RELATIONAL DATA BASE
MANAGEMENT SYSTEM

(R.D.B.M.S)

Digital Notes By
BIGHNARAJ NAIK

Assistant Professor
Department of Master in Computer Application
VSSUT, Burla

Syllabus

4" SEMESTER MCA

F.M.- 70
MCA-208 RELATIONAL DATABASE MANAGEMENT SYSTEM (3-1- 0)Cr.-4

Module 1 (10 hrs)

Database System Architecture — Data Abstractiota Dedependence, Data Definitions and Data
Manipulation Languages.

Data models — Entity Relationship (ER), Mapping BRdel to Relational Mode, Network.
Relational and Object Oriented Data Models, IntggriConstraints and Data Manipulation
Operations.

Module 1l (10 hrs)

Relation Query Languages, Relational Algebra, Tugpld Domain Relational Calculus, SQL and
QBE.

Relational Database Design: Domain and Data depeydérmstrong’s Axioms, Normal Forms,
Dependency Preservation, Lossless design, CompavfdOracle & DB2.

Module Il (8 hrs)

Query Processing and Optimization: Evaluation oflaRenal Algebra Expressions, Query
Equivalence, Join strategies, Query Optimizatiogofithms.

Module 1V (12 hrs)

Storage Strategies: Indices, B-Trees, Hashing, sB@mon processing: Recovery and Concurrency
Control, Locking and Timestamp based Schedulers|tivusion and Optimistic Concurrency
Control Schemes.

Advanced Topics: Object-Oriented and Object Refatiodatabases. Logical Databases, Web
Databases, Distributed Databases, Data Warehoddgaa Mining.

Text Books:

1. Database System Concepts by Sudarshan, KortGr@deHill Education)

2. Fundamentals of Database System By Elmasari &tav Pearson Education

References Books:

(1) An introduction to Database System — Bipin DeSalgotia Publications

(2) Database System: concept, Design & Applicabipis.K.Singh (Pearson Education)

(3) Database management system by leon &leon (\fikaishing House).

(4) Database Modeling and Design: Logical Desigimbly J. Teorey, Sam S. Lightstone, and Tom
Nadeau, “”, 4thEdition, 2005, Elsevier India Pubtions, New Delhi

(5) Fundamentals of Database Management Systeriensain, Wiley India

Modulel

File Management System

v INTRODUCTION

A file system (or filesysten) is an abstraction to store, retrieve and updagetaf files. The term
also identifies the data structures specified byes®f those abstractions, which are designed to
organize multiple files as a single stream of byaesl the network protocols specified by some other
of those abstractions, which are designed to diil@s on a remote machine to be accessed.

The file system manages access to the data anddtaslata of the files, and manages the available
space of the device(s) which contain it. Ensuri@ability is a major responsibility of a file sysh.

A file system organizes data in an efficient maniaed may be tuned to the characteristics of the
backing device.

v" FILENAMES

A filename (or file name) is used to identify a storage location in the Blystem. Most file systems
have restrictions on the length of filenames. Imadile systems, filenames are case-insensitiee (i.
filenames such as FOO and foo refer to the sarag fit others, filenames are case-sensitive (i.e.,
the names FOO and foo refer to two separate files).

Most modern file systems allow filenames to contaiwide range of characters from the Unicode
character set. Most file system interface utilitibewever, have restrictions on the use of certain
special characters, disallowing them within file@m(the file system may use these special
characters to indicate a device, device type, thrgqrefix, or file type).

v' DIRECTORIES

File systems typically havéirectories (also calledolders) which allow the user to group files into

separate collections. This may be implemented bgaating the file name with an index in a table
of contents or an inode in a Unix-like file systelrectory structures may be flat (i.e. linear), or
allow hierarchies where directories may containdsgetories. The first file system to support
arbitrary hierarchies of directories was used eNultics operating system.

v’ METADATA

The length of the data contained in a file maytoeesl as the number of blocks allocated for tree fil
or as a byte count. The time that the file wasnastlified may be stored as the file's timestamie. Fi

4

systems might store the file creation time, theetitnwvas last accessed, the time the file's meta-da
was changed, or the time the file was last backedther information can include the file's device
type (e.g. block, character, socket, subdirectety,), its owner user ID and group ID, its access
permissions and other file attributes (e.g. whetheffile is read-only, executable, etc.).

v PROS AND CONS OF CONVENTIONAL SYSTEM

Pros
» Easy to design because of their single-applioatio
* Excellent performance due to optimized organarafor a single application.

Cons

» Harder to adapt to sharing across applicatioosgo
» Harder to adapt to new requirements.

* Need to duplicate attributes in several files.

DBMS Functions

A DBMS performs several important functions thadig@ntee the integrity and consistency of the
data in the database. Most of those functionsraresparent to end users, and most can be achieved
only through the use of a DBMS. They include datdi@hary management, data storage
management, data transformation and presentagonrisy management, multiuser access control,
backup and recovery management, data integrity geanant, database access languages and
application programming interfaces and databaseruamcation interfaces. Each of these functions
is explained below.
1. Data dictionary management.
The DBMS stores definitions of the data elementktarir relationships (metadata) in a data
dictionary. In turn, all programs that access tatadn the database work through the DBMS. The
DBMS uses the data dictionary to look up the regpistata component structures and relationships,
thus relieving you from having to code such compkdationships in each program. Additionally,
any changes made in a database structure are digaligaecorded in the data dictionary, thereby
freeing you from having to modify all of the prograthat access the changed structure. In other
words, the DBMS provides data abstraction, andntaves structural and data dependence from the
system.
2. Data storage management.
The DBMS creates and manages the complex struatemegred for data storage, thus relieving you
from the difficult task of defining and programmitige physical data characteristics. A modern
DBMS provides storage not only for the data, babdbr related data entry forms or screen
definitions, report definitions, data validatiorlas, procedural code, structures to handle video an
picture formats, and so on. Data storage managemiatso important for database performance

5

tuning. Performance tuning relates to the actisitieat make the database perform more efficiently
in terms of storage and access speed.

