are involved in a survey to determine the month of 

their birthday. As we all know, there are 12 months in a year, thus, even if the first 12 

people have their birthday from the month of January to the month of December, the 

13
th

 person has to have his birthday in any of the month of January to December as well. 

Thus, by PHP we are right to say that there are at least 2 people who have their birthday 

falling in the same month.  

In fact, we can view the problem as  there are 12 pigeonholes (months of the 

year) with 13 pigeons (the 13 persons). Of course, by the Pigeonhole Principle, there 

will be at least one pigeonhole with 2 or more pigeons. 

PRINCIPLE OF INCLUSION-EXCLUSION: 

 
The Principle of Inclusion and Exclusion allows us to find the cardinality of a 

union of sets by knowing the cardinalities of the individual sets and all possible 

intersections of them. 

The basic version of the Principle of Inclusion and Exclusion is that for two finite sets A 

and B, is  

 |A∪B|=|A|+|B|–|A∩B|. 

The result generalizes to three finite sets (in fact it generalizes to any finite number of 

finite sets): 

 |A∪B∪C|=|A|+|B|+|C|–|A∩B|–|A∩C|–|B∩C|+|A∩B∩C| 

Example :  

In a room of 50 people whose dresses have either red or white color, 30 are wearing red dress, 

16 are wearing a combination of red and white. How many are wearing dresses that have only 

white color?  

 

 



 

Solution 

Number of people wearing a red dress = 30 

i.e., n(R) = 30 

Number of people wearing a combination of red and white = 16 

i.e., n (R W) = 16 

The total number of people in the room = number of people who are wearing dresses 

that have either red or white colour = n (R W) = 50.  

We know, 

n (R W) = n(R) + n(W) - n(R W)  

50 = 30 + n(W) - 16 

50 - 14 = n(W) - 16 

n(W) = 36 

i.e., the number of people who are wearing a white dress = 36.  

Therefore, number of people who are wearing white dress only = n(W) - n(R W) =  

36 - 16 = 20 

Example :  

How many members of {1, 2, 3, ………….., 105} have nontrivial factors in common 

with 105? 

Solution 

105 = 3 . 5.  7, so a number shares factors with 105 if and only if it is divisible by 3, 5, 

or 7. 

 Let A, B, and C be the members of {1, 2, 3, ………….., 105} divisible by 3, 5, and 7 

respectively. 

Clearly |A| = 35, |B| = 21, and |C| = 15. Furthermore, A ∩B consists of those numbers 

divisible by both and 5, i.e., divisible by 15. Likewise, A ∩ C and B ∩ C contain 

multiples of 21 and 35 

respectively, so |A ∩ B| = 7, |A ∩C| = 5, and |B ∩ C|= 3. Finally, A ∩ B∩ C consists 

only of the number 105, so it has 1 member total. Thus, 

|A U B U C| = 35 + 21 + 15 - 7 - 5 - 3 + 1 = 57 

 



 

Example:  

At Sunnydale High School there are 28 students in algebra class,30 students in biology 

class, and 8 students in both classes. How many students are in either algebra or biology 

class? 

Solution: 

 Let A denote the set of students in algebra class and B denote the set of students in 

biology class. To find the number of students in either class, we first add up the students 

in each class: 

 

|A| + |B| 

However, this counts the students in both classes twice. Thus we have to subtract them 

once:|A ∩ B| 

This shows 

|AUB|=|A| + |B|-|A ∩ B| 

|AUB|=28 + 30 - 8 = 50 

so there are 50 students in at least one of the two classes. 

Example:  

 At Sunnydale High School there are 55 students in either algebra, biology, or chemistry 

class 28 students in algebra class, 30 students in biology class, 24 students in chemistry 

class, 8 students in both algebra and biology, 16 students in both biology and chemistry, 

5 students in both algebra and chemistry. How many students are in all three classes? 

Solution:  

Let A, B, C denote the set of students in algebra, biology, and chemistry class, 

Respectively. Then A U BU C is the set of students in one of the three classes, A∩B is 

the set of students in both algebra and biology, and so forth. To count the number  of 

Students in all three classes, i.e. count | A U BU C |, we can first add all the number of 

students in all three classes: 



 

|A| + |B|+|C|  

However, now we've counted the students in two classes too many times. So we subtract 

out the students who are in each pair of classes: 

-|A ∩ B|-|A ∩ C|-|B ∩ C| 

For students who are in two classes, we've counted them twice, then subtracted them 

once, so they're counted once. But for students in all three classes, we counted them 3 

times, then subtracted them 3 times. Thus we need to add them again:|A∩B∩C| 

Thus 

| A U BU C |=|A| + |B|+|C| -|A ∩ B|-|A ∩ C|-|B ∩ C|+|A∩B∩C| 

55 = 28 + 30 + 24 - 8 - 16 - 5 + |A∩B∩C| 

Thus |A∩B∩C| = 2, i.e. there are 2 students in all three classes. 

RECURRENCE RELATION: 

We  are  familiar  with  some  problem  solving  techniques   for counting, 

such as principles for addition, multiplication, permutations, combinations etc. 

But there are some problems which cannot be solved or very tedious to solve, 

using these techniques. In some such problems, the problems  can be 

represented  in the form of some relation  and can be solved accordingly.   

We shall discuss some such examples before proceeding further. 

The expression of higher terms in terms of combination of lower terms is 

known as recurrence relation 

Example: The number of bacteria, double every hour, then what will be the 

population of the bacteria after 10 hours? Here we can represent number of 

bacteria at the n
th 

hour be an. Then, we can say that an = 2an–1. 

Example: Consider the Fibonacci sequence 

 1, 1, 2, 3, 5, 8, 13,… 

The recurrence relation is given by: 

 1, 1021   aaaaa nnn  

 

 



 

Example : Towers of Hanoi is a popular puzzle. There are three pegs mounted 

on a board, together with disks of different sizes. Initially, these discs are placed 

on the first peg in order of different sizes, with the largest disc at the bottom and 

the smallest at the top. The task is to move the discs from the first peg to the 

third peg using the middle peg as auxiliary. The rules of the puzzle are: 

 Only one disc can be moved at a time. 

 No disc can be placed on the top of a smaller disc. 

This is a popular puzzle and we shall discuss its solution, using the one of the 

techniques discussed in this chapter. 

With these illustrations, we define recurrence relation now. 

Definition:  A  recurrence  relation  for  the  sequence  {an}  is  an 

equation, that expresses an in terms of one or more of the previous terms of 

the sequence, namely, a0, a1, ..., an–1, for all integers n with n  n0, 

where n0 is a nonnegative integer. 

 
Example : an = 1.06an–1, with a0 = 0.5. 

 

Example :  an = 2an–1 + 5, with a0 =1. 

The term a0, given in the above two examples, specify initial condition to 

solve the recurrence relation completely. 

 

 FORMULATION OF RECURRENCE RELATION: 
 

 

Before we proceed with discussing various methods of solving recurrence 

relation, we shall formulate some recurrence relation. The first example of 

formulation that we discuss is the problem of Tower of Hanoi as above. 

 

 

Example:  With reference to above Example,  let Hn denote the number of 

moves required to solve the puzzle with n discs. Let us define Hn 

recursively. 

Solution: Clearly, H1 = 1. 

Consider top (n–1) discs. We can move these discs to the middle peg using 

Hn–1   moves. The n
th  

disc on the first peg can then moved to the third peg. Finally, 

(n–1) discs from the middle peg can be moved to the third peg with first peg 

as auxiliary in Hn–1  moves. Thus, total number of moves needed to move n 

discs are: Hn = 2Hn–1  + 1. Hence the recurrence relation for the Tower of Hanoi is: 

 



 

Hn = 1                         if n = 1. 

Hn = 2Hn–1 + 1            otherwise. 

 

Example: Find recurrence relation and initial condition for the number of bit 

strings of length n that do not have two consecutive 0s. 

 

 

Solution: Let an denote the number of bit strings of length n that do not 

contain  two  consecutive  0s.  Number  of  bit  strings  of  length  one  

that follow the necessary rule are: string 0 and string 1. Thus, a1  

= 2. The number of bit strings of length 2 is: string 01, 10 and 11. 

Thus, a2  = 3. Now we shall consider the case n  3. The bit strings 

of length n that do not have two consecutive 0s are precisely those 

strings length n–1 with no consecutive 0s along with a 1 added 1 at 

the end of it (which is an–1 in number) and bit strings of length n–2 

with no consecutive 0s with a 10 added at the end of it (which is 

an–2   in number). Thus, the recurrence relation is: 

an = an–1 + an–2                  for n  3 with a1 = 2 and a2 = 3. 
 

 

METHODS OF SOLVING RECURRENCE RELATION : 

 

Now, in this section we shall discuss a few methods of solving recurrence relation 

and hence solve the relations that we have formulated in the previous section. 

 
 Backtracking Method: 

 
This is the most intuitive way of solving a recurrence relation. In this method, 

we substitute for every term in the sequence in the form of previous term (i.e. an  

in the form of an–1, an–1  in the form of an–2  and so on) till we reach the initial 

condition and then substitute for the initial condition.  To  understand  this  

better,  we  shall  solve  the  recurrence relations that we have come across earlier. 

 
Example: Solve the recurrence relation an = 1.06an–1, with a0  = 0.5. 
 

 

Solution: Given recurrence relation is an = 1.06an–1, with a0  = 0.5. From this 

equation, we have an  = 1.06an–1  = 1.061.06 an–2  = 1.061.061.06 

an–3 Proceeding this way, we have an = (1.06)
n
a0. But, we know that a0 = 

0.5.Thus, explicit solution to the given recurrence relation is an = 

0.5(1.06)
n
for n  0. 



 

 an- 

k 

Method  for  solving  linear  homogeneous  recurrence  relations with constant 

coefficients: 

 
In the previous subsection, we have seen a backtracking 

method for solving  recurrence  relation.  However,  not all  the 

equations  can  be solved easily using this method. In this subsection, we 

shall discuss the method of solving a type of recurrence relation called 

linear homogeneous recurrence relation. Before that we shall define this 

class of recurrence relation. 

 

Definition : A linear homogeneous recurrence relation of degree k  with constant   

coefficients is a recurrence relation of the form:a
n  
 c

1
a

n 1  
 c

2 
a

n 2  
 …  c

k 
a

n k 
, 

where c1, c2, ..., ck are constant real numbers with ck  0. 

 
 

Example :   Fibonacci  sequence  is  also  an  example  of  a  linear homogeneous 

recurrence relation of degree 2. 

Example: The recurrence relation an  
 an-1 not linear (due to 

square term), whereas the relation Hn  = 2Hn–1  + 1 is not homogeneous 

(due to constant 1). 
 
 

The basic approach for solving a linear homogeneous recurrence 

relation to look for the solution of the form an  = r
n
, where r is 

constant. Note that, r
n 

is a solution to the linear homogeneous 

recurrence relation of 

degree k, if and only if; 

 

 

r n   1c  r n 1    2c r n 2   …  kc  r nk  . When both the sides of the  

equation are 

divided by r
n–k 

and right side is subtracted from the left side, we 

obtain an equation, known as characteristic equation of the recurrence 

relation as 

follows: 

 

 

r   c
1
r 

k 1 
 c

2 
r 

k 2 
 …  c

k 1
r  c

k   
 0 . 

The solutions of the equation are called as characteristic roots of 

the recurrence relation. 
 
 



 

n 

In this subsection, we shall focus on solving linear homogeneous 

recurrence relation of degree 2 that is: an = c1an–1 + c2an–2. 

The characteristic equation of this relation is r
2  

– c1r – c2  = 0.  This is a 

quadratic equation and has two roots. Two cases arise. 
 

 

(i)  Roots  are  distinct,  say  s1   and  s2.  Then,  it  can  be  shown  that 
n  n

 

a
n  
 us

1   
 vs

2  
is  a  solution  to  the  recurrence  relation,  with 

 

2  2
 

a1   us1  vs2 and a
2  
 us

1   
 vs

2 
. 

 
 

(ii)  Roots are equal, say s. Then it can be shown that an solution to the 

recurrence relation is an= (u  vn)s 
n
 

 

We shall use above results to solve some problems 

 

Example : Solve the recurrence relation bn + 3bn–1  + 2bn–2  = 0, with b1 =  –2 and 

b2 = 4. 
 

Solution: The characteristic equation to the given recurrence relation is x
2

 

+ 3x + 2 = 0. Roots of this equation are s1  = – 2 and s2  = – 1. 

Hence the solution to the relation is: 

bn = u(–1)
n 

+  v(–2)
n
. b1 =  –2 = –u –2v and b2 = 4 = u + 4v. 

Solving these two equations simultaneously, we get, u = 0 and v = 1. 

Thus, explicit solution to the given recurrence relation is bn = (–2)
n

 

 

 Method for solving linear non-homogeneous recurrence relations with 

constant coefficients: 

 

The method is similar to the solution differential equation by method of 

undermined co-efficient. 

 



 

GENERATING FUNCTION: 

 

Let naaa ,..., 10 be a sequence, and then the corresponding generating function is given 

by: 

A(x) = n

n xaxaxa  ...1

1

0

0  

For Example, if 1, 1, 1,…. be a sequence then the corresponding generating function is 

given by: 

A(x) = )1/(1....1 2 xxx   

 

From a given sequence we can find the corresponding generating function and vice 

versa. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Unit II 
 

INTRODUCTION TO RELATIONS AND 

GRAPH THEORY 

 
 

 OBJECTIVES: 
 

After going through this unit, you will be able to know: 

 Definition of Relation. 

 Representation of Relations 

 Types of Relations 

 Equivalence of relations 

 Relations and Partition 

 Definition and examples of partial order relation 

 Representation of posets using Hasse diagram 

 Closure of relations. 

 Introduction to graphs 

 Graph terminology 

 Graph isomorphism 

 Connectivity 

 Euler and Hamilton paths 

 Planar graphs 

 Graph colouring 

 Introduction to trees 

 

 INTRODUCTION : 

 Relationships between elements of sets occur in many 

contexts. We deal with many relationships such as student’s name 

and roll no., teacher and her specialization, a person and a relative 

(brother – sister, mother – child etc.). In this section, we will discuss 

mathematical approach to the relation. These have wide applications in 

Computer science (e.g. relational algebra) 

 

 
 



 

 RELATIONS: 
 

Relationship between elements of sets is represented using a mathematical structure 

called relation. The most intuitive way to describe the relationship is to represent 

in the form of ordered pair. In this section, we  study  the  basic  terminology  

and  diagrammatic  representation  of relation. 

Definition :  

Let A and B be two sets. A binary relation from A to B is a subset of A  B. 

Note : If A, B and C are three sets, then a subset of ABC is known as ternary 

relation. Continuing this way a subset of A1A2...An  is known as n – ary 

relation. 

Note: Unless or otherwise specified in this chapter a relation is a binary relation. 

 

 Let A and B be two sets. Suppose R is a relation from A to B (i.e. R is a 

subset of A  B). Then, R is a set of ordered pairs where each first element 

comes from A and each second element from B. Thus, we denote it with an 

ordered pair (a, b), where a  A and b  B. We also denote the relationship with 

a R b, which is read as a related to b. The domain of R is the set of all first 

elements in the ordered pair and the range of R is the set of all second elements 

in the ordered pair. 

 
Example 1: Let A = { 1, 2, 3, 4 } and B = { x, y, z }. Let R = {(1, x), (2, x), (3, y), (3, z)}. 

Then R is a relation from A to B. 

 
Example 2: Suppose we say that two countries are adjacent if they have some part 

of their boundaries common. Then, “is adjacent to”, is a relation R on the 

countries on the earth. Thus, we have, (India, Nepal)  R, but (Japan, Sri 

Lanka)  R. 

 
Example 3: A familiar relation on the set Z of integers is “m divides n”. Thus, 

we have, (6, 30)  R, but (5, 18)  R. 

 
Example 4: Let A be any set. Then A  A and  are subsets of A  A and hence  

they  are  relations  from  A  to  A.  These  are  known  as  universal 

relation and empty relation, respectively. 

Note : As relation is a set, it follows all the algebraic operations on relations that we 

have discussed earlier. 
 
