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PARTIAL DIFFERENTIAL EQUATION 

A differential equation containing terms as partial derivatives is called a partial 

differential equation (PDE). The order of a PDE is the order of highest 

partial derivative. The dependent variable z depends on independent variables x and y. 
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For example:  q + px = x + y is a PDE of order 1 

                           s + t = x2 is a PDE of order 2 

Formation of PDE by eliminating arbitrary constant: 

For f(x,y,z,a,b) = 0 differentiating w.r.to x,y partially and eliminating constants a,b we get 

a PDE 

Example 1:  From the equation x2 + y2 + z2 = 1 form a PDE by eliminating arbitrary 

constant. 

Solution:     z2 = 1 - x2  - y2 

Differentiating w.r.to x,y partially respectively we get 
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z = - x/p = -y/ q 

qx = py is required PDE 

Example 2   From the equation x/2 + y/3 + z/4 = 1 form a PDE by eliminating arbitrary 

constant. 

Solution:      

Differentiating w.r.to x,y partially respectively we get 
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p =  q  is required PDE 

Formation of PDE by eliminating arbitrary function 

Let u= f(x,y,z), v= g(x,y,z)  and ϕ(u,v) = 0  

We shall eliminate ϕ and form a differential equation 

Example 3   From the equation  z = f(3x-y)+ g(3x+y) form a PDE by eliminating arbitrary 

function. 

Solution:      

Differentiating w.r.to x,y partially respectively we get 
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From above equations we get  r = 9t which is the required PDE. 

11.1 

An equation involving atleast one partial derivatives of a function of 2 or more independent variable is called PDE.   

A PDE is linear if it is of first degree in the dependent variable and its partial derivatives. If each term of such an 

equation contains either dependent variable or one of its derivatives the equation is called homogeneous. 

Important Linear PDE of second order 

Utt = c2Uxx     (One dimensional Wave equation) 

Ut = c2Uxx   (One dimensional Heat equation) 

Uxx + Uyy =  0  (Two dimensional Laplace equation) 

Uxx + Uyy + Uzz  =  0  (Three dimensional Laplace equation) 

 

Uxx + Uyy = f(x,y)    (Two dimensional Poisson equation) 

PROBLEMS 

1. Verify that U = e-t Sin 3x is a solution of heat equation. 

Solution:   Ut  =  -e-t Sin 3x     and  Uxx = -9e-t Sin 3x 

       Ut = c2Uxx   (One dimensional heat equation)   ..........   (1) 
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Putting the partial deivativers in equation (1) we get 

     -e-t Sin 3x  = -9c2e-t Sin 3x 

Hence it is satisfied for c2 = 1/9 

One dimensional heat equation is satisfied for c2 = 1/9. Hence U is a solution of heat equation.  

2. Solve  Uxy = -Uy 

Solution:  Put  Uy  =  p  then p
x

p
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Integrating we get   ln p = - x + ln c(y) 

 U/  y  =  p = e –x c(y) 

 U  =   e –x c(y)  y 

Integrating we get  U = e –x  (y) ϕ(y) + D(x) where ϕ(y) = ∫c(y)  y 

 

11.2 Modeling: One dimensional Wave equation 

We shall derive equation of small transverse vibration of an elastic string stretch to length L and then fixed at 

both ends. 

Assumptions. 

1. The string is elastic and does not have resistance to bending. 

2. The mass of the string per unit length is constant. 

3. Tension caused by stretching the string before fixing it is too large. So we can neglect action of 

gravitational force on the string. 

4. The string performs a small transverse motion in vertical plane. So every particle of the string moves 

vertically. 

Consider the forces acting on a small portion of  the string. Tension is tangential to the curve of string at each 

point.Let T1 and T2 be tensions at end points. Since there is no motion in horizontal direction,  horizontal 

components of tension are 

T1 Cos  α=   T2 Cos β = T = Constant   .....     ......    (1) 

The vertical components of tension are - T1 Sin α and   T2 Sin β  of  T1 and T2 

By Newton’s second law of motion, resultant force = mass x acceleration 
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As tan β = ( u/  x)x  = Slope of the curve of string at x 

tan α = ( u/  x)x+Δx = Slope of the curve of string at x+ x  

Hence from equation (2)  (  u/  x)x+Δx     - (  u/  x)x  2
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 Dividing both sides by x  

Taking limit as x →0  we get 
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which is
   

One dimensional Wave equation 

 

11.3 Solution of One dimensional Wave equation (separation of variable method) 

One dimensional wave equation  is  utt = c2 
 uxx                                                .............................................(1)

 
Boundary Condition                      u( 0, t) = 0, u(L,t) = 0                   .............................................(2)

 
Initial Condition                                              u( x,0) = f(x) = initial deflection    ..................(3)

 
                                                          ut (x, 0) = g(x) = initial velocity   ..................(4) 

Step I   Let u(x,t) = F(x) A(t)
 

Then utt = F(x) Ӓ(t) and     uxx   = F″ (x) A(t) 

Equation (1) becomes F(x) Ӓ(t) = C2F″ (x) A(t) 
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Ӓ(t)/ [C2 A(t)] = F″ (x)/ F(x) 

L.H.S. involves function of t only and R.H.S. involves function of x only. Hence both expression must be equal to 

some constant k. 

Ӓ(t)/ [C2 A(t)] = F″ (x)/ F(x)  = k = constant 

F″ (x) - k F(x) = 0 ---------------------(6) 

Ӓ(t)  - C2 kA(t) = 0  .........................(7) 

Step II 

We have to find solutions of F and G of equations (6) and (7) so that u satisfies equation(2) . 

Hence u(0,t) = F(0) A(t)=0  and u(L,t) = F(L) A(t)=0  

If A = 0 then u = 0 and we can not get a valid solution of deflection u. 

Let A is non zero then F(0) = 0 and F(L) = 0   .............................(8) 

Three cases may arise. 

Case I : K = 0 

From eq (6) F” = 0 

Integrating we get F = ax + b 

Using (8) we get a = 0, b = 0 Hence F = 0 and u =0 which is of no interest. 

Case II : K = α2 (Positive) 

From eq (6) F” - α2 F= 0 

Integrating we get F = ae α x + be -αx 

Using (8) we get a = 0, b = 0 Hence F = 0 and u =0 which is of no interest. 

Case III : K = -p2 (Positive) 

From eq (6) F” + p2 F= 0 

Integrating we get F = C Cos px + B Sin px 

Using (8) we get F(0) = C = 0,  F(L) = B Sin pL = 0 

Let B ≠ 0 then Sin pL = 0   Hence pL = nπ  and p = nπ/L 

Putting B=1 we get F(x) = Sin nπx/L    ........(9) 

 So Fn (x) = Sin nπx/L  where  n=1,2,3, ... Thus we get infinitely many solutions satisfying equation (8). 

Putting k = -p2 in equation (7)  we get Ӓ(t)  +  p2C2 A(t) = 0 

Ӓ(t)  +  (C2 n2π2/L 2 ) A(t) = 0 
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OR     Ӓ(t)  +  (λn) 2  A(t) = 0   where λn = cn π/L 

General Solution An (t) = Bn Cos λn t + Bn* Sin λn t   ..................(10) 

Hence un (x,t) = (Bn Cos λn t + Bn* Sin λn t) Sin nπx/L   for n=1,2,3......                    ...................(11) 

Are solutions of equation (1) satisfying  boundary condition (2). 

These functions are called eigen functions and the values λn = cn π/L are calledeigen values or characteristic 

values of the vibrating string. 

Step III  

A single solution un(x,t)  shall not satisfy initial Conditions (3) and (4). To get a solution that satisfies   (3) and (4) 

we consider the series  

                                          u(x,t) =  Σ un(x,t) = Σ (Bn Cos λn t + Bn* Sin λn t) Sin nπx/L..........(12) 

From equations (12) and (3) we get u (x,0) = Σ (Bn Sin nπx/L) = f(x)         .............................(13) 

Bn must be chosen so that u (x,0) must be a half range expansion of f(x) 

i.e. Bn = 
L

dx
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 ..........................(14) 

Differentiating (12) w.r.to t and using (4) we get   

Σ (Bn* λn Sin nπx/L) = g(x) 

For equation (12) to satisfy (4) the coefficient Bn* should be chosen so that for  t = 0, ut becomes Fourier Sine 

series of g(x) 
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PROBLEMS 

1. Find the defection u(x,t) of the vibrating string of length L=π, ends fixed, C=1, with zero initial velocity and 

initial deflection x(π-x) 

Solution: Given length L=π, C=1, initial velocity g(x) = 0 .Hence Bn* = 0 and  

λn = cn π/L =  n
 

The  initial deflection f(x) = x(π-x)  
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B1 =8/ π,  B2 =0, B3 =8/27π 

The defection u(x,t) of the vibrating string
  

u(x,t) =   Σ (Bn Cos λn t + Bn* Sin λn t) Sin nπx/L 

=   Σ (Bn Cos n t ) Sin nx       (as Bn* = 0 and L = π ) 

= B1 Cos t  Sin x +  B2 Cos 2t  Sin 2x + .............. 

= (8/π) Cos t  Sin x +  (8/27π )Cos 3t  Sin 3x + .............. 

