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PARTIAL DIFFERENTIAL EQUATION

A differential equation containing terms as partial derivatives is called a partial
differential equation (PDE). The order of a PDE is the order of highest

partial derivative. The dependent variable z depends on independent variables x and y.

_ oz 0z 0’z 0%z t= 0’z

=— ,0=—,Mr=— ,Ss= , t=
ox ' oy ox’ OX oy oy?
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For example: g+ px=x+yisaPDE of order 1
s+t =x?is a PDE of order 2

Formation of PDE by eliminating arbitrary constant:

For f(x,y,z,a,b) = 0 differentiating w.r.to x,y partially and eliminating constants a,b we get
a PDE

Example 1: From the equation x? + y? + z2 = 1 form a PDE by eliminating arbitrary
constant.

Solution: z2=1-x* -y?

Differentiating w.r.to x,y partially respectively we get

Zz@:—Zx and ZZQ:—Zy

OX oy

0z 0z
=— =-x/z and Q= — =-
p=- / =75 y/z
z=-x/p=-y/q

gx = py is required PDE

Example 2 From the equation x/2 +y/3 + z/4 = 1 form a PDE by eliminating arbitrary
constant.

Solution:

Differentiating w.r.to x,y partially respectively we get
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p:a—zzng
OX oy

p = q isrequired PDE

Formation of PDE by eliminating arbitrary function

Let u=f(x,y,z), v=g(x,y,z) and ¢(u,v) =0
We shall eliminate ¢ and form a differential equation

Example 3 From the equation z = f(3x-y)+ g(3x+y) form a PDE by eliminating arbitrary
function.

Solution:

Differentiating w.r.to x,y partially respectively we get

p:%: 3f'(3x—y)+3g'(3x+Yy) and q:%Z - '3x-y)+g'(3x+Y)
0’z 0°z

2 2

r=—=9f"(3x- 99" (3x and t=— = f""(3x - ""(3x
= (3x—y)+9g" (3x+Y) & (Bx—y)+g"(3x+Y)

From above equations we get r =9t which is the required PDE.
11.1

An equation involving atleast one partial derivatives of a function of 2 or more independent variable is called PDE.
A PDE is linear if it is of first degree in the dependent variable and its partial derivatives. If each term of such an
equation contains either dependent variable or one of its derivatives the equation is called homogeneous.

Important Linear PDE of second order

U = c®?Ux (One dimensional Wave equation)

Ut = c2Ux (One dimensional Heat equation)

U + Uy, = 0 (Two dimensional Laplace equation)

U + Uy + U, = 0 (Three dimensional Laplace equation)

U + Uy =f(x,y) (Two dimensional Poisson equation)
PROBLEMS

1. Verify that U = e* Sin 3x is a solution of heat equation.
Solution: U: = -e*Sin3x and Uy =-9e™ Sin 3x

Ut = c?Ux« (One dimensional heat equation) .......... (1)
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Putting the partial deivativers in equation (1) we get
-e* Sin 3x =-9c%™ Sin 3x
Hence it is satisfied for c* = 1/9
One dimensional heat equation is satisfied for c2 = 1/9. Hence U is a solution of heat equation.

2. Solve Uxy =-Uy

0
Solution: Put U, = p then a—pz— p
X

Integrating we get Inp=-x+Inc(y)
oU/ Oy = p=e™cly)
oU = e™c(y) Oy

Integrating we get U=e > (y) @(y) + D(x) where @(y) = [c(y) Oy

11.2 Modeling: One dimensional Wave equation

We shall derive equation of small transverse vibration of an elastic string stretch to length L and then fixed at
both ends.

Assumptions.

The string is elastic and does not have resistance to bending.
The mass of the string per unit length is constant.

3. Tension caused by stretching the string before fixing it is too large. So we can neglect action of
gravitational force on the string.

4. The string performs a small transverse motion in vertical plane. So every particle of the string moves
vertically.

Consider the forces acting on a small portion of the string. Tension is tangential to the curve of string at each
point.Let T1 and T, be tensions at end points. Since there is no motion in horizontal direction, horizontal

components of tension are

T, Cos a= T,CosPB=T=Constant ... ..... (1)
The vertical components of tension are - T; Sin a and T,Sin B of T;and T,

By Newton’s second law of motion, resultant force = mass x acceleration

o%u

T.SinB -T:Sina= ,OAXat—2

T,Sing T, Sina _ pAx &*u
T T T ot?
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T,Sin B T, Sina _ pAx &°u
T,CospB T,Cosa T ot

2
tang- tana = p_Axa_zu

Astan B=(0 u/ O x)x =Slope of the curve of string at x

tan o= (0 u/ O X)xax= Slope of the curve of string at x+ AX

2
Hence from equation (2) (0 u/ O X)xax - (O u/ O x)x = p_AX&_lZJ
T ot
_pdiu . .
[ (Ou/ OX)ax -(Ouf Ox)]/AX = ?81:_2 Dividing both sides by AX
Taking limit as AX >0 we get
. _ p o
Lim AX>0[ (O u/ O X)unx -(Ou/ OX)x]/AX = =—-
T ot
ofau]_pou
ox|ox | Tot?
Fu_patu
ox> T ot?
Fu_T
ot p ox’
2 2
OR a_g = Cza—l: where C2 =1
ot OX o,

which is One dimensional Wave equation

11.3 Solution of One dimensional Wave equation (separation of variable method)

One dimensional wave equation iS Uw = €% Uxx  eevvvresesreeseeseesreesre e

Boundary Condition u(0,t)=0,u(LLt) =0 e
Initial Condition u( x,0) = f(x) = initial deflection .................. (3)
u: (x, 0) = g(x) = initial velocity .................. (4)

Step | Let u(x,t) = F(x) A(t)
Then uw = F(x) A(t) and  ux = F” (x) A(t)

Equation (1) becomes F(x) A(t) = C2F” (x) A(t)
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A(t)/ [C* A(t)] = F” (x)/ F(x)

L.H.S. involves function of t only and R.H.S. involves function of x only. Hence both expression must be equal to
some constant k.

A(t)/ [C? A(t)] = F” (x)/ F(x) =k = constant

F'(x)-kF(x)=0 e (6)
Alt) -CCKkA(t)=0 e (7)
Step Il

We have to find solutions of F and G of equations (6) and (7) so that u satisfies equation(2) .
Hence u(0,t) = F(0) A(t)=0 and u(L,t) = F(L) A(t)=0

If A =0 then u =0 and we can not get a valid solution of deflection u.

Let Aisnonzerothen F(0)=0and F(L)=0 e (8)
Three cases may arise.

Casel:K=0

Fromeq (6) F" =0

Integratingwe get F=ax+b

Using (8) we get a=0, b =0 Hence F = 0 and u =0 which is of no interest.

Case Il : K = a? (Positive)

Fromeq (6) F” -a?F=0

Integrating we get F = ae ** + be ™

Using (8) we get a=0, b =0 Hence F = 0 and u =0 which is of no interest.

Case lll : K = -p? (Positive)

Fromeq (6) F” + p?F=0

Integrating we get F = C Cos px + B Sin px

Using (8) we get F(0) =C=0, F(L)=BSinpL=0

Let B#0then SinpL=0 Hence pL=nm and p =nm/L

Putting B=1 we get F(x)=Sinnmx/L . (9)
So Fn (x) = Sin nmx/L where n=1,2,3, ... Thus we get infinitely many solutions satisfying equation (8).
Putting k = -p? in equation (7) we get A(t) + p?C?A(t) =0

A(t) + (C?n?m?/L?)A(t) =0
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OR A(t) + (A\n)2 A(t)=0 where An=cn /L
General Solution An (t)=Bn CosAnt+Bn*SinAnt . (10)
Hence un (x,t) = (Bn Cos An t + Bn* Sin An t) Sin nrix/L forn=1,2,3...... .reeieeene. (12)
Are solutions of equation (1) satisfying boundary condition (2).

These functions are called eigen functions and the values An = cn /L are calledeigen values or characteristic
values of the vibrating string.

Step Il

A single solution un(x,t) shall not satisfy initial Conditions (3) and (4). To get a solution that satisfies (3) and (4)
we consider the series

u(x,t) = X un(x,t) =2 (Bn Cos An t + Bn* Sin An t) Sin nmx/L.......... (12)
From equations (12) and (3) we get u (x,0) =2 (Bn Sin nmx/L) = f(X)  evreeveevieecreereee, (13)

Bn must be chosen so that u (x,0) must be a half range expansion of f(x)

. 2 (L . Nax
i.e.Bn= E-[O f(x) Sin de

Differentiating (12) w.r.to t and using (4) we get
3 (Bn* An Sin nmx/L) = g(x)

For equation (12) to satisfy (4) the coefficient Bn* should be chosen so that for t =0, ut becomes Fourier Sine
series of g(x)

n

2 (L . hnax
B, *= —— X) Sin —— dx
Cn;zJ.O 99 L

PROBLEMS

1. Find the defection u(x,t) of the vibrating string of length L=m, ends fixed, C=1, with zero initial velocity and

initial deflection x(rm-x)
Solution: Given length L=m, C=1, initial velocity g(x) = 0 .Hence Bn* =0 and
An=cnm/L=n

The initial deflection f(x) = x(m-x)

n7zx
—dx

2 (L .
Bn = EL i) Sin =

= g.r[(nx-xz)Sin nx dx
T 0

Cos anSin nx — %Cos nx}
T n n: n

:z[_w

0
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=-H%;[1-Cos nrz)

B1=8/m, B,=0,B3=8/27n
The defection u(x,t) of the vibrating string
u(x,t) = 2 (Bn Cos Ant+ Bn* Sin An t) Sin nrx/L
= 2(BnCosnt)Sinnx (asBn*=0andL=m)
=B; Cost Sinx+ B, Cos 2t Sin 2x +..............
=(8/m) Cos t Sinx+ (8/27m)Cos 3t Sin 3X + ....ue..e..
2. Using separation of variable solve the PDE Uy, = U
Solution: Let U = F(x) G(Y) then Uy=F G and Uy=0 U,/ 0 y=F G*
WhereFF= 0F/ Ox andG*=0G/ Oy
Putting these partial derivatives the given PDE becomes F' G*=F G
By separation of variables we get F’ / F = G/G* =k = Constant
(Since L.H.S. is a function of x and R.H.S. is a function of y)
F’' / F=k and G/G* =k
OF/F=k0dx and 0 G/ G=0 y/k
Integrating both sides of these equations we get
INnF=kx+InC andInG =y/k+InD
F=Ce"™andG=Dek

U=FG=CDe""vk

11.4 D ALEMBERT’S SOLUTION OF WAVE EQUATION

One dimensional wave equation is Uw =C% Ux  coceveeveeeereereenrennens

We have to transform equation (1) by using new independent variables v =x + ct and z = x-ct

u = u(x,t) will become a function of v and z.