3. Data transformation and presentation.

The DBMS transforms entered data to conform toiredudata structures. The DBMS relieves you
of the chore of making a distinction between thggdal data format and the physical data format.
That is, the DBMS formats the physically retriedada to make it conform to the user’s logical
expectations. For example, imagine an enterpritgdae used by a multinational company. An end
user in England would expect to enter data suchulysll, 2010, as “11/07/2010.” In contrast, the
same date would be entered in the United Staté¥/451/2010.” Regardless of the data presentation
format, the DBMS must manage the date in the prigerat for each country.

4. Security management.

The DBMS creates a security system that enforceissgsurity and data privacy. Security rules
determine which users can access the databasé) ddtia items each user can access, and which
data operations (read, add, delete, or modifyuter can perform. This is especially important in
multiuser database systems.

5. Multiuser access control.

To provide data integrity and data consistency[aB&1S uses sophisticated algorithms to ensure
that multiple users can access the database centlyrwithout compromising the integrity of the
database.

6. Backup and recovery management.

The DBMS provides backup and data recovery to endata safety and integrity. Current DBMS
systems provide special utilities that allow theA® perform routine and special backup and
restore procedures. Recovery management dealsheitiecovery of the database after a failure,
such as a bad sector in the disk or a power failsueh capability is critical to preserving the
database’s integrity.

7. Data integrity management.

The DBMS promotes and enforces integrity ruless tminimizing data redundancy and maximizing
data consistency. The data relationships stor#tkeinlata dictionary are used to enforce data
integrity. Ensuring data integrity is especiallypiontant in transaction-oriented database systems.
8. Database access languages and application prognaing interfaces.

The DBMS provides data access through a query EyguA query language is a nonprocedural
language—one that lets the user specify what neigibne without having to specify how it is to be
done. Structured Query Language (SQL) is the de fqery language and data access standard
supported by the majority of DBMS vendors.

9. Database communication interfaces.

Current-generation DBMSs accept end-user requéstawitiple, different network environments.
For example, the DBMS might provide access to titalthse via the Internet through the use of
Web browsers such as Mozilla Firefox or Microsaternet Explorer. In this environment,
communications can be accomplished in several ways:

- End users can generate answers to queries ingfil screen forms through their preferred Web
6

browser.

- The DBMS can automatically publish predefinedortpon a Website.

- The DBMS can connect to third-party systems stritiute information via e-mail or other
productivity applications.

v' TYPES OF FILE SYSTEMS

File system types can be classified into disk/thlgesystems, network file systems and special-
purpose file systems.

= Disk file systems

A disk file system takes advantages of the ability of disk storagdian® randomly address data in a
short amount of time. Additional considerationslue the speed of accessing data following that
initially requested and the anticipation that tb#oiving data may also be requested. This permits
multiple users (or processes) access to various oatthe disk without regard to the sequential
location of the data. Examples include FAT (FATEAT16, FAT32), exFAT, NTFS, HFS and
HFS+, HPFS, UFS, ext2, ext3, ext4, btrfs, ISO 9a€&s-11, Veritas File System, VMFS, ZFS,
ReiserFS and UDF.

= Optical discs

ISO 9660 and Universal Disk Format (UDF) are twonomon formats that target Compact Discs,
DVDs and Blu-ray discs. Mount Rainier is an extensio UDF supported by Linux 2.6 series and
Windows Vista that facilitates rewriting to DVDs.

» Flash file systems

A flash file system considers the special abilities, performance alrictions of flash memory
devices. Frequently a disk file system can useashfimemory device as the underlying storage
media but it is much better to use a file systeetsjgally designed for a flash device.

= Tape file systems

* A tapefile system is a file system and tape format designed to ditae on tape in a self-
describing form. Magnetic tapes are sequentialag®rmedia with significantly longer
random data access times than disks, posing chaekemo the creation and efficient
management of a general-purpose file system.

* In a disk file system there is typically a mastkr flirectory, and a map of used and free data
regions. Any file additions, changes, or removaguire updating the directory and the
used/free maps. Random access to data regionsaisuneel in milliseconds so this system
works well for disks.

» Tape requires linear motion to wind and unwind poélly very long reels of media. This
tape motion may take several seconds to severaltesino move the read/write head from
one end of the tape to the other.

» Consequently, a master file directory and usage caapbe extremely slow and inefficient
with tape. Writing typically involves reading théobk usage map to find free blocks for
writing, updating the usage map and directory o the data, and then advancing the tape to
write the data in the correct spot. Each additidialwrite requires updating the map and
directory and writing the data, which may take saleeconds to occur for each file.