 



 

 

Definition : Let R be any relation from a set A to set B. The inverse of R, 

denoted by R
–1

, is the relation from B to A which consists of those 

ordered pairs, when reversed, belong to R. That is: 

 R
–1 

= {(b, a) : (a, b)  R} 

 

Example 5: 

 Inverse relation of the relation in example 1 is, R
–1  

= {(x,), (x, 2), (y, 3), (z, 3)}. 
 

 

 REPRESENTATION OF RELATIONS: 

 
Matrices and graphs are two very good tools to represent various 

algebraic structures. Matrices can be easily used to represent relation in 

any  programming  language  in  computer.  Here we  discuss  the 

representation of relation on finite sets using these tools. 

Consider the relation in Example1. 

  

 

 

 

 

x y z 

1  1  0  0 

2  1  0  0 

3  0  1  1 

4  0  0  0 

 
 

 
Fig. 1 



 

 

Thus, if a R b, then we enter 1 in the cell (a, b) and 0 otherwise. Same relation can 

be represented pictorially as well, as follows: 

 
 

1  x 

2  
y 

3 

4  z 
 

 

Fig 2 

 
Thus, two ovals represent sets A and B respectively and we draw an arrow from  

a  A to b  B, if a R b. 

If the relation is from a finite set to itself, there is another way of pictorial representation, 

known as diagraph. 

 
For example, let A = {1, 2, 3, 4} and R be a relation from A to itself, defined 

as follows: 

 

 

R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)} Then, the diagraph of R is 

drawn as follows: 
 

 
 

1  2 
 
    
  

 
3  4 

 

 

Fig 3 

 
The   directed   graphs   are   very   important   data   structures   that   have 

applications in Computer Science (in the area of networking). 

 
Definition : Let A, B and C be three sets. Let R be a relation from A to B and S 

be a relation from B to C. Then, composite relation RS, is a 

relation from A to C, defined by, a(RS)c, if there is some b  B, such 

that a R b and b S c. 

 
 

 
 

Example 6: Let A = {1, 2, 3, 4}, B = {a, b, c, d},C = {x, y, z } and let R = {(1, a), (2, d), 

(3, a), (3, b), (3, d)} and S = {(b, x), (b, z), (c, y), (d, z)}. 

 
 
 
 
 



 

Pictorial representation of the relation in Example 6 can be shown as 

below (Fig 4). 
 
 
 

 
1  a 

2  b  
x
 

3  c  
y 

4  d  z 
 

 
 
 

Fig.4 

 
Thus, from the definition of composite relation and also from Fig 4, RS 

will be given as below. 

 
RS = {(2, z), (3, x), (3, z)}. 

 
There  is  another  way  of  finding  composite  relation,  which  is  using 

matrices. 

 
Example7: Consider relations R and S in Example 6. Their matrix representations are 

as follows. 

 1 


M  
 0 

R  1 

 0 

0  0  0 


0  0  1 

1  0  1 

0  0  0 

 0  0  0
 

M    
 1  0  1 

S   0  1  0

 0  0  1 



 



Consider the product of matrices MR and MS as follows: Observe that the non-zero entries 

in the product tell us which elements are  related in RS. Hence, MRMS  and MRS  have 

same non-zero entries.   

 TYPES OF RELATIONS: 
 

In this section, we discuss a number of important types of relations defined from a set 

A to itself. 

Definition : Let R be a relation from a set A to itself. R is said to be reflexive, if for 

every a  A, a R a (a is related to itself). 

Example 8: Let A = {a, b, c, d} and R be defined as follows: R = {(a, a), (a, c), (b, a), (b, b), 

(c, c), (d, c), (d, d)}. R is a reflexive relation. 

Example 9: Let A be a set of positive integers and R be a relation on it defined as, 

a R b if “a divides b”. Then, R is a reflexive relation, as a 

divides to itself for every positive integer a. 

 
Note : If we draw a diagraph of a reflexive relation, then  all  the  vertices  will  have  a  

loop.  Also  if we represent  reflexive relation using a matrix, then all its 

diagonal entries will be 1. 

Definition :   Let R be a relation from a set A to itself. R is said to be irreflexive, 

if for every a  A, a R a 

Example 10: Let A be a set of positive integers and R be a relation on it defined as,  

a R b if “a is less than b”. Then, R is an irreflexive relation, as a is not less than 

itself for any positive integer a. 

Example 11: Let A = {a, b, c, d} and R be defined as follows: R = {(a, a), (a, c), (b, a), (b, 

d), (c, c), (d, c), (d, d)}.Here R is neither reflexive nor irreflexive relation as b 

is not related to itself and a, c, d are related to themselves. 

 
Note : If we draw a diagraph of an irreflexive relation, then no vertex will have a loop. 

Also if we represent irreflexive relation using a matrix, then all its diagonal 

entries will be 0. 

Definition :  Let R be a relation from a set A to itself. R is said to be symmetric, if for   

a, b  A, if a R b then b R a. 

 
Definition :  Let R be a relation from a set A to itself. R is said to be anti-symmetric, if for 

a, b  A, if a R b and b R a, then a = b. Thus, R is not anti-symmetric 

if there exists a, b  A such that a R b and b R a but a b. 
 

Example 13: Let A = {1, 2, 3, 4} and R be defined as: 

 R = {(1, 2), (2, 3), (2, 1), (3, 2), (3, 3)}, then R is symmetric relation. 

 
Example 14: An equality (or “is equal to”) is a symmetric relation on the set of 

integers. 



 
 

 
 

Example 15:  Let A = {a, b, c, d} and R be defined as: R = {(a, b), (b, a), (a, c), (c, d), 

(d, b)}. R is not symmetric, as a R c but c R a . R is not anti-symmetric, because 

a R b and b R c , but a  b. 

.Example  16:  The  relation  “less  than  or  equal  to  ()”,  is  an  anti- symmetric 

relation. 

 

Example 17: Relation “is less than ( < )”, defined on the set of all real numbers, is an 

asymmetric relation. 

Definition : Let R be a relation defined from a set A to itself. R is said to transitive, if for 

a, b, c  A, a R b and b R c, then a R c. 

 
Example 18: Let A = {a, b, c, d} and R be defined as follows: R = {(a,b), (a, c), (b, d), 

(a, d), (b, c), (d, c)}. Here R is transitive relation on A. 

 
Example 19: Relation “a divides b”, on the set of integers, is a transitive relation. 

 
Definition : Let R be a relation defined from a set A to itself. If R is reflexive,  symmetric  

and  transitive,  then  R  is  called  as  equivalence relation. 

 
Example 20: Consider the set L of lines in the Euclidean plane. Two lines in the plane 

are said to be related, if they are parallel to each other. This relation is an 

equivalence relation. 

 
Example 21: Let m be a fixed positive integer. Two integers, a, b are said to be 

congruent modulo m, written as:  a  b (mod m), if m divides a – b. The 

congruence relation is an equivalence relation. 
 

Example 22 : Let A2,3,4,5 and let R 2,3 ,3,3 ,4,5 ,5,1 . Is R symmetric, 

asymmetric or antisymmetric



 

Solution : 

a)  R is not symmetric, since  2, 3 R , but 3, 2R , 

b)  R is not asymmetric since 3, 3 R 

c)  R is antisymmetric. 



Example 23 : Determine whether the relation R on a set A is reflexive,  irreflexire, 

symmetric, asymmetric antisymmetric or transitive. 

 

I)  A = set of all positive integers, a R b iff a  b 2 . 
 

Solution : 

1)  R is reflexive because 

 

 

a  a 02,a A 
 

2)  R is not irreflexive because  1 102 

of all positive integers.) 

 

for 1A 
 

(A is the set 

3)  R is symmetric because a  b 2 b  a 2  aRbbRa 
 

4)  R is not asymmetric because  5  4 2 

5R44R5 

5)  R is not antisymmetric because 1R2 
 

2R1 2 12 . But 12 

 

and we have  4  5 2 
 
 

& 2R1 1R21  2 2 & 

 

6)  R is not transitive because 5 R 4, 4 R 2 but 5  R 2 
 

 

II) AZ 
 

,aRb iff a  b 2  
 

 

Solution : 
As per above example we can prove that R is not reflexive, R is 

irreflexive, symmetric, not asymmetric, not antisymmetric & not transitive 

 
III)  Let A = {1, 2, 3, 4} and R {(1,1), (2,2), (3,3)}  

1)  R is not reflexive because  4, 4R 

2)  R is not irreflexive because 1,1R 

3)  R is symmetric because whenever a R b then b R a. 

4)  R is not asymmetric because  R  R 

5)  R is antisymmetric because 2R2,2R222 

6)  R is transitive. 

IV)  Let AZ 
 

,aRb iff GCD (a, b) = 1 we can say that a and b are 

relatively prime.  
 

1)  R is not reflexive because 3, 31 it is 3. 3, 3R 

2)  R is not irreflexive because (1, 1) = 1 



 

 

3)  R is symmetric because for  a, b 1b, a 1 . aRbbRa 

4)  R  is  not  asymmetric  because  (a,  b)  =  1  then  (b,  a)  =  1. 

aRbbRa 

5)  R is not antisymmetric because 2 R 3 and 3 R 2 but 23 . 

6)  R  is  not  transitive  because  4  R  3,  3  R  2  but  4  R 2  because 

(4,2) = G.C.D. (4,2) = 21 . 

 
V)  A = Z a R b iff ab1  

 
1)  R is reflexive because aa1  a| A . 

2)  R is not irreflexive because 001 for  . 

3)  R is not symmetric because for 251 does not imply 521. 

4)  R is not asymmetric because for (2,3)  R and also (3,2)  R. 

5)  R is not antisymmetric because 5 R 4 and 4 R 5 but 45 . 

6)  R is not transitive because (6,45)  R, (5,4)  R but (6,47)  R. 
 

 

RELATIONS AND PARTITION: 
 

 

In  this  section,  we  shall  know  what  partitions  are  and  its relationship 

with equivalence relations. 

 
Definition : A partition or a quotient set of a non-empty set A is a collection P 

of non-empty sets of A, such that 

(i)  Each element of A belongs to one of the sets in P. 

(ii) If A1 and A2 are distinct elements of P, then A1A2 = . 

The sets in P are called the blocks or cells of the partition. 

 
Example : Let A = {1, 2, 3, 4, 5}. The following sets form a partition of A, as A = 

A1  A2  A3 and A1 A1 andA2 

A1 = {1, 2}; A2 = {3, 5}; A3 = {4}. 

 
Example 24: Let A = {1, 2, 3, 4, 5, 6}. The following sets do not form a partition of A, as 

A = A1  A2  A3 but A2 A1 = {1, 2}; A2 = {3, 5}; A3 = {4, 5, 6}. 

The following result shows that if P is a partition of a set A, then P can be 

used to construct an equivalence relation on A. 

Theorem: Let P be a partition of a set A. Define a relation R on A as a R b if and only if 

a, b belong to the same block of P then R is an equivalence relation on A. 



 

 

Example 25: Consider the partition defined in Example 23. Then the equivalence 

relation as defined from the partition is: 

R={(1, 1),(1, 2),(2, 1),(2, 2),(3, 3),(3, 5), (5, 3), (5, 5), (4, 4)}. 

Now, we shall define equivalence classes of R on a set A. 

Theorem: Let R be an equivalence relation on a set A and let a, b  A, then a R b if and 

only if R(a) = R(b), where R(a) is defined as: R(a) = {x  A: a R x}. R(a) is 

called as relative set of a. 
 

Example26: If we consider an example in 25, we observe that, R(1) = R(2), R(3) = R(5). 
 

Because R (1) = {1,2}, R (2) = {1,2}, R (3) = {3,5}, R(5) = {3,5}. 
 

Earlier,  we have seen that, a partition  defines  an equivalence  relation. Now, 

we shall see that, an equivalence relation defines a partition. 
 

 

Theorem: Let R be an equivalence relation on A and let P be the collection of all distinct 

relative sets R(a) for a  A. Then P is a partition of A and R is equivalence 

relation of this partition. 

 

Note: If R is an equivalence relation on A, then sets R(a) are called as equivalence 

classes of R. 
 

Example 27: Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 1), (2, 2), (3,4), (4, 3), (3, 3), 

(4, 4)}. We observe that R(1) = R(2) and R(3) = R(4) and hence P = { {1, 2}, {3, 

4} }. 
 

Example 28: Let A = Z (set of integers) and define R as 
 

R = {(a, b)  A  A: a  b (mod 5)}. Then, we have, 
 

R(1) = {......,–14,  –9, –4, 1, 6, 11, ..... } 

R(2) = {......,–13,  –8, –3, 2, 7, 12, ..... } 

R(3) = {......,–12,  –7, –2, 3, 8, 13, ..... } 

R(4) = {......,–11,  –6, –1, 4, 9, 14, ..... } 

R(5) = {......,–10,  –5, 0, 5, 10, 15, ..... }. 

R(1), R(2), R(3), R(4) and R(5) form partition on Z with respect to given 

equivalence relation. 


 PARTIAL ORDER RELATION 

We often use relation to describe certain ordering on the sets. For example, 

lexicographical ordering is used for dictionary as well as phone directory.  We 

schedule  ce r t a in  jobs as per certain ordering, such as priority. Ordering of numbers 

may be in the increasing order. 
 

In the previous chapter, we have discussed various properties (reflexive etc) of 

relation. In this chapter we use these to define ordering of the sets. 

 
 

 

 

 

 



 

 
 

1 1 1 

1 1 1 

0 1 1 

0 0 1 

0 0 0 

 

 1 

Definition 1: A relation R on the set A is said to be partial order relation, if it is 

reflexive, anti-symmetric and transitive. 
 

 

Before we proceed further, we shall have a look at a few examples of partial order 

relations. 
 

 

Example  1:  Let  A  =  {a,  b,  c,  d,  e}.  Relation  R,  represented  using following 

matrix is a partial order relation. 

 

 

 1  1
 
 0  1
 0  1
 
 0  1

 0  


Observe the reflexive, anti-symmetric and transitive properties of 

the relation from the matrix. 

 
Example 2: Let A be a set of natural numbers and relation R be “less than or equal to 

relation ()”. Then R is a partial order relation on A. For any m, n, k  

N, n  n (reflexive); if   m n and m  n, then m = n (anti-

symmetric); lastly, if m  n and n  k, then m   k (transitive). 

 
Definition : If R is a partial order relation on a set A, then A is called as partial order set 

and it is denoted with (A, R). Typically this set is termed as poset and 

the pair is denoted with (A, ). 
 

 

DIAGRAMMATIC  REPRESENTATION OF PARTIAL ORDER RELATIONS 

AND POSETS:  

In the previous chapter, we have seen the diagraph of a relation. In this section, we use the 

diagraphs of the partial order relations, to represent the relations in a very suitable way 

where there no arrowhead and transitivity shown indirectly   known as Hasse diagram. 

We understand the Hasse diagram, using following example. 

Example 1: Let A = {a, b, c, d, e} and the following diagram represents the diagraph of 

the partial order relation on A. 
 

 

c 
d 

 
 
 

 
b  

e
 

 

 
 

a 
 

 

Fig.1 



 

 

Now,  we  shall  draw  Hasse  diagram  from  the  above  diagrams  using following rules. 

(i)  Drop the reflexive loops 
 

 

c 
d 

 
 
 

 
b  

e
 

 

 
 

a 
 

Fig. 2 
 

 
 

(ii) Drop transitive lines 
 

 
c 

d 
 
 
 

 
b  

e
 

 

 
 

a 
 

 

Fig. 3 
 

 
 
 
 
 
 
 

(iii)Drop arrows 
 

 

c 
d 

 
 
 

 
b  

e
 

 

 
 

a 
 

Fig.4 

 

 



 

 

 

Note : In many cases, when the graphical representation is so oriented that all the arrow 

heads point in one direction (upward, downward, left to right or right to left). A 

graphical representation in which all the arrowheads point upwards, is known as 

Hasse diagram. 

Example 4: `Let A = {1, 2, 3, 4, 6, 9} and relation R defined on A be “ a divides b”. Hasse 

diagram for this relation is as follows: 
 

 
 

Note : The reader is advised to verify that this relation is indeed a partial order relation. 