The partial derivatives are 0 v/O0x=1=02z/0x, Ov/Ot=cand 0z/0t=-c

Using chain rule for function of several variables we get ux=uy vx+ U, zZx = U, + U,

U = (0 /0 x)(uy + u,)
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- %(UV)GV 0 ( V)%+%(uz)av 0 ( Z)g_)z(: U, +U, +U, +U, =U, +2u, +U,

&Gz

x @
Hence ux =U, +2U, +Uy,......... (3)

Similarly ut = uy vt + U, ¢ = cuy -C U,

ug=(0 /0 t)(cuy-cu)=c(0 /O tuy-¢c(3 /0 t) u,

I - AN S, A IR S DA
- Cav(uv)at az( v)at 8V(UZ) (uz) c uvv c uvz c LIvz +C uzz

Uy =C7(Uy —2U, +U,) et @)

Using (3) and (4) in equation (1) we get ¢*(u,, —2U,, +U,) = ¢*(u,, +2u, +U,)
OR -2uy;=2u,, Henceu,,=0

uy = c(v)

u=o(v) + P(z) =d(x+ct) + Y(x-ct)

This is D Alemberts solution of wave equation where ¢(v) = fc(v) O v

TYPES AND NORMAL FORM OF LINEAR PDE:
An equation of the form
A Uxx + 2B Uxy+ C Uyy = F(x,y,U,Ux,Uy) is said to be
ellipticif AC—B*>0
parabolic if AC— B? = 0 and hyperbolic if AC—B?<0
For parabolic equations the transform v=x, z = i(x, y) is used to transform to normal form
For hyperbolic equations the transform v=¢ (x, y), z = P(x, y) is used to transform to normal form
Where ¢ = constant and { = constant are solutions of equation Ay’2— 2By’ + C=0
PROBLEMS

1. Given f(x) = k(x—x?), L=1, k =0.01, g(x)= 0 Find the deflection of the string.
Solution: f(x) = k(x —x?)
fi(x+ct)= k[(x+ct)-(x+ct)?] and f(x-ct)= k[(x-ct)-(x-ct)?]

The deflection of the string is u(x,t) = [f(x + ct) + f(x - ct)] /2

=k [x+ct-(x+ct)? +x-ct-(x-ct)?]/2
=0.01[x — x*- c’t?]
2. Transform the PDE 4ux- uy, = 0 to normal form and solve
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Solution:  4uUxw-uy,=0 (1)
Here A=4,B=0and C=-1, hence AC—B?>=-4<0
Given equation is a hyperbolic type equation.

From the equation Ay’>— 2By’ + C=0 we have 4y’ -1=0

Solving we get x + 2y =c; and x- 2y = ¢,

We have to transform equation (1) by using new independent variables v = x + 2y and z = x-2y
u = u(x,t) will become a function of v and z.

The partial derivativesare 0 v/Ox=1=02z/0x, Ov/Ooy=2and 0z/OYy=-2 .evrveenn.n. (2)
Using chain rule for function of several variables we get ux=uy vx+ U, zx = Uy + U,

U= (0 /0 x)(uy + uy)

= i(uv)@+£(UV)Q+£(UZ)@+£(UZ)Q: uVV +uVZ +uVZ +uZZ = uVV +2uVZ +UZZ
ov ox oz oX oV ox oz OX
Hence ux =U, +2U, +U, ......... (3)

Similarly uy =u, vy +u; z, = 2u, -2 u,
Uy=(0/0y)cuy-cu)=2(0 /0 y)u-2(0/0y)u,

= 2g(uv)@—i_zg(uv)az 2 o (uz)av g (uz)g: uvv_4'uvz_4uvz +4uzz

v oy Tar ey Tov ey Tar Yoy

Uy =AU, —2U, U)o @)
Using (3) and (4) in equation (1) we get 4(u,, —2u,, +U,,) = 4(u,, +2u, +U,,)

OR -2uy;=2u,; Henceu,=0
uy = c(v)

u= e(v) + P(z) =d(x+2y)+ P(x-2y)

This is D Alemberts solution of wave equation where ¢(v) = fc(v) O v

11.5 Solution of One dimensional Heat equation (separation of variable method)

One dimensional wave equation is Ut =C% Uxx ~ eeeveveereseesreeresee e s eneene e (1)
Boundary Condition U(0,1)=0,u(LLt) =0 e (2)
Initial Condition u( x,0) = f(x) = initial temperature ................. (3)

Step | Let u(X,t) = F(X) G(t) cooeveeeeeieee e (4)

Then ut = F(x) G*(t) and  uxx = F" (x) G(t) whereFF=0F/ 0x andG*=0G/ Ot
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Equation (1) becomes F(x) G*(t) = C?F" (x) G(t)
G*(t)/ [C2GR)] = F" (X)/ F(X) e (5)

L.H.S. involves function of t only and R.H.S. involves function of x only. Hence both expression must be equal to
some constant k.

G*(t)/ [C> G(t)] = F” (x)/ F(x) =k = constant

F'(x)-kF(x)y=0 e (6)
G*(t) -C2kG(t)=0 e, (7)
Step Il

We have to find solutions of F and G of equations (6) and (7) so that u satisfies equation(2) .
Hence u(0,t) = F(0) G(t)=0 and u(L,t) = F(L) G(t)=0

If G =0 then u =0 and we can not get a valid solution of deflection u.
LetGisnonzerothenF(0)=0and F(L)=0 e (8)
Three cases may arise.

Casel:K=0

Fromeq (6) F" =0

Integratingwe get F=ax+b

Using (8) we get a=0, b =0 Hence F = 0 and u =0 which is of no interest.

Case Il : K = a? (Positive)

Fromeq (6) F” -a?F=0

Integrating we get F = ae ** + be ™

Using (8) we get a=0, b =0 Hence F = 0 and u =0 which is of no interest.

Case lll : K = -p? (Positive)

Fromeq (6) F” + p?F=0

Integrating we get F = A Cos px + B Sin px

Using (8) we get F(0)=A=0, F(L)=BSinpL=0

Let B # 0 then Sin pL=0 Hence pL=nm and p = nit/L

Putting B=1 we get F(x)=Sinnrx/L . (9)
So Fn (x) = Sin nmix/L where n=1,2,3, ... Thus we get infinitely many solutions satisfying equation (8).

Putting k = -p? in equation (7) we get G*(t) + p*C*?A(t)=0
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G*(t) + (C*n’?/L?) G(t) =0
OR G*(t) + (An)2 G(t)=0 whereAn=cnm/L
General Solution Gn (t) =Bne ™2t (10)
Hence un (x,t) = Bn Sin nmx/L e ™2t forn=1,2,3...... . e, (11)
Are solutions of equation (1) satisfying boundary condition (2).
Step llI

A single solution un(x,t) shall not satisfy initial Conditions (3) and (4). To get a solution that satisfies (3) and (4)
we consider the series

u(x,t) = Zus(x,t) =2 BnSinnmx/L e ™2t ... (12)
From equations (12) and (3) we get u (x,0) = Z (Bn Sin nmix/L) = f(X)  coveeeeeeeeceeeeeeee, (13)

Bn must be chosen so that u (x,0) must be a half range expansion of f(x)

] 2 (L . Nax
i.e. Bn= Ejo fx) Sin de

PROBLEMS

1. Find the temperature u(x,t) in a bar of length L= 10 cm, c=1,constant cross section area, which is perfectly

insulated laterally and ends are kept at 0°C, the initial temperature is x(10-x)
Solution: Given length L=10
An=cnm/L=nmn/10
The initial deflection f(x) = x(10-x)

n_ﬂX dx
10

2) Sinnax dx

2 10 i 1 ¢z
Bn = EL f(x) Sin = Ejo (10x -x

V4

- 2 -
— 1{-MC05 anSin nx — %Cos nx}
n

9] n n? o
::SL:S[l-Cos nrz)

B, =800/ i3, B, =0, B3 =800/27r3

The temp u(x,t) of the bar

u(x,t) = 2 Bn (Sin nmx/L) e 2t

= B1 (Sin 1x/10) e ™/1%° 4+ B, (Sin 3mx/10) e 400720y ...