2. Using separation of variable solve the PDE Uxy = U 

Solution:  Let U = F(x) G(Y) then Ux = F’ G and Uxy = Ux/  y = F’ G* 

       Where F’ =  F/  x  and G* = G/  y 

Putting these partial derivatives the given PDE becomes  F’ G* = F G 

By separation of variables we get F’ / F = G/G* =k = Constant 

(Since L.H.S. is a function of x and R.H.S. is a function of y) 

F’ / F =k and G/G* =k 

 F/ F = k x  and  G/ G = y/k            

Integrating both sides of these equations we get 

ln F = kx + ln C    and ln G  = y/k + ln D 

F = C e kx  and G = D e y/k 

U = F G = C D e kx + y/k 

 

11.4 D ALEMBERT’S SOLUTION OF WAVE EQUATION 

One dimensional wave equation  is  utt = c2 
 uxx                                                .............................................(1)

 
We have to transform equation (1) by using new independent variables v = x + ct and z = x-ct 

u = u(x,t) will become a function of v and z. 

The partial derivatives are  v/ x = 1 =  z/  x,  v/ t = c and   z/  t = -c   .....................(2) 

Using chain rule for function of several variables we get  ux = uv vx + uz zx  = uv + uz 

uxx =  (  /  x)(uv + uz)  
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Similarly ut = uv vt + uz zt  = cuv -c uz 

utt =  (  / t)(cuv -c uz) = c( / t)uv - c( /  t) uz  

       

)4........(........................................)2(2

2222

zzvzvvtt

zzvzvzvvzzvv

uuucu

ucucucuc
t

z
u

z
c

t

v
u

v
c

t

z
u

z
c

t

v
u

v
c








































 

Using (3) and (4) in equation (1) we get  )2()2( 22

zzvzvvzzvzvv uuucuuuc   

OR   -2uvz = 2uvz    Hence uvz = 0 

uv = c(v) 

u= φ(v) +  ψ(z)   = φ(x+ ct) +  ψ(x-ct) 

This is D Alemberts solution of wave equation where φ(v) = ∫c(v)  v 

 

 

TYPES AND NORMAL FORM OF LINEAR PDE: 

An equation of the form 

A Uxx + 2B Uxy+ C Uyy = F(x,y,U,Ux,Uy) is said to be  

                                                                                 elliptic if AC – B2 > 0 

parabolic if AC – B2 = 0 and hyperbolic if AC – B2 < 0 

For parabolic equations the transform v= x, z = ψ(x, y) is used to transform to normal form 

For hyperbolic equations the transform v=φ (x, y), z = ψ(x, y) is used to transform to normal form 

Where φ = constant and  ψ = constant are solutions of equation Ay’2 – 2By’ + C = 0 

PROBLEMS 

1. Given f(x) =  k(x – x2), L=1, k =0.01, g(x)= 0 Find the deflection of the string. 

Solution:  f(x) =  k(x – x2) 

    f(x + ct) =  k [(x + ct) -(x + ct) 2]    and    f(x - ct) =  k [(x - ct) -(x - ct) 2] 

The deflection of the string is u(x,t) = [f(x + ct)  + f(x - ct)] /2 

= k [x + ct -(x + ct) 2   + x - ct -(x - ct) 2]/2 

= 0.01[x – x2- c2t2] 

2. Transform  the PDE 4uxx- uyy = 0 to normal form and solve  
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Solution :      4uxx- uyy = 0  ...................(1) 

Here A=4, B = 0 and C= -1, hence AC – B2 = -4 < 0 

                  Given  equation is a hyperbolic type equation. 

From the equation Ay’2 – 2By’ + C = 0 we have 4y’2 – 1 = 0 

 Solving we get x + 2y = c1 and x- 2y = c2 

We have to transform equation (1) by using new independent variables v = x + 2y and z = x-2y 

u = u(x,t) will become a function of v and z. 

The partial derivatives are  v/ x = 1 =  z/  x,  v/ y = 2 and   z/  y = -2   .....................(2) 

Using chain rule for function of several variables we get  ux = uv vx + uz zx  = uv + uz 

uxx =  (  /  x)(uv + uz)  
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Using (3) and (4) in equation (1) we get  )2(4)2(4 zzvzvvzzvzvv uuuuuu   

OR   -2uvz = 2uvz    Hence uvz = 0 

uv = c(v) 

u= φ(v) +  ψ(z)   = φ(x+ 2y) +  ψ(x-2y) 

This is D Alemberts solution of wave equation where φ(v) = ∫c(v)  v 

 

11.5   Solution of One dimensional Heat equation (separation of variable method) 

One dimensional wave equation  is  ut = c2 
 uxx                                                .......................................(1)

 
Boundary Condition                      u( 0, t) = 0, u(L,t) = 0                   .............................................(2)

 
Initial Condition                                              u( x,0) = f(x) = initial temperature    ..................(3)

 
 Step I   Let u(x,t) = F(x) G(t)    ....................................................(4)

 
Then ut = F(x) G*(t) and     uxx   = F″ (x) G(t)  where F’ =  F/  x  and G* = G/  t 
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Equation (1) becomes F(x) G*(t) = C2F″ (x) G(t) 

G*(t)/ [C2 G(t)] = F″ (x)/ F(x)                                 ...................................................(5) 

L.H.S. involves function of t only and R.H.S. involves function of x only. Hence both expression must be equal to 

some constant k. 

G*(t)/ [C2 G(t)] = F″ (x)/ F(x)  = k = constant 

F″ (x) - k F(x) = 0 ---------------------(6) 

G*(t)  - C2 kG(t) = 0  .........................(7) 

Step II 

We have to find solutions of F and G of equations (6) and (7) so that u satisfies equation(2) . 

Hence u(0,t) = F(0) G(t)=0  and u(L,t) = F(L) G(t)=0  

If G = 0 then u = 0 and we can not get a valid solution of deflection u. 

Let G is non zero then F(0) = 0 and F(L) = 0   .............................(8) 

Three cases may arise. 

Case I : K = 0 

From eq (6) F” = 0 

Integrating we get F = ax + b 

Using (8) we get a = 0, b = 0 Hence F = 0 and u =0 which is of no interest. 

Case II : K = α2 (Positive) 

From eq (6) F” - α2 F= 0 

Integrating we get F = ae α x + be -αx 

Using (8) we get a = 0, b = 0 Hence F = 0 and u =0 which is of no interest. 

Case III : K = -p2 (Positive) 

From eq (6) F” + p2 F= 0 

Integrating we get F = A Cos px + B Sin px 

Using (8) we get F(0) = A = 0,  F(L) = B Sin pL = 0 

Let B ≠ 0 then Sin pL = 0   Hence pL = nπ  and p = nπ/L 

Putting B=1 we get F(x) = Sin nπx/L    ........(9) 

 So Fn (x) = Sin nπx/L  where  n=1,2,3, ... Thus we get infinitely many solutions satisfying equation (8). 

Putting k = -p2 in equation (7)  we get G*(t)  +  p2C2 A(t) = 0 



 B Tech Mathematics III Lecture Note 
 
G*(t)  +  (C2 n2π2/L 2 ) G(t) = 0 

OR     G*(t)  +  (λn) 2  G(t) = 0   where λn = cn π/L 

General Solution Gn (t) = Bn e –λn2 t    ..................(10) 

Hence un (x,t) = Bn Sin nπx/L   e –λn2 t  for n=1,2,3......                     ...................(11) 

Are solutions of equation (1) satisfying  boundary condition (2). 

Step III  

A single solution un(x,t)  shall not satisfy initial Conditions (3) and (4). To get a solution that satisfies   (3) and (4) 

we consider the series  

                                          u(x,t) =  Σ un(x,t) = Σ Bn Sin nπx/L   e –λn2 t                                     ..........(12) 

From equations (12) and (3) we get u (x,0) = Σ (Bn Sin nπx/L) = f(x)         .............................(13) 

Bn must be chosen so that u (x,0) must be a half range expansion of f(x) 

i.e. Bn = 
L

dx
LL 0

xn
 Sin f(x)

2 

 ..........................(14) 

PROBLEMS 

1. Find the temperature u(x,t) in a bar of length L= 10 cm, c=1,constant cross section area, which is perfectly 

insulated laterally and  ends are kept at 00C, the initial temperature is x(10-x) 

Solution: Given length L=10 

λn = cn π/L = n π/10
 

The  initial deflection f(x) = x(10-x)  

Bn = 
10

0 10

xn
 Sin f(x)

10

2
dx



  
 

 
0

2

10

x Sin
 )x-(10x

5

1
dx

n

 



0

3

2

nx  Cos 
n

2
nx  Sin 

n

x)2-(10
nx  Cos 

n

)x-x10(
-

5

1
2 










 

      


n  Cos-1 
n

400
33

  

B1 =800/ π3,  B2 =0, B3 =800/27π3 

The temp u(x,t) of the bar
 

u(x,t) =   Σ Bn (Sin nπx/L) e –λn2 t     

= B1 (Sin  πx/10) e -π2/100 + B2 (Sin 3πx/10) e 4(-0.017π2t)+.................. 