» Tape file systems instead typically allow for thie tirectory to be spread across the tape
intermixed with the data, referred to siseaming, so that time-consuming and repeated tape
motions are not required to write new data.

v IMPORTANCE OF FILE ORGANISATION IN DATABASE

To implement a database efficiently, there are regvdesign tradeoffs needed. One of the most
important ones is the file Organisation. For examglthere were to be an application that required
only sequential batch processing, then the usendéxing techniques would be pointless and
wasteful.

There are several important consequences of arpriojapate file Organisation being used in a
database. Thus using replication would be wastefuspace besides posing the problem of
inconsistency in the data. The wrong file Orgamisatan also—

* Mean much larger processing time for retrievingnodifying the required record
* Require undue disk access that could stressatuare

v FILE MANAGEMENT SYSTEM PROBLEMS
*Data redundancy
*Data Access: New request-new program
eData is not isolated from the access implemeniatio
*Concurrent program execution on the same file
«Difficulties with security enforcement
eIntegrity issues .

» Data isolation Because data are scattered in various files, fidewl may be in different
formats, writing new application programs to reteehe appropriate data is difficult.

These difficulties, among others, prompted the bigreent of database systems. In what follows,
we shall see the concepts and algorithms that erddihbase systems to solve the problems with
file-processing systems. In most of this book, e a bank enterprise as a running example of a
typical data-processing application found in a ocoagion.

v" HIERARCHY OF DATA

Integrity problems. The data values stored in the database musfysagstain types of
consistency constraintsFor example, the balance of a bank account megrrfall below a
prescribed amount (say, $25). Developers enforesetitonstraints in the system by adding
appropriate code in the various application prograbiowever, when new constraints are
added, it is difficult to change the programs tdoese them. The problem is compounded
when constraints involve several data items froffeitnt files.

Atomicity problems. A computer system, like any other mechanicallectecal device, is
subject to failure. In many applications, it is @al that, if a failure occurs, the data be
restored to the consistent state that existed pritne failure. Consider a program to transfer
$50 from accounf to accountB. If a system failure occurs during the executidrihe
program, it is possible that the $50 was removedhfaccountAbut was not credited to
accountB, resulting in an inconsistent database state.rl@)ed is essential to database
consistency that either both the credit and detmitig or that neither occur. That is, the funds
transfer must batomic—it must happen in its entirety or not at all. dtdifficult to ensure
atomicity in a conventional file-processing system.

Concurrent-access anomaliesFor the sake of overall performance of the systeoh faster
response, many systems allow multiple users totepith® data simultaneously. In such an
environment, interaction of concurrent updates neaylt in inconsistent data. Consider bank
account A, containing $500. If two customers withdraw fun@say $50 and $100
respectively) from accou§ at about the same time, the result of the concumeacutions
may leave the account in an incorrect (or incoesitstate. Suppose that the programs
executing on behalf of each withdrawal read thebalidnce, reduce that value by the amount
being withdrawn, and write the result back. If th® programs run concurrently, they may
both read the value $500, and write back $450 &) $respectively. Depending on which
one writes the value last, the account may corgiiiver $450 or $400, rather than the correct
value of $350. To guard against this possibilite system must maintain some form of
supervision. But supervision is difficult to proeidbecause data may be accessed by many
different application programs that have not bemordinated previously.

Security problems Not every user of the database system shouldlgeta access all the
data. For example, in a banking system, payrolqmanel need to see only that part of the
database that has information about the variouk barployees. They do not need access to
information about customer accounts. But, sinceliegmon programs are added to the
system in an ad hoc manner, enforcing such seagitgtraints is difficult.

Data are the principal resources of an organizatidata stored in computer systems form a
hierarchy extending from a single bit to a datap#se major record-keeping entity of a firm. Each
higher rung of this hierarchy is organized from tenponents below it.

Data are logically organized into:

1. Bits (characters)

2. Fields

3. Records

4. Files

5. Databases

Bit (Character) - a bit is the smallest unit of d&aresentation (value of a bit may be a 0 or
1). Eight bits make a byte which can representaaattier or a special symbol in a character
code.

Field - a field consists of a grouping of charactersdaa field represents an attribute (a
characteristic or quality) of some entity (objgurson, place, or event).

Record - a record represents a collection of attributest tescribe a real-world entity. A
record consists of fields, with each field deserghan attribute of the entity.

File - a group of related records. Files are frequecitigsified by the application for which
they are primarily used (employee file).pAimary key in a file is the field (or fields) whose
value identifies a record among others in a d&ta fi

Magnetic disk

The primary computer storage device. Like tapis, mhagnetically recorded and can be re-
recorded over and over. Disks are rotating plattétts a mechanical arm that moves a
read/write head between the outer and inner edgée platter's surface. It can take as long
as one second to find a location on a floppy dis&d little as a couple of milliseconds on a
fast hard disk. See hard disk for more details.

Tracks and Spots

The disk surface is divided into concentric tragscles within circles). The thinner the
tracks, the more storage. The data bits are reda@sl¢iny magnetic spots on the tracks. The
smaller the spot, the more bits per inch and tleatgr the storage.

10

Sectors

Tracks are further divided into sectors, which hmlolock of data that is read or written at
one time; for example, READ SECTOR 782, WRITE SERT&248. In order to update the
disk, one or more sectors are read into the compehtanged and written back to disk. The
operating system figures out how to fit data ittese fixed spaces.