= (800/ 1®)Sin 1x/10 e 00172t 4 (800/2713) Sin 3mx/10 e 210y ...
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Insulated ends(Adiabatic Boundary Conditions)

A = % IOLf(x) dx

2 L nzX
An = EIO (x) Cosde

u(x,t) = A, + ZA]CosnTﬂX e— At
n=1

2. Find the temperature u(x,t) in a bar of length L=mt, c=1, which is perfectly insulated laterally and also

ends are insulated, the initial temperature is x
Solution: Given length L=nt
An=cnm/L=n

The initial deflection f(x) = x

1L 1 (s
A, =E_[Of(x) dx =;j0 xdx =7 /2

2[xSin nx Cosnx |
T n n

2 (L nzx 2 (=
An:EIO f(x)Cosde=;L xCosnxdx=—{ +—

0

:%(Cosnzz—l)

u(x,t) = A, +ZA1COS% e
n=1

=A + Apos% e A 4 A20052T7ZX e b,

-9t
:7:/2—4/7r[e‘tCos x+w+ ............. }
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UNIT-II

11.8 RECTANGULAR MEMBRANE

Two dimensional wave equation is U = €% (Uxx  + Uyy)  corereereseeeeseeeeseeeseens (2)
Boundary Condition u(x,y,t) =0 onthe boundary ofthe membraneforallt>0 ............. (2)
Initial Conditions: u( x,y,0) = f(x, y) = initial deflection .................. (3)

u: (x, y,0) = g(x, y) = initial velocity .................. (4)

Step | Letu(xy,t) = F(x, y) A(t)

Then ug = F(x, y) A(t) and  ux = Fx A(t), uy=Fyy A(t)

Equation (1) becomes F(x,y) A(t) = C3(Fx + Fyy )A(t)

AR/ ICAW] = (Fu+Fy )/F s (5)

L.H.S. involves function of t only and R.H.S. involves function of x only. Hence both expressions must be equal to
some constant D.

For D20, as F=0, hence u =0 and we can not get solution.

For D< 0 let D = - v? (negative)

A(t)/ [C? A(t)] = (Fa + Fyy )/F = - V2 = constant

A(t) + V2C?A(t) =0

or A(t) + NA(t)=0 whereA=cv e, (6)
FotFyy +VEF=0 s (7)
In equation (7) two variables x and y are present and we want to separate them.

Let F(x,y) = HX)QlY) e (8)

d*H__ o VHO—- |:d2Q+V2Q}
dy’

Then from equation (7) Q 0o
X

1 d*H d?
H ol (3+ v'Q
H dx Q dy
L.H.S.is a function of x only and R.H.S. is a function of y only. Hence the expressions on both sides equal to a
constant k. As negative value of constant leads to solution let the constant be —k? then,

2
L1dH__1[dQ, Lol e
H dx? Q dy2
2
d°H e (9)

dx?
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2
(:j_?+ p’Q =0where p*=v*—-k*> s (10)
y

Step ll

General solution of equations (9) and (10) are

H(x) = A Cos kx + B Sin kx

Q(y) = C Cos py + D Sin py where A,B,C and D are constants.

From equations (5) and (2) we have F = HQ =0 on the boundary.
Hence x=0,x=a, y=0, y=b implies H(0) =0, H(a) =0, Q(0) =0, Q(b) =0
Now H(0) =0 impliesA=0

H(a) = 0 implies B Sinka=0

Assume B # 0 then Sin ka = 0 (Because if B= 0 then H = 0 and hence F =0)
ka=mm or k=mm/a, misinteger

Again Q(0) =0 impliesC=0

Q(b) =0 implies D Sinpb =0

Assume D # 0 then Sin pb = 0 (Because if D= 0 then Q = 0 and hence F =0)
pb =nmt or p=nm/b, nis integer

Thus Hp, () =Sin mnix/a , m=1,2,......

Qs (y) =Sinnny/b , n=1,2,......

Fmn (X, y) = Sin mrix/a Sinnmy/b -, m=1,2,...... andn=1,2,...... are solutions of equation (7) which are zero on the
boundary of the membrane.

A=cv==Cy/k® + p?

2 2
m n
A=A =cCrm,|—+— m=1.2,.... andn=1,2,......

" a® b’
The numbers Ann are called eigen values or characteristic values.
The general solution of (6) is
Amn (t) = Bmn COS Amn t+ Bmn*Sin Amnt
Hence umn(X,Y,t) = (Bmn COS Amn t+ Bmn*Sin Amnt) Sin (mrmix/a) Sin (nmy/b)...cceeeeceveeenneee.. (23)

Step Il
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We consider the series

u (x,,t) ZZumn(x yt)=>] Z[B CosA t+B Sln/lmnt]Sm—Smngy ................. (14)

m=1 n=1 m=1 n=1

From equations (14) and (3) we get

u (x,,0) = Zz an]Sln—Sln— =f(x,y)

mlpt a4 D (15)

This series is called a double Fourier series.

- .. n . .
To find the Fourier coefficient Bm, , we put Kn(y) = Z anSmTﬂy in equation (15)

we get f(x, y)=iKm(y)Sin%
m1
The coefficient Km(y) = %J':f(x, y) Sin mTﬂde
Hence B, = %IOme (y) Sin %dy
:ibjobj:f(x, y) Sin %Sin ”gy dx dy
{a_u} ZZ[AW B, ]Sln—Sln— =g(xY)

at m=1 n=1

I I g(x,y) Sin —Sln Tﬂydxdy wherem=1,2,.....and n=1,2,......

PROBLEMS

1. Find the deflection u(x,y,t) of the square membrane a=1, b=1 and c=1 if the initial velocity is zero and

initial deflection is k(x-x?)(y-y?)

Solution:
Given a=1, b=1 and c=1 . Hence we have

2 2
Im? n
A = C7 | — +—b2 =zvm? +n?
a

The initial velocity g(x,y) is zero . Hence Bmy* =0

The initial deflection f(x,y) = k(x-x?)(y-y?)
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B =a;‘;)jobjoaﬁx, y) Sin mTﬂXSm gydxdy 4II k(X - x2)(y - y?) Sin mzxSin nzy dx dy

- 4kj:j:[(y-y2)5in nzy|(x-x2)Sin maxdxdy e (1)

Now j:[(y-yz)Sin nzzy]dy

=—[(y-y )Cojn”y} +fa-2 )Cosnﬂyd

00+ n_H(l 5 )Sln nﬂy} J~(2)Sln nzy }

1
i{O—O—ZCOZS nﬂy} _ 2 [L-Cos nz] (2)
0

nrz n?r? n®z®

Putting this in equation (1)

Bmn = 4k [ — (1 Cos nz )(x - x?)Sin mzx dx

°n°z
= %(l-Cos nﬂ)f: (x - x?)Sin mzx dx
n’z
— . 1
2 o] x) ZEDE (1 SO0
n’z i mz m’z®  mz 0
8k 2
== ——_(1-Cosnz e (1 COSTTVZ'):|
= %kﬁ(l-Cos nz)1-Cos mr)
m°n

Deflection u (x, y,t) :ZZ[anCos/lmHB;n SinA, . t]Sln—Slnngy

m=1 n=1

B Cos A, t]Sin max Sin nzy

mn

3
I
N

Il
[Ms
ﬁMs

as Bmn* =0and a=1, b=1

i (1—Cosnz) (1-Cosmz)Coszv/m? + n?tSin mzx Sin nzy

336
~m°n’r

Ms

3
N

2. Find the double Fourier series of f(x,y)= xy, 0<x<m and O<y<m,
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Solution:
Here a=m, b=, f(x,y) = xy . Hence we have
:—J‘ I X, y) Sm—Sm%dxdy_ I j Xy Sin mx Sin ny dx dy
:iz.[” _yCosny Sin n y} XSINMXAX e (1)
ARl n2 0
4 -7 . 4 L
:—ZI —— Cosnrx | XSin mxdx= - — Cosnz| XSin mxdx
70l n nz 0
=— iCosnz{i Cosmx+ Sin an} = iCosn;rCosm;r
Nz m m o Mmn
................. (2)
The double Fourier series is
f(xy)=>>[Bm] Sln—Sln b =>">"[B,, ]sinmxSinny
m=1 n=1 m=1 n=1

= ZZ{iCosmﬂCosnn}SinmxSinny
mn

11.9 LAPLACIAN IN POLAR COORDINATE

o’u 82

V= v 8y_ =0 (Laplace equation

To convert Laplace equation (1) into polar formwe putx=rCos 8 ...

andy=rSin6 ...

Squaring and adding equations (2) and (3) we have x?+y? = r?