Further, arrive at the following Hasse diagram from the diagraph of a relation as 

per the rules defined earlier. 
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1 
 
 

 

Fig.5 

 
Example   5   :   Determine   the   Hasse   diagram   of   the   relation   on A = {1,2,3,4,5} 

whose MR is given below : 

 

10111 

01111 



M R 0011

0




00001



Solution : 

 
Reflexivity  is  represented  by  1  at  diagonal   place.   So  after removing 

reflexivity R is R = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5)} 

Remove transitivity as 
 
 



 



1, 33, 4R 

remove 1, 4R 

 2, 33, 5R remove  2, 5R  and so on. 

R1, 3 ,2, 3 ,3, 4 ,3, 5


The Hasse Diagram is 
 
 

4  
5 

 

 
 

3 
 
 
 

1  2 
 

 

Example 6 : 

 
Determine matrix of partial order whose Hasse diagram is given as follow - 

 
 
 

4  5 
 

 
 
 
 

2  3 
 
 
 
 

1 
 

 
Solution : 

 
Here A = [1, 2, 3, 4, 5) 

 
Write all ordered pairs (a, a)   a A i.e. relation is reflexive. 



 

 

 

 

Then write all ordered pairs in upward direction. As (1, 2) R  & (2,4) R1, 4R  since 

R is transitive. 

 

R1,1,2,2,3,3,4,4,5,5,1,2,2,4,2,4,1,4 ,1,3,3,5,1,5



The matrix MR can be written as - 


  

























10000

01000

10100

01010

11111

R
M  

 

 

 

  

 

Now, we shall have a look at certain terms with reference to posets. 

 
Definition : Let (A, ) be a partially ordered set. Elements a, b  A, are said to be comparable, if a  b 

or b  a. 

E.g. In example 4, 2 and 4 are comparable, whereas 4 and 9 are not 

comparable. 

 
Definition : Let (A,  ) be a partially ordered set. A subset of A is said to be a chain if every two 

elements in the subset are related. 

 
Example 7: In the poset of example 4, subsets {1, 2, 4}; {1, 3, 6};{1, 2, 6} and {1, 3, 9} 

 are chains. 

 
Definition : A subset of a poset A is said to be anti-chain, if no two elements of it are related. 

 
Example 8: In the poset of example 4, subsets {2, 9}; {3, 4}; {4, 6, 9}are anti-chains. 

 
Definition : A partially ordered set A is said to be totally ordered if it is chain. 

 
Example 9: Let A = {2, 3, 5, 7, 11, 13, 17, 19} and the relation defined on A be .  

Then poset (A, ) is a chain. 

CLOSURE PROPERTIES 

Consider a given set A and let R be  a  relation on A. Let P be a property of such relations, 

such as being reflexive or symmetric or  transitive. A relation with property P will be called 

a P-relation. The P-closure of an arbitrary relation R on A, written P (R), is a P-relation such 

that 

 



 

R ⊆ P (R) ⊆ S 

     for every P-relation S containing R. We will write 
 
reflexive (R), symmetric(R), and transitive(R) 

for the reflexive, symmetric, and transitive closures of R. 

Generally speaking, P (R) need not exist. However, there is a general situation where P (R) 

will always exist. Suppose P is a property such that there is at least one P-relation containing 

R and that the intersection of any P-relations is again a P-relation. Then one can prove  that 

P (R) = ∩(S | S is a P -relation and R ⊆ S) 

Thus one can obtain P (R) from the “top-down,” that is, as the intersection of relations. However, 

one usually wants to find P (R) from the “bottom-up,” that is, by adjoining elements to R to obtain 

P (R). This we do below. 

Reflexive and Symmetric Closures 

The next theorem tells us how to obtain easily the reflexive and symmetric closures of a 

relation. Here 

       A = {(a, a) | a ∈ A} is the diagonal or equality relation on A. 

Theorem: Let R be a relation on a set A. Then: 

(i) R ∪ A is the reflexive closure of R. 

(ii) R ∪ R
−1

 is the symmetric closure of R. 

In other words, reflexive(R) is obtained by simply adding to R those elements (a, a) in the 

diagonal which do not already belong to R, and symmetric(R) is obtained by adding to R all pairs 

(b, a) whenever (a, b) belongs to R. 
 

 

 

EXAMPLE 10  Consider the relation R = {(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)} on the 

set A = {1, 2, 3, 4}. 
 
Then 

 
reflexive(R) = R ∪ {(2, 2), (4, 4)} and symmetric(R) = R ∪ {(4, 2), (3, 4)} 

 

 

Transitive Closure 

Let R be a relation on a set A. Recall that R
2
= R◦R and R

n
= 1nR  ◦R. We define 

The following theorem applies: 

Theorem : R∗ is the transitive closure of R. 



 

h 

Suppose A is a finite set with n elements. We show  

R∗ = R ∪ R
2
∪ . . . ∪ R

n
 

 
This gives us the following theorem: 

Theorem : Let R be a relation on a set A with n elements. Then 
 
transitive (R) = R ∪ R

2
∪ . . . ∪ R

n
 

 
 

EXAMPLE 11  Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = {1, 2, 3}. 

Then: 

R
2
= R ◦R = {(1, 3), (2, 3), (3, 3)} and R

3
= R

2
◦R = {(1, 3), (2, 3), (3, 3)} 

 
Accordingly, 

transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)} 
 

 
 

 

MAXIMAL,  MINIMAL  ELEMENTS  AND LATTICES: 
 

In this section, we discuss certain element types in the poset and 

hence a special kind of poset, Lattice. 

 
To understand  these types, we shall refer to the following figures, 

i.e. Fig.6 and Fig.7. 
 

 j  
k  e 

g 
f 

 

h  i 

b   d 

c 
f  

g 
 
 

a 

b  c  d  
e 

 

a  Fig. 7 
 

Fig. 6 

 
 

 

 

 

 

 

 

 



 

Definition : Let (A, ) be a poset. An element a  A is called a maximal 

element, if for no b  A, a  b, a  b. E.g. In Fig. 4, j and k are maximal 

elements. 

 

Definition : Let (A, ) be a poset. An element a  A is called a minimal element, if for no 

b  A, a  b, b  a. E.g. In Fig. 4.6, a, b and e are minimal elements. 
 

Definition : Let a, b be two elements in the poset (A, ). An element c  A, is said to be 

an upper bound of a, b if a c and b  c. E.g. In Fig 7, f1 h are upper bounds 

of b and d. 
 

Definition : Let a, b be two elements in the poset (A, ). An element c  A, is said to be a 

least upper bound of a, b if a c and b  c and if d is an upper bound of a, b, 

then c  d. E.g. In Fig 2, f is a least upper bound of b and d. 
 

Definition : Let a, b be two elements in the poset (A, ). An element c  A, is said to be 

a lower bound of a, b if c a and c  b. E.g. In Fig 6, f, g are lower bounds 

of h and i. 
 

Definition : Let a, b be two elements in the poset (A, ). An element c  A, is said to be 

a greatest lower bound of a, b if c a and c  b and if d is a lower bound of a, 

b, then d  c. E.g. In Fig 4, c is a greatest lower bound of e and g. 
 

Definition  :  A  poset  (A,  )  is  said  to  be  a  lattice,  if  every  two elements in A have a 

unique least upper bound and a unique greatest lower bound. 

 
E.g. Fig. 6 is not a lattice, because j and k are two least upper bounds of h and i, whereas 

Fig. 7 is a lattice. 

 

 

 

 

 

  

 
 

 

 

 

 



 

Graph Theory 

Graphs with Basic Terminology 
 

The fundamental concept of graph theory is the graph, which (despite the name) is best 

thought of as a mathematical object rather than a diagram, even though graphs have a 

very natural graphical representation. A graph – usually denoted G(V,E) or G = (V,E) – 

consists of set of vertices V together with a set of edges E. Vertices are also known as 

nodes, points and (in social networks) as actors, agents or players.  Edges are also 

known as lines and (in social networks) as ties or links. An edge e = (u,v) is defined by 

the unordered pair of vertices that serve as its end points. Two vertices u and v are 

adjacent if there exists an edge (u,v) that connects them. An edge e = (u,u) that links a 

vertex to itself is known as a self-loop or reflexive tie.  The number of vertices in a graph 

is usually denoted n while the number of edges is usually denoted m.  

 

As an example, the graph depicted in Figure 1 has vertex set V={a,b,c,d,e.f} and edge 

set E = {(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}. 

 

 

 

Figure 1. 

When looking at visualizations of graphs such as Figure 1, it is important to realize that 

the only information contained in the diagram is adjacency; the position of nodes in the 

plane (and therefore the length of lines) is arbitrary unless otherwise specified. Hence it 

is usually dangerous to draw conclusions based on the spatial position of the nodes. For 

example, it is tempting to conclude that nodes in the middle of a diagram are more 

important than nodes on the peripheries, but this will often – if not usually – be a 

mistake. 

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f



 

When used to represent social networks, we typically use each line to represent 

instances of the same social relation, so that if (a,b) indicates a friendship between the 

person located at node a and the person located at node b, then (d,e) indicates a 

friendship between d and e. Thus, each distinct social relation that is empirically 

measured on the same group of people is represented by separate graphs, which are 

likely to have different structures (after all, who talks to whom is not the same as who 

dislikes whom).  

Every graph has associated with it an adjacency matrix, which is a binary nn matrix A 

in which aij = 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 

otherwise. The natural graphical representation of an adjacency matrix is a table, such as 

shown in Figure 2.  

 a b c d e f 

a 0 1 0 0 0 0 

B 1 0 1 0 0 0 

c 0 1 0 1 1 0 

D 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

 

Figure 2. Adjacency matrix for graph in Figure 1. 

 

Examining either Figure 1 or Figure 2, we can see that not every vertex is adjacent to 

every other. A graph in which all vertices are adjacent to all others is said to be 

complete. The extent to which a graph is complete is indicated by its density, which is 

defined as the number of edges divided by the number possible. If self-loops are 

excluded, then the number possible is n(n-1)/2. If self-loops are allowed, then the 

number possible is n(n+1)/2. Hence the density of the graph in Figure 1 is 6/15 = 0.40.  

A clique is a maximal complete subgraph. A subgraph of a graph G is a graph whose 

points and lines are contained in G. A complete subgraph of G is a section of G that is 

complete (i.e., has density = 1). A maximal complete subgraph is a subgraph of G that is 

complete and is maximal in the sense that no other node of G could be added to the 

subgraph without losing the completeness property. In Figure 1, the nodes {c,d,e} 



 

together with the lines connecting them form a clique. Cliques have been seen as a way 

to represent what social scientists have called primary groups. 

hile not every vertex in the graph in Figure 1 is adjacent, one can construct a sequence 

of adjacent vertices from any vertex to any other. Graphs with this property are called 

connected. Similarly, any pair of vertices in which one vertex can reach the other via a 

sequence of adjacent vertices is called reachable. If we determine reachability for every 

pair of vertices, we can construct a reachability matrix R such as depicted in Figure 3. 

The matrix R can be thought of as the result of applying transitive closure to the 

adjacency matrix A. 

 

Figure 3.  

A component of a graph is defined as a maximal subgraph in which a path exists from 

every node to every other (i.e., they are mutually reachable). The size of a component is 

defined as the number of nodes it contains. A connected graph has only one component. 

A sequence of adjacent vertices v0,v1,…,vn is known as a walk. In Figure 3, the sequence 

a,b,c,b,a,c is a walk. A walk can also be seen as a sequence of incident edges, where two 

edges are said to be incident if they share exactly one vertex. A walk in which no vertex 

occurs more than once is known as a path. In Figure 3, the sequence a,b,c,d,e,f is a path. 

A walk in which no edge occurs more than once is known as a trail. In Figure 3, the 

sequence a,b,c,e,d,c,g is a trail but not a path. Every path is a trail, and every trail is a 

walk. A walk is closed if vo = vn. A cycle can be defined as a closed path in which n >= 

3. The sequence c,e,d in Figure 3 is a cycle. A tree is a connected graph that contains no 

cycles. In a tree, every pair of points is connected by a unique path. That is, there is only 

one way to get from A to B. 

The length of a walk (and therefore a path or trail) is defined as the number of edges it 

contains. For example, in Figure 3, the path a,b,c,d,e has length 4. A walk between two 

vertices whose length is as short as any other walk connecting the same pair of vertices 
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is called a geodesic. Of course, all geodesics are paths. Geodesics are not necessarily 

unique. From vertex a to vertex f in Figure 1, there are two geodesics: a,b,c,d,e,f and 

a,b,c,g,e,f.  

The graph-theoretic distance (usually shortened to just “distance”) between two vertices is 

defined as the length of a geodesic that connects them. If we compute the distance between 

every pair of vertices, we can construct a distance matrix D such as depicted in Figure 4. The 

maximum distance in a graph defines the graph’s diameter. As shown in Figure 4, the diameter 

of the graph in Figure 1 is 4.  If the graph is not connected, then there exist pairs of vertices 

that are not mutually reachable so that the distance between them is not defined and the 

diameter of such a graph is also not defined. 

 a B c d e f G 

a 0 1 2 3 3 4 3 

b 1 0 1 2 2 3 2 

c 2 1 0 1 1 2 1 

d 3 2 1 0 1 2 2 

e 3 2 1 1 0 1 1 

f 4 3 2 2 1 0 2 

g 3 2 1 2 1 2 0 

 

Figure 4. Distance matrix for graph in Figure 3. 

 

The powers of a graph’s adjacency matrix, A
p
, give the number of walks of length p 

between all pairs of nodes. For example, A
2
, obtained by multiplying the matrix by 

itself, has entries 
2

ija that give the number of walks of length 2 that join node vi to node 

vj. Hence, the geodesic distance matrix D has entries dij = p, where p is the smallest p 

such that 
p

ija > 0. (However, there exist much faster algorithms for computing the 

distance matrix.) 

The eccentricity e(v) of a point v in a connected graph G(V,E) is max d(u,v), for all u  V. 

In other words, a point’s eccentricity is equal to the distance from itself to the point 

farthest away.  The eccentricity of node b in Figure 3 is 3. The minimum eccentricity of 

all points in a graph is called the radius r(G) of the graph, while the maximum 

eccentricity is the diameter of the graph. In Figure 3, the radius is 2 and the diameter is 

4. A vertex that is least distant from all other vertices (in the sense that its eccentricity 



 

equals the radius of the graph) is a member of the center of the graph and is called a 

central point. Every tree has a center consisting of either one point or two adjacent 

points. 

Directed Graphs 
As noted at the outset, the edges contained in graphs are unordered pairs of nodes (i.e., 

(u,v) is the same thing as (v,u)). As such, graphs are useful for encoding directionless 

relationships such as the social relation “sibling of” or the physical relation “is near”. 

However, many relations that we would like to model are not directionless. For 

example, “is the boss of” is usually anti-symmetric in the sense that if u is the boss of v, 

it is unlikely that v is the boss of u. Other relations, such as “gives advice to” are simply 

non-symmetric in the sense that if u gives advice to v, v may or may not give advice to 

u.  

To model non-symmetric relations we use directed graphs, also known as digraphs. A 

digraph D(V,E) consists of a set of nodes V and a set of ordered pairs of nodes E called 

arcs or directed lines. The arc (u,v) points from u to v.  
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Digraphs are usually represented visually like graphs, except that arrowheads are placed 

on lines to indicate direction (see Figure 5). When both arcs (u,v) and (v,u) are present in 

a digraph, they may be represented by a double-headed arrow (as in Figure 5a), or two 

separate arrows (as shown in Figure 5b). 

 

 

In a digraph, a walk is a sequence of nodes vo,v1,…vn in which each pair of nodes vi, 

vi+1 is linked by an arc (vi,vi+1). In other words, it is a traversal of the graph in which 

the flow of movement follows the direction of the arcs, like a car moving from place to 

place via one-way streets. A path in a digraph is a walk in which all points are distinct. 

A semiwalk is a sequence of nodes vo,v1,…vn in which each pair of nodes vi, vi+1 is 

linked by either the arc (vi,vi+1) or the arc (vi+1,vi). In other words, in a semiwalk, the 

traversal need not respect the direction of arcs, like a car that freely goes the wrong way 

on one-way streets.  By analogy, we can also define a semipath, semitrail, and 

semicycle.  