= (800/ π3)Sin  πx/10 e -0.017π2t + (800/27π3) Sin 3πx/10 e 9(π2/100)+.................. 
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Insulated ends(Adiabatic Boundary Conditions) 


L

dx
L

A
0

0 f(x)
1

 


L

dx
LL

An
0

xn
 Cos f(x)

2 
 

te
L

AAtxu n

n

n

2

1

0

xn
 Cos),( 


 


  

2. Find the temperature u(x,t) in a bar of length L=π , c=1, which is perfectly insulated laterally and  also 

ends are insulated, the initial temperature is x 

Solution: Given length L=π 

λn = cn π/L = n 
 

The  initial deflection f(x) = x 

2/x
1

f(x)
1

00
0 





  dxdx
L

A
L

 

 1
2

nx Cosnx Sinx 2
nx xCos

2xn
 Cos f(x)

2

2

0

200











 











nCos
n

nn
dxdx

LL
An

L

 

t

n

n
ne

L
AAtxu

2xn
 Cos),(

1

0

 





 

 
...............

x2
 Cos

x
 Cos

2
2

2
1

210   tt e
L

Ae
L

AA  

 












 ..............

9

3
/42/

9 xCose
xCose

t
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UNIT-II 

11.8 RECTANGULAR MEMBRANE 

Two dimensional wave equation  is  utt = c2 
 (uxx      + uyy)                                          ....................................(1)

 
Boundary Condition  u( x,y, t) = 0   on the    boundary of the membrane for all t ≥ 0    ....... .......(2)

 
Initial Conditions:                                              u( x,y,0) = f(x, y) = initial deflection    ..................(3)

 
                                                          ut (x, y,0) = g(x, y) = initial velocity   ..................(4) 

Step I   Let u(x,y,t) = F(x, y) A(t)   
 

Then utt = F(x, y) Ӓ(t) and     uxx   = Fxx A(t),  uyy = Fyy A(t)   

Equation (1) becomes F(x,y) Ӓ(t) = C2(Fxx + Fyy )A(t) 

Ӓ(t)/ [C2 A(t)] = (Fxx + Fyy )/F    .....................(5) 

L.H.S. involves function of t only and R.H.S. involves function of x only. Hence both expressions must be equal to 

some constant D. 

For  D ≥ 0,  as F= 0, hence u = o and we can not  get solution. 

For D < 0  let D = - ν2 (negative) 

Ӓ(t)/ [C2 A(t)] = (Fxx + Fyy )/F = - ν2 = constant 

Ӓ(t)  +  ν2C2A(t) = 0     

or     Ӓ(t)  +  λ2A(t) = 0  where λ= c ν    .........................(6) 

Fxx + Fyy  + ν2 F = 0  .........................(7) 

In equation (7) two variables x and y  are present and we want to separate them. 

Let  F(x,y) =  H(x)Q(y)                                                                           ...........................................(8) 

Then from equation (7)  







 Q

dy

Qd
HHQ

dy

Qd
H

dx

Hd
Q 2

2

2
2

2

2

2

2

  









 Q

dy

Qd

Qdx

Hd

H

2

2

2

2

2 11
  

L.H.S. is a  function of x only and R.H.S. is a function of y only. Hence the expressions on both sides equal to a 

constant k. As negative value of constant leads to solution let the constant be –k2 then, 

22

2

2

2

2 11
kQ

dy

Qd

Qdx

Hd

H









   

02

2

2

 Hk
dx

Hd
   ................(9) 
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2222

2

2

0 kpwhereQp
dy

Qd
   .......................(10) 

Step II 

General  solution  of  equations (9) and (10)  are 

H(x) = A Cos  kx + B Sin kx 

Q(y) = C Cos py + D Sin py   where A,B,C and D are constants. 

From  equations (5) and (2) we have F = HQ = 0  on the boundary. 

Hence x=0,x=a, y=0, y=b  implies H(0) = 0, H(a) = 0, Q(0) = 0, Q(b) = 0 

Now H(0) = 0 implies A = 0 

H(a) = 0 implies  B Sin ka = 0 

Assume B ≠ 0 then Sin ka = 0 (Because if B= 0 then H = 0 and hence F =0) 

ka =mπ    or  k= mπ/a, m is integer 

Again Q(0) = 0 implies C = 0 

Q(b) = 0 implies  D Sin pb = 0 

Assume D ≠ 0 then Sin pb = 0 (Because if D= 0 then Q = 0 and hence F =0) 

pb =nπ    or  p=nπ/b, n is integer 

Thus Hm (x) = Sin mπx/a   ,   m= 1,2,...... 

Qn (y) = Sin nπy/b   ,   n= 1,2,...... 

Fmn (x, y) = Sin mπx/a Sin nπy/b     ,   m= 1,2,...... and n= 1,2,...... are solutions of equation (7) which are zero on the 

boundary of the membrane. 

λ=cν= 22 pkc   

2

2

2

2

b

n

a

m
cmn     m= 1,2,...... and n= 1,2,...... 

The numbers  λmn   are called eigen values or characteristic values. 

The general solution of (6) is  

Amn (t) = Bmn Cos  λmn t+ Bmn*Sin λmnt 

Hence umn(x,y,t) =  (Bmn Cos  λmn t+ Bmn*Sin λmnt) Sin (mπx/a)  Sin (nπy/b).......................(13) 

Step III  
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We consider the series                                         

 

















1 1

*

1 1

),,(),,(
m n

mnmnmnmn

m n

mn
b

yn
Sin

a

xm
SintSinBtCosBtyxutyxu


 .................(14)

 

From equations (14) and (3) we get  

  ),()0,,(
1 1

yxf
b

yn
Sin

a

xm
SinByxu

m n

mn 










   ................(15) 

This series is called a double Fourier series. 

 

To find the Fourier coefficient   Bmn  ,  we put Km(y) =  )15(
1

equationin
b

yn
SinB

n

mn






  







1

)(),(
m a

xm
SinyKmyxfgetwe



 

The coefficient  Km(y) =  
a

dx
aa 0

xm
Sin  y)f(x,

2 

 


b

mn dy
bb

BHence
0

 m

yn
Sin  (y)K

2 

 

 
b a

dydx
ba

x

ab 0 0

yn
Sin 

m
Sin  y)f(x,

4 

 

  ),(
1 1

*

0

yxg
b

yn
Sin

a

xm
SinB

t

u

m n

mnmn

t

























 

 
b a

mn

mn dydx
ba

x

ab
B

0 0

* yn
Sin 

m
Sin  y)g(x,

4 


  where m= 1,2,...... and n= 1,2,......

 

PROBLEMS 

1. Find the deflection u(x,y,t)  of the square membrane a=1, b=1 and c=1 if the initial velocity is zero and 

initial deflection is k(x-x2)(y-y2) 

Solution:   
Given a=1, b=1 and c=1 . Hence we have 

22

2

2

2

2

nm
b

n

a

m
cmn  

 

The initial velocity g(x,y) is zero . Hence Bmn* = 0 

The  initial deflection f(x,y) =   k(x-x2)(y-y2) 
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   
1

0

1

0

22

0 0
ynSin mSin  )y-)(yx-k(x4

yn
Sin 

m
Sin  y)f(x,

4
dydxxdydx

ba

x

ab
B

b a

mn 


 

  
1

0

2
1

0

2 m)Sin x-(x ynSin )y-(y4 dydxxk   ...................(1) 

Now  
1

0

2 ynSin )y-(y  dy  

 = dy
nn 










1

0

1

0

2 yn Cos
2y)-(1

yn Cos
)y-(y








 





















  dy

nnn

1

0

1

0

ynSin  
(-2)

ynSin  
2y)-(1

1
00










 

1

0

22

yn  2Cos
00

1














 nn
 


n  Cos1

2
33


n

 .................(2) 

 

Putting this in equation (1) 

 
1

0

2

33
m)Sin x-(xn Cos-1 

n

2
4 dxxkBmn 


 

 
1

0

2

33
m)Sin x-(x n Cos-1

n

8k
dxx


 

   
1

0

3322

2

33
m Cos

m

2

m

mSin 
2x)-(1

m

m Cos
)x-(x -n Cos-1

n

8k








 x

xx












 

   







 





m Cos1

m

2
n Cos-1

n

8k
3333

 

  


m Cos1n Cos-1
nm

16k
633

  

 









1 1

*),,(
m n

mnmnmnmn
b

yn
Sin

a

xm
SintSinBtCosBtyxuDeflection




 

 









1 1m n

mnmn ynSinxmSintCosB 
   as Bmn* = 0 and a=1, b=1 

   









1 1

22

633
11

16

m n

ynSinxmtSinnmCosmCosnCos
nm

k


  

2. Find the  double Fourier series of  f(x,y)= xy, 0<x<π  and 0<y<π,  
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Solution:   

Here a= π , b= π, f(x,y) =  xy . Hence we have 

   
 




0 020 0

nySin mSin  xy
4yn

Sin 
m

Sin  y)f(x,
4

dydxxdydx
ba

x

ab
B

b a

mn

 

 












 0
0

22
m xSin 

nySin 
ny Cos 

n

y-4
dxx

n
 ...................(1) 

 

















 002
m xSin n Cos 

4
m xSin n Cos 

n

-4
dxx

n
dxx  






CosmCosn
mnm

Cosn
n

4mxSin 
mx Cos 

m

x-4

0

2









  

 .................(2) 

The double Fourier series is
 

   

















1 11 1

),(
m n

mn

m n

mn SinnySinmxB
b

yn
Sin

a

xm
SinByxf



 

   


















1 1

4

m n

SinnySinmxCosnCosm
mn


 

11.9 LAPLACIAN IN POLAR COORDINATE 

)(0
2

2

2

2
2 equationLaplace

y

u

x

u
u 











    ...............(1) 

To convert  Laplace equation (1) into polar form we put x = r Cos  θ      ...............(2) 

                                                                                                and y = r Sin θ     ...............(3) 

Squaring and adding equations (2) and (3) we have  x2+y2 = r2 . ...............(4) 

Dividing equations (3) by equation (2),         tan θ = y/x ,   hence θ =  tan-1 (y/x) ...................(5) 

Differentiating equation (2) partially w.r.to x we get x

r
rx



 22

  

Differentiating equation (2) partially w.r.to y we get y

r
ry



 22

 

Hence 
r

y

y

r
rand

r

x

x

r
r yx 











  ...................(6) 

Again differentiating  equation (6)  partially w.r.to x  and y respectively we get 
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Differentiating equation (5) partially w.r.to x we get 
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Differentiating equation (5) partially w.r.to y we get 
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Again differentiating  equation (7)  partially w.r.to  x we get 
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Again differentiating  equation (8)  partially w.r.to  y we get 
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Using chain rule for function of several variables we get   
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Adding   equations (9) and (10)  we get 
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PROBLEMS 

1. Show that the only solutions of  Laplace equation depending only on r is u = a ln r + b  

Solution:  
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As  u  depends  only on r,  u  is a function of r only. 