Dividing equations (3) by equation (2), tan 8 =y/x, hence 8= tan*(y/X) .cccvvruen...

or
2X= 2r —
Differentiating equation (2) partially w.r.to x we get Ox
or
2y=2r—
Differentiating equation (2) partially w.r.to y we get oy
or X or
Hence I, = —=— and r, =_=X
oX r oy r (6)

Again differentiating equation (6) partially w.r.to x and y respectively we get
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i[ﬂ}_ r—xr, r—x(x/r) r?—x* x*+y*—x*® y?
-

r. = = = = =

O ox| ox r? r? r3 r3 s
_ofor|_r—yr, r—y(y/r) r’-y* x*+y*-y* x?

ryy_ay oy |  rz r2 - or: r3 o

Differentiating equation (5) partially w.r.to x we get

o _ 900 _ 1 i[l] 1 y[—l} -y -y
T ax  1+y2Ix® ox| x| 1+y?iIx® 2 ry? 2

Differentiating equation (5) partially w.r.to y we get

o -99__ 1 Q[XJ_;FJ_L_L
Yoy 1+vy?Ix® oyl x| 1+y?/x*| x x2+y? r? (8)

Again differentiating equation (7) partially w.r.to x we get

oSt
o ox| ox ox| r? r® ox r*r ré

Again differentiating equation (8) partially w.r.to y we get

Woooyl| oy oylr? ré oy r’r r*

Using chain rule for function of several variables we get

ou ouor ouol
Uy =—=——+——=U,I, +Uu,0,
OX Or oXx 00 ox

0 0 0

Uxx == &(Urrx + UHQX) = a_(urrx)+_x(ugex)
0 0 0

:ur&(rx)+ —(u,)+u, 8X( )+6 (U.g)

0 o 0 00 0 or
=ur,+r|—(Uu,)—+—( +u,0,, +06, Uy) —+— —
rxx x|:ar( r)ax 60( r) i| |:a ( )3 a0( 9) i|

=ur|::_/_§:|+r [x rr ( r9)]+u9l:2r }"’0 [x r9+(0xu99)]

2
y X Xy 2xy Xy y
=—u +r_2urr - r_3ur0 +r—4ue - r_3ur¢9 +r_4u99
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2 2 2
X 2xy y y 2xy
Uy = U, = —35 U T 77 U T35 U +—7 Uy
r r r r T (9)
2 2 2
y 2Xy X X 2Xy
Uy =z Une o Tl T3t =57

Adding equations (9) and (10) we get

_X2+y2 X2+y2 X2+y2
uxx—i_uyy - rz urr I,4 06 I,3 ur
1
uxx+uyy :urr+r_2u6’9 + Ur

L : 1 1
Laplace equation in polar form isu,, +r—2u€9 +r—ur =0

PROBLEMS

1. Show that the only solutions of Laplace equation dependingonlyonrisu=alnr+b

Solution:

L . 1 1
Laplace equation in polar form isu,, +r—2u99 +r—ur =0
As u depends onlyonr, u is a function of r only.

Hence ug=0 and uge=0

1 1
Hence u, +—u, =0 or u, =- —u,
r r
Let u, = p then u, =dp/or
0 0 or
Hence L= B o B__ T
or r p r
Integrating both sideswe getInp=-Inr+Ina

Hence p:6—u: a or ou= aor
or r r

Integrating again both sides we getlnu=alnr+b

2. Find the electrostatic potential (Steady state temperature distribution) in the disk r<1 corresponding to

the boundary values 4cos %0
Solution

The boundary value f(8) =4cos 26 which is even function, -n< 8 <1 .Hence Bn=0

=2

A, =ij” f(0)do =ij”4Coszed9 =1j” [L+ Cos20146 =~ [0+ 0.55in 26]
2 2 7 T T
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An=1j” £(6) cOsn6u9=1j” 4Cos?0 Cosné d¢9=1'|'” 2[1+ Cos20]Cosné dé
T T T

:gr Cosné d¢9+£r Cosn@ Cos26 d@
T T

:ni[sm nol". +1j” [Cos(n6 - 26) + Cos(n6+26)]d6
T T

:O+1{Sin(n¢9— 20) s Sin(ng+ 20
n-2 n+2

)} =0 (except n = 2)
7 -

Forn=2, An=A2= ij” 21+ Cos26]|Cos26 d6
T

= 3[” Cos26 d9+3j” Cos? 20 d@ = i[Sin 26]", +ij” [1+ Cos46]do
Tor o

21 T

1 Sin46']”"

=0+—|0+ =2
T 4 .

The electrostatic potential (Steady state temperature distribution) in the disk

u(r,@) =A,+ Z(éj [A,Cosné + B,Sin n@]=2+ 2r2Cos20

n=1

(Since R=radius of disk=1 and B,=0)

11.10 CIRCULAR MEMBRANE

. . . . 2
Two dimensional wave equation is Uw = ¢? (U + Uy)=-c* VU

Using Laplacian in polar form we have

.. . 1
Laplace equation in polar form is Vu=u,, +—Ugp +—U, =0
r r

@—c{u Ly +iu}
51:2 rr rz 60 r r

AS circular membrane is radially symmetric, u depends on r only and u does not depend on 6

Hence ug=0 and uge=0

Boundary Condition u(R,t)=s0 . (2)
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Initial Conditions: u( r,0) = f(r) = initial deflection .................. (3)
u (r,0) = g(r) = initial velocity .................. (4)

Step | Let u(r,t) = F(r)G(t)

ur= F'(r) G(t), ur= F"(r)G(t) and utt= FG**

where ' and * represents partial differentiation w.r.to rand t respectively.

Putting in equation (1) we get

F(r)G**(t)= c*[F"(NG(t}+(1/r) F'(r) G(t)]

G**(t)/[ 2G(t)+(1= [F"(1) + (1/r) PN/ F(r) e (5)

L.H.S. involves function of t only and R.H.S. involves function of r only. Hence both expressions must be equal to
some constant D.

For D=0, as G=0, hence u =0 and we can not get solution.

For D< 0 let D = - k? (negative)

G**(t)/ [c® G(t)] = [F"(r) + (1/r) F'(r)]/ F(r)= - k* = constant

G** + k’c®G=0

or G** + AG=0 whered=ck (6)
and F"+ (1/r) F +k2F=0 e (7)
Puts=kr then1/r=k/s implies ds/dr=k

F' =dF/dr=dF/ds. ds/dr = k dF/ds

2 2
F":af a[ka_F):ka(aFjas kzaf
or or\ o0s oS\ 0s )or 0S

Equation (7) becomes

2 2

kzalzz k 6F LK 20
0s sas

2

6F+18F F_0

0s% s 05

This is Bessel’s equation.

Solutionis F(r) = Jo(s) = Jo(kr) (8)
On the boundary r=R hence F(r) = Jo(kr) =

Jo(s) has infinitely many positive roots,

S= 01,002,003, cceeeiiinnnninnnes
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a1=2.404,0,=5.52,03=8.653,...................

From (8) kR= am and k=amr/R . (9)
Fm(r)=Jo(kmr)=Jo(am r/R) (10)

General solution of (6) is Gm(t) = am Cos Amt + bm Sin Am t

Hence Um(r,t)= Fm(r) Gm(t)=( am Cos Amt + bm Sin Am t) Jo(kmr), m=1,2,3..... ... (11)

are solution of wave equation (1). These are eigen functions. The corresponding eigen values are
Am=coam/R

The vibration of membrane corresponding to um is called m* normal mode.

Step IlI

We consider the series

> = . r
u (r,t) :Z F, (NG, () :Z[amCosﬂmt +b, Sln/lmtllo(%J ................. (12)
m=1 m=1
- o I
Putting t=0 we get U(r,0) = ZamJO[ |; j = f(r)=Jolamr/R) e (13)
m=1
The series (12) will satisfy initial condition (3) provided the constant am must be coefficient of the Fourier —Bessel
series(13).
2 R
a, =—— jo r f(r)d,(e,r/R)r

" R (a,)

Deflectionu(r,t) =>a, COSﬂmemSiMmtpo(aF:r]

m=1

2 i[— Anlp SINA,t+ bm/’thos/lmt]Jo[a_Mj
at m=1 R
ou N a.r
- = b /I m —
{at L ;[ m m]Jo( R j g(r)

2

( )LRrg(r)Jo(amr/R)dr

" ca, R (a,
PROBLEM

1. Find the deflection of the drum with R=1, c=1 if the initial velocity is 1 and initial deflectionis 0

Solution:
Given R=1, c=1 and g(r)=1.

Given initial deflection =f(r)= 0, hence we have an=0
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)\ m = Cam /R = am
(as given R=1, c=1)

A1=01=2.404,\>=0,=5.52,A3=03=8.653
The initial velocity =g(r)=1

2

' /R)d
m :%Tf(am)jo rg(r)J,(a,r/R)dr

2 1
% ['r,(ar)d
7 )Lr o (e, r)dr

m
From properties of Bessel’s function
x"J, ,(x) dx=x"J,(x)

Hence r"J, ,(r) dr=r"J,(r)
Puttingn=1 we get rJ,(r) dr=rJ (r)

b= o 2] 2 e

ame(am) o ari‘]lz(am) an21‘]l (am)

Deflectionu(r,t) =>a, COSﬂmemSiMmtpo(aF:r]

m=1

o0

[bmSinlmnt]_]o[“Fr;l’j _ Z{%) sinzmt}o(amr)

m=1 m J 1 (am

0
m=1

11.11 Laplace equation in Cylindrical and spherical coordinate
Cylindrical coordinate

x=rCos 0,y=rSin 06, z=z

L o . 1 1
Laplace equation in cylindrica | form is V’u=u,, +—u, + U, +U, = 0
r

Spherical coordinate
x=r Cos 0 Sin ¢, y=r Sin 8 Sin ¢, z=r Cos ¢

Laplaceequationin sphericalform is V?u = u,, +£Ur +iu i COt¢u 1

- Uy =
r r2 % r2 % r%Sin%g ¥

Potential in the interior of sphere
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o0

u(r.g) =, Ar"P,(Cosg)

n=0

where A, = 22nRJ:]1

jo” f ()Pn(Cosg)Sing dg
Potential in the Exterior of sphere

u(r,g) = i B,r " —P, (Cosg)

where B, = 2nT+1 R”“L’r f (#)Pn(Cosg)Sing d¢

PROBLEMS

1. Show that the only solutions of Laplace equation depending only on ris u = ¢/r + k where r?= x? +y? +2?

Solution:
Cotg 1

Laplaceequationin sphericalform is V’u=u,, +—u, + U, +—-u,+ Y 2qﬁuﬂ9 =
r r r r<sin

As u depends onlyonr, u is a function of r only.