Another way to think of semiwalks is as walks on the underlying graph, where the 

underlying graph is the graph G(V,E) that is formed from the digraph D(V,E’) such that 

(u,v)  E if and only if  (u,v)  E’ or (v,u)  E’. Thus, the underlying graph of a digraph 

is basically the graph formed by ignoring directionality. 

A digraph is strongly connected if there exists a path (not a semipath) from every point 

to every other. Note that the path from u to v need not involve the same intermediaries 

as the path from v to u. A digraph is unilaterally connected if for every pair of points 

there is a path from one to the other (but not necessarily the other way around). A 

digraph is weakly connected if every pair of points is mutually reachable via a semipath 

(i.e., if the underlying graph is connected).  

A strong component of a digraph is a maximal strongly connected subgraph. In other 

words, it is a subgraph that is strongly connected and which is as large as possible (there 

is no node outside the subgraph that is strongly connected to all the nodes in the 

subgraph). A weak component is a maximal weakly connected subgraph.  

The number of arcs originating from a node v (i.e., outgoing arcs) is called the outdegree 

of v, denoted od(v). The number of arcs pointing to a node v (i.e., incoming arcs) is 

called the indegree of v, denoted id(v). In a graph representing friendship feelings 

Figure 5b 



 

among a set of persons, outdegree can be seen as indicating gregariousness, while 

indegree corresponds to popularity. The average outdegree of a digraph is necessarily 

equal to the average indegree.  

The adjacency matrix A of a digraph is an n × n matrix in which aij = 1 if (vi,vj)  E and 

aij = 0 otherwise. Unlike the adjacency matrix of an undirected graph, the adjacency 

matrix of a directed graph is not constrained to be symmetric, so that the top right half 

need not equal the bottom left half (i.e., aij <> aji). If a digraph is acyclic, then it is 

possible to order the points of D so that the adjacency matrix upper triangular (i.e., all 

positive entries are above the main diagonal). 

Some notations 

Kn : the complete graph on n vertices. 

Cn : the n-cycle graph. 

Km,n : the complete bipartite graph on m+n vertices and mn edges.. 

K1,n : the star graph on n+1 vertices. 

mKn : m disjoint copies of Kn. 

Paths and Circuits 

 chain : A sequence of vertices [ , , ,... ]v v v vl0 1 2  is a chain of length l in G if 

v v E or v v Ei i i i  1 1  for i=1,2, ...,l. 

 path : A sequence of vertices [ , , ,... ]v v v vl0 1 2  is a path from v0 to vl of length l 

in G if v v E i i 1  for i=1,2, ...,l. 

 simple path: It does not include the same edge twice. 

 elementary path(or chain): A path or chain in G is called elementary if no vertex 

occurs more than once. 

 connected graph : A graph G is connected if between any two vertices there exists a 

path in G joining them. 

 strongly connected graph : A graph G is strongly connected if for any two vertices x 

and y there exists a path in G from x to y. 

 elementary cycle(circuit) : A cycle [ , , ,... , ]v v v v vl0 1 2 0  is a elementary cycle if 

vi  vj for ij. 



 

 chordless cycle : A simple cycle [ , , ,... , ]v v v v vl0 1 2 0  is chordless if vi vjE for 

i and j differing by more than 1 mod l+1. 

 Theorem : In a (directed or undirected) graph with n vertices, if there is a path from 

vertex v1 to vertex v2, then there is a path of no more than n-1 edges from v1 to 

vertex v2. 

 bipartite graph : An undirected graph G=(V,E) is bipartite if its vertices can be 

partitioned into two disjoint stable sets V=S1+S2. 

complete bipartite graph : A bipartite graph G=(S1,S2,E) is complete if for every xS1 

and yS2 we have xyE, i.e., every possible edge that could exist does exist. 

Eulerian Paths and Circuits 

 L. Euler, the father of the graph theorysolved the Königsberg’s bridge problem, 

1736 

 Eulerian path problem : a path that traverses each edge in the graph once and only 

once. 

 Theorem: An undirected graph possess an Eulerian path if and only if it is 

connected and has either zero or two vertices of odd degree. 

Proof. () Suppose that the graph possess an Eulerian path. It must be connected. 

When the eulerian path is traced, we observe that every time the path meets a 

vertex, it goes through two edges which are incident with the vertex and have 

not been traced before. 

Thus, except for the two vertices at the ends of the path, the degree of any 

vertex in the graph must be even. 

() omitted. 

 Theorem: An undirected graph possess an Eulerian circuit if and only if it is 

connected and has no vertices of odd degree. 

 Theorem : An directed graph possess an Eulerian circuit if and only if it is 

connected and the incoming degree of every vertex is equal to its outgoing degree. 

   An directed graph possess an eulerian path if and only if it is connected and the 

incoming degree of every vertex is equal to its outgoing degree with the possible 

exception of two vertices. For these two vertices, the incoming degree of one is one 

larger than its outgoing degree, and the incoming degree of the other is one less than 

its outgoing degree. 



 

Hamiltonian Paths and Circuits 

 Hamiltonian path : A path that passes through each of the vertices in a graph exactly 

once.  

 No simple necessary and sufficient condition is known for graph to have a 

Hamiltonian path or circuit. 

 Theorem : Let G be a linear graph of n vertices. If the sum of the degrees for each 

pair of vertices in G is n - 1 or larger, then there exists a hamiltonian path in G.  

Proof. (1) G is connected: 

Suppose G has two or more disconnected components. Let v1 be a vertex in 

one component that has n1 vertices and v2 be a vertex in another component 

that has n2 vertices. 

Since the degree of v1 is at most n1 - 1 and the degree of v2 is at most n2 -1, 

the sum of their degrees is at most n1 + n2 - 2 < n - 1, contradicts to the 

assumption.  

(2) Construct a hamiltonian path: 

 Let there be a length p-1 (p < n) path, (v1, v2, v3, …, vp). Both v1 and vp are 

adjacent only to the vertices that are in the path. 

 There is a cycle containing exactly the vertices v1, v2, v3, …, vp.  

 Assume v1 is adjacent to v v vi i ik1 2
, , ..., , where 1 < ij < p.  

 If vp is adjacent to one of v v vi i ik1 21 1 1  , , ..., ,  then we have 

the cycle. 

 If vp is not adjacent to any one of v v vi i ik1 21 1 1  , , ..., ,  then 

vp is adjacent to at most p-k-1 vertices. Contradicts to the assumption. 

 Pick a vertex vx that is not in the cycle. Because G is connected, there is a 

vertex vk that is not in the cycle with an edge between vx and vk for some vk in 

{v1, v2, v3, …, vp}. 

 We now have the path (vx, vk, vk+1, …, vj-1, vp, vp-1, …,vj, v1, v2, v3, …, vk-1), 

which contains p edges. 

 Repeat the foregoing construction until we have a path with n - 1 edges. 



 

 Theorem : There is always a hamiltonian path in a directed complete graph.  

Proof. Let there be a length p-1 (p < n) path, (v1, v2, v3, …, vp). Let vx be a vertex 

that is not included in this path, and there is no edge from vx to v1. However, (v1, 

vx)  G. 

Suppose that (vx, v2) is also an edge in the path. Replace the edge (v1, v2) in 

the original path with the two edges (v1, vx) and (vx, v2) so that the vertex vx 

will be included in the argument path.  

If there is no edge from vx to v2, then there must be an edge (v2, vx) in the path 

and we can repeat the argument. 

If we find that it is not possible to include vertex vk in any augment path by 

replacing an edge (vk, vk+1) in the original path with two edges (vk, vx) and (vx, 

vk+1)with 1  k  p-1, then we conclude that there must be an edge (vp, vx) in the 

graph. 

We can repeat the argument until all vertices in the graph are included in the 

argumented path. 

 There is no general method of solution to the problem of proving the non-existence 

of a hamiltonian path or circuit in a graph. 

Planar Graphs 

 planar graph : A graph is said to be planar if it can be drawn on a plane is such a 

way that no edges cross one another, except, of course, at common vertices.   

 Region : A region of a planar graph is defined to be an area of the plane that is 

bounded be edges and is not further divided into subareas. A region is said to be 

finite if this area is finite, and is said to be infinite if its area is infinite. Clearly, a 

planar graph has exactly one infinite region. 

 Theorem : For a connected planar graph,v - e + r = 2 (Euler’s formula) 

where v, e, and r are the number of vertices, edges, and regions of the graph, 

respectively. 

 Application of Euler’s formula : In any connected planar graph that has no loops 

and has two or more edges,e  3v -6. 

 

 Theorem (Kuratowski): A graph is planar if and only if it does not contain any 

subgraph that is isometric to o either K5 or K3,3. 



 

 Tree: A part of a graph that is connected and contains no cycles. 

 Theorem: A connected graph possesses a tree iff  there is exactly one path in 

between every pair of vertices. 

 Theorem: A tree with n vertices has exactly n – 1 vertices. 

 Spanning Tree: A tree containing all the vertices with exactly n – 1 edges. 

  There are two algorithms namely Kruskal’s and Prim’ algorithms to find the MST.  



 
 
 
 

Unit III 

GROUP THEORY 
OBJECTIVES: 
 

After going through this unit, you will be able to know:  

 Binary Operation  

 Definition of Group, semi group, Monoid 

 Permutation groups 

 Cosets and Lagrange's theorem 

 Homomorphism, Isomorphism and Automorphism of Groups 

 Rings, integral domains and field. 
 

 

 INTRODUCTION: 
 

In this chapter, we will study, binary operation as a function, and two more algebraic 

structures, semigroups and groups. They are called an algebraic structure because the 

operations on the set define a structure on the elements of that set. We also define 

the notion of a hornomorphism and product and quotients of groups and semigroup. 

 

BINARY OPERATION 
 

 

A binary operation on a set A is an everywhere defined function f : A  A  A , generally 
the operation is denoted by * on A, then a  b  A  a, b  A. 

Properties of binary operation :  Let  

be a binary operation on a set A, 

Then  satisfies the following 

properties, namely 

 Closure property 

 Associative property 

 Identity Property 

 Inverse property 

 Commutative property etc.



 

SEMIGROUP 
 

 

A non-empty set S together with a binary operation  is called as a semigroup if – 

i)  binary operation  is closed 

ii)  binary operation  is associative 

we denote the semigroup by (S,  ) 
 

 

Commutative   Semigroup   :-   A   semigroup   (S,   )   is   said   to   be 
 
 

commutative if  is commutative i.e. a  b  b  aa  S 

 

 

Examples :  1)  (z, +) is a commutative semigroup 

2)  The  set  P(S),  where  S  is  a  set,  together  with 

operation of union is a commutative semigroup. 

3)  (Z, –) is not a semigroup 

The operation subtraction is not associative 
 

IDENTITY ELEMENT : 
 

 

An element e of a semigroup (S,  ) is called an identity element if e  a  a  e  a a  S 
 
 

Monoid A non-empty set M together with a binary operation *defined on 

it, is called as a monoid if – 

 

i)  binary operation  is closed 

ii)  binary operation  is associative and 

iii)  (M,  ) has an identity. 

i.e. A semi group  that has an identity is a  monoid.  
 

A a non-empty set G together with a binary operation    defined on it is 

called a group if  

 

(i)        binary operation  is close, 

(ii)  binary operation  is associative, 

(iii)  (G,  ) has an identity, 

(iv)  every element in G has inverse in G, 

We denote the group by (G,  ) 
 

 

 

Commutative   (Abelian   Group   :  A   group   (G,    )  is  said  to  be 

commutative if  is commutative. i.e. a*bb*aa, bG . 
 

 

Cyclic Group : If every element of a group can be expressed as the power 

of an element of the group, then that group is called as cyclic group. 
 

 



 

 

The element is called as generator of the group. 

If G is a group and a is its generator then we write    G  a 

For  example  consider 

 

G  {1, 1, i, i} .  G  is  a  group  under  the  binary 

operation  of  multiplication.  Note  that G  i  .  Because 

ai,i2,i3 ,i4i, 1, i,1

SUBSEMI GROUP : 
 
 

Let (S,  ) be a semigroup and let T be a subset of S. If T is closed under operation  , 

then (T,  ) is called a subsemigroup of (S,  ). 
 

 

Submonoid : Let (S,  ) be a monoid with identity e, and let T be a non- empty subset 

of S. If T is closed under the operation  and e  T, then (T,  ) is called a 

submonoid of (S,  ). 
 

 

Subgroup : Let (G,  ) be a group. A subset H of G is called as subgroup of G if (H,  ) 

itself is a group. 
 
 

Necessary and Sufficient  Condition  for subgroup : Let (G;   ) be a group. A 
subset H of G is a subgroup of G if and only if a, b  H a  b

1 
 H 

 
PERMUTATION GROUP 
 

Definition : A permutation on n symbols is a bijective function of the set 

A = 1, 2,...n  onto  itself.  The set of all  permutations  on  n symbols  is 

denoted by Sn. If   is a permutation on n symbols, then    is completely 

determined by its values  1, 2..... n . We use following notation 

 123n  
to denote 

  1 1 3 n  
. 

 
 
 

12345 
For example   denotes the permutation on the 5 symbols 

 53124 
(1,2,3,4,5).  maps 1 to 5, 2 to 3, 3 to 1, 4 to 2 and 5 to 4. 

 

 

Product of permutation : - Let A = {1,2,3,4} 

1234 
Let  

 3241 

1234 
and   . 

 432 

1234  1234  1234 
Then O     =  

 3241   432   2314 

Cycle - an element sn is called a cycle of lingth r if    r symbols 



 

  

i1,i2....in i1 i2, i2 i3 ... in i1. 
 

 

Example : Consider following permutation 
 

 

123456 
i)    . It can be expressed as a product of cycles - 

 234165 

 
1234   56  

123456
 2341   65 





Transposition : 
 

 

A cycle of length two is called transposition. 

For example following permutation can be expressed as a product 

of transpositions. 

 

18372546

1813172546


Even (odd) Permutation - 
 

 

Let A {1, 2, ….n). A permutation sn is even or odd according 

to whether it can be expressed as the product of an even number of 

transpositions or the product of an odd number of transpositions 

respectively. 
 

 

For example we can consider following permutation : 
 

 

 14523

141523

= odd no. of transpositions so  is odd permutation 
 

 

Example 1 : Show that  defined as  x  y  x is a binary operation on the 

set of positive integers. Show that  is not commutative but is associative. 
 

 

Solution : Consider two positive integers x and y. By definition  x  y  x 

which is a positive integer. Hence  is a binary operation. 

For commutativity :  x  y  x 

  is not commutative. 

and  y  x  x . Hence  x  y  y  x in general 

 

 

But x  ( y  z)  x  y  x and  ( x  y)  z  x  z  x .  Hence 

x  ( y  z)  ( x  y)  z .   is associative 
 
 

Example 2 : Let I be the set of integers and Zm  be the set of equivalence 

classes generated by the equivalence relation “congruent modulo m” for 

any positive integer m. 
 

 



 

a)         Write the sets Z3 and Z6 

b)  Show  that  the  algebraic  systems  (Zm, +  m)  and  (Zm,    m)  are 

monoids. 

c)         Find the inverses of elements in Z3 and Z4 with respect to +3 and 4 

respectively. 

 

Solution : a) Z3 for (Z3,+ 3) ={[0], [1], [2]} 

 Z6 for (Z6, + 6) = {[0], [1], [2], [3], [4], [5] } 

Z3 for (Z3, 3) ={[0], [1], [2]} 

Z6 for (Z6, 6) = {[0], [1], [2], [3], [4], [5] } 
 

Example 3 : Determine whether the following set together with the binary 

operation is a semigroup, a monoid or neither. If it is a monoid, specify the 

identity. If it is a semigroup or a monoid determine whether it is 

commutative. 