Hence  uθ=0   and   uθθ = 0 
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Integrating both sides we get ln p =  - ln r + ln a 
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Integrating again both sides we get ln u =  a ln r + b 

 

2. Find the electrostatic potential  (Steady state temperature distribution) in the disk r<1 corresponding to 

the boundary values  4cos 2θ 

Solution 

The boundary value  f(θ) = 4cos 2 θ  which is even function,  -π< θ < π .Hence Bn = 0 
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The electrostatic potential  (Steady state temperature distribution) in the disk  
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(Since R= radius of disk=1  and Bn= 0) 

11.10  CIRCULAR MEMBRANE 

Two dimensional wave equation  is  utt = c2 
 (uxx      + uyy) = c2 

 u2                                           

Using Laplacian in polar form we have 
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AS circular membrane is radially symmetric,  u depends on r only and u does  not depend on θ 

Hence  uθ=0   and   uθθ = 0 
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Boundary Condition  u( R, t) = 0       ....... .......(2)
 



 B Tech Mathematics III Lecture Note 
 
Initial Conditions:                                              u( r,0) = f(r) = initial deflection    ..................(3)

 
                                                              ut (r,0) = g(r) = initial velocity   ..................(4) 

Step I   Let u(r,t) = F(r)G(t) 

ur= Fꞌ(r) G(t) , urr= Fꞌꞌ(r)G(t) and utt= FG**  

where   ꞌ  and * represents partial differentiation w.r.to    r and t respectively. 

Putting in equation (1) we get 

F(r)G**(t)= c2[Fꞌꞌ(r)G(t)+(1/r) Fꞌ(r) G(t)] 

G**(t)/[ c2G(t)+(]= [Fꞌꞌ(r) + (1/r) Fꞌ(r)]/ F(r) ...............................(5)
 

L.H.S. involves function of t only and R.H.S. involves function of r only. Hence both expressions must be equal to 

some constant D. 

For  D ≥ 0,  as G= 0, hence u = o and we can not  get solution. 

For D < 0  let D = - k2 (negative) 

G**(t)/ [c2 G(t)] = [Fꞌꞌ(r) + (1/r) Fꞌ(r)]/ F(r)= - k2 = constant 

G**  +  k2c2G = 0     

or    G**  +  λ2G = 0      where λ= c k    .........................(6) 

and Fꞌꞌ + (1/r) Fꞌ  + k2 F = 0  .........................(7) 

Put s = kr    then 1/r = k/s  implies ds/dr=k 

Fꞌ =dF/dr=dF/ds. ds/dr = k dF/ds 
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Equation (7) becomes  
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This is Bessel’s equation. 

Solution is F(r) = J0(s) =  J0(kr)   .................(8) 

On the boundary r=R   hence F(r) =  J0(kr) = 0 

 J0(s)  has infinitely many positive roots, 

s= α1,α2,α3,................... 



 B Tech Mathematics III Lecture Note 
 
α1=2.404,α2=5.52,α3=8.653,................... 

From (8) kR= αm   and  k= αm r/R   .........(9) 

Fm(r)= J0(kmr)= J0(αm r/R)  ....................(10) 

General solution of (6) is Gm(t) = am Cos λm t  + bm Sin λm t 

Hence um(r,t)= Fm(r) Gm(t)=( am Cos λm t  + bm Sin λm t) J0(kmr),   m=1,2,3.....             ...............(11) 

are solution of wave  equation (1). These are  eigen functions. The corresponding eigen values  are 

 λm = c αm /R 

The vibration of membrane corresponding to um is called mth normal mode. 

Step III  

We consider the series                             
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The  series (12) will satisfy initial condition (3) provided the constant am must be coefficient of the Fourier –Bessel 

series(13). 
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PROBLEM 

1. Find the deflection of the drum with R=1, c=1 if the initial velocity is  1 and initial deflection is 0 

Solution:   
Given R=1, c=1 and g(r)=1 . 

 Given initial deflection =f(r)= 0 ,  hence we have am=0 



 B Tech Mathematics III Lecture Note 
 
λ m = cαm /R = αm     

(as given R=1, c=1) 

λ 1 = α1 =2.404, λ 2 = α2 =5.52, λ 3 = α3 =8.653       

 

The initial velocity =g(r)=1  
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11.11   Laplace equation in Cylindrical and spherical coordinate 

Cylindrical coordinate 

x= r Cos θ, y= r Sin θ,  z=z 
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Spherical coordinate 

x= r Cos θ Sin φ, y= r Sin θ Sin φ,  z=r Cos φ 
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Potential in the interior of sphere 
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Potential in the Exterior of sphere 
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PROBLEMS 

1. Show that the only solutions of  Laplace equation depending only on r is u = c/r + k where r2= x2 +y2 +z2  

Solution:  
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As  u  depends  only on r,  u  is a function of r only. 

Hence  uθ=0   and   uθθ = 0, uφφ = 0 
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Integrating both sides we get ln p =  - 2ln r + ln c 
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Integrating again both sides we get ln u =  D(-r-1) + k 

Or u= c/r + k where c= -D 

 

2.  Find the Potential in the interior of sphere , R=1 assuming no charges in interior of sphere and potential 

on surface is f(φ)= Cos φ 

Solution:  Given R=1 and  f(φ)= Cos φ 
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Putting  Cos φ= x,   -Sin φ dφ = dx 

As     φ→0,  x→1 and  as     φ→π,  x→  -1  Hence we have 
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Hence A1 =1, A2=0, A3=0,A4=0 
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SOLUTION OF PDE BY LAPLACE TRANSFORM 

Procedure:   

Step I:   We take the Laplace transform w.r. to one of the  two variables usually t which gives an ODE for 

transform of the unknown function. It includes given boundary and initial conditions. 

Step II:   Solve the ODE and get the transform of the unknown function. 

Step II:   Taking the inverse Laplace transform the solution of the given problem will be obtained. 

PROBLEM 

1. Solve the PDE  using Laplace transform 
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Taking the Laplace transform of both sides of equation (1) we get 
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Using definition of Laplace transform we have dte
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Assuming that we may interchange differentiation  and integration we have  
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Which is a first order linear differential equation   with p=s/x and q= 1/s2 

Integrating factor F= e∫pdx=e∫(s/x)dx= e slnx= e lnxs= xs    

The solution is  U=(1/F)[ ∫F.Q dx +c]  =  x-s[ ∫xs/s2 dx +c] =  x-s[ ∫xs+1/(s2 (s+1)) +c] 
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UNIT-III & UNIT-IV

1 Origin of complex number and complex analysis

Euler in 1748 derived the formula eiθ = cos θ + sin θ eiπ = −1, A fantastic relation

that include the three symbols e, π, i in one surprising equation. Complex number is a

point in the plane. This idea is attributed to Argand who wrote it up indipendently

in 1806. Due to this geometric interpretation of complex numbers is known on Argand

diagram.

Just as solutions of real quadratic equations could lead to new complex numbers, so the

solutions of equations with complex coefficients lead to even more kinds of new numbers.

Jean D’Alembert (1717− 1783) conjecture that complex numbers alone would suffice.

Gauss confirmed this in the Fundamental theorem of Algebra-”every polynomial equation

has a complex root”.

In 1837, nearly three centuries after Cardan’s use as imaginary numbers, willam Roman

Hamilton published definition of complex numbers as ordered pair of real numbers subject

to certain explicit rules of manipulation.

Gauss wrote to woltgang that he had developed the same idea 1831.

For centuries it is believed that complex analysis is an incredible complicated theory.

It took almost three centuries to obtain satisfactory treatment of complex number. It

then took less than tenth of that line to complete a major part of complex analysis.

Once a breakthrough occurred, further development is easy. Complex numbers→ complex

analysis.

In 1545, Cardans solve the problem

x+ y = 10

xy = 40

Here the solution is:

x = 5 +
√
−15

y = 5−
√
−15



Cardans gave no interpretation for the square root of a negative number.