Hence ug=0 and uge =0, upy =0

2 2
Hence u,, +—u, =0 or u, =- —u,
r r
Let u, = p then u, =dp/or
Hence @=—E or @=—ﬁ
or r p r
Integrating both sideswe getInp=-2Inr+Inc
r
Hence p:a—u: % or ou= %
or r r

Integrating again both sides we get In u = D(-r?) + k

Or u=c/r+ k wherec=-D

2. Find the Potential in the interior of sphere , R=1 assuming no charges in interior of sphere and potential

on surface is f(¢)= Cos ¢
Solution: Given R=1 and f(¢)= Cos ¢

_2n+1¢# :
A= [ f@)Pn(Cosg)sing dg
2n+1 (= .
A== J'O Cos ¢ Pn(Cosg)Sing d¢

Putting Cos d=x, -Sin ¢ dd =dx

As ¢-0, x>1and as ¢—->m, x> -1 Hence we have
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A, = 2rl;lj_l—xPn(x) dx = 2n+1rlx P (x) ax = 2n2+1f PLOOP, (x) dx

1 2 ) -1

2n+1
2

forn=1 _{1 forn=1

2n+1 =
0 forn=1 Oforn=1

Hence A1 =1, A2=0, A3=0,A4=0

u(rg) =Y. Ar'P,(Cosy)

= AP, + AP, (Cosg)+ Ar’P,(Cosg)+........
= rP,(Cosg) = rCosg

SOLUTION OF PDE BY LAPLACE TRANSFORM

Procedure:

Step I: We take the Laplace transform w.r. to one of the two variables usually t which gives an ODE for

transform of the unknown function. It includes given boundary and initial conditions.

Step Il: Solve the ODE and get the transform of the unknown function.

Step Il: Taking the inverse Laplace transform the solution of the given problem will be obtained.
PROBLEM

1. Solve the PDE using Laplace transform

xM M u(x0)=0and u(0,t)=0if t>0
ox ot
Solution
xa—u - @: (PR @
ox ot

Taking the Laplace transform of both sides of equation (1) we get
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XL(Z—;J() + L@t—“j = xL(t)

xj@e*ﬁdu sL(U) — u(x,0) = =~
o OX

SZ

Use formula L(dy/dt) =sL(y) - y(0) for derivative of Laplace transform

. _— ou) Fou g
Using definition of Laplace transform we have L| — | = J.—e dt
OX) 40X

Assuming that we may interchange differentiation and integration we have

xijue‘s‘dw sL(u) - 0= 12 Since givenu(x,0) =0
oX % S

0 X

X—L(u)+ sL(u)= —

~ L)+ sLW)=

x@+ sU= —  where U =L(u)
OX S

W, sy L

OX X S

Which is a first order linear differential equation with p=s/x and g= 1/s?
Integrating factor F= e/P®=g/(s/dx= g slnxz g Inxs= ys

The solution is U=(1/F)[ [F.Q dx +c] = x*[ [x*/s? dx +c] = x°[ [x**}/(s? (s+1)) +c]

U= SZ(SX+1) = L(u) Henceu = '—_1[32(;1)} ﬂﬁ(ﬁﬂ)} ) XL_l(%]

4 1 s—-1 4 1 1 1 _
:XLl[m_S_ZJ:XLl((S+1)_g+S_2j:X(e t —l+t)




UNIT-III & UNIT-1IV

1 Origin of complex number and complex analysis

Euler in 1748 derived the formula e = cos@ + sinf ™ = —1, A fantastic relation
that include the three symbols e, 7,7 in one surprising equation. Complex number is a
point in the plane. This idea is attributed to Argand who wrote it up indipendently
in 1806. Due to this geometric interpretation of complex numbers is known on Argand
diagram.

Just as solutions of real quadratic equations could lead to new complex numbers, so the
solutions of equations with complex coefficients lead to even more kinds of new numbers.
Jean D’Alembert (1717 — 1783) conjecture that complex numbers alone would suffice.
Gauss confirmed this in the Fundamental theorem of Algebra-"every polynomial equation
has a complex root”.

In 1837, nearly three centuries after Cardan’s use as imaginary numbers, willam Roman
Hamilton published definition of complex numbers as ordered pair of real numbers subject
to certain explicit rules of manipulation.

Gauss wrote to woltgang that he had developed the same idea 1831.

For centuries it is believed that complex analysis is an incredible complicated theory.

It took almost three centuries to obtain satisfactory treatment of complex number. It
then took less than tenth of that line to complete a major part of complex analysis.
Once a breakthrough occurred, further development is easy. Complex numbers— complex
analysis.

In 1545, Cardans solve the problem

Here the solution is:



Cardans gave no interpretation for the square root of a negative number.
Solving
23 =15z 4 4

by Tartaglith formula tends to

v =2+ v + {2 — Vo131

in contrast to the obvious answer

Rapheal Bombelli (1526-73) suggested a way to reconcile the two solution:
2+v-1)P2=24+-121
this makes Cardans expression
z=2+V-1+2-V-1=4

this impossible root is a familiar root in a complex disguise.

La Geometric (1637) by Rene Descarte made distinction between real and imaginary
numbers , representing imaginary numbers by a sign.

WAR BETWEEN LEIBNITZ AND BERNOULLI:

Leibnitz asserted that the logarithm of a negative number was complex whilst Bernoulli

insisted it was real.Bernoulli argued since

It follows by integration that
log(—x) = log x.

Leibnitz insisted that this is true only for positive x. Euler resolve the controversy favor
of Leibnitz in 1749 pointing out that the integration required arbitrary constant, a point

Bernoulli has ignored.



i is a imaginary number , which does not lie in R such thati®? = —1.In other words,

1 = +/—1. Based on this we from a new number
r+1y,z,y € R.

We call such a number as a complex number. Moreover , x is called as real part and y is

called as imaginary part of the complex number,i.e
r = Re(z +1iy),y = Im(z + iy)
The set of all complex numbers is denoted by the symbolC,
C={z+iy:az,ycRi=+—-1}
We denote a particular complex numbers is denoted by the symbol,
z2=x -+

This set is an extension of R.The set of real numbers ,as every real number is a number of
C. Moreover the complex numbers obeys many of the some rules of arithmetic numbers
. We list them as follows:

addition : (a+ib)+(c+id)=(a+c)+i(b+d)

multiplication : (a+ib).(c+id)= (ac-bd)+i(ad+bc)

other properties are

zHrw=w+z
Zw = w.z
z4+(u+v)=(z+u)+v
(zw).u = z.(wu)
z(w+u) =z2w+ zu
2+0=0+2==2
zl=1lz=z2

GEOMETRY:

Our way to represent a comlex numbers a-+ib is by a point (a,b) in the plane R? a+ib

3



can also be represented by the vector ai 4 bj where i = (1,0) and j = (0, 1).

clearly, a+ib is the vector whose initial point is (0,0) the origin and terminal point is
(a,b). with this vector form representation C is vector space. One of the important
concept in analysis is the concept of distance, equivalently called magnitude or norm of
a vector.

MAGNITUDE:

The magnitude of a+ib is denoted by —a-+ib—, and is defined by

la +ib| = Va? + b?

If z= a+ib, then |z| = v/a® + b2, which is also the distance of the point (a + ib) € R?
from the origin. Moreover, |a + ib| is also the length of the vector (a,b). The notation |z|
is called as the modulus of z.

CONJUGATE:

The complex conjugate (or just conjugate) of a+ib is the number a + ib defined by

at+ib=a—1b

DIVISION:

Let a+ib and c+id are two complex numbers then,

a+ib  (ac+ bd) + i(bc — ad)
c+id 4 d?

Ex:
Division of 2 — 7¢ by 8 4+ 3¢ is the complex number

2—-T 5 2,62
8+ 31 373

POLAR FORM:
Let z = a + ib, the number z is anonymous to the cartesian coordinate (a,b). Which has

polar coordinates (r,0). We have, r = |z| and # = argument of z. so

a=rcosf,b=rsinf

Euler formula says

¢ = cosf + sin @



= zZ=Te

Ex:
Polar form of (—1 + 4i) is,

—1 4 4i = V17t ()

2 SOME THEOREMS , DEFINITIONS , FORMS

De Movire’s Theorem: For any integer n.
(a) (cos@ +isinf)" = cosnb.
(b) If z =r(cos@ +isind), then 2" = r"(cosnf + isinnd).

A complex number z is given, we can now define polynomials of degree n (say),

Po(2) = ap + a1z + az2® + ... + a,2", a, # 0.

FUNDAMENTAL THEOREM OF ALGEBRA:

A polynomial of degree n with complex coefficient has at most n complex roots.For
example the polynomial 22 — 1 has two roots , in fact they are solutions of the equation
2?2 —1 = 0. It is not difficult to find that they are 1, —1. If we consider z* — 1 then by
fundamental theorem of algebra it has at most three complex roots.

We are basically concentrating on degree 2. So try to solve these problems.

(a) az? + bz +c=0.

(b) az* + b2+ ¢ =0.

()22 +z4+1—-i=0.

(d) 2% — (1 +4i)2* + 4i = 0.

LOCUS:

Now we define the locus of some standard curves,

(a) |z] = 1 represents the locus of unit circle.

(b) |z| < 1 represents the locus of a closed unit disk.

(c) |z] < 1 represents the locus of open unit disk.



(d) & < |z] <1 represents the locus of annulus.

General equation of a circle:
2Z+ az+ azZ + B =0, fisarealnumber

lz4+al* =aa - B

it represents a circle provided aa — 5 > 0.

General equation of a straight line:
az+az+ pf=0,a+#0,[isreal.