 

i)  A = set of all positive integers. 

a  b  max{a, b} i.e. bigger of a and 

b   

ii)  Set S = {1, 2, 3, 6, 12} where a  b  G.C.D.(a, b) 

 

iii)  Set S ={1,2,3,6,9,18) where a  b  L.C.M . a,b

iv)  Z, the set of integers, where a  b  a  b  ab 

v)  The set of even integers E, where a  b  
ab 
2 

 

vi)  Set of real numbers with a  b  a  b  2 

vii)  The set of all mn matrices under the operation 

of addition. 

 

 
 

 

Solution : 

i)  A = set of all positive integers. a  b  max{a, b} i.e. bigger of a and b. 
 
 

Closure Property: Since Max {a, b} is either a or b   a  b  A . Hence 

closure property is verified. 
 

 

Associative Property : 

Since a  (b  c)  max{{a, b}, c}  max {a, b, c} 

= Max{a,{b, c} } = (a.b).c 

  is associative. 

 (A,  ) is a semigroup. 
 

 

Existence of identity : 1  A is the identity because 

1.a = Max{ 1,a}= a   aA 

 (A,  ) is a monoid. 
 

 

Commutative  property  :  Since  Max{a,  b)  =  max{b,  a)  we  have 

a  b  b  a Hence  is commutative. 
 

 

Therefore A is commutative monoid. 



 

 

 

ii)  Set S = { 1,2,3,6,12} where a  b  G.C.D. (a, b) 
 

* 1 2 3 6 12 

1 1 1 1 1 1 

2 1 2 1 2 2 

3 1 1 3 3 3 

6 1 2 3 6 6 

12 1 2 3 6 12 

Closure  Property  :  Since  all  the  elements  of  the  table    S,  closure 

property is satisfied. 

 

Associative Property :Since 

a  (b  c)  a  (b  c)  a  GCD{b, c}  GCD {a, b, c} 

And (a  b)  c  GCD{a, b}  c  GCD{a, b, c} 

 a  (b  c)  (a  b)  c 

  is associative. 

 (S,  ) is a semigroup. 
 

 

Existence  of identity:  From the table  we observe  that  12    S is the 

identity 

 (S,  ) is a monoid. 
 

 

Commutative   property   :   Since   GCD{a,b}=   GCD{b,a)   we   have 

a  b  b  a . Hence  is commutative. 

 
Therefore A is commutative monoid 

 
(iii) Set S ={ 1,2,3,6,9, 18} where a  b =L.C.M. (a,b) 

 

 

* 1 2 3 6 9 18 

1 1 2 3 6 9 18 

2 2 2 6 6 18 18 

3 3 6 3 6 9 18 

6 6 6 6 6 18 18 

9 9 18 9 18 9 18 

18 18 18 18 18 18 18 

 

Closure  Property  :  Since  all  the  elements  of  the  table    S,  closure 

property is satisfied. 
 

 

Associative Property : Since a  (b  c)  a  LCM {b, c}  LCM {a, b, c} 

And (a  b)  c  LCM {a, b}  c  LCM {a, b, c} 

 a  (b  c)  (a  b)  c 

  is associative. 

 (S,  ) is a semigroup. 

 



 

Existence  of identity  :  From the table we observe  that  1   S is the 

identity. 

 (S,  ) is a monoid. 

 
Commutative  property  :  Since  LCM{a,  b}  =  LCM{b,  a}  we  have 

a  b  b  a . Hence  is commutative. 

 
 

Therefore A is commutative monoid. 
 

 

(iv)  Z, the set of integers where - a * b = a + b - ab 
 

 

Closure Property : - a,bz then a  babza,b 

so * is closure. 
 

 

Associate Property : Consider a,bz 

a*b*cabab*c 

ababca b abc 

ab abc acbc abc 

ab  c  ab  ac  bc  abc 

 
 
 
 
 
 

 
(1) 

 

 

a*b * c a*b c  bc 

 a b  c  bc  a b  c  bc 

a  b  c  bc  ab  ac  abc 

(2)From 1 & 2 

a*b* c  a*b * c a,b,c  z 

* is associative 

(z, &) is a semigroup. 
 

 

Existence of Identity : Let e be the identity element a * e = q 

a + e - q.e = a 

a + e - a.e = a 

e ( 1-a) = 0 

e = 0 or a = 1 

But a1 

E = 0 

 OZ is the identity element. 

 (Z, *) is monoid. 
 

 

Commutative property : a,bz 

a * b = a + b - ab 

= b + a - ba 

= b * a 

* is commutative 

(Z, *) is commutative monoid. 
 

 

OZ is the identity 



 

2 4  2 

v)  E = set of even integers. a  b  
ab 
2 

 

Closure Property : Since 

ab  
is even for a and b even.  a  b  E . Hence 

2 

closure property is verified. 

 

Property : Since a  (b  c)  q  
 bc  

 
abc 

 
ab 

 c  (a  b)  c
 

 
 



  is associative.  (E,  ) is a semigroup. 
 

 

Existence of identity : 2 E is the identity because 2  a  
2a 

= a  a  E 
2 

(E,  ) is a monoid. 
 

 

Commutative property : Since 

commutative. 

ab 
 

ba 
, we have a  b  b  a Hence  is 

2  2 

 
(E,*) is commutative monoid. 

 

 

(vi)  -2A is identity 

0  0
(vii)    M is the identity 

0  0




Example  4  : State and  prove  right  or left  cancellation  property  for  a 

group. 
 

 

Solution : Let (G,  ) be a group. 

(i)  To prove the right cancellation law i.e. a  b  c  b  a  c 

Let a, b, cG. Since G is a group, every element has inverse in G. 

 b
–1 
 G 

Consider a  b  c  b 

Multiply both sides by b–1 from the right. 

:.  (a  b)  b
1 

 (c  b)  b
1

 

 a  (b  b
1

)  c  (b  b
1

) 
 

 e  a  e  c 

 

 
 

Associative property 

b  b1  e  G 



 

 a = c  eG is the identity 
 

 

(ii)  To prove the left cancellation law i.e. a  b  c  b  a  c 

Let a, b, cG: Since G is a group, every element has inverse in G. 

a
–1 
G 

Consider  a  b  a  c 
 

Multiply both sides by a–1 from the left 

 a
1 

 (a  b)  a
1 

 (a  c) 

 (a1  a)  b  (a1  a)  c 

 

 
 

Associative property 
 

 e  b  e  c a1  a  e  G 

 b = c  eG is the identity 
 

 

Example 5 : Prove the following results for a group G. 

(i)  The identity element is unique. 

(ii)  Each a in G has unique inverse a–1
 

(iii)  (ab) 
–1  

=  b
–1

a
–1

 

 

 

Solution : (i) Let G be a group. Let e1  and e2  be two identity elements 

of G. 

If e1 is identity element then e1e2 = e2e1 = e2 ……………(1) 

If e2 is identity element then e1e2 = e2e1 = e1   ……………(2) 

 From (1) and (2) we get e1 = e2 i.e. identity element is unique. 

(ii)  Let G be a group. Let b and c be two inverses of aG. 

lf b is an inverse of a then ab = ba = e……………(1) 

If c is an inverse of a then ac = ca = e……………(2) 

Where e  G be the identity element. 

 From (1) and (2) we get ab = ac and ba = ca. 

 b=c by cancellation law : i.e. inverse of aG is unique. 

 inverse of a  G is unique. 

(iii)  Let G be a group. Let a, b  G. 

Consider (ab)(b
–1

a
–1

) 

=  a(bb
–1

)a
–1  

Associative property 

=  (ae)a
–1   

bb
–1 

= e, eG is identity 

=  (ae)a
–1   

Associative property 

=  aa
–1 

e = a 

=  e aa
–1 

= e 



 

Similarly we can prove (b
–1

a
–1

)(ab) = e. 

Hence (ab) 
–1 

= b
–1 

a
–1

 

Example 6 : Let G be a group with identity e. Show that if a
2 
 e for all a in G, 

then every element is its own inverse   
 

Solution :  Let G be a group. 

Given a
2 

= e for all aG. Multiply by a
–1  

we get 
a

–1
a

2   
=  a

–1 
e
 

 a = a
–1

 

i.e. every element is its own inverse 
 

 

Example 7 : Show that if every element in a group is its own inverse, then the group must 

be abelian.   
 

 

OR 
 

 

Let G be a group with identity e. Show that if a
2 

= e for all a in G, then G 

is abelian.   
 

 

Solution :  Let G be a group. 

 For aG, a
–1
G 

 Consider (ab) 
–1

 

 (ab) 
–1

=b
–1

a
–1     

reversal law of inverse. 

 ab=ba  every element is its own inverse 

 G is abelian. 

 

 

Example 8 : Let Zn  denote the set of integers (0, 1, .. , n-1). Let  be binary operation 

on Zn such that ab = the remainder of ab divided by n. 

i)  Construct the table for the operation  for n=4. 

ii)  Show that (Zn, ) is a semi-group for any n. 

iii)  Is (Zn, ) a group for any n? Justify your answer. 
 

 

Solution : (i) Table for the operation  for n = 4. 
 

 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 

 

(ii)  To show that (Zn, ) is a semi-group for any n. 
 

 

Closure property : Since all the element in the table 

{0, 1, …, n-1}, closure property is satisfied. 



 

 

Assiciative  property  :  Since  multiplication  modulo  n  is  associative, 

associative property is satisfied. 

 (Zn, ) is a semi-group 

(iii)  (Zn, ) is not a group for any n. 
 

 
Example 9  : Consider the group G = {1,2,3,4,5,6} under multiplication 

modulo 7.   

(i)  Find the multiplication table of G 

(ii)  Find 2
–1

, 3
–1

, 6
–1

. 

(iii)  Find the order of the subgroups generated by 2 and 3. 

(iv)  Is G cyclic? 

 

Solution : (i)  Multiplication table of G 

Binary operation  is multiplication modulo 7. 
 

* 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

5 5 3 1 6 4 2 

6 6 5 4 3 2 1 

 

From the table we observe that 1G is identity. 
 

 

(ii)  To find 2
–1

, 3
–1

, 6
–1

. 

From the table we get 2
–1 

= 4, 3
–1 

= 5, 6
–1 

= 6 
 

iii)  To find the order of the subgroups generated by 2. 

Consider 2° = 1 = Identity, 2
1 

= 2; 2
2 

= 4, 2
3 

= 1 = Identity 

< 2 > = {2
1
, 2

2
, 2

3
} 

 Order of the subgroup generated by 2 =3 

To find the order of the subgroups generated by 3. 

Consider 3° = 1 = identity, 3
1 

= 3, 3
2 

= 2, 3
3 

= 6, 3
4 

= 4, 3
5 

= 5, 3
6 

= 

1 = Identity 

< 3 > = {3
1
, 3

2
, 3

3
,3

4
, 3

5
, 3

6
} 

 Order of the subgroup generated by 3 = 6 

(iv)  G is cyclic because G = < 3 >. 



 
 

Example 10 : Let G be an abelian group with identity e and let H = {x/x
2

 

= e). Show that H is a subgroup of G.   
 

 

Solution : Let x, yH x
2 

= e and y
2 

= e   x
–1 

= x and y
–1 

= y 

Since G is abelian we have xy = yx  xy
–1 

= yx 

Now (xy
–1

)
2  

=  (xy
–1

)(xy
–1

) = (xy
–1

)(y
–1

x) 

=  (xy
–1

)(yx) = x(y
–1

y)x 

=  x(e)x 

=  x
2   

=  e 

 xy
–1 
 H 

 H is a subgroup. 
 

 

Example 16 : Let G be a group and let H = (x/xG and xy = yx for all 

yG}. Prove that H is a subgroup of G.   
 

 

Solution : Let x, z  H   xy = yx for every yG   x = yxy
–1

. 

Similarly zy = yz for every yG  z = yzy
–1

. 

Now consider xz
–1  

=  (yxy
–1

)(yzy
–1

) 
–1

 

=  yxy1yz1y1yxz1y 1 

 (x.z
–1

)y = y(xz
–1

)  H. 

 xz
–1
 H 

 H is a subgroup 
 

 

Example  17  :  Find  all  subgroups  of  (Z,)  where    is  the  operation 

addition modulo 5. Justify your answer. 
 

 

Solution: 

 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

 

Example  18  :  Let  G  be  a  group  of  integers  under  the  operation  of 

addition. Which of the following subsets of G are subgroups of G? 

(a)  the set of all even integers, 
 

 

(b)  the set of all odd integers. Justify your answer. 



 

 

Solution: 

a)  Let H= set of all even integers. 

We know, additive inverse of an even number is even and sum of 

two even integers is also even. Thus for a,bH we have ab
–1
H. 

Hence H is a subgroup of G. 
 

 

b)  Let K = set of all odd integers. 

We know, additive inverse of an odd number is odd and sum of 

two odd integers is even. 

Thus for a,bK we have ab
–1
K. 

Hence K is not a subgroup of G. 
 

 

Example 19 : Let (G,  ) be a group and H be a non-empty subset of G. 

Show that (H,  ) is a subgroup if for any a and b in H, ab
–1 

is also in H. 

 
 

 

Solution : 

(i)  Let a, a  H   a a
–1 
 H.  i.e. e  H 

 

 The identity element  H. 
 

(ii)  Let e, a  H   ea
–1 
 H.  i.e. a

–1 
 H 

 

 Every element has inverse  H. 
 

(iii)  Let a, b  H.    b
–1 
 H.   a(b

–1
) 

–1 
 H. i.e. ab  H. 

 

Closure property is satisfied. 
 

(iv)      Every element in H is also in G. And G is a group. So associative 

property is satisfied by the elements of H. Hence associative 

property is satisfied by the elements of H. 
 

Hence H is a group. But H is a subset of G. H is a subgroup 

of G. 
 

 

Example 20 : Let H and K be subgroups of a group G. Prove that HK is 

a subgroup of G.   
 

 

Solution : If H is a subgroups  of a group G, then for any a, b  H, 

ab
–1 
 H. 

Similarly,  if  K is a subgroups  of a group  G,  then for any a, b    K, 

ab
–1 
 K. 

Now if a, b  HK, a, b  H and a, b  K.  ab
–1 
 H and ab

–1 
 K. 

Hence ab
–1 
  HK. 

 HK is a subgroup of G. 



 

 HOMOMORPHISM, ISOMORPHISM AND 

AUTOMORPHISM OF SEMIGROUPS 
 

 

Homomorphism  :  Let  (S,    )  and  (T,    ’)  be  two  semigroups.  An 

everywhere defined function 

f : ST is called a homomorphism from (S,  ) to (T,  ’) if 

f(a  b) = f(a)  ’f(b)   a, b  S 
 

 

Isomorphism : Let (S,  ) and (T,  ’) be two semigoups. A function 

f : S  T is called a isomorphism from (S,  ) to (T,  ’) if 

(i)  it is one-to-one correspondence from S to T  (ii)  f(a  b) = f (a) 

 ’f (b)  a, b  S 

(S,  ) and (T,  ’) are isomorphic’ is denoted by ST . 
 

Automorphism : An isomorphism from a semigroup to itself is called an 

automorphism   of  the  semigoup.  An  isonorptism  f:ss I is  called 

automorphism. 
 

HOMOMORPHISM, LSOMORPHISM AND AUTOMORNHISM OF  MONOIDS : 

 

Homomorphism  :  Let  (M,    )  and  (M’,    ’)  be  two  monoids.  An 

everywhere defined function f : M  M’ is called a homomorphism from 

(M,  ) to (M’,  ’) if f (a  b) = f(a)  ’f(b)  a, b  M 
 

 

Isomorphism : Let (M,  ) and (M’,  ’) be two monoids. A function 

f : M  M’ is called a isomorphism from (M,  ) to (M’,  ’) if 

 

 (i)  it is one-to-one correspondence from M to M’ (ii) f is onto.  

(iii)  f(a  b = f (a)  ’f (b)  a, bM 

‘(M  ) and (M’,  ’) are isomorphic is denoted by M  M’. 
 

 

Automorphism :An isomorphism from a monoid to itself is called an automorphism  

of  the  monoid.  An  isomorphism   f:MM is  called automorphism 

of monoid. 