Modern disks have more sectors in the outer trtks the inner ones because the outer
radius of the platter is greater than the inneiusd

Magnetic tape

A sequential storage medium used for data collecbackup and archiving. Like videotape,
computer tape is made of flexible plastic with side coated with a ferromagnetic material. Tapes
were originally open reels, but were supersedechyidges and cassettes of many sizes and
shapes.

Tape has been more economical than disks for alctata, but that is changing as disk capacities
have increased enormously. If tapes are storethéduration, they must be periodically recopied or
the tightly coiled magnetic surfaces may contanarestch other.

Sequential Medium

The major drawback of tape is its sequential forrhatating a specific record requires reading
every record in front of it or searching for maskénat identify predefined partitions. Although mos
tapes are used for archiving rather than routirgatipg, some drives allow rewriting in place if the
byte count does not change. Otherwise, updatinginesjcopying files from the original tape to a

11

blank tape (scratch tape) and adding the new ddiativeen.

Track Formats

Tracks run parallel to the edge of the tape (limeaording) or diagonally (helical scan). A linear
variation is serpentine recording, in which theksa"snake" back and forth from the end of the tape
to the beginning.

O Ohit MW 1hit recording channels (tracks)

Legacy open reel tapes used nine linear trackgg®lus parity), while modern cartridges use 128
or more tracks. Data are recorded in blocks ofigapus bytes, separated by a space called an
"interrecord gap"” or "interblock gap.” Tape driy@esd is measured in inches per second (ips). Over
the years, storage density has increased fromd88,000 bpi.

v" FILE ORGANIZATION

Data files are organized so as to facilitate actesecords and to ensure their efficient stora@ge.
tradeoff between these two requirements generaitse if rapid access is required, more storage is
required to make it possible.

Access to a record for reading it is the essential openabn data. There are two types of access:

1. Sequential access - is performed when records are accessed in tderdhey are stored.
Sequential access is the main access mode onbtéh Bystems, where files are used and updated af
regular intervals.

2. Direct access - on-line processing requires direct access, wiyere record can be accessed
without accessing the records between it and tlggnbing of the file. The primary key serves to
identify the needed record.

12

There are three methods of file organization:
1. Sequential organization
2. Indexed-sequential organization

3. Direct organization

RAID :

RAID is short forredundant array of independent (or inexpensive) disks.lt is a category of disk
drives that employ two or more drives in combinatfor fault tolerance and performance. RAID
disk drives are used frequently on servers but'tagamerally necessary for personal computers.
RAID allows you to store the same data redundafiiymultiple paces) in a balanced way to
improve overall storage performance.

Different RAID Levels

Different architectures are named RAID followedebgumber and each architecture provides a
different balance between performance, capacityt@ledance. There are number of different RAID
levels including the following;

Level O: Striped Disk Array without Fault Tolerance

Providesdata striping(spreading out blocks of each file across multgék drives) but no

redundancy. This improves performance but doesl@loter fault tolerance. If one drive fails then
all data in the array is lost.

RAID O

]
bt

Disk O Disk 1

Level 1: Mirroring and Duplexing

Provides disk mirroring. Level 1 provides twice tiead transaction rate of single disks and the same
write transaction rate as single disks. The traddl solution, called mirroring or shadowing, uses
13

twice as many disks as a non-redundant disk anhgnever data is written to a disk the same data
is also written to a redundant disk, so that tleeesalways two copies of the information.

RAID 1
i 5 P
AL 4 AL
A2 A2 g
A3 4 A3

_Aa_f | Aa

—— —
Disk O Disk 1

When data is read, it can be retrieved from thke @ith the shorter queuing, seek and rotational
delays. If a disk fails, the other copy is usedédovice requests. Mirroring is frequently used in
database applications where availability and tretima time are more important than storage
efficiency.

Level 2: Error-Correcting Coding

Not a typical implementation and rarely used, Lestripes data at the bit level rather than the
block level. Memory systems have provided recoveryn failed components with much less cost
than mirroring by using Hamming codes. Hamming soztntain parity for distinct overlapping
subsets of components. In one version of this sehéar disks require three redundant disks, one
less than mirroring. Since the number of redund#sis is proportional to the log of the total
number of the disks on the system, storage effogi@mcreases as the number of data disks
increases.

M____-J&___.!'____JL__JH..___J e e
Disk® Diskl Disk2 Disk3 Disk4 Disk5 Diské

If a single component fails, several of the pacitynponents will have inconsistent values, and the
failed component is the one held in common by éactrrect subset. The lost information is
recovered by reading the other components in aesuibsluding the parity component, and setting

14

the missing bit to 0 or 1 to create proper parélue for that subset. Thus, multiple redundantgisk
are needed to identify the failed disk, but onlg @amneeded to recover the lost information.

Level 3: Bit-Interleaved Parity

Provides byte-level striping with a dedicated padiisk. Level 3, which cannot service simultaneous
multiple requests, also is rarely used. In a bigfleaved, parity disk array, data is conceptually
interleaved bit-wise over the data disks, and glsiparity disk is added to tolerate any singlédis
failure. Each read request accesses all data digkeach write request accesses all data disks and
the parity disk.

RAID 3
P e e

T, B S N

= A2 A3) A
Ad AS

| I | AB | |Ap|u:||

e L R
Disk O Disk 1 Disk 2 Disk 3

Thus, only one request can be serviced at a tirmealse the parity disk contains only parity and no
data, the parity disk cannot participate on reesgjlting in slightly lower read performance than f
redundancy schemes that distribute the parity ata aver all disks. Bit-interleaved, parity disk
arrays are frequently used in applications thatirechigh bandwidth but not high 1/O rates.