CIRCLES:

Consider the equation |z —a| = r then locus of points satisfying this equation is the circle
of radius r about a.

OPEN DISK, NEIGHBOURHOOD:

The inequality |z — a| < r specifies all points within the disk of radius r and center a. Tt
is also called a neighbourhood of a.

CLOSED DISK:

|z — a| < r, consists of all points on or within the circle of radius about r.

STRAIGHT LINE:

2 —al = |z — b

Perpendicular bisector of the line segment joining a and b.

EX:

Find cartesian form of the straight line defined by the equation

|z 4+ 6| = |z — 1+ 3i]

Ans:

|z 4+ 6i]* = |z — 1 + 3i|?

224 6i(z—2)+36=22—(2+2)—3i(z—2)+1+3i—3i+9



= 12y = —2x 4 6y — 26
=
1

Y= —g(x + 13)

INTERIOR POINTS, BOUNDARY POINTS, OPEN AND CLOSED SETS:

e A complex number zj; is an interior point of a set S if there is a neighbourhood of z
containing only points of S.

e S is a open if every point of S has a neighbourhood containing only points of S.

e A point zy is a boundary point of S if every neighbourhood of z; contains at least one
point in S and at least one point not in S.

e S is an open set if every point of S is an interior point.

e S is a closed set if its complement S¢ is open.

e S is closed if it contains all of its limit points.

e S is closed if and only if S contains all its limit points.

DEFINITION:

A point a is called a limit point of S(may or may not belongs to S) if every neighbourhood
of a contains at least one point of S differing from a.

Let S C C and 2y € C. Then z; is called a limit point of S if every nbd of zy contains
infinitely many points of S.

Sequence:

A complex sequence {z,} is an assignment of a complex number z, to each positive
integer n.

Convergence:

A complex sequence {z,} converges to the number L if, given any positive number € ,

there is a positive number N such that,
|zn — L| < €,if,n > N.

EX:
e The sequence {1+ £} converges to 1.
e The sequence {(—1)" + £} has two limit points 1 and —1 , and they are not equal .

Hence , the sequence does not converge.



THEOREM:

Let 2z, = x, + 1y, and L = a + ib, Then 2, — L if and only if x,, — a and y,, — .
Subsequence:

A subsequence of a sequence is formed by picking out certain terms to form a new
sequence.

Bounded Sequence:

A complex sequence {z,} is bounded if |z,| < M,Vn =1,2,....

Theorem:

The sequence {z,} is bounded if the sequence {z,} has a convergent subsequence.
Compact Set:

A set K of complex number is compact if it is closed and bounded.
Bolzano-Weirstrass Theorem:

Let K be an infinite compact set of complex numbers. Then K contains a limit point.
Series: .

Power Series: A Power Series in powers of z — zj is a series of the form Z an(z—29)" =

n=0
ap + ay(z — 29) + ..., ag, ay, ... are called the co-efficient series and z is the center of the
series.

o)

Convergence of Power series: (i) Every power series E an(z — 2z9)" converges at the

n=0
center 2.

(ii) If the above power series converges at a point z = z; # 2o, it converges absolutely for
every z closer to zp than zy, i.e. |z — 29| < |21 — 20].

Radius of convergence of power series: Consider the smallest circle center z, that includes
all the points at which a given power series converges. Let R denote its radius. Thecircle
|z — 20| = R is called the circle of convergence and its radius R, the radius of convergence
of the given power series.

Remark: Termwise differentiation and integration of the power series is permissible.

Taylor Series: The Taylor series of a function f(z), the complex analog of the real Taylor

o0
*

series is f(z) = Zan(z — 2)", where a, = % ["(20) = 3= $ %dz*, C' : simple
n=0
closed path that contains 2y, counter clockwise sense.

The remainder term of the above series after the term a,(z — 29)" is



n+1

Rn(Z) — (Z ;Sm §C (Z ZO)nJrl dz
Therefore f(z) = f(z) + (zl,zo "20 + = ZO) oo + .. 4 Gzl gm0 4 RL(2) s called

Taylor’s formula with remainder term.

Remark: A Maclaurin series is a Taylor series with center zy = 0.
Laurent Series: Let z = z; is an isolated singularity of f. Then f(2) = > _a,(z — 2)"

—0o0

be its Laurent series expansion in a,(a,r, R).

Now f(z) = ZSO an(z —20)" + > b (z —20)7",
W dw, b, = W,

where a,, = 2m fCl To—z0)" T zm Cy (w—z0) "

3 Limit, Continuity, Derivative

Function:
A function f is defined on S is a rule that assigns to every z in S a complex number w,

we can write it as,
w = f(z)
or,

w = f(z) =ulx,y) +wv(z,y)

where u(x,y) and v(x,y) are functions of variables x and y.
Limit:
Let f: S — C be a complex function , let zg be a limit point of S and L be a complex

number. Then

lim f(z) =

2520
if and only if given € > 0, there exist a positive number 0 such that |f(z) — L| < € for all
z in S such that 0 < |z — 2| < d.

Continuity:

o(Limit form) Let f be a complex valued function defined on a region D of the complex
plane . Let zp € D then f is said to be continuous at zj if

lim f(z2) = f(z0)

Z—20

e (e —dform) Let f be a complex valued function defined on a region D of the complex

plane . Let zp € D, then f is said to be continuous at zj if given € > 0 there exist § > 0



such that,
|z — 2] <0 =|f(2) — f(20)] <e.
e f is said to be continuous in D if it is continuous at each point of D.
e If a function f is continuous at all z for which it is defined , then f is a continuous
function.
Theorem:
The image of a closed and bounded set under a continuous function is also closed and
bounded.
EX:
e The function f(z) = 1 in (0,1) is unbounded.
e The function f(z) = |z| is unbounded on R.
e The function f(z) = {éﬁggQ is continuous.
Derivative:

The derivative of a complex function f : D — C at a point zy € D is written as f(2g)

and is defined by

provided that the limit exists. Then f is said to be differentiable at zy.
EX:

e f(z) = 2% is differentiable for all z.

e 2 is nowhere differentiable.

Theorem:

If f(2) is differentiable at zy then it is continuous at that point.

Corollary: Converse is not true; counter example is f(z) = Zz.
z—1

Ex: Find the derivative of the following function f(z) = Z

Ans: Try this one.
Ex: Prove that f(z) = Rez is nowhere differentiable.

Ans:
. fle+Az) = f(2)
/ —
fiz) = Alggo Az
) r+Ax—zx
= im _—
(Az—0)(Ay—0) Ax + 1Ay
Ax

im _—
(Az—0)(Ay—0) Az + 1Ay

10



has no limit.

4 Analytic functions and some standard functions

Analytic Function:
(Analytic in a domain D) A function f(z) : D — C is said to be analytic in a domain D
if f(z) is defined and differentiable at all points of D.
(Analytic at a point) A function f(z): D — C' is said be analytic at a point z = 2y in D
if f(z) is analytic in a neighbourhood of z.
Ex:
e (2% + 2) is analytic.(entire function).
e Examples of not analytic functions (1) f(z) = Rez. (2) f(z) = Imz. (3) f(z) = |z|%.
Remark: If f is analytic at a point zy. But converse is not true.
Ex: (1) f(z) = Z is nowhere differentiable so not analytic.
(2) f(2) = |z|* is not an analytic function.
Remark: Set of all points for which a given function is analytic forms an open set.
Cauchy Riemann Equations:
Let f(z) = u(z,y) + iv(x,y) be defined and continuous in some neighbourhood of a
point z = x + 1y and differentiable at z itself. Then at that point the first order partial

derivatives ug,uy,v,,0,,exists and satisfy cauchy riemann equations,

Ou v
or Oy
ou v
oy Oz

Ex: 1 Test the functions for analyticity.

23, e®(cosy +isiny), e *(cosy — isiny), %.

Ex: These following functions are not analytic,

() F(2) = 2lz], (b) F(2) = il2I%, (C) Fla,y) = 20y + i(a? +12).

Polar form of Cauchy Riemann equation:

If f(z) = u(r,0) + iv(r,0)be analytic at z = rcosf + irsinf then the Cauchy-Riemann

equation has polar form,

ou 1@

or 1o
11



ov 1 0u

o rof
Ex: Prove that f(z) = 2% is analytic.
Ans: Let z = x + iy , then f(2) = (v +iy)? = 2% + y* + 22y,

Here u = 2% — y? and v = 22y

% — Qx,g_z = 2z, % = —2y, % = 2y. hence we get,
Ou  Ov
or Oy

du v
oy Oz

Laplace equation:

If f(2) =u+ v is analytic in domain D then Laplace equation are satisfied ,
1.€, Ugg + Uyy = 0

and

Vgg + Vyy = 0

Ex: Prove that u = 22 — y? satisfies Laplace equation.

Ans: Here u = 22 — y? then,
Uy = 20, Uy = —2Y, Upy = 2, Uyy = —2

= Ugg + Uyy = 0

so u satisfies the laplace equations.
Harmonic function:
A function u(x,y) is called harmonic function if it satisfies Laplace equation.

2 — 42 is a harmonic function but v = 22 + 3? is not a harmonic because

Ex: u ==
Uzz + Uyy # 0

Conjugate harmonic function:

If f(2) = u+ v is analytic then v is called the conjugate harmonic of u.
Note: If f(z) = u + dv is analytic then u and v are harmonic.

Construction of analytic function if either u(x,y) or v(x,y)is given:

Using Thompson Milne method we can from the analytic function f(z) if either u or v

12



are given. If u is given and it is harmonic then its corresponding analytic function can
be determined as follows.

step(i) find u, and u,

step(ii)
, ou Ou
fi(z) = %](z,(}) - Za—y](z,o)

step(iii) f(z) is obtained by integrating above f’(z) in step (ii) w.r.to z.