Solving

x3 = 15x+ 4

by Tartaglith formula tends to

x =
3

√
2 +

√
−121 +

3

√
2−

√
−121

in contrast to the obvious answer

x = 4

Rapheal Bombelli (1526-73) suggested a way to reconcile the two solution:

(2±
√
−1)3 = 2±

√
−121

this makes Cardans expression

x = 2 +
√
−1 + 2−

√
−1 = 4

this impossible root is a familiar root in a complex disguise.

La Geometric (1637) by Rene Descarte made distinction between real and imaginary

numbers , representing imaginary numbers by a sign.

WAR BETWEEN LEIBNITZ AND BERNOULLI:

Leibnitz asserted that the logarithm of a negative number was complex whilst Bernoulli

insisted it was real.Bernoulli argued since

d(−x)

−x
=

dx

x

It follows by integration that

log(−x) = log x.

Leibnitz insisted that this is true only for positive x. Euler resolve the controversy favor

of Leibnitz in 1749 pointing out that the integration required arbitrary constant, a point

Bernoulli has ignored.
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i is a imaginary number , which does not lie in R such thati2 = −1.In other words,

i =
√
−1. Based on this we from a new number

x+ iy, x, y ∈ R.

We call such a number as a complex number. Moreover , x is called as real part and y is

called as imaginary part of the complex number,i.e

x = Re(x+ iy), y = Im(x+ iy)

The set of all complex numbers is denoted by the symbolC,

C = {x+ iy : x, y ∈ R, i =
√
−1}.

We denote a particular complex numbers is denoted by the symbol,

z = x+ iy

This set is an extension of R.The set of real numbers ,as every real number is a number of

C. Moreover the complex numbers obeys many of the some rules of arithmetic numbers

. We list them as follows:

addition : (a+ib)+(c+id)=(a+c)+i(b+d)

multiplication : (a+ib).(c+id)= (ac-bd)+i(ad+bc)

other properties are

z + w = w + z

z.w = w.z

z + (u+ v) = (z + u) + v

(zw).u = z.(wu)

z.(w + u) = zw + zu

z + 0 = 0 + z = z

z.1 = 1.z = z

GEOMETRY:

Our way to represent a comlex numbers a+ib is by a point (a,b) in the plane R2. a+ib
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can also be represented by the vector âi+ bĵ where î = (1, o) and ĵ = (0, 1).

clearly, a+ib is the vector whose initial point is (0,0) the origin and terminal point is

(a,b). with this vector form representation C is vector space. One of the important

concept in analysis is the concept of distance, equivalently called magnitude or norm of

a vector.

MAGNITUDE:

The magnitude of a+ib is denoted by —a+ib—, and is defined by

|a+ ib| =
√
a2 + b2

If z= a+ib, then |z| =
√
a2 + b2, which is also the distance of the point (a + ib) ∈ R2

from the origin. Moreover, |a+ ib| is also the length of the vector (a,b). The notation |z|
is called as the modulus of z.

CONJUGATE:

The complex conjugate (or just conjugate) of a+ib is the number a+ ib defined by

a+ ib = a− ib

DIVISION:

Let a+ib and c+id are two complex numbers then,

a+ ib

c+ id
=

(ac+ bd) + i(bc− ad)

c2 + d2

Ex:

Division of 2− 7i by 8 + 3i is the complex number

2− 7i

8 + 3i
= − 5

73
− i

62

73

POLAR FORM:

Let z = a+ ib, the number z is anonymous to the cartesian coordinate (a,b). Which has

polar coordinates (r, θ). We have, r = |z| and θ = argument of z. so

a = r cos θ, b = r sin θ

Euler formula says

eiθ = cos θ + sin θ
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⇒ z = reiθ

Ex:

Polar form of (−1 + 4i) is,

−1 + 4i =
√
17ei(π−tan−1(4))

.

2 SOME THEOREMS , DEFINITIONS , FORMS

De Movire’s Theorem: For any integer n.

(a) (cos θ + i sin θ)n = cosnθ.

(b) If z = r(cos θ + i sin θ), then zn = rn(cosnθ + i sinnθ).

A complex number z is given, we can now define polynomials of degree n (say),

Pn(z) = a0 + a1z + a2z
2 + ...+ anz

n, an ̸= 0.

FUNDAMENTAL THEOREM OF ALGEBRA:

A polynomial of degree n with complex coefficient has at most n complex roots.For

example the polynomial z2 − 1 has two roots , in fact they are solutions of the equation

z2 − 1 = 0. It is not difficult to find that they are 1,−1. If we consider z3 − 1 then by

fundamental theorem of algebra it has at most three complex roots.

We are basically concentrating on degree 2. So try to solve these problems.

(a) az2 + bz + c = 0.

(b) az4 + bz2 + c = 0.

(c) z2 + z + 1− i = 0.

(d) z4 − (1 + 4i)z2 + 4i = 0.

LOCUS:

Now we define the locus of some standard curves,

(a) |z| = 1 represents the locus of unit circle.

(b) |z| ≤ 1 represents the locus of a closed unit disk.

(c) |z| < 1 represents the locus of open unit disk.
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(d) 1
2
≤ |z| ≤ 1 represents the locus of annulus.

General equation of a circle:

zz̄ + ᾱz + αz̄ + β = 0, βisarealnumber

|z + α|2 = αᾱ− β

it represents a circle provided αᾱ− β > 0.

General equation of a straight line:

ᾱz + αz̄ + β = 0, α ̸= 0, βisreal.

CIRCLES:

Consider the equation |z−a| = r then locus of points satisfying this equation is the circle

of radius r about a.

OPEN DISK, NEIGHBOURHOOD:

The inequality |z − a| < r specifies all points within the disk of radius r and center a. It

is also called a neighbourhood of a.

CLOSED DISK:

|z − a| ≤ r, consists of all points on or within the circle of radius about r.

STRAIGHT LINE:

|z − a| = |z − b|
Perpendicular bisector of the line segment joining a and b.

EX:

Find cartesian form of the straight line defined by the equation

|z + 6i| = |z − 1 + 3i|

Ans:

|z + 6i|2 = |z − 1 + 3i|2

⇒
zz̄ + 6i(z − z̄) + 36 = zz̄ − (z + z̄)− 3i(z − z̄) + 1 + 3i− 3i+ 9
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⇒ 12y = −2x+ 6y − 26

⇒
y = −1

3
(x+ 13)

INTERIOR POINTS, BOUNDARY POINTS, OPEN AND CLOSED SETS:

• A complex number z0 is an interior point of a set S if there is a neighbourhood of z0

containing only points of S.

• S is a open if every point of S has a neighbourhood containing only points of S.

• A point z0 is a boundary point of S if every neighbourhood of z0 contains at least one

point in S and at least one point not in S.

• S is an open set if every point of S is an interior point.

• S is a closed set if its complement Sc is open.

• S is closed if it contains all of its limit points.

• S is closed if and only if S contains all its limit points.

DEFINITION:

A point a is called a limit point of S(may or may not belongs to S) if every neighbourhood

of a contains at least one point of S differing from a.

Let S ⊆ C and z0 ∈ C. Then z0 is called a limit point of S if every nbd of z0 contains

infinitely many points of S.

Sequence:

A complex sequence {zn} is an assignment of a complex number zn to each positive

integer n.

Convergence:

A complex sequence {zn} converges to the number L if, given any positive number ϵ ,

there is a positive number N such that,

|zn − L| < ϵ, if, n ≥ N.

EX:

• The sequence {1 + i
n
} converges to 1.

• The sequence {(−1)n + i
n
} has two limit points 1 and −1 , and they are not equal .

Hence , the sequence does not converge.
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THEOREM:

Let zn = xn + iyn and L = a+ ib, Then zn → L if and only if xn → a and yn → b.

Subsequence:

A subsequence of a sequence is formed by picking out certain terms to form a new

sequence.

Bounded Sequence:

A complex sequence {zn} is bounded if |zn| ≤ M, ∀n = 1, 2, ....

Theorem:

The sequence {zn} is bounded if the sequence {zn} has a convergent subsequence.

Compact Set:

A set K of complex number is compact if it is closed and bounded.

Bolzano-Weirstrass Theorem:

Let K be an infinite compact set of complex numbers. Then K contains a limit point.

Series:

Power Series: A Power Series in powers of z− z0 is a series of the form
∞∑
n=0

an(z− z0)
n =

a0 + a1(z − z0) + ..., a0, a1, ... are called the co-efficient series and z0 is the center of the

series.

Convergence of Power series: (i) Every power series
∞∑
n=0

an(z − z0)
n converges at the

center z0.

(ii) If the above power series converges at a point z = z1 ̸= z0, it converges absolutely for

every z closer to z0 than z1, i.e. |z − z0| < |z1 − z0|.
Radius of convergence of power series: Consider the smallest circle center z0 that includes

all the points at which a given power series converges. Let R denote its radius. Thecircle

|z−z0| = R is called the circle of convergence and its radius R, the radius of convergence

of the given power series.

Remark: Termwise differentiation and integration of the power series is permissible.

Taylor Series: The Taylor series of a function f(z), the complex analog of the real Taylor

series is f(z) =
∞∑
n=0

an(z − z0)
n, where an = 1

n!
fn(z0) =

1
2πi

∮
C

f(z∗)
(z∗−z0)n+1dz

∗, C : simple

closed path that contains z0, counter clockwise sense.