Level 4: Dedicated Parity Drive
A commonly used implementation of RAID, Level 4 yides block-level striping (like Level 0)

with a parity disk. If a data disk fails, the pgritata is used to create a replacement disk. A
disadvantage to Level 4 is that the parity disk caate write bottlenecks.

15

Disk O Disk 1 Disk 2 Disk 3

Level 5: Block Interleaved Distributed Parity

Provides data striping at the byte level and aispeserror correction information. This results in
excellent performance and good fault toleranceelLBvs one of the most popular implementations
of RAID.

RAID 5
S [e I S I
AL G A2 AS g A
Bl 4 B2 L Be 4 L B3 4

Disk O Disk 1 Disk 2 Disk 3

Level 6: Independent Data Disks with Double Parity

RAID Level 6 is similiar to RAID 5 (striped paritgxcept instead of one parity block per stripe
there are two. With two independent parity blodk8JD 6 can survive the loss of two disks in the

group.

16

- L
M-._EI'_,-F’ B_a'_d-f
Cl C3
Do D3
— e S —

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Level 0+1: A Mirror of Stripes

Not one of the original RAID levels, two RAID O igtes are created, and a RAID 1 mirror is created
over them. Used for both replicating and sharing daong disks.

Level 10: A Stripe of Mirrors

Not one of the original RAID levels, multiple RAIDmirrors are created, and a RAID 0 stripe is
created over these. RAID 10 uses more disk spapgmtide redundant data than RAID 5. However,
it also provides a performance advantage by reddimg all disks in parallel while eliminating the
write penalty of RAID 5. In addition, RAID 10 givéxetter performance than RAID 5 while a failed
drive remains unreplaced. Under RAID 5, each attethpead of the failed drive can be performed
only by reading all of the other disks.

Disk 0 Disk 1 Disk 2 Disk 3
" Blukl % Block2 " Blukl % Block2 ™
Block 3 Block4 | Block 3 Block 4
BlockS5 Blockd | Block s Block
Block T Block$ | BlockT Block 8

“ Block? /' Block10 / " Block? / '\ Block10 /

On RAID 10, a failed disk can be recovered by gleimead of its mirrored pair.

v SEQUENTIAL ORGANIZATION

In sequential organization records are physicalhyesl in a specified order according to a key field
in each record.The most basic way to organize thieation of records that from a file is to use
sequential organization. In a sequentially orgahiie records are written consecutively when the
file is created and must be accessed consecutisiedy the file is later used for input (figure 2).

17

E?Egnmng of——mw hemfﬂ 1 l
Ei LI
i | Recond 2 j

; >—‘—\

End of file — —

2. Structure of sequential file

In a sequential file, records are maintained inltlgecal sequence of their primary key values. The
processing of a sequential file is conceptuallymarbut inefficient for random access. However, if
access to the file is strictly sequential, a setjakfile is suitable. A sequential file could bted

on a sequential storage device such as a magapéc t

Search for a given record in a sequential file negy on average, access to half the records in the
file. Consider a system where the file is storedadadirect access device such as a disk. Suppose th
key value is separated from the rest of the reaadia pointer is used to indicate the locatiorhef t
record. In such a system, the device may scantheetey values at rotation speeds and only read in
the desired record. A binary or logarithmic seaetthnique may also be used to search for a record
In this method, the cylinder on which the requineatord is stored is located by a series of
decreasing head movements. The search having tbeaizéd to a cylinder may require the reading
of half the tracks, on average, in the case whenss lare embedded in the physical records, or
require only a scan over the tracks in the caseavkeys are also stored separately.

D

Updating usually requires the creation of a new. fllo maintain file sequence, records are copied to
the point where amendment is required. The chaageshen made and copied into the new file.

Following this, the remaining records in the oralifile are copied to the new file. This method of

updating a sequential file creates an automatikugacopy. It permits updates of the type Ul

through U4.

Addition can be handled in a manner similar to tipda Adding a record necessitates the shifting of
all records from the appropriate point to the efhiil® to create space for the new record. Inversel
deletion of a record requires a compression offiteespace, achieved by the shifting of records.
Changes to an existing record may also requirdisgiif the record size expands or shrinks.

The basic advantage offered by a sequential filéhés ease of access to the next record, the
simplicity of organization and the absence of aawryl data structures. However, replies to simple
gueries are time consuming for large files. Updatissseen above, usually require the creation of a|

18

new file. A single update is an expensive proposiif a new file must be created. To reduce the
cost per update, all such requests are hatchewdsior the order of the sequenltial file, and then
used to update the sequential file in a single.fssh a file, containing the updates to be made to
sequential file, is sometimes referred to a tratsadile.