Ex: If u = 22 — y? is harmonic then find its corresponding analytic function.
Ans: u = a? — y?, then u,, =2 and uy, = —2

= Uy + Uyy = 0,= u satisfies Laplace equation. So u is harmonic.

NOW Uy, = 2T , Uy = —2Y

, ou Ou
fi(z) = %](z,o) - Za_y](z,o)

= f(z) =22 —i(-2.0),= f'(z) =2z

integrating we get, f(z) = 2% + ¢

this is the required analytic function.

CONFORMAL MAPPING:

A conformal mapping is a mapping that preserves angles between any oriented curves
both in magnitude and in sense.

THEOREM: The mapping defined by an analytic function f(x) is conformal jexcept at
critical points, that is points at which the derivative f’(z) is zero.

proof: Try this one.

Ex: e is conformal except at z = 0.

Ex: Consider the mapping f(z) = z. It is not an analytic function but it represents
reflection about the real axis and preserves the angle in magnitude but reverse the direc-
tion. Hence ,it is an isogonal mappings . Condition f’(zy) # 0 can’t be done. Since it is
nowhere analytic.

Ex:

13



Find the angle made by the mapping w = 2% at the point z = 1 + 1.

Ans:

w'(2) = 2z , then required angle = arg w'(z)] =144 = arg = 22|11 = §.

Condition of conformality:

A mapping w = f(z) is conformal at each point zy where f(z) is analytic and f’(z) # 0.
Linear Fractional Transformations:

Bilinear Transformation:

Bilinear Transformation is the function w of a complex variable z of the form

az+b

wzf(z):cz—l—d

where a,b,c,d are complex or real constants subject to ad — bc # 0.
if ad —bc =0 , f(z) would be identically constant.
e For a choice of the constants a,b,c,d, we get special cases of bilinear transformation as

Y

w =z + b — Translation.
w = az —> Rotation.
w = az + b — Lineartransformation.

w = — — Inverseintheunitcircle.
z

Determination of Bilinear Transformation:

A bilinear transformation can be uniquely determined by three given conditions. Al-
though four constants a,b,c,d appear in previously, essentially they are three ratios of
these constants to the fourth one.

To find the unique bilinear transformation which maps three given distinct points 21, 29, 23
onto three distinct images w1, wsy, w3. Hence the unique bilinear transformation that maps
three given points 21, 25, 23 onto three given images wy, wy, w3, is given by

(w1 — ws)(ws — w) _ (21 — 22)(23 — 2)
(w1 — w)(w3 — wa) (21— 2)(23 — 22)

5 Complex Integration

Before going to discuss complex integral, we should aware about analytic function.

Analytic function: A complex variable function f is analytic in an open set if it has a

14



derivative at each point in that set. If we say f is analytic in a set S which is not open,
it is to be understood that f is analytic in an open set containing S. In particular, f is
analytic at a point 2 if it is analytic throughout some neighborhood of z.

e An entire function is a function that is analytic at each point in the entire finite
plane. Every polynomial is an entire function.

e If a function f fails to be analytic at a point 2z, but is analytic at some point in every
neighborhood of 2y, then z; is called a singular point, or singularity. For instance,
the point z = 0 is a singular point of f(z) = 2. The function f(z) = |z|?, has no singular

point because it is no where analytic.

Example 5.1 Every polynomial functions are analytic.

Example 5.2 The function f(z) = 1 is analytic at each nonzero points in the finite

plane.

Example 5.3 The function f(z) = |2|? is not analytic at any point since its derivative

exists only at z = 0 and not throughout any neighborhood.

Integration in the complex plane is important for two reasons
e In many applications there occur real integrals that can be evaluated by complex
integration, where as the usual methods of real integral calculus fail.

For example evaluations of the integrals
. / c_de 1T
o 1+zt 22
2./“_4@__29
oo (1 +22)2 2

*° sin 3z
3. dr =20
/_oo ot

o0 IT
4. / e dy = £
0 2

e Some basic properties of analytic functions can be established by complex integration,

but would be difficult to prove by other method. The existence of higher derivatives of
analytic functions is striking property of this type.

For example

15



1. Cauchy integral formula
2. Cauchy integral theorem etc

In the case of definite integral the path of integration is an interval on the real axis.
In the case of complex definite integral, we shall integrate along a curve in the complex
plane.

As in calculus we distinguish between definite and indefinite integrals or antideriva-
tives. An indefinite integral is function whose derivative equals a given analytic function
in a region.

Complex definite integrals are called line integral and written as / f(2)dz. Here the
integrand f(z) is integrated over a given curve C' in the complex pla%e called the path
of integration.

A curve C' in the complex z—plane can be represented in the form
z(t) = x(t) +dy(t), t is a real parameter (5.1)

For example z(t) = rcost + irsint, |z| =r.

The direction of increasing value of ¢ in (5.1) is called the positive direction or positive
sense on C'. In this way (5.1) defines an orientation on C. We assume that z(¢) in (5.1)
is differentiable and the derivatives Z(t) is continuous with 2(t) # 0. The curve C has a

unique tangent of its points called a smooth curve.

5.1 Definition of the complex line integral

This is similar to the method in calculus. Let C' be a smooth curve in the complex
plane given by (5.1)and f be continuous on C'. We now subdivide (partition) the interval
a <t <bin (5.1) by points tg = a,ty,....,tn_1,t, = b, where t; < t; < ... < t,. To
this subdivision there corresponds a subdivision of C' by points 2z, 21, ..., Zn_1, Zn, Where
z; = z(tj). On each portion of subdivision of C, we choose an arbitrary point, say &
between zg and z; (i.e. & = z(t), to <t < t), similarly &, &3 etc. Then we form the

suim

n

S, = Z F&m) Az, Az = 2m — Zm-1- (5.2)

m=1

16



We do this for each n = 2,3,... in a completely independent manner, but so that the
greatest |At,,| = |t;, — t,—1| approaches zero as n — oo. This implies that the greatest
|Az,,| also approaches zero because it can not exceed the length of the arc of C' from z,,_;
to z,, and the latter goes to zero since the arc length of the smooth curve C' is continuous
function of ¢. The limit of the complex numbers Ss, Ss, ... thus obtained are called line

integral of f over the oriented curve C'. This curve C' is called path of integration.

Complex line integral

The integral is denoted by

/ f(2)dz or j{ f(2)dz, if C is a closed path. (5.3)
c c

e Basic properties

1. Linearity: /[lﬁfl(Z) + kaQ(Z)]dZ = kl/ fl(Z)dZ -+ ]{2/ fQ(Z)dZ, kl, kQ e C.
c c c
2. Sense reversal: /Z f(z)dz = — /ZU f(z)dz.
3. Partition of path: / f(z)dz= | f(z)dz+ | f(2)d=.
C Ch Co

C
? z

Ci

Zy

17



5.2 Existence of the complex line integral

Let f be continuous function and C' be a piecewise smooth curve. Then the existence
of the line integral /f(z)dz follows. Let f(2) = u(x,y) + iv(z,y) set &, = Pm +
My Az = Az, + z'gym.
Now (5.2) can be expressed as

n

Sp =Y (u+w)(Ax, + 1Ayy,),

So
S, = z": WAL, — z”: VAY,, + 1 Zn: uAYy,, + z”: vAZ,, (5.4)
m=1 m=1 m=1 m=1

These sums are real. Since f is continuous, v and v are continuous. Hence if n — oo,
then the greatest Ax,, and Ay, approaches to zero and each sum on the right becomes

a real line integral.

JLIEOSn:Lf(z)dz:/Cudx—/cvdy—irz' {/Cudy%—/cvda:} (5.5)

This shows that under our assumptions on f and C' the line integral (5.3) exists and its

value is independent of the choice of subdivisions and intermediate points &,,.

Theorem 5.1 Indefinite integral of analytic function
Let f be analytic in a simply connected domain D, i.e. there exists an indefinite integral

of f such that F'(z) = f(z) in D, and for all paths in joining two points zg and z; in D

we have
/ F(2)dz = F(21) — F(z).
20
‘ 1 ai 1 1
Example 5.4 / 22dz = = [23} =3 =—24
0 3 doT 3 3

Theorem 5.2 Integration by use of path
Let C be a piecewise smooth path, represented by z = z(t), where a <t < b. Let f(z)
be a continuous function on C'. Then

/Cf(z)dz:/ FLO)A(0)dt, 3 = %.

18



Steps applying in Theorem (5.2):
1. Represent the path C' in the form z(t), where a <t <b,
2. Calculate the derivative 2(t) = %,

3. Substitute z(t) for every z in f(z), and

4. Integrate f[z(t)]2(t) over ¢ from a to b.

Example 5.5 Integrate f(z) = 1 once arround the unit circle C' in counter clockwise

sense, starting from z = 1.

Solution: We may represent C' in the form
z(t) = cost +isint = e, 0 <t <27

#(t) = —sint +icost = ie™.

1 27 ) ) 27
/ —dz = / e Ui.etdt = / idt = 27r1.
c < 0 0

5.3 Bound for the absolute value integrals

Now

Cauchy’s inequality is given by ‘ Jo f (z)dz‘ < ML, where L is the length of C' and
M a constant such that |f(z)] < M for z € C.

Example 5.6 [ 2°dz, where C' is a straight line segment from 0 to 1 + .
Now the length of C' = L = T +1 =2, |f(2)] = [2*| <2 on C.

(1,1

By Cauchy’s inequality,

< 2V/2.