The remainder term of the above series after the term an(z − z0)
n is
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Rn(z) =
(z−z0)n+1

2πi

∮
C

f(z∗)
(z∗−z0)n+1dz

∗.

Therefore f(z) = f(z0) +
(z−z0)

1!
f ′z0 +

(z−z0)2

2!
f ′′z0 + ... + (z−z0)nn

n!
fnz0 + Rn(z) is called

Taylor’s formula with remainder term.

Remark: A Maclaurin series is a Taylor series with center z0 = 0.

Laurent Series: Let z = z0 is an isolated singularity of f . Then f(z) =
∑∞

−∞ an(z − z0)
n

be its Laurent series expansion in ann(a, r, R).

Now f(z) =
∑∞

0 an(z − z0)
n +

∑∞
1 bn(z − z0)

−n,

where an = 1
2πi

∮
C1

f(w)
(w−z0)n+1dw, bn = 1

2πi

∮
C2

f(w)
(w−z0)1−ndw.

3 Limit, Continuity, Derivative

Function:

A function f is defined on S is a rule that assigns to every z in S a complex number w,

we can write it as,

w = f(z)

or,

w = f(z) = u(x, y) + iv(x, y)

where u(x,y) and v(x,y) are functions of variables x and y.

Limit:

Let f : S → C be a complex function , let z0 be a limit point of S and L be a complex

number. Then

lim
z→z0

f(z) = L

if and only if given ϵ > 0, there exist a positive number δ such that |f(z)−L| < ϵ for all

z in S such that 0 < |z − z0| < δ.

Continuity:

•(Limit form) Let f be a complex valued function defined on a region D of the complex

plane . Let z0 ∈ D then f is said to be continuous at z0 if

lim
z→z0

f(z) = f(z0)

• (ϵ− δform) Let f be a complex valued function defined on a region D of the complex

plane . Let z0 ∈ D, then f is said to be continuous at z0 if given ϵ > 0 there exist δ > 0
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such that,

|z − z0| < δ ⇒ |f(z)− f(z0)| < ϵ.

• f is said to be continuous in D if it is continuous at each point of D.

• If a function f is continuous at all z for which it is defined , then f is a continuous

function.

Theorem:

The image of a closed and bounded set under a continuous function is also closed and

bounded.

EX:

• The function f(x) = 1
x
in (0, 1) is unbounded.

• The function f(x) = |x| is unbounded on R.

• The function f(x) = {1,x∈Q0,x∈R-Q. is continuous.

Derivative:

The derivative of a complex function f : D → C at a point z0 ∈ D is written as f ′(z0)

and is defined by

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z

provided that the limit exists. Then f is said to be differentiable at z0.

EX:

• f(z) = z2 is differentiable for all z.

• z̄ is nowhere differentiable.

Theorem:

If f(z) is differentiable at z0 then it is continuous at that point.

Corollary: Converse is not true; counter example is f(z) = z̄.

Ex: Find the derivative of the following function f(z) = z−1
z+1

Ans: Try this one.

Ex: Prove that f(z) = Rez is nowhere differentiable.

Ans:

f ′(z) = lim
∆z→0

f(z +∆z)− f(z)

∆z

= lim
(∆x→0)(∆y→0)

x+∆x− x

∆x+ i∆y

= lim
(∆x→0)(∆y→0)

∆x

∆x+ i∆y
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has no limit.

4 Analytic functions and some standard functions

Analytic Function:

(Analytic in a domain D) A function f(z) : D → C is said to be analytic in a domain D

if f(z) is defined and differentiable at all points of D.

(Analytic at a point) A function f(z) : D → C is said be analytic at a point z = z0 in D

if f(z) is analytic in a neighbourhood of z0.

Ex:

• (z3 + z) is analytic.(entire function).

• Examples of not analytic functions (1) f(z) = Rez. (2) f(z) = Imz. (3) f(z) = |z|2.
Remark: If f is analytic at a point z0. But converse is not true.

Ex: (1) f(z) = z̄ is nowhere differentiable so not analytic.

(2) f(z) = |z|2 is not an analytic function.

Remark: Set of all points for which a given function is analytic forms an open set.

Cauchy Riemann Equations:

Let f(z) = u(x, y) + iv(x, y) be defined and continuous in some neighbourhood of a

point z = x + iy and differentiable at z itself. Then at that point the first order partial

derivatives ux,uy,vx,vy,exists and satisfy cauchy riemann equations,

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

Ex: 1 Test the functions for analyticity.

z3, ex(cos y + i sin y), e−x(cos y − i sin y), i
z5
.

Ex: These following functions are not analytic,

(a) f(z) = z|z|, (b) f(z) = i|z|3, (C) f(x, y) = 2xy + i(x2 + y2).

Polar form of Cauchy Riemann equation:

If f(z) = u(r, θ) + iv(r, θ)be analytic at z = r cos θ + ir sin θ then the Cauchy-Riemann

equation has polar form,
∂u

∂r
=

1

r

∂v

∂θ
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∂v

∂r
= −1

r

∂u

∂θ

Ex: Prove that f(z) = z2 is analytic.

Ans: Let z = x+ iy , then f(z) = (x+ iy)2 = x2 + y2 + i2xy,

Here u = x2 − y2 and v = 2xy

∂u
∂x

= 2x,∂v
∂y

= 2x, ∂u
∂y

= −2y, ∂v
∂x

= 2y. hence we get,

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

Laplace equation:

If f(z) = u+ iv is analytic in domain D then Laplace equation are satisfied ,

i.e, uxx + uyy = 0

and

vxx + vyy = 0

Ex: Prove that u = x2 − y2 satisfies Laplace equation.

Ans: Here u = x2 − y2 then,

ux = 2x, uy = −2y, uxx = 2, uyy = −2

⇒ uxx + uyy = 0

so u satisfies the laplace equations.

Harmonic function:

A function u(x,y) is called harmonic function if it satisfies Laplace equation.

Ex: u = x2 − y2 is a harmonic function but v = x2 + y2 is not a harmonic because

vxx + vyy ̸= 0

Conjugate harmonic function:

If f(z) = u+ iv is analytic then v is called the conjugate harmonic of u.

Note: If f(z) = u+ iv is analytic then u and v are harmonic.

Construction of analytic function if either u(x,y) or v(x,y)is given:

Using Thompson Milne method we can from the analytic function f(z) if either u or v
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are given. If u is given and it is harmonic then its corresponding analytic function can

be determined as follows.

step(i) find ux and uy

step(ii)

f ′(z) =
∂u

∂x
](z,0) − i

∂u

∂y
](z,0)

step(iii) f(z) is obtained by integrating above f ′(z) in step (ii) w.r.to z.

Ex: If u = x2 − y2 is harmonic then find its corresponding analytic function.

Ans: u = x2 − y2, then uxx = 2 and uyy = −2

⇒ uxx + uyy = 0,⇒ u satisfies Laplace equation. So u is harmonic.

now ux = 2x , uy = −2y

f ′(z) =
∂u

∂x
](z,0) − i

∂u

∂y
](z,0)

⇒ f ′(z) = 2z − i(−2.0),⇒ f ′(z) = 2z

integrating we get,f(z) = z2 + c

this is the required analytic function.

CONFORMAL MAPPING:

A conformal mapping is a mapping that preserves angles between any oriented curves

both in magnitude and in sense.

THEOREM: The mapping defined by an analytic function f(x) is conformal ,except at

critical points, that is points at which the derivative f’(z) is zero.

proof: Try this one.

Ex: ex is conformal except at z = 0.

Ex: Consider the mapping f(z) = z̄. It is not an analytic function but it represents

reflection about the real axis and preserves the angle in magnitude but reverse the direc-

tion. Hence ,it is an isogonal mappings . Condition f ′(z0) ̸= 0 can’t be done. Since it is

nowhere analytic.

Ex:
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Find the angle made by the mapping w = z2 at the point z = 1 + i.

Ans:

w′(z) = 2z , then required angle = arg w′(z)](z=1+i) = arg = 2z]1+i =
π
4
.

Condition of conformality:

A mapping w = f(z) is conformal at each point z0 where f(z) is analytic and f ′(z0) ̸= 0.

Linear Fractional Transformations:

Bilinear Transformation:

Bilinear Transformation is the function w of a complex variable z of the form

w = f(z) =
az + b

cz + d

where a,b,c,d are complex or real constants subject to ad− bc ̸= 0.

if ad− bc = 0 , f(z) would be identically constant.

• For a choice of the constants a,b,c,d, we get special cases of bilinear transformation as

,

w = z + b −→ Translation.

w = az −→ Rotation.

w = az + b −→ Lineartransformation.

w =
1

z
−→ Inverseintheunitcircle.

Determination of Bilinear Transformation:

A bilinear transformation can be uniquely determined by three given conditions. Al-

though four constants a,b,c,d appear in previously, essentially they are three ratios of

these constants to the fourth one.

To find the unique bilinear transformation which maps three given distinct points z1, z2, z3

onto three distinct images w1, w2, w3. Hence the unique bilinear transformation that maps

three given points z1, z2, z3 onto three given images w1, w2, w3, is given by

(w1 − w2)(w3 − w)

(w1 − w)(w3 − w2)
=

(z1 − z2)(z3 − z)

(z1 − z)(z3 − z2)

5 Complex Integration

Before going to discuss complex integral, we should aware about analytic function.