In the batched mode of updating, a transactiondfilapdate records is made and then sorted in the
sequence of the sequential file. Ale update procegsires the examination of each individual
record in the original sequential file (the old nesgile). Records requiring no changes are copied
directly to a new file (the new master rile); red®requiring one or Wore changes are written into
the new master file only after all necessary charge/e been made. Insertions of new records are
made in the proper sequence. They are written tiltonew master file at the appropriate place.
Records to be deleted are not copied to the neweméike. A big advantage of this method of
update is the creation of an automatic backup c®pg. new master file can always be recreated by
processing the old master file and the transadiien

I, Ry Ry By -

Block, Black, Black,

3 : A file with empty spaces for record insertions

A possible method of reducing the creation of a fieaat each update run is to create the original
file with "holes" (space left for the addition oféw records, as shown in the last figure). As siich,
block could hold K records, then at initial creatibis made to contain only L * K records, where 0
<L < 1is known as the loading factor. Additiosglace may also be earmarked for records that may
"overflow" their blocks, e.g., if the record ri lieglly belongs to block Bi but the physical block B
does not contain the requisite free space. Thigiaddl free space is known as the overflow area. A
similar technique is employed in index-sequentlabf

Advantages of sequential access

1. It is fast and efficient when dealing with largelumes of data that need to be processed
periodically (batch system).

Disadvantages of sequential access:

1. Requires that all new transactions be sorted the proper sequence for sequential access
processing.

19

2. Locating, storing, modifying, deleting, or adglirecords in the file requires rearranging the file

3. This method is too slow to handle applicatictguiring immediate updating or responses.
v INDEXED-SEQUENTIAL ORGANIZATION

In the indexed-sequential files method, records m@ngsically stored in sequential order on a
magnetic disk or other direct access storage dévased on the key field of each record. Each file
contains an index that references one or more iedysfof each data record to its storage location
address.

The retrieval of a record from a sequential file,average, requires access to half the recordsein t
file, making such inquiries not only inefficient towery time consuming for large files. To improve
the query response time of a sequential file, @ tfpndexing technique can be added.

An index is a set of y, address pairs. Indexingeistes a set of objects to a set of orderable
guantities, which are usually smaller in numbethmir properties provide a mechanism for faster
search. The purpose of indexing is to expeditesd@ch process. Indexes created from a sequential
(or sorted) set of primary keys are referred tindsx sequential. Although the indices and the data
blocks are held together physically, we distinguigitween them logically. We shall use the term
index file to describe the indexes and data fileefer to the data records. The index is usuallglsm
enough to be read into the processor memory.

v' TYPES OF INDEXES

The idea behind an index access structure is sinaléghat behind the indexes used commonly in
textbooks. A textbook index lists important ternighee end of the book in alphabetic order. Along
with each term, a list of page numbers where tha &ppears is given. We can search the index to
find a list of addresses - page numbers in this easd use these addresses to locate the tetma in t
textbook by searching the specified pages. Theratee, if no other guidance is given, is to sift
slowly through the whole textbooks word by wordfiied the term we are interested in, which
corresponds to doing a linear search on a filecddfse, most books do have additional information,
such as chapter and section titles, which can ireefind a term without having to search through the
whole book. However, the index is the only exadigation of where each term occurs in the book.

An index is usually defined on a single field ofila, called an indexing Field. The index typically
stores each value of the index field along withisa ¢f pointers to all disk blocks that contain a
record with that field value. The values in theardire ordered so that we can do a binary search of
the index. The index file is much smaller than tiaa file, so searching the index using binary

20

search is reasonably efficient. Multilevel indexitges away with the need for binary search at the
expense of creating indexes to the index itself!

There are several types of indexes. A primary inden index specified on the ordering key field of
an ordered file of records. Recall that an ordetkeg field is used to physically order the file
records on disk, and every record has a uniqueavialuthat field. If the ordering field is not ayke
field that is, several records in the file can hthe same value for the ordering field another type
index, called a clustering index, can be used. ddothat a file can have at most one physical
ordering field, so it can have at most one primadgex or one clustering index, but not both. Adhir
type of index, called a secondary index, can beipd on any non-ordering field of a file. A file
can have several secondary indexes in additioristprimary access method. In the next three
subsections we discuss these three types of indexes

v" PRIMARY INDEXES

A primary index is an ordered file whose records are of fixed tlervgth two fields. The first field
is of the same data types as the ordering key éittle data file, and the second field is a paoitte
a disk block - a block address. The ordering keldfis called the primary key of the data file &her
is one index entry (or index record) in the indi for each block in the data file. Each indexrgnt
has the value of the primary key field for thetfirscord in a block and a pointer to other blocksis
two field values. We will refer to the two field luas of index entry i as K (i), P (i).

To create a primary index on the ordered file shawifigure 4, we use the Name field as the

primary key, because that is the ordering key f@dlthe file (assuming that each value of NAME is
unique).

21

B 1

ek

oo £

nicEk -t

Edpak n

L LAY H]

BURTHIEETE

HOE

SALARY HEX

Ao, Ed

L

Ao, Diarw

2—mma

Aoz, Mars |

—

S abuy

Adams, Robin

| Akors, Jan |

-_.I".I‘-:l.tcund'cr, Ea

Ao, Dot

T — _]_

;I'ullu_ln_ Ty]

[nnccrs, Keilly |

| Andersen, Res

| - =
r__

Angursan, Zoch

Angoli, Jou

[hechor, S|

[Asmoid, Mack

Airedd, Sloven

ks, Tumd'u:-

Whang, damas

Wilood, Domald

g
|

!"a".l'n-uci;.-h'l-ann.-f—r

-

= T=—rna

o

[T-'mthp.um
Wpan, Chanes

dirmemaer, Byron F

E e — I

Figure 4 : Some blocks on an ordered (sequential)ld of EMPLOYEE
records with NAME as the ordering field