 



 

HOMOMORPHISM, ISOMORPHISM AND AUTOMORPHISM O F GROUPS : 
 

Homomorphism : Let (G,  ) and (G’,  ’) be two groups. An everywhere 

defined function f : G  G’ is called a homomorphism from (G,  ) to (G’, 

 ’) if 

f (a  b) = f (a)  ’f (b)   a, b  G 

 
Isomorphism : Let (G,  ) and (G’,  ’) be two groups. A function 

f : GG’ is called a isomorphism from (G,  ) to (G’,  ’) if 

(i)  it is one-to-one correspondence from G to G’ (ii) f is onto. 

(iii)  f(a  b) = f (a)  ’f (b)   a, bG 

‘(G,  ) and (G’,  ’) are isomorphic’ is denoted by G  G’. 
 

Automorahism:  An  isomorphism  from  a  group  to  itself  is  called  an 

automorphism   of   the   group.   An   isomorphism  f:GG is called 

Automorphism 
 

 

Theorem  : Let (S,  ) and (T,  ’) be monoids with identity e and e’, 

respectively. Let f : S  T be an isomorphism. Then f(e) = e’. 
 

 

Proof : Let b be any element of T. Since f is on to, there is an element a in 

S such that f(a) = b 
 

Then  a  a  e 
 

b  f (a)  f (a  e)  f (a)  f (e)  b  ' f (e) (f is isomorphism) 

Similarly, since a  e  a , 

b  f (a)  f (e  a) f (e * a) f (e)  ' a 


Thus for any ,bT, 
 

b  b  ' f (e)  f (e)  ' b 
 

which means that f(e) is an identity for T. 

Thus since the identity is unique, it follows that f(e)=e’ 
 

Theorem  : Let f be a homomorphism from a semigroup (S,   ) to a semigroup 

(T,  ’). If S’ is a subsemigroup of (S,  ), then F(S’) = {t  T | t = f (s) for some s 

 S},The image of S’ under f, is subsemigroup of (T,  ’). 
 
 

Proof : If t1, and t2 are any elements of F(S’), then there exist s1 and s2 in S’ with 

t l= f(s1) and t2 = f(s2). Therefore, 

t
1 
 t

2 
 f (s

1
)  f (s

2 
)  f (s

1 
 s

2 
)  f (s

2 
 s

1
)  f (s

2 
)  f (s

1
)  t

2 
 t

1
 

Hence (T,  ') is also commutative. 
 

Example 1 : Let G be a group. Show that the function f : G  G defined 

by f(a) = a
2 

is a homomorphism iff G is abelian.   
 

 

 

 

 

 

 



 

 

Solution : 
 

 

Step-1 : Assume G is abelian. Prove that f : G  G defined by f(a) = a
2 

is 

a homomorphism. 
 

 

Let a,bG.   f(a) = a
2 

, f(b) = b
2 

and f(ab) = (ab)
2 

by definition of f. 

 f(ab)=(ab)
2

 

=  (ab)(ab). 

=  a(ba)b  associativity 

=  a(ab)b  G is abelian 

=  (aa)(bb)  associativity 

=  a
2
b

2
 

=  f(a)f(b)  definition of f 

 f is a homomorphism. 
 

Step 2 : 

 ya
2 
GaGst 

  f(a)ya
2 

 

f is onto. 

Step-3 : Assume, f : G  G defined by f(a) = a
2  

s a homomorphism. 

Prove that G is abelian. 

Let a,bG.   f(a) = a
2 

, f(b) = b
2 

and f(ab) = (ab)
2 

by definition of f. 
 



 

f(ab) = f(a)f(b) 

(ab)
2  

= a
2 

b
2
 

f is homomorphism 

definition of f 



 

(ab)(ab) = (aa)(bb) 

a(ba)b = a(ab)b 

 

 

associativity 



 

ba = ab 

G is abelian. 

left and right cancellation taws 

 

Example 3 : Let G be a group and let a be a fixed element of G. Show 



that  the  function f
a 

: G  G defined  by f
a 

( x)  axa 
1 for  xG  is  an 

isomorphism.   
 

 

Solution : 

Step-1: Show that f is 1-1. 




f
a 

( x)  axa  1 

Consider fa(x) = fa(y)  for x, y G 

 axa
–1  

= aya
–1  

definition of f 

 x = y  left and right cancellation laws 

 f is 1- 1 
 

 
 

 
 

 

 



 

Step 2 :  

 

yaxa
1
GxGs.t. 

fa (x)axa
1

 

f is onto. 

 

Step-3 : Show that f is homomorphism. 

For x, yG 

f ( x)  a  x  a1 , f ( y)  a  y  a1 

 

and f ( x  y)  a  ( x  y)  a1 
 

Consider f ( x  y)  a  ( x  y)  a1 

 

for  x, yG 

 f ( x  y)  a  ( x  e  y)  a1 

 

eG is identity 

= a  ( x  a1  a  y)  a1 a1  a  e 

 

 



 

= (a  x  a
1

)  (a  y  a
1

) associativity 

  f ( x  y)  f ( x)  f ( y) 

 f is homomorphism. 

Since f is 1-1 and homomorphism, it is isomorphism. 
 

 

Example 2 : Let G be a group. Show that the function f : G  G defined 

by f(a) = a
–1 

is an isomorphism if and only if G is abelian.   

 

 Solution : 

 

 

Step-1: Assume G is abelian. Prove that f : G  G defined by f(a) = a
–1 

is 

an isomorphism. 
 

 

i)  Let f(a)=f(b) 

a–1 = b–1  a = b  f is 1- l. 
 

ii) aGa
1
G 

x
1 
G 

f  x x1
 

f is onto. 

iii)  Let a,bG.  f(a)  =  a
–1

,  f(b)  =  b
–1   

and  f(ab)  =  (ab)  
–1   

by 

definition of f. 

 f(ab)  =  (ab) 
–1

 

=  b
–1

a
–1  

reversal law of inverse 

=  a
–1

b
–1  

G is abelian 

=  f(a)f(b)  definition of f. 

 f is a homomorphism. 

Since f is 1-1 and homomorphism, it is isomorphism. 
 

Step – 2 : Assume f : G  G defined by f(a) = a
–1  

is an isomorphism. 

Prove that G is abelian. 

Let a, bG  f(a) = a–1, f(b) = b–1 and f(ab) = (ab) –1 by definition of f 

 f(ab) = f(a)f(b) f is homomorphism 

 (ab)
–1 

= a
–1

b
–1

 definition of f 

 b
–1

a
–1 

= a
–1 

b
–1  

reversal law of inverse 

G is abelian. 
 

 

Example 3  : Define (Z, +)  (5Z, +) as f(x) = 5x, where 5Z=(5n : n 

Z). Verify that f is an isomorphism.  

 

Solution:  

Step -1 

Consider 

Show that f is 1-l. 

f(x) = f(y) 

 

 

for x, yG 

 5x = 5y  definition of f 

 x = y   f is 1-1 
 

 
 



 
 

Step 2 : 

5xG,x G 

s.t.f(x)5x 

 

f is onto. 
 

 

Step-3:  Show that f is homomorphism. 

 
 

For x  y  G 

f(x) = 5x, d(y) = 5y and f(x + y) – 

5(x+y) 

Consider f(x+y) = 5(x+y)                   for x, y G 

= 5x + 5y 

        f(x+y) = f(x) + f(y) 

        f is homomorphism. 

Since f is 1-1 and homomorphism, it is isomorphism. 
 

 

Example 4 : Let G be a group of real numbers under addition, and let G’ 

be the group of positive numbers under multiplication. Let f : G  G’ be 

defined by f(x) = e
x
. Show that f is an isomorphism from G to G’ 

 

 

OR 

Show that the group G = (R,+) is isomorphic to G’ = (R
+
, x) where R is 

the set of real numbers and R
+ 

is a set of positive real numbers. 
 

 

Solution : 
 

 

Step 1:Show that f is 1-1. 

Consider f(x) = f(y)                for x,yG 

        e
x 

= e
y                                       

definition of f 

        x = y                             f is 1-1. 
 

 

Step 2 : If xG
1
, then log x  G and f .log x elog x 

 x so f is onto. 



 
 

 

Step-3  :  Show that f is homomnrphism. 

For x, yG 

f(x) = e
x
, f(y) = e

y 
and f(x+y) = e

(x+y)
 

Consider f(x + y) =  e
(x + y)    

for x, y G 

=  e
x
e

y
 

 f(x + y) = f(x)  f(y)   f is homomorphism. 

Since f is 1-1 and homomorphasm, it is isomorphism. 

Example 5 : Let G = {e, a, a
2
, a

3
, a

4
, a

5
} be a group under the operation 

of a
i
a

i
a

r 
, where i + j  r(mod 6). Prove that G and Z6 are isomorphic 

 

Solution : 

Step - I : Show that f is l-I. 

Let x = a
i
, and y = a

j 
. 

Consider f(x) = f(y)  for x, y  G 

 f(a
i
) = f(a

j
)  definition of f 

 a
i 
= a

j
 

 x = y  f is 1-1. 
 

 

Step-2 : Show that f is homomorphism. 

Let x = a’ and y = a’ x, y  G 

f(ai) = i , f(aj) j and f(x + y) = f(ai aj) 

Consider f(x+y) = f(aiaj) = f(a’)  where i + j = r(mod 6) 

= R  

= 

= 

i + j 

f(a
i
) + f(a

j
) 

 

 f(x  y) = f(x) + f(y)    f is homomorphism. 

Since f is 1-1 and homomorphism, it is isomorphism. 
 

 

Example 6 : Let T be set of even integers. Show that the semigroups (Z, 

+) and (T, +) are isomorphic.   
 

 

Solution : We show that f is one to one onto . 

Define f : (Z, +)  (T, +) as f(x) = 2x 

1)  Show that f is l-1 

Consider f(x) = f(y) 

2x = 2y 

x = y  f is 1-l. 
 

 

2)  Show that f is onto 

y = 2x x = y/2 when y is even. 

for every yT there exists xZ. 

f is onto. 

f is isomorphic. 
 

 
 
 
 



 

 

 

 

 
f
5 
  

c  a  b` 

 

1 5 

 

3)  F is homorphism 

F (x + y) = 2 (x + y) 

= 2x + 2y 

= f(x) + f(y) 

f is honomorphism. 
 

Example 7 : For the set A = {a,b,c} give all the permutations of A. Show 

that the set of all permutations of A is a group under the composition 

operation. 
 

 

Solution : A={a,b,c}. S3= Set of all permutations of A. 

 a  b  c 
f
0 
  

a  b  c 
 , 

 

 a  b  c 
f
3 
  

b  a  c 
 , 

 a  b  c 
f
1 
  

a  c  b 
 , 

 

 a  b  c 
f
4 
  

b  c  a 
 , 

 a  b  c 
f
2 
  

c  b  a 




 a  b  c 


 




Let us prepare the composition table. 

0 f
0 f

1  
f
2 f

3  
f
4  

f
5 

f
0    

f
0 

f
1     

f
1 

f
2    

f
2 

f
3    

f
3 

f
4    

f
4

 

f
5 

f
5 

f
1    

f
2 

f
0    

f
4 

f
3    

f
0 

f
4    

f
5 

f
3    

f
1

 

f
2    

f
3 

f
3    

f
4    

f
5 

f
5    

f
2    

f
3 

f
4    

f
3    

f
1 

f
0    

f
1    

f
2 

f
2    

f
5    

f
0

 

f
1    

f
0    

f
4 

 

i)  Closure Property: Since all the elements in the composition table 

S3, closure property is satisfied. 
 

ii)  Associative  Property:   Since  composition   of  permutations   is 

associative, associative property is satisfied. 
 

iii)  Existance  of  Identity:  From  the  table  we  find  that  fo  is  the 

identity 
 

iv)  Existance of Inverse: From the composition table it is clear that 

f0
–1 

= f0,  f 
–1

 = f1,  f2
–1

 = f2,  f3
–1

 = f3,  f4
–1

 = f5,  f 
–1

 

 

= f4 
 

 Every element has inverse in S3. Hence S3 is a group. 

 

 COSET AND NORMAL SUBEROUP: 
 

Left Coset : Let (H,  ) be a subgroup of (G,  ). For any a  G, the set of 

aH defined by aH  {a  h / h  H } is  called  the   left  coset  of  H  in  G 



 

 

 

 

 

 

 

determined by the element aG. The element a is called the representative 

element of the left coset aH. 

 

Right Coset : Let (H,  ) be a subgroup of (G,  ). For any a  G, the set 

of Ha defined by 

Hah* a | h H
is called the  right coset of H in G determined by the element aG. The 

element a is called the representative element of the right coset Ha. 

 
Theorem : Let (H,  ) be a subgroup of (G,  ). The set of left cosets of H 

in G form a partition of G. Every element of G belongs to one and only one 

left coset of H in G. 
 

Lagrange’ Theorem:  The order of a subgroup of a finite group divides 

the order of the group. 
 

Corollary : If (G,   ) is a finite group of order n, then for any aG, we 

must have a
n
=e, where e is the identity of the group. 

 

Normal  Subgroup  : A subgroup (H,   ) of (G,   ) is called a normal 

subgroup if for any aG, aH = Ha. 

Example 8 : Determine all the proper subgroups of symmetric group (S3, 

o). Which of these subgroups are normal? 

 
Solution : S = {1, 2, 3}. S3 = Set of all permutations of S. 

S3 = {f0, f1, f2, f3, f4, f5 } where 
 

 

1  2  3 
f
0 
 

1  2  3 
 , 

 

 1  2  3 
f
3 
  

2  1  3 
 , 

1  2  3 
f
1 
 

1  3  2 
 , 

 

 1  2  3 
f
4 
  

2  3  1 
 , 

 1  2  3 
f
3 
  

3  2  1 




 1  2  3 
f
5 
  

3  2  1 




 

 

 

 

 

 

 

 

Let us prepare the composition table. 
 

0 f
0
 f

1
 f

2
 f

3
 f

4
 f

5
 

f
0
 f

0
 f

1
 f

2
 f

3
 f

4
 f

5
 

f
1
 f

1
 f

0
 f

4
 f

5
 f

2
 f

3
 

f
2
 f

2
 f

3
 f

0
 f

4
 f

3
 f

1
 

f
3
 f

3
 f

4
 f

5
 f

0
 f

1
 f

2
 

f
4
 f

4
 f

3
 f

1
 f

2
 f

5
 f

0
 

f
5
 f

5
 f

2
 f

3
 f

1
 f

0
 f

4
 

 

From the table it is clear that {f0, f1}, {f0, f2,}, {f0, f3) and {f0, f4, f5} are 

subgroups of (S3, 0): The left cosets of {f0, f1} are {f0, f1}, {f2, f5}, {f3, f4}. 

While the right cosets of {f0, f1} are {f0, f1}, {f2, f4}, {f3, f5}. Hence {f0, 

f1} is not a normal subgroup. 
 

 

Similarly we can show that {f0, f2} and {f0, f1} are not normal subgroups. 

On the other hand, the left and right cosets of {f0, f4, f5} are {f0, f4, f5} and 

{f1, f2, f3}. 

Hence {f0, f4, f5} is a nomal subgroup. 
 

 

Example  9 :  Let  S  =  {1,  2,  3}.  Let  G  =  S3   be  the  group  of  all 

permutations of elements of S, under the operation of composition of 

permutations. 
 

Let H be the subgroup formed by the two permutations 

 
 1  2  3 

1  2  3 
  and 
1  2  3 

 
3  2  1 

 . Find the left coset of H in G. Is H a normal subgroup? Explain
 

your notion of composition clearly.   
 

 

Solution : Let 

1  2  3 
f
0 
 

1  2  3 
 , 

 

 1  2  3 
f
3 
  

2  1  3 
 , 

 

 H={f0, f2} 

 

 

1  2  3 
f
1 
 

1  3  2 
 , 

 

 1  2  3 
f
4 
  

2  3  1 
 , 

 

 

 1  2  3 
f
3 
  

3  2  1 




 1  2  3 
f
5 
  

3  2  1 






 




Left Cosets of H in G : 

f0H = {f0f0, f0f2} = {f0, f2}                  f1H = {f1f0, f1f2} = {f1, f4} 

f2H = {f2f0, f2f2} = {f2, f0}                  f3H = {f3f0, f3f2} = {f3, f5} 

f4H = {f4f0, f4f2} = {f4, f1}                  f5H = {f5f0, f5f2} = {f5, f3} 
 

 

Right Cosets of H in G 

Hf0 = {f0f0, f2f0} = {f0, f2}  Hf1 = {f0f1, f2f1}={f1, f3} 

Since f1 H  Hf1 , H is not a normal subgroup of G. 
 