/szz

Actual integration is [, 2°dz = fol (t+it)*(1 +4)dt = %\/5
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6 Beauty of analytic functions on integration

If the function f is analytic on the domain D, then the integration is path independent
i.e., the value of the integration gives same value for every smooth path C' (end points of
each path C are same) in D. That means the integration depend on end points only. But
if the function is not analytic, then the value of integration is different for different path
joining same initial and final points. We can see this things clearly from the following

examples.

Example 6.1 Integrate f(z) = z along the line segment from zp = 0 to z = 1 + ¢ for

the paths C7 and Cs.

(1.1)

C

C,

The segment may be represent in the form

2(t) = x(t) +ay(t), 0<t <1

/C zdz = (1 +1) /01(1 +)tdt = %(1 +14)? = i. (6.6)

1 1
/ zdz:/ tdt+/ (1+ it)idt = i. (6.7)
Co 0 0

From (6.6) and (6.7) we see that the value of the integration depends only on the end

points as the function f is analytic.

Example 6.2 Integrate f(z) = Re(z) along the line segment from zp = 0to z = 1+
for the paths C; and Cs.

20



(1,1

C

&)

The segment may be represent in the form

z(t) = z(t) +iy(t), 0 <t <1

! : ! I
/Cl Re(z)dz:/o t(l—I—z)dt:(l—I—z)/o tdt:§(1+z). (6.8)

1 1
1
/ Re(z)dz = / tdt = / idt = - + 1. (6.9)
Co 0 0 2

Since the function f(z) = Re(z) is not analytic. From (6.8) and (6.9) we see that the
value of the integration depends not only on the end points but also on its geometric

shape.

Example 6.3 Find the parametric equations for the line through the points (3,2) and
(4,6) so that when t = 0 we are at the point (3,2) and when t = 1 we are at the point
(4,6).

Solution:

(4,6)

t=0
(3,2)
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We write symbolically:

(x,y) =(1—1)(3,2) + (t)(4,6) = (3 — 3t +4t,2 — 2t + 6t) = (3 + t,2 + 4t)

so that
x(t) =3+t and y(t) = 2+ 4t.
?+yP=0 (6.10)
e Connected Set: A set S of complex numbers is connected if, given any two points

z and w in S, there is path in S having z and w as its end points.

Domain: An open connected set of complex numbers is called a domain.

Simply Connected Domain: A set S of complex numbers is simply connected

if every closed path in S encloses only points of S.

Cauchy Integral Theorem: If f(z) is analytic in a simply connected domain D,

then for every simple closed path C'in D ¢, f(z)dz = 0.
Example: §,, e*dz = 0.

e Cauchy Integral Formula: If f(z) is analytic in a simply connected domain D,
then for any 2y in D and any simple closed curve C' that encloses zy, fc % =

2mif(z0), C : counterclockwise sense.
Example: §, <dz = 2mi.

e Liouville’s Theorem: If an entire function f(z) is bounded in absolute value for

all z, then f(z) must be constant.

e Morea’s Theorem (Converse of Cauchy Integral Theorem): If f(z) is con-
tinuous in a simply connected domain D and if 550 f(2)dz = 0 for every closed path

C'in D, then f(z) is analytic in D.
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7 Improper Integral

An improper integral can be defined as,

/:: f(z)dx = ]%1_{1;0 /j;f(x)dx
e We assume that f(x) is a real rational function whose denomination is different from
zero for all real x and is of degree at least two units higher than the degree of numerator.
Then consider ¢ f(z)dz. Where C is the contour given in above figure. Since f(z) has
no poles on the real axis by residue theorem.

j{f(z)dz = 2miX Resf(z)

[

L.H.S:/_Zf(x)dx+/gf(z)dz

since,

f(z)ﬁ%/ dz:%r%(),asRﬁoo
0

s
thus,

/_Z fz)dx = ff(z)dz = 2miXResf(z)

Ex: Show that

Ans: Try this one.
FOURIER INTEGRALS:

The fourier integrals are,

/OO f () cos swd, /00 f(x) cos sxdx

same condition on f(z) as earlier.

/00 f(z) cos sxdr = —2rXImRes[f(2)e™?]
/oo f(z)sin sxdx = QWEReRes[f(Z)eisz]
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[ f(z)edx can be considered an improper integral.

/°° cossxd
——dx
oo K2+ 22

Ex: Evaluate,

Ans: Try this one.
SIMPLE POLE ON REAL AXIS:

If f(2) has a simple pole at z = a on the real axis .Let C be the contour then ,

lim/ f(2)dz = miRes,—of(2)
C

r—0
Theorem:
Let f(2) = Z((zs, where h is continuous at zo and h(zo # 0). Suppose g is differentiable at
zo and has a simple zero there. Then f has a simple pole at 2z, and
h(zo)
Res(f,zy) =
Ex:
Evaluate

49z — 1
]4 Z% dz
r sinz

Assignment

Ans: Try this one.

1. Discuss the boundedness of sin 2z and cos z.
2. Find all roots of (i) (1+4)3, (i) 15.
3. Solve the equations: (i) 22 — (7T+4)z+24+T7i =0, (ii) 2 — (3 + 64)2* — 8 + 6i.

4. Find the values of Ref and Imf at 4¢, where f =

z—2
z+2°

5. Discuss the continuity of f(z) = ﬁel;‘

6. Write the Cauchy Riemann equations in polar form.

7. Discuss the analyticity of the following functions.

(1) £(2) = 22 (i) f(2) = e*(cos yisiny) (iii) f() = 2= (iv) (2) = In|z| +iArg=.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Determine whether the following functions are Harmonic. If Yes, find the corre-
sponding analytic functions f(z) = u(x,y) + iv(z,y).

(u=Inz (ii)v=—esiny (i) v= (22— y?)".

Determine a and b such that the given functions are harmonic and find its harmonic

conjugate. (i) u=az®+by® (i) u = € cosy.

Find all points at which the following mappings are not conformal.
() f(z) =22+ D)D) (i)f(2) = 2.
Find all solutions of the equations cos z = 3¢ and sin z = cosh 3.

Test the conformality of the mapping f(z) = cosz. Find the conformal image of

the region 0 <z <m, 0 <y < 1.

Find the principal values of the following expressions.
(i) (20)% (i) (1 44)~t (i) (=3)3

Find the linear fractional transformation that maps oo, 1,0 onto 0, 1, co.

Find a linear fractional transformation that maps |z| < 1 onto |w| < 1 such that

z= % is mapped onto w = 0.

Find the fixed points of the map f(z) = .

Show that
(a) the function Log(z — i) is analytic every where except on the half line y =
1 (z <0);

L 4
(b) the function %
ze+1

on the portion z < —4 of the real axis.

is analytic everywhere except at the points :I:l—\g and

Find the parametric representation z = z(t) for
(a) For the upper half plane of |z — 4 + 2i| = 3,

(b) |z + 3 — i| = 5, counterclockwise.

Integrate / Rez*dz, C the boundary of the square with vertices 0, i, 144, 1,
c

clock wise.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Find a counter C' such that the following integral gives the value 0.
1

oS 2 ez
—d b dz.
(a)jgczﬁ—zQ Z’()?{sz—l—Qz

Evaluate

(a) ]{ coth %dz, C' the circle |z — 1mi| = 1, counterclockwise.
o

223 244
(b) 7{ Z4+—Z+dz, C' the circle |z — 2| = 4, clockwise.
o 24422

Show that 7{(2 — 21) Yz — z)"'dz = 0 for a simple closed path C enclosing z;

c
and zp, which are arbitrary.

Evaluate
223 — 3 , :
(a) ¢ ———————dz, C consists of |z| = 2 (counterclockwise) and |z| = 1 (clock-
cz(z—1—1)?

wise).
2

(b) ﬁﬁdz, C' the circle |z — i| = 2, counterclockwise.

Test the convergency of the following series.

@Y= B G

Find the center and the radius of convergence of the following power series.
— (- +1 = 1 —1 S ?
N =7 n b - n _ 1 2TL n .
(a)nzzo(Qn-l-l)!Z ( >;"("+1)Z (C);n(n )2"z
Develop the given function in a Maclaurin series and find the radius of convergence.
2
(@) e (b)

z+3i°

Develop f(2) = 223 in a series (Taylor and Laurent) valid for
z%—3iz—2

(@) 0<|zl <1 (b)l1<|z|<2 (c)]z]>2 (d)0<|z241] <2

2241
eZ

— and tan7z.

Determine the location and order of the zeros of the functions

Determine the location and type of singularities of the functions 22 — — and
z

2

272 sin? z, including those at infinity.

Evaluate the following integrals (counterclockwise sense).

e zcoshmz
dz, C: =3 b dz, C: = T.
(&) i cosz 2 (b) A+ 1322+ 36 2| ==
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31. Evaluate the following integrals using Residue Theorem.

(a) /;Luwm (b)/OQﬂB&dO

k + cos@ —12cosf

32. Evaluate the following integrals (counterclockwise sense).

e* zcoshmz
dz, C: =3 (b dz, C: =T.
(&) 7{;0082 = 2 (b) A 11322136 2| ==

33. Evaluate the following integrals using Residue Theorem.

& dz > sin 3z
——— (b —dx.
(a)/_oo(ler?)? ()/_Oo1+:c4x

34. State the following

(a) Maximum Modulus Principle
(b) Schwaz Lemma
(¢) Residue Theorem
(d) Cauchy integral Theorem
(e) Argument principle
(f) Rouche’s Theorem
(g) Conformal mapping
(
(

i) Liouville’s Theorem

k) Fundamental Theorem of Algebra
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