Each entry in the index will have a NAME value amg@ointer. The first three index entries would

be:

<K(1) = (Aaron, Ed), P()= address of block 1 >

22

<K(2) = (Adams, John), P(l) = address of block 2 >

<K(3) = (Alexander, Fd), P(3) = address of block 3

£l __HAME OSSN 0@ AL AT
q
1
2 |
3
Moz|
LE
bl ciary Folde {roérlrw painior
a 4] *
L] M
-1
3 -1
4 M+ 3 address
= SpCuC
M-z] T ' M+
-1 =1 -
Ml _ 1 Mas | 4
Mg T
M2 _ : | Maa
- - el TR
spice
=L] |
MO] ' |_¥
- nulk poirer = 21
arwielbe poinior fofiors oo posiln al
] recard in lnad lisp
Figure 5 : lllustrating internal hashing data Structures.

(a) Array of M Positions for use in hashing. (b) Cbision resolution by
chaining of records.

Figure 6 illustrates this Primary index. The tatamber of entries in the index will be the same as
the number of disk block in the ordered data fiteTirst record in each block of the data file. The
first record in each block of the data file is edlthe anchor record of the block, or simple thoekl

23

anchor (a scheme called the anchor record of gsittaléhe one described here can be used, with the
last record in each block, rather than the firsth@sblock anchor. A primary index is an example of
what is called a non-dense index because it inslateentry for each disk block of the data file
rather than for every record in the data file. Agkeindex, on the other hand, contains an entry for
every record in the file.

The index file for a primary index needs substdigtiewer blocks than the data file for two reasons
First, there are fewer index entries than thererecerds in the data file because an entry exasts f
each whole block of the data file rather than facterecord. Second, each index entry is typically
smaller in size than a data record because it hhstewo fields, so more index entries than data
records will fit in one block. A binary search ometindex file will hence require fewer block
accesses than a binary search on the data file.

A record whose primary key value is K will be irethlock whose address is P(i), where Ki < K< (i
+ 1). The ith block in the data file contains alck records because of the physical ordering of the
file records on the primary key field, we do a binaearch on the index file to find the appropriate
index entry i, then retrieve the data file blockosh address is P(i).

24

CATA FILE
(RIS
HEY FELDY
[Lt T SEM BIATHOATE JO0 SALARY HEX
’ﬁ.a-'c-q. Ed - i
| Abdaoir, Chang e
| Aoos, Mare ! |]] !
hdams, Jon '{ 1
BICEX FILE Adama, Flobin i i |
[<Blid, Pl arires) T
mwcdon | | [R
RLOCE Algxanidar, Ed L))
s farson ||
I;E;E BICI'IT.EE :
hwer.Ed | 5.': I .
Judams, Joon | ,-"'f',;ﬂ' Alan Trgy |
;ﬁi—q:mmq.r_Ed) hndanHMF!___ |. —
Alen Teoy - "3 ‘i
Areiwsan, Sach | l\\ lardomon,ien | | | I]
Al Mage —
e —-"_ -H.E-c&}'sﬂ"l, faich - I |
- . Argel, Joo . I
' mcherSwe | | I ‘
:' ; Amcid, Mack '
[Ak, Sloven a -
=
] - .]
\ Wiy Miwes
Wiaad, Do ,
\ﬂ:gdahhﬂ'r [T | |
L riche P “ i
Wyat, Craries . - J
R
S, [yyran ...i- |_ I | i .I

Figure 6 : Primary index on the ordering key fieldof the file shown in figure 5

25

v' CLUSTERING INDEXES

If records of a file are physically ordered on ankey field that does not have a distinct value, fo
each record, that field is called the clusterimidfiof the file. We can create a different typenalex,
called a clustering index, to speed up retrievalesbrds that have the same value for the clugferin
field.

CATAFILE
CLUSTERMG
FI:—_I_I'_J]

DEFTRLMZER KAKME 35N JOG DIRTHDATE SALARY

i
MIEE FILE i
=L P anmes) P
. . -
2 | o |
CLUSTERING) 2 1 |
FIELT BLoaE 3 |
VALUE FoINTER I . T
] J"f. I . |
z ill,l'll n - “
3 K [1
4 e e
5 . 4 11
& !‘ \\ - B ——
3 1, 5
|I | 5 I
! —
I'u\ o | |
I'-II T | |_
\ R
|IIII ﬂ |
4
N I
\ Fr |]
N— ,
8
8
4

Figure 7 : A clustering Index on the DEPTNUMBER orcering field of
an EMPLOYEE file

This differs from a primary index, which requirdsat the ordering field of the data file have a
distinct value for each record.

26

A clustering index is also an ordered file with tfelds; the first field is of the same type as the
clustering field of the data file and the secoreldfiis a block pointer. There is one entry in the
clustering index for each distinct value of thestéwing field, containing that value and a poiriter
the first block in the data file that has a recarth that value for its clustering field.