Analytic function: A complex variable function f is analytic in an open set if it has a
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derivative at each point in that set. If we say f is analytic in a set S which is not open,

it is to be understood that f is analytic in an open set containing S. In particular, f is

analytic at a point z0 if it is analytic throughout some neighborhood of z0.

• An entire function is a function that is analytic at each point in the entire finite

plane. Every polynomial is an entire function.

• If a function f fails to be analytic at a point z0 but is analytic at some point in every

neighborhood of z0, then z0 is called a singular point, or singularity. For instance,

the point z = 0 is a singular point of f(z) = 1
z
. The function f(z) = |z|2, has no singular

point because it is no where analytic.

Example 5.1 Every polynomial functions are analytic.

Example 5.2 The function f(z) = 1
z
is analytic at each nonzero points in the finite

plane.

Example 5.3 The function f(z) = |z|2 is not analytic at any point since its derivative

exists only at z = 0 and not throughout any neighborhood.

Integration in the complex plane is important for two reasons

• In many applications there occur real integrals that can be evaluated by complex

integration, where as the usual methods of real integral calculus fail.

For example evaluations of the integrals

1.

∫ ∞

0

dx

1 + x4
=

Π

2
√
2

2.

∫ ∞

−∞

dx

(1 + x2)2
=

Π

2

3.

∫ ∞

−∞

sin 3x

1 + x4
dx = 0

4.

∫ ∞

0

e−x2

dx =

√
Π

2

• Some basic properties of analytic functions can be established by complex integration,

but would be difficult to prove by other method. The existence of higher derivatives of

analytic functions is striking property of this type.

For example

15



1. Cauchy integral formula

2. Cauchy integral theorem etc

In the case of definite integral the path of integration is an interval on the real axis.

In the case of complex definite integral, we shall integrate along a curve in the complex

plane.

As in calculus we distinguish between definite and indefinite integrals or antideriva-

tives. An indefinite integral is function whose derivative equals a given analytic function

in a region.

Complex definite integrals are called line integral and written as

∫
C

f(z)dz. Here the

integrand f(z) is integrated over a given curve C in the complex plane called the path

of integration.

A curve C in the complex z−plane can be represented in the form

z(t) = x(t) + iy(t), t is a real parameter (5.1)

For example z(t) = r cos t+ ir sin t, |z| = r.

The direction of increasing value of t in (5.1) is called the positive direction or positive

sense on C. In this way (5.1) defines an orientation on C. We assume that z(t) in (5.1)

is differentiable and the derivatives ż(t) is continuous with ż(t) ̸= 0. The curve C has a

unique tangent of its points called a smooth curve.

5.1 Definition of the complex line integral

This is similar to the method in calculus. Let C be a smooth curve in the complex

plane given by (5.1)and f be continuous on C. We now subdivide (partition) the interval

a ≤ t ≤ b in (5.1) by points t0 = a, t1, ..., tn−1, tn = b, where t0 < t1 < ... < tn. To

this subdivision there corresponds a subdivision of C by points z0, z1, ..., zn−1, zn, where

zj = z(tj). On each portion of subdivision of C, we choose an arbitrary point, say ξ1

between z0 and z1 (i.e. ξ1 = z(t), t0 ≤ t ≤ t1), similarly ξ2, ξ3 etc. Then we form the

sum

Sn =
n∑

m=1

f(ξm)∆zm, ∆zm = zm − zm−1. (5.2)
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We do this for each n = 2, 3, ... in a completely independent manner, but so that the

greatest |∆tm| = |tm − tm−1| approaches zero as n → ∞. This implies that the greatest

|∆zm| also approaches zero because it can not exceed the length of the arc of C from zm−1

to zm and the latter goes to zero since the arc length of the smooth curve C is continuous

function of t. The limit of the complex numbers S2, S3, ... thus obtained are called line

integral of f over the oriented curve C. This curve C is called path of integration.

Z

Z0

m

Z1

Z2

Zm

Zm-1 
| zm|

Complex line integral 

The integral is denoted by∫
C

f(z)dz or

∮
C

f(z)dz, if C is a closed path. (5.3)

• Basic properties

1. Linearity:

∫
C

[k1f1(z) + k2f2(z)]dz = k1

∫
C

f1(z)dz + k2

∫
C

f2(z)dz, k1, k2 ∈ C.

2. Sense reversal:

∫ z

z0

f(z)dz = −
∫ z0

z

f(z)dz.

3. Partition of path:

∫
C

f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz.

Z0

Z
C2

C1

17



5.2 Existence of the complex line integral

Let f be continuous function and C be a piecewise smooth curve. Then the existence

of the line integral

∫
C

f(z)dz follows. Let f(z) = u(x, y) + iv(x, y) set ξm = βm +

iηm, ∆zm = ∆xm + i∆ym.

Now (5.2) can be expressed as

Sn =
n∑

m=1

(u+ iv)(∆xm + i∆ym),

where u = u(βm, ηm), v = v(βm, ηm).

So

Sn =
n∑

m=1

u∆xm −
n∑

m=1

v∆ym + i

[
n∑

m=1

u∆ym +
n∑

m=1

v∆xm

]
. (5.4)

These sums are real. Since f is continuous, u and v are continuous. Hence if n → ∞,

then the greatest ∆xm and ∆ym approaches to zero and each sum on the right becomes

a real line integral.

lim
n→∞

Sn =

∫
C

f(z)dz =

∫
C

udx−
∫
C

vdy + i

[∫
C

udy +

∫
C

vdx

]
(5.5)

This shows that under our assumptions on f and C the line integral (5.3) exists and its

value is independent of the choice of subdivisions and intermediate points ξm.

Theorem 5.1 Indefinite integral of analytic function

Let f be analytic in a simply connected domain D, i.e. there exists an indefinite integral

of f such that F ′(z) = f(z) in D, and for all paths in joining two points z0 and z1 in D

we have ∫ z1

z0

f(z)dz = F (z1)− F (z0).

Example 5.4

∫ i

0

z2dz =
1

3

[
z3
]i
0
=

1

3
i3 = −1

3
i

Theorem 5.2 Integration by use of path

Let C be a piecewise smooth path, represented by z = z(t), where a ≤ t ≤ b. Let f(z)

be a continuous function on C. Then∫
C

f(z)dz =

∫ b

a

f [z(t)]ż(t)dt, ż =
dz

dt
.
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Steps applying in Theorem (5.2):

1. Represent the path C in the form z(t), where a ≤ t ≤ b,

2. Calculate the derivative ż(t) = dz
dt
,

3. Substitute z(t) for every z in f(z), and

4. Integrate f [z(t)]ż(t) over t from a to b.

Example 5.5 Integrate f(z) = 1
z
once arround the unit circle C in counter clockwise

sense, starting from z = 1.

Solution: We may represent C in the form

z(t) = cos t+ i sin t = eit, 0 ≤ t ≤ 2π

ż(t) = − sin t+ i cos t = ieit.

Now ∫
C

1

z
dz =

∫ 2π

0

e−it.i.eitdt =

∫ 2π

0

idt = 2πi.

5.3 Bound for the absolute value integrals

Cauchy’s inequality is given by
∣∣∫

C
f(z)dz

∣∣ ≤ ML, where L is the length of C and

M a constant such that |f(z)| ≤ M for z ∈ C.

Example 5.6
∫
C
z2dz, where C is a straight line segment from 0 to 1 + i.

Now the length of C = L =
√
1 + 1 =

√
2, |f(z)| = |z2| ≤ 2 on C.

0

(1,1)

By Cauchy’s inequality, ∣∣∣∣∫
c

z2dz

∣∣∣∣ ≤ 2
√
2.

Actual integration is
∫
C
z2dz =

∫ 1

0
(t+ it)2(1 + i)dt = 2

3

√
2.
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6 Beauty of analytic functions on integration

If the function f is analytic on the domainD, then the integration is path independent

i.e., the value of the integration gives same value for every smooth path C (end points of

each path C are same) in D. That means the integration depend on end points only. But

if the function is not analytic, then the value of integration is different for different path

joining same initial and final points. We can see this things clearly from the following

examples.

Example 6.1 Integrate f(z) = z along the line segment from z0 = 0 to z = 1 + i for

the paths C1 and C2.

0
1

(1,1)

C1

C2

The segment may be represent in the form

z(t) = x(t) + iy(t), 0 ≤ t ≤ 1

∫
C1

zdz = (1 + i)

∫ 1

0

(1 + i)tdt =
1

2
(1 + i)2 = i. (6.6)

∫
C2

zdz =

∫ 1

0

tdt+

∫ 1

0

(1 + it)idt = i. (6.7)

From (6.6) and (6.7) we see that the value of the integration depends only on the end

points as the function f is analytic.

Example 6.2 Integrate f(z) = Re(z) along the line segment from z0 = 0 to z = 1 + i

for the paths C1 and C2.
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0
1

(1,1)

C1

C2

The segment may be represent in the form

z(t) = x(t) + iy(t), 0 ≤ t ≤ 1

∫
C1

Re(z)dz =

∫ 1

0

t(1 + i)dt = (1 + i)

∫ 1

0

tdt =
1

2
(1 + i). (6.8)

∫
C2

Re(z)dz =

∫ 1

0

tdt =

∫ 1

0

idt =
1

2
+ i. (6.9)

Since the function f(z) = Re(z) is not analytic. From (6.8) and (6.9) we see that the

value of the integration depends not only on the end points but also on its geometric

shape.