Example 10 : Define a normal sub-group. Let S3 = Group of all 

permutations of 3 elements (say 1, 2, 3). For the following subgroups of S, 

find all the left cosets . Subgroup of A = {1,(1,2)} 
 

 

Where I = identity permutation, (1, 2) is a transposition. Is A a normal 

subgroup. State a normal subgroup of the above group if it exists.    

 

Solution :  H = {f0, f3} 

The left cosets of H in G are as follow. 

f0H = {f0, f3} f1H = {f1, f5} f2H = {f2, f4} 

f3H = {f3, f0} f4H = {f4, f2} f5H = {f5, f1} 

Consider a right coset Hf1 = {f1, f4}  

Since f1H  Hf1, H is not a normal subgroup of G. 
 

RING: An algebraic structure (R, +, o) is said to be a Ring if it satisfies :  
 (R, +) is a commutative Group. 
 (R, o) is a semigroup and 
 (R, +, o) satisfies the distributive property. 

 
FIELD: An algebraic structure (F, +, o) is said to be a Field if it satisfies :  

 (F, +) is a commutative Group. 
 (F, o) is a commutative group and 
 (F, +, o) satisfies the distributive property. 

 
Zero Divisor: A commutative ring is said to have a zero divisor if the product of two non-    
zero element is zero. For example, the product of two non-  zero matrices may zero. 
 
INTEGRAL DOMAIN: A commutative without a zero divisor is called an integral 
domain. 
 
THEOREM: Every finite integral domain is a field. 
 
THEOREM: Every field is an integral domain. 
 
 
 
 
 
 

 
 

 

 



 

Unit IV 
 

LATTICE THEORY, BOOLEAN ALGEBRA AND 

CODING THEORY  
 

 OBJECTIVES: 

 

After going through this unit, you will be able to : 

  Define basic terminology associated with lattice theory. 

          Boolean lattices and Boolean algebras 

  Coding theory 

LATTICES 

BASIC TERMINOLOGY 

Definition: 

A poset is a lattice if every pair of elements has a lub (join) and a glb (meet). 

 

Least upper bound (lub) 

 Let (A, ≤) be a poset and B be a subset of A. 

1. An element a   A is an upper bound for B iff for every element a'  B, a' ≤ a. 

2. An element a  A is a least upper bound (lub) for B iff a is an upper bound for B and 

for every upper bound a' for B, a ≤ a'. 

Greatest lower bound (glb) 

Let (A, ≤)  be a poset and B be a subset of A. 

1. An element a    A is a lower bound for B iff for every element a'  B, a ≤  a'. 

2. An element a   A is a greatest lower bound (glb) for B iff a is a lower bound for B 

and for every lower bound a' for B, a'≤ a. 

 Theorem: 

Let (L, ≤) be a lattice, For any a, b, c  L, 

(i) a*a = a (i') a  + a = a (idempotent) 

(ii) a*b=b*a (ii') a + b = b + a (Commutative) 

(iii) (a*b)*c= a*(b*c) (iii') (a + b) + c = a + (b + c) (Associative) 



 

(iv) a*( a+ b) = a (iv') a + (a*b) = a (Absorption) 

 Theorem: 

 Let (L, ≤) be a lattice for any a, b L, the following 

property holds. 

A ≤  ba*b = a  a + b = b 

Theorem: 

 Let (L, ≤) be a lattice, for any a, b, c  L, the following 

properties hold. 

B ≤ c => a*b ≤ a*c, a +  b≤ a + c 

 Theorem: 

Let (L, ≤) be a lattice, For any a, b, c L, the following 

properties hold. 

a ≤ b ^ a ≤ c => a ≤ b + c 

a ≤ b ^ a ≤ c => a ≤ b*c 

b ≤ a ^ c ≤ a => b*c ≤ a 

b ≤ a ^ c ≤a => b + c ≤ a 

Theorem: 

 Let (L, ≤) be a lattice, For any a, b, c L, the 

following inequalities hold. 

a +(b*c) ≤ (a + b)*(a + c)  

(a*b )+ (a*c) ≤ a*(b + c) 

BOOLEAN ALGEBRA: A complemented distributive lattice is called a Boolean Algebra. 

Theorem: 

Let (A, *, +) be an  Boolean algebra which satisfies the 

1. Idempotent law, (a*a=a, a+a=a) 



 

2. Commutative law, (a*b=b*a, a+b=b+a) 

3. Associative law, ( (a*b)*c= a*(b*c), (a + b) + c = a + (b + c) 

4. Absorption law ( a*(a + b) = a, a + (a*b) = a ) 

Then there exists a lattice (A, ≤ ), such that * is a glb, + is a lub, 

and is ≤ defined as follows: 

x ≤ y iff x*y = x 

x ≤ y iff  x + y = y 

 

 

Definitions 

Algebraic system :A lattice is an algebraic system (L, *, +) with two binary operations 

* and + on L which are both (1) commutative and (2) associative and (3) satisfy the 

absorption law. 

Sublattice : Let (L, *, +) be a lattice and let S be a subset of L. The algebra (S, *, +) is a 

sublattice of (L, *, +)  iff S is closed under both operations * and +. 

 

Lattice homomorphism: Let (L, *, +)  and (S, ^,V) be two lattice. A mapping g:L→S is 

called a lattice homomorphism from the lattice (L, *, +)  to (S, ^ , V) if for any a, bL, 

  g(a*b) = g(a) ^ g(b) and g(a + b) = g(a) V g(b). 

Order-preserving : Let (P, ≤ ) and (Q, ≤) be two partially ordered sets, A mapping 

 f: P → Q is said to be order-preserving relative to the ordering ≤ in P and ≤' in Q iff for 

any a, bP such that a ≤ b, f(a) ≤' f(b) in Q. 

Complete Lattice: A lattice is called complete if each of its nonempty subsets has a 

least upper bound and a greatest lower bound. 

Greatest and Least elements 

 Let ( A, ≤)> be a poset and B be a subset of A. 

1. An element a   B is a greatest element of B iff for every element a'  B, a' ≤ a. 

2. An element a   B is a least element of B iff for every element a'  B, a ≤ a '. 

Least upper bound (lub) 

 Let ( A, ≤ ) be a poset and B be a subset of A. 

1. An element a   A is an upper bound for B iff for every element a'  B, a' ≤ a. 

2. An element a   A is a least upper bound (lub) for B iff a is an upper bound for B and 

for every upper bound a' for B, a ≤ a'. 



 

Greatest lower bound (glb) 

Let ( A, ≤ ) be a poset and B be a subset of A. 

1. An element a   A is a lower bound for B iff for every element a'  B, a ≤ a'. 

2. An element a   A is a greatest lower bound (glb) for B iff a is a lower bound for B 

and for every lower bound a' for B, a' ≤ a. 

Maximal and Minimal Elements: Let (A, R) be a poset. Then a in A is a minimal 

element if there does not exist an element b in A such that bRa. Similarly for a maximal 

element. 

Upper and Lower Bounds 

Let S be a subset of A in the poset (A, R). If there exists an element a in A such that sRa for all s 

in S, then a is called an upper bound. Similarly for lower bounds. 

Bounds of the lattice :The least and the greatest elements of a lattice, if they exist, are called the 

bounds of the lattice, and are denoted by 0 and 1 respectively. 

Bounded lattice: In a bounded lattice (L, *, +, 0, 1), an element b  L is called a 

complement of an element a   L, if a*b=0,  

a + b =1. 

Complemented lattice :A lattice (L, *, +, 0, 1) is said to be a complemented lattice if every 

element of L has at least one complement. 

Distributive lattice :A lattice (L, *, +) is called a distributive lattice if for any a, b, c  

L, a*(b + c) = (a*b) + (a*c)  + (b*c) = (a + b)*(a + c) 

 

EXAMPLE: 

Construct the Hasse diagram of (P({a, b, c}), ). 

The elements of P({a, b, c}) are  

   

  {a}, {b}, {c} 

  {a, b}, {a, c}, {b, c} 

  {a, b, c} 

The digraph is 



 

 

In the above Hasse diagram,  is a minimal element and {a, b, c} is a maximal element. 

In the poset above {a, b, c} is the greatest element.  is the least element. 

In the poset above, {a, b, c}, is an upper bound for all other subsets.  is a lower bound 

for all other subsets. 

{a, b, c}, {a, b} {a, c} and {a} are upper bounds and {a} is related to all of them, {a} 

must be the lub. It is also the glb. 

EXAMPLE: 

In the poset (P(S), ), lub(A, B) = A B. What is the glb(A, B)? 

    

   

 

Solution: 

 Consider the elements 1 and 3. 

• Upper bounds of 1 are 1, 2, 4 and 5. 

• Upper bounds of 3 are 3, 2, 4 and 5. 

• 2, 4 and 5 are upper bounds for the pair 1 and 3. 

• There is no lub since 



 

- 2 is not related to 4 

- 4 is not related to 2 

- 2 and 4 are both related to 5. 

• There is no glb either. 

The poset is n o t a lattice. 

 

EXAMPLE: 

Determine whether the posets represented by each of the following Hasse diagrams have 

a greatest element an a least element. 

 

rete Mathematics 

Solution 

• The least element of the poset with Hasse diagram (a) is a. This poset has no greatest 

element. 

• The poset with Hasse diagram (b) has neither a least nor a greatest element. 

• The poset with Hasse diagram (c) has no least element. Its greatest element is d. 

• The poset with Hasse diagram (d) has least element a and greatest element d. 

EXAMPLE: 

Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f } and find 

the greatest lower bound and the least upper bound of {b, d, g}, if they exist. 

 

 



 

Solution 

The upper bounds of {a, b, c} are e, f, j, h, and its only lower bound is a.  

There are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, f . 

The upper bounds of {a, c, d, f } are f, h, j, and its lower bound is a. 

The upper bounds of {b, d, g} are g and h. Since g _ h, g is the least upper bound. 

The lower bounds of {b, d, g} are a and b. Since a _ b, b is the greatest lower bound. 

EXAMPLE: 

Determine whether the posets represented by each of the following Hasse diagrams are 

lattices. 

 

Solution 

 The posets represented by the Hasse diagrams in (a) and (c) are both lattices because in 

each poset every pair of elements has both a least upper bound and a greatest lower 

bound.  

On the other hand, the poset with the Hasse diagram shown in (b) is 

not a lattice, since the elements b and c have no least upper bound. To see this note that 

each of the elements d, e and f is an upper bound, but none of these three elements 

precedes the other two with respect to the ordering of this poset.  

EXAMPLE: 

Determine whether (P(S ), ) is a lattice where S is a set. 

Solution  

Let A and B be two subsets of S . The least upper bound and the greatest lower bound of 

A and B are A U B and A ∩B, respectively. 

Hence (P(S ),   ) is a lattice.  

 
 
 
 
 
 



 

CODES AND GROUP CODES 
INTRODUCTION : 

 
In today’s modern world of communication, data items are 

constantly being transmitted from point to point. 

 
Different devices are used for communication. The basic unit of 

information is message. Messages can be represented by sequence of 

dots and das

Let  

 B = {0,1} be the set of bits. Every character or symbol can be 

represented by sequence of elements of B. Message are coded in O’s and 1’s 

and then they are transmitted. These techniques make use of group theory. We 

will see a brief introduction of group code in this chapter. Also we will see the 

detection of error in transmitted message. 

 
 

The set 

B  0,1 is a group under the binary operation    whose 

table is as follows : 

 
 

 
 

0 
 

1 

 

0 
 

0 
 

1 

 

1 
 

1 
 

0 

 

We have seen that B is a group. 
 

It  follows  from  theorem  -  “If  G1    and  G2    are  groups  then 

GG1G2 is  a  group  with  binary  operation  defined  by 

a1,b1 a2,b2 a1,a2,b1,b2  . So B
m 
BBB (m factors) is 

a  group  under  the  operation   defined  by 

 x1,x2 ....xm  y1,y2 ym  x1y1,x2 y2,....xm ym 
observe that B

m 
has 2

m 
elements. i.e. order of group B

m 
is 2

m
. 

 
 

Important Terminology : 

Let  us  choose  an  integer  nm and  one-to-one  function 

e:Bm 
Bn 

. 

 

1)  Encoding Function : 
The function e is called an (m, n) encoding function. It means 

that every word in B
m 

as a word in B
n

. 

 

 
 
 
 
 



 

2)  Code word : 

If bBm then e(b) is called the code word 
 

3)  Weight : 

For xB
n the number of 1’s in x is called the weight of x and is 

denoted by  x . 

e.g.  i) x10011B5 w  x 3 

ii) x001B3 
w  x 




4)  xy  Let 

 

x, yBn , then  xy is a sequence of length n that 



 

has 1’s in those positions x & y differ and has O’s in those positions x 

& y are the same. i.e. The operation + is defined as 0 + 0 = 0  0 + 1 

= 1   1 + 1 

= 0  1 + 0 = 1 

 
 

e.g. if x,yB
5

 

x00101,y10110 

xy10011 

w(xy)3 

 
5)  Hamming Distance : 

Let x,yB
m

. The Hamming Distance   x, y between x and y is 

the weight  of  xy . It is denoted  by   xy . e.g. Hamming  distance 

between x & y can be calculated as follows : if x = 110110, y = 000101 

xy = 110011 so  xy = 4. 
 

 

6)  Minimum distance : 
 

Let x,yB
n
. then minimum distance = min d x, y /x, yBn . 

Let x1,x2  xn are  the  code  words,  let  any xi,i1   n is  a 

transmitted word and y be the corresponding received word. Then yxk 

if  d  xk , y  is the minimum distane for k = 1, 2, --- n. This criteria is 

known as minimum distance criteria. 

 
7)  Detection of errors : 

Let e : B
m 
 B

n
mn is an encoding function then if minimum 

distane of e is ( k + 1) then it can detect k or fewer errors. 

 
8)  Correction of errors : 

Let e : B
m 
 B

n
mn is an encoding function then if minimum 

distance of e is (2k + 1) then it can correct k or fewer errors. 

 
Weight of a code word : It is the number of 1’s present in the given code 

word. 

 

Hamming distance between two code words : Let x  x1x2...xm and 

y  y1 y2... ym be  two  code  words.  The  Hamming  distance  between 

them,   x, y  , is the number of occurrences such that xi  yi  for i  1,m . 

 

Example 1  : Define Hamming distance.   Find the Hamming distance 

between the codes.   

(a) x  010000, y  000101 (b) x  001100, y  010110 
 

Solution : Hamming distance : 

(a) 
 

(b) 

  x, y   x  y  010000  000101  010101  3 

  x, y   x  y  001100  010110  011010  3 
 



 

Example  2   :  Let  d  be  the    4,3 decoding  function  defined  by 

d : B
4 
 B

3 
.  If 

 

y  y1 y2... ym1 , d  y   y1 y2... ym . 
 

Determine d  y  for the word y is B4 .   

(a)  y  0110 (b)  y  1011 

 

Solution : (a) d  y   011 (b) d  y   101 
 

Example 3  : Let 

 

d : B6  B2 

 

be a decoding function defined by for 

y  y1 y2... y6 .  Then d  y   z1z2 . 

 
where 

zi  1 

 

if  y1, yi  2 , yi  4 has at least two 1’s. 

0   if  y1, yi  2 , yi  4 has less than two 1’s. 

Determine d  y  for the word y in B6 . 

(a) y  111011 (b) y  010100 

 

Solution : (a) d  y   11 (b) d  y   01 
 

Example 4 : The following encoding function 

 

f : Bm  Bm1  is called 

the  parity   m,m  1 check  code.  If b  b1b2...bm  B 
m ,  define 

e b   b1b2...bm bm1 

 
where 

bm1  0 if 

= 1 if 

 

 

b  is even. 
 

b  is odd. 
 

 

Find e  b  if  (a)  b  01010 (b)  b  01110 



 

 

Solution : (a) e  b   010100 (b) e  b   011101 
 

 

Example 5 : Let e : B
2 
 B

6 
is an (2,6) encoding function defined as 

e(00) = 000000,  e(01) = 011101 

e(10) = 001110,  e(11) = 111111 

 
a) Find minimum distance. 

b) How many errors can e detect? 

c) How many errors can e correts? 

 

Solution : Let x0,x1,x2,x3 B
6 

where x0 000000,x1 011101, 

x2001110,x3 111111 

 

w  x0 x1 w0111014 

w  x0 x2 w0011103 

w  x0 x3 w1111116 

w  x1x2 w0100113 

w  x1x3 w100010 

w  x2 x3 w1100013 

Minimum distance = e = 2 

d) Minimum distance = 2 

An encoding function e can detect k or fewer errors if the minimum 

distance is k + 1. k12k1 
The function can detect 1 or fewer (i.e. 0) error. 

 
e)  e can correct k or fewer error if minimum distance is 2k + 1. 

2k + 1 = 2 

k =  
1 
2 

e can correct  
1 
2 

or less than  
1 
2 

 

i.e. 0 errors. 

 

GROUP CODE : 
 

 

An  m,n 


encoding function e : B
m 
 B

n
 

 

is called a group code 

if range of e is a subgroup of Bn. i.e. (Ran (e),  ) is a group. 

 

Since Ran (e) CB
n 

and if (Ran (e),  ) is a group then Ran(e) is a 
 

subgroup of B
n
. If an encoding function e : Bm  Bn 

 

(n < n) is a group 

code, then the minimum distance of e is the minimum weight of a nonzero 

codeword. 

 

 

 

. 

 
 



 
 

 

 

DECODING AND ERROR CORRECTION : 
 

 

Consider an  m,n  encoding function e : Bm  Bn , we require an 

(n,m) decoding function associate with e as d : Bn  Bm . 

 
The method to determine a decoding function d is called maximum 

likelihood technique. 

 

Since B
m 
2

m 
. 

 
 

Let xk B
m  

be a codeword, k = 1, 2, ---
m 

and the received word is y then. 

Min 1k2m d xk ,y d xi,y  for  same  i  then  xi   is  a  codeword 

which is closest to y. If minimum distance is not unique then select on 

priority 
 

 

MAXIMUM LIKELIHOOD TECHNIQUE : 
 

 

Given an  m,n  encoding function e : Bm  Bn , we often need to 

determine an   n,m 


decoding function d : B
n 
 B

m
 

 

associated with e. 

We now discuss a method, called the maximum likelihood techniques, for 

determining  a decoding function d for a given e.  Since  Bm has  2m 

elements, there are 2
m

 

a fixed order. 

code words in B
n 

.  We first list the code words in 
 

1  2 2m 
x ,x ,...,x 

 
 

If the received word is 
 

x1 , we compute   x
i , 

x1 


for 1  i  2m
 

 

and choose the first code word, say it is x
 s  

, such that 
 

 
min 

1i2m 

  x
i  

,x1     x
 s  

,x1 






That is, x
 s   

is a code word that is closest to 
 

x1 , and the first in the 
 

list.  If x
 s  

 e b  , we define the maximum likelihood  decoding function 

d associated with e by  

d  xt   b 



 

 

Observe that d depends on the particular order in which the code 
 

words in e Bn 


are listed.  If the code words are listed in a different 

order,   we  may  obtain,   a  different   likelihood   decoding   function   d 

associated with e. 
 

Theorem  : Suppose that e is an  m,n  encoding function and d is a 

maximum likelihood decoding function associated with e.   Then  e,d  
can correct k or fewer errors if and only if the minimum distance of e is at 

least 2k  1 . 

 

 1  1  0 
 
 0  1  1 

Example  : Let  m  2,n  5 and H  1 0  0  .  Determine the 
 
 0  1  0 
 0  0  1 

group code eH : B
2  B5 .   

 

 

Solution : We have B2  00,01,10,11 .  Then e 00  00x1x 2x3 

where 

x1  0.1  0.0  0 

x2  0.1  0.1  0 

x3  0.0  0.1  0 

e 00 00000 

 
Now,  

e 01  01x1x2 x3 

 

where  
x1  0.1  1.0  0 

x2  0.1  1.1  1 

x3  0.0  1.1  1 

e 01 01011 
 

Next  

e 10  10 x1x2 x3 

x1  1.1  0.0  1 

x2  1.1  1.0  1 

x3  1.0  0.1  0 

e 10  10110 

e 11  11101 



 

 

 1  0  0 




Example  : Let 

 
 0  1  1 
 1  1  1 

H    





be a parity check matrix.  determine 

 1  0  0 
 0  1  0 
 
 0  0  1 

the 3,6 group code eH : B
3  B6 . 

 

Solution : First find 

e 110 ,e 111 . 

e 000  000000 

e 001  001111 

e 010  010011 

e 100  011100 

e 000 ,e 001 ,e 010 ,e 011 ,e 100  ,e 101 , 
 
 

e 100  100100 

e 101  101011 

e 110  110111 

e 111  111000 
 

 
 

Example  : Consider the group code defined by e : B2  B5 such that 

e 00  00000e 01  01110e 10   10101e 11  11011 . 

Decode  the following  words  relative  to  maximum  likelihood  decoding 

function. 

(a)  11110  (b)  10011  (c)  10100 
 

 
 

Solution : (a) 

Compute 

xt  1110 

  x
1 

, xt   00000  11110  11110  4 

  x
 2 

, xt   01110  11110  10000  1 

  x
3 

, xt   10101  11110  01011  3 

  x
 4 

, xt   11011  11110  00101  2 

min  x
i  

, xt   1    x
2 

, xt 
e 01  01110 is the code word closest to xt  11110 . 

  The  maximum  likelihood  decoding  function  d  associated  with  e  is 

defined by d  xt   01. 



 

 

(b) xt  10011 
 

Compute   x
1 

, xt   00000  10011  11101  4 

  x
 2 

, xt   01110  10011  00110  2 

  x
3 

, xt   10101  11110  01011  3 

  x
 4 

, xt   11011  10011  01000  1 

min  x
i  

, xt   1    x
4 

, xt 
e 11  11011 is the code word closest to xt  10011 . 

  The  maximum  likelihood  decoding  function  d  associated  with  e  is 

defined by d  xt   11. 

 
(c) xt  10100 

 

Compute   x
1 

, xt   00000  10100  10100  2 

  x
 2 

, xt   01110  10100  11010  3 

  x
3 

, xt   10101  10100  00001  1 

  x
 4 

, xt   11011  10100  01111  4 

min  x
i  

, xt   1    x
3 

, xt 
e 10  10101 is the code word closest to xt  10100 . 

  The  maximum  likelihood  decoding  function  d  associated  with  e  is 

defined by d  xt   10 . 
 

 

 0  1  1 
 

 1  0  1 
Example  : Let H  1 0  0  be a parity check matrix.  decode the 

 

 0  1  0 
 0  0  1 

following  words  relative  to  a  maximum  likelihood  decoding  function 

associated with eH : (i)  10100,  (ii)  01101,  (iii)  11011. 
 

Solution : The code words are e00  00000,e01  00101,e10 10011, 

e 11  11110 .   Then N  00000,00101,10011,11110 .   We implement 

the decoding procedure as follows.  Determine all left cosets of N in B5, 



 

 

as rows of a table.  For each row 1, locate the coset leader 

the row in the order. 

i , and rewrite 

 

1,i 

Example  : Consider the  2,4




encoding function e as follows.  How 

many errors will e detect?   
 

e 00  0000,e 01  0110,e 10  1011,e 11  1100 

 
Solution : 

 

 0000 0110 1011 1100 

0000 --- 0110 1011 1100 

0110  --- 1101 1010 

1011   --- 0111 

1100    --- 

 

Minimum distance between distinct pairs of e  2  k  1  2 k  1. 

 the encoding function e can detect 1 or fewer errors. 
 

Example  : Define group code.  Show that   2,5





encoding function 

e : B
2 
 B

5
 

 

defined by e 00  0000,e 10  10101,e 11  11011 
 

is a 

group code.   
 

 
 

Solution : Group Code 

 

 00000 01110 10101 11011 

00000 00000 01110 10101 11011 

01110 01110 00000 11011 10101 

10101 10101 11011 00000 01110 

11011 11011 10101 01110 00000 

 

Since closure property is satisfied, it is a group code. 
 

Example  : Define group code.   show that   2,5





encoding function 

e : B2  B5
 

 

defined  by e 00  00000,e 01  01110,e 10   10101 , 



 

 

e 11  11011 is a group code.  Consider this group code and decode the 

following words relative to maximum likelihood decoding function. 

(a)  11110  (b)  10011.   
Solution : Group Code 

 

 00000 01110 10101 11011 

00000 00000 01110 10101 11011 

01110 01110 00000 11011 10101 

10101 10101 11011 00000 01110 

11011 11011 10101 01110 00000 

 

Since closure property is satisfied, it is a group code. 
 
 

Now, let x
1 

 00000,x
2 

 01110,x
3 

 10101,x
4 

 11011 . 
 

 

(a) xt  11110 
 

  x
1 

, xt   x
1 

 xt   00000  11110  11110  4 

  x
 2 

, xt   x
2 

 xt   01110  1110  10000  1 

  x
3 

, xt   x
3 

 xt   10101  1110  01011  3 

  x
 4 

, xt   x
4  

 xt   11011  1110  00101  2 

 Maximum likelihood decoding function d  x t   01 . 

 
(b) xt  10011 

 

  x
1 

, xt   x
1 

 xt   00000  10011  10011  3 

  x
 2 

, xt   x
2 

 xt   01110  10011  11101  4 

  x
3 

, xt   x
3 

 xt   10101  10011  00110  2 

  x
 4 

, xt   x
4  

 xt   11011  10011  01000  1 

 Maximum likelihood decoding function d  xt   11. 



 

 

 1  0  0 




Example : Let 

 
 0  1  1 
 1  1  1 

H     be a parity check matrix.  Determine 
 1  0  0 
 0  1  0 
 
 0  0  1 

the 3,6 group code eH : B
3 
 B

6 . 
 

 

Solution : B3  000,001,010,011,100,101,110,111

eH 000  000000eH 001  001111eH 010  010011 

eH 011  011100eH 100  100100eH 101  101011 

eH 110  110111eH 111  111000 

 

  Required group code = 000000 ,001111,010011,011100,100100,

101011,110111,111000


Example  : Show that  2,5 encoding function e : B2  B5 defined 

by  e 00  00000,e 01  01110,e 10   10101,e 11  11011 is  a 

group code.    

Test whether the following  2,5 encoding function is a group code. 

e 00  00000,e 01  01110,e 10  10101,e 11  11011 
 

 

 
Solution : 

 

 00000 01110 10101 11011 

00000 00000 01110 10101 11011 

01110 01110 00000 11011 10101 

10101 10101 11011 00000 01110 

11011 11011 10101 01110 00000 

 

Since closure property is satisfied, it is a group code. 

 

Example    :  Show  that  the  3,7 
defined by 

 

encoding  function e : B
3 
 B

7
 

e 000  0000000e 001  0010110e 010  0101000 



 

 

e 011  0111110e 100   1000101e 101  1010011 

e 110  1101101e 111  1111011 
 

is a group code. 

 
Solution : 

 

 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011 

0000000 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011 

0010110 0010110 0000000 0111110 0101000 1010011 1000101 1111011 1101101 

0101000 0101000 0111110 0000000 0010110 1101101 1111011 1000101 1010011 

0111110 0111110 0101000 0010110 0000000 1111011 1101101 1010011 1000101 

1000101 1000101 1010011 1101101 1111011 0000000 0010110 0101000 0111110 

1010011 1010011 1000101 1111011 1101101 0010110 0000000 0111110 0101100 

1101101 1101101 1111011 1000101 1010011 0101000 0111110 0000000 0010110 

1111011 1111011       0000000 

 

Since closure property is satisfied, it is a group code. 

 

Example:  Consider  the   3,8
defined by 

 

encoding  function e : B
3 
 B

8
 

e 000  0000000e 100  10100100e 001  10111000 

e 101  10001001e 010  00101101e 110  00011100 

e 011  10010101e 111  00110001 . 

How many errors will e detect? 
 

 
 

Solution : 

 

 
 

00000000 
 

10100100 
 

10111000 
 

10001001 
 

00101101 
 

00011100 
 

10010101 
 

00110001 

0000000 00000000 10100100 10111000 10001001 00101101 00011100 10010101 00110001 

10100100 10100100 00000000 00011100 00101101 10001001 10111000 00110001 10010101 

10111000 00000000 00011100 00000000 001100001 10010101 10100100 00101101 10001001 

10001001 10001001 00101101 00110001 00000000 10100100 10010101 00011100 10111000 

00101101 00101101 10001001 10010101 10100100 00000000 00110001 10111000 00011100 

00011100 00011100 10111000 10100100 10010101 00110001 00000000 10001001 00101101 

10010101 10010101 00110001 00101101 00011100 10111000 10001001 00000000 10100100 

00110001 00110001 10010101 10001001 10111000 00011100 00101101 10100100 0000000 

 

Minimum distance between pairs of e  3 . 

k  1  3 k  2The  encoding  function  e  can  detect  2  or  fewer 

errors. 



 

 

Example:  Consider  parity  check  matrix  H  given  by 

 1  1  0 
 
 0  1  1 

H  1 0  0  .  Determine the group code eH : B2  B5 .  Decode the 
 
 0  1  0 
 0  0  1 

following  words  relative  to  a  maximum  likelihood  decoding  function 

associated with eH : 01110,11101,00001,11000 .  [Apr-04, May-07] 

 

Solution : B2  00,01,10,11

eH 00  00x1x2 x3 

eH 01  01x1x2 x3 

eH 10  10x1x2 x3 

eH 11  11x1x2 x3 

where 

where 

where 

where 

x1  0.1  0.0  0 

x2  0.1  0.1  0 

x3  0.0  0.1  0 

 
x1  0.1  1.0  0 

x2  0.1  1.1  1 

x3  0.0  1.1  1 

 
x1  1.1  0.0  1 

x2  1.1  0.1  1 

x3  1.0  0.1  0 

 

x1  1.1  1.0  1 

x2  1.1  1.1  0 

x3  1.0  1.1  1 

 

 
 
 

 eH 00  00000 
 
 
 
 
 

 eH 01  01011 
 
 
 
 
 

 eH 01  10110 
 
 
 
 
 

 eH 01  11101 

 

 Desired group code = 00000,01011,10110,11101




(1) xt  01110 

  x
1 

, xt   x
1 

 xt   00000  01110  01110  3 

  x
 2 

, xt   x
2  

 xt   01011  01110  00101  2 

  x
3 

, xt   x
3 

 xt   10110  01110  11000  2 

  x
 4 

, xt   x
4  

 xt   11101  01110  10011  3 

 Maximum likelihood decoding function d  x t   01 



 

 

(2) xt  11101 

  x
1 

, xt   x
1 

 xt   00000  11101  11101  4 

  x
 2 

, xt   x
2  

 xt   01110  11101  10110  3 

  x
3 

, xt   x
3 

 xt   10101  11101  01011  3 

  x
 4 

, xt   x
4 

 xt   11011  11101  00000  0 

 Maximum likelihood decoding function d  x t   11 

 
(3) xt  00001 

  x
1 

, xt   x
1 

 xt   00000  00001  00001  1 

  x
 2 

, xt   x
2  

 xt   01011  00001  01010  2 

  x
3 

, xt   x
3 

 xt   10110  00001  10111  4 

  x
 4 

, xt   x
4 

 xt   11101  00001  11100  3 

 Maximum likelihood decoding function d  x t   00 

 
(2) xt  11000 

  x
1 

, xt   x
1 

 xt   00000  11000  11000  2 

  x
 2 

, xt   x
2  

 xt   01110  11000  10011  3 

  x
3 

, xt   x
3 

 xt   10101  11000  01101  3 

  x
 4 

, xt   x
4 

 xt   11011  11000  10000  1 

 Maximum likelihood decoding function d  xt   11 
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