Example 6.3 Find the parametric equations for the line through the points (3,2) and

(4,6) so that when t = 0 we are at the point (3,2) and when t = 1 we are at the point

(4,6).

Solution:

t=0

t=1

(3,2)

(4,6)
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We write symbolically:

(x, y) = (1− t)(3, 2) + (t)(4, 6) = (3− 3t+ 4t, 2− 2t+ 6t) = (3 + t, 2 + 4t)

so that

x(t) = 3 + t and y(t) = 2 + 4t.

x2 + y2 = 0 (6.10)

• Connected Set: A set S of complex numbers is connected if, given any two points

z and w in S, there is path in S having z and w as its end points.

• Domain: An open connected set of complex numbers is called a domain.

• Simply Connected Domain: A set S of complex numbers is simply connected

if every closed path in S encloses only points of S.

• Cauchy Integral Theorem: If f(z) is analytic in a simply connected domain D,

then for every simple closed path C in D
∮
C
f(z)dz = 0.

Example:
∮
C
ezdz = 0.

• Cauchy Integral Formula: If f(z) is analytic in a simply connected domain D,

then for any z0 in D and any simple closed curve C that encloses z0,
∮
C

f(z)
z−z0

=

2πif(z0), C : counterclockwise sense.

Example:
∮
C

ez

z
dz = 2πi.

• Liouville’s Theorem: If an entire function f(z) is bounded in absolute value for

all z, then f(z) must be constant.

• Morea’s Theorem (Converse of Cauchy Integral Theorem): If f(z) is con-

tinuous in a simply connected domain D and if
∮
C
f(z)dz = 0 for every closed path

C in D, then f(z) is analytic in D.
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7 Improper Integral

An improper integral can be defined as,

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx

• We assume that f(x) is a real rational function whose denomination is different from

zero for all real x and is of degree at least two units higher than the degree of numerator.

Then consider
∮
f(z)dz. Where C is the contour given in above figure. Since f(z) has

no poles on the real axis by residue theorem.∮
c

f(z)dz = 2πiΣResf(z)

∴ L.H.S =

∫ R

−R

f(x)dx+

∫
S

f(z)dz

since, ∫
S

f(z) ≤ k

R2

∫ π

0

dz =
kπ

R
→ 0, asR → ∞

thus, ∫ ∞

−∞
f(x)dx =

∮
f(z)dz = 2πiΣResf(z)

Ex: Show that ∫ ∞

0

dx

1 + x4
=

π

2
√
2
.

Ans: Try this one.

FOURIER INTEGRALS:

The fourier integrals are, ∫ ∞

−∞
f(x) cos sxdx,

∫ ∞

−∞
f(x) cos sxdx

same condition on f(x) as earlier.∫ ∞

−∞
f(x) cos sxdx = −2πΣImRes[f(z)eisz]

∫ ∞

−∞
f(x) sin sxdx = 2πΣReRes[f(z)eisz]
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∫∞
−∞ f(x)eixdx can be considered an improper integral.

Ex: Evaluate, ∫ ∞

−∞

cos sx

k2 + x2
dx

Ans: Try this one.

SIMPLE POLE ON REAL AXIS:

If f(z) has a simple pole at z = a on the real axis .Let C be the contour then ,

lim
r→0

∫
C

f(z)dz = πiResz=af(z)

Theorem:

Let f(z) = h(z)
g(z)

, where h is continuous at z0 and h(z0 ̸= 0). Suppose g is differentiable at

z0 and has a simple zero there. Then f has a simple pole at z0 and

Res(f, z0) =
h(z0)

g′(z0)

Ex:

Evaluate ∮
Γ

4iz − 1

sin z
dz

Ans: Try this one.

Assignment

1. Discuss the boundedness of sin z and cos z.

2. Find all roots of (i) (1 + i)
1
3 , (ii) 1

1
3 .

3. Solve the equations: (i) z2 − (7 + i)z + 24 + 7i = 0, (ii) z4 − (3 + 6i)z2 − 8 + 6i.

4. Find the values of Ref and Imf at 4i, where f = z−2
z+2

.

5. Discuss the continuity of f(z) = Rez
1+|z| .

6. Write the Cauchy Riemann equations in polar form.

7. Discuss the analyticity of the following functions.

(i) f(z) = z ·z̄ (ii) f(z) = ex(cos y+i sin y) (iii) f(z) = Rez
Imz

(iv) f(z) = ln|z|+iArgz.
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8. Determine whether the following functions are Harmonic. If Yes, find the corre-

sponding analytic functions f(z) = u(x, y) + iv(x, y).

(i) u = ln z (ii) v = −e−x sin y (iii) v = (x2 − y2)
2
.

9. Determine a and b such that the given functions are harmonic and find its harmonic

conjugate. (i) u = ax3 + by3 (ii) u = eax cos y.

10. Find all points at which the following mappings are not conformal.

(i) f(z) = z2 + (
1
)(z2) (ii)f(z) = z2+1

z2−1
.

11. Find all solutions of the equations cos z = 3i and sin z = cosh 3.

12. Test the conformality of the mapping f(z) = cos z. Find the conformal image of

the region 0 < x < π, 0 < y < 1.

13. Find the principal values of the following expressions.

(i) (2i)2i (ii) (1 + i)−1+i (iii) (−3)3−i.

14. Find the linear fractional transformation that maps ∞, 1, 0 onto 0, 1,∞.

15. Find a linear fractional transformation that maps |z| ≤ 1 onto |w| ≤ 1 such that

z = i
2
is mapped onto w = 0.

16. Find the fixed points of the map f(z) = z+1
z−1

.

17. Show that

(a) the function Log(z − i) is analytic every where except on the half line y =

1 (x ≤ 0);

(b) the function
Log(z + 4)

z2 + i
is analytic everywhere except at the points ±1−i√

2
and

on the portion x ≤ −4 of the real axis.

18. Find the parametric representation z = z(t) for

(a) For the upper half plane of |z − 4 + 2i| = 3,

(b) |z + 3− i| = 5, counterclockwise.

19. Integrate

∫
C

Rez2dz, C the boundary of the square with vertices 0, i, 1 + i, 1,

clock wise.
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20. Find a counter C such that the following integral gives the value 0.

(a)

∮
C

cos z

z6 − z2
dz, (b)

∮
C

e
1
z

z2 + 9
dz.

21. Evaluate

(a)

∮
C

coth
z

2
dz, C the circle |z − 1

2
πi| = 1, counterclockwise.

(b)

∮
C

2z3 + z2 + 4

z4 + 4z2
dz, C the circle |z − 2| = 4, clockwise.

22. Show that

∮
C

(z − z1)
−1(z − z2)

−1dz = 0 for a simple closed path C enclosing z1

and z2, which are arbitrary.

23. Evaluate

(a)

∮
C

2z3 − 3

z(z − 1− i)2
dz, C consists of |z| = 2 (counterclockwise) and |z| = 1 (clock-

wise).

(b)

∮
C

ez
2

(2z − 1)2
dz, C the circle |z − i| = 2, counterclockwise.

24. Test the convergency of the following series.

(a)
∞∑
n=1

1√
n

(b)
∞∑
n=1

(3i)nn!

nn
.

25. Find the center and the radius of convergence of the following power series.

(a)
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 (b)

∞∑
n=1

1

n(n+ 1)
zn−1 (c)

∞∑
n=2

n(n− 1)2nzn
2

.

26. Develop the given function in a Maclaurin series and find the radius of convergence.

(a) e
−z2

2 (b) 1
z+3i

.

27. Develop f(z) = 2z−3i
z2−3iz−2

in a series (Taylor and Laurent) valid for

(a) 0 < |z| < 1 (b) 1 < |z| < 2 (c) |z| > 2 (d) 0 < |z + i| < 2.

28. Determine the location and order of the zeros of the functions z2+1
ez−1

and tan πz.

29. Determine the location and type of singularities of the functions z2 − 1

z2
and

z−2 sin2 z, including those at infinity.

30. Evaluate the following integrals (counterclockwise sense).

(a)

∮
C

ez

cos z
dz, C : |z| = 3 (b)

z cosh πz

z4 + 13z2 + 36
dz, C : |z| = π.
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31. Evaluate the following integrals using Residue Theorem.

(a)

∫ π

0

dθ

k + cos θ
(k > 1) (b)

∫ 2π

0

cos θ

13− 12 cos θ
dθ.

32. Evaluate the following integrals (counterclockwise sense).

(a)

∮
C

ez

cos z
dz, C : |z| = 3 (b)

z cosh πz

z4 + 13z2 + 36
dz, C : |z| = π.

33. Evaluate the following integrals using Residue Theorem.

(a)

∫ ∞

−∞

dx

(1 + x2)2
(b)

∫ ∞

−∞

sin 3x

1 + x4
dx.

34. State the following

(a) Maximum Modulus Principle

(b) Schwaz Lemma

(c) Residue Theorem

(d) Cauchy integral Theorem

(e) Argument principle

(f) Rouche’s Theorem

(g) Conformal mapping

(i) Liouville’s Theorem

(k) Fundamental Theorem of Algebra
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