27

IS TERMG
FEELD)

DIEFTRLIMEER MNAME

o

LATA FLE

SEN JOE BIRTHODATE el asy

~T

I |
I bt

—

Bk e

==

J

tick painer

._J,-' -"1' il poiniar

/__
/,f’

I'JIHIHIII

)
|

/

biock pointer

" -—ﬂ redl poinior
MOEX FILE [al -
CediD. Eife: enasa) =] L]
I -
I |
GLUSTEHING | / bineE poinoar . ﬂm—l nointer
B sLock |
CWALLE PORTER|) i
| 1 i 4
; ﬂr - |
a
3 "r(Blnex pointar |—'-"f_lnul;»-nme
a I
B - - _& .
1 .) - B
i A&
| "\ SN IS S S R — !
II "'., bln{:-:pnﬂ:gf -—t wnul paintor
| h, =
I H_l [:
| - e |
u 3 n
[& - !
| 8 . [
Ii bincx pairoey .—'ﬂ'r/_Tqu paintur
f al —
= —] —
|
lll B I::'u'h i '—-—"fq}ﬂle-nn:h:
e 1 T B |
i]
ot]
1 —
| Bleck painter .__f “;r'r.llp-tlrl:Ef

Figure 8 : Clustering index with separate blocks foeach group of records witt

the same value for the clustering field

28

Figure 7 shows an exam le of a data file with a&teling index. Note the record and record deletion
still cause considerable problems because therdatads are physically ordered. To alleviate the
problem of insertion, it is common to reserve a lghwock for each value of the clustering field; al
records with that value are placed in the blockndire than one block is needed to store the recordg
for a particular value, additional blocks are aditexl and linked together. This makes insertion and
deletion relatively straightforward.

v' SECONDARY INDEXES

A secondary index also is an ordered file with firedds, and, as in the other indexes, the second
field is a pointer to a disk block. The first figklof the same data type as some non-ordering) diel
the data file. The field on which the secondaryeid constructed is called an indexing field of th
file, whether its values are distinct for everyaetor not. There can be many secondary indexes,
and hence indexing fields, for the same file.

We first consider a secondary index on a key figddield having a distinct value for every recard
the data file. Such a field is sometimes calle@@sdary key for the file. In this case there is on
index entry for each record in the data file, whinads the value of the secondary key for the record
and a pointer to the block in which the recordt@ed. A secondary index on a key field is a dense
index because it contains one entry for each reicottte data file.

We again refer to the two field values of indexrgmtas K(i), P(i). The entries are ordered by ealu
of K(i), so we can use binary search on the ind&cause the records of the data file are not
physically ordered by values of the secondary k&lg fwe cannot use block

29

IKDEX FILE
[aME), Plil= salnas]

B

FIELD BLOCH

VALLE POIMTER
R

2

3 . N
S

3 |

- 1 p—
& i
1 .

I
[+ | ¢

w | sy
" i
[
T

14
T
w | ¥
)

& | e
] -
Y

; F

a -
T o
o _-lf"

Figure 9 : A dense secondary Index on a non orderinkey field of a file

anchors. That is why an index entry is createdefzh record in the data file rather than for each
block as in the case of a primary index. Figurbugtrates a secondary index on a key attribute of
data file. Notice that in figure 9 the pointers)R(i the index entries are block pointers, not rdco
pointers. Once the appropriate block is transfetoechain memory, a search for the desired record

within the block can be carried out.

A secondary index will usually need substantiallgrenstorage space than a primary index because
of its larger number of entries. However, the iny@ment in search time for an arbitrary record is
much greater for a secondary index than it is fprimary index, because we would have to do a
linear search on the data file if the secondargxndid not exist.

CATA FILE
DEXING
FELD
(SCOORDRRY
KEY FIELD:
| q |
5 |
13 |
L B |
- N [I I
i = —T
| a
—_—
SRS LN N —_—
B — |
o u_{ i
[T] |
g oo |
2 | 1]
1w B
A0 |
1 |
;1 . 4 l 1
N A =] |
23
"--':. 18| - _‘
| |
Y
\‘ . 12
—N 7
19
=

30

v STRUCTURE OF INDEX SEQUENTIAL FILES

An index-sequential file consists of the data phag or more levels of indexes. When inserting a
record, we have to maintain the sequence of recandsthis may necessitate shifting subsequent
records. For a large file this is a costly and fisefnt process. Instead, the records that overflow
their logical area are shifted into a designateelrtow area and a pointer is provided in the logica
area or associated index entry points to the awgrfbcation. This is illustrated below (figure 10).
Record 165 is inserted in the original logical laausing a record to be moved to an overflow
block.

Bt EW L | G |
H I : : |

Originial ol Bk

™

| i LR m{j _pl B

veyna ol Laca Curlow dlock
Figure 10 : Overflow of record

Multiple records belonging to the same logical areay be chained to maintained logical
sequencing. When records are forced into the aweréireas as a result of insertion, the insertion
process is simplified, but the search time is iasegl. Deletion of records from index-sequentiabfli
creates logical gaps; the records are not phygicathoved but only flagged as having been deleted.
If there were a number of deletions, we may hageeat amount of unused space.

An index-sequential file is therefore made up @f fibllowing components:

1. A primary data storage area. In certain systdnss area may have unused spaces embedde(
within it to permit addition of records. It may alsclude records that have been marked as having
been deleted.

2. Overflow area(s). This permits the addition edards to the files. A number of schemes exist for
the incorporation of records in these areas intoettpected logical sequence.

3. A hierarchy of indices. In a random inquiry qdate, the physical location of the desired record
is obtained by accessing these indices.

The primary data area contains the records wriitethe users' programs. The records are written in
data blocks in ascending key sequence. These kbatieskare in turn stored in ascending sequence in

31

the primary data area. The highest key of the klgiecords contained in them sequences the datg
blocks.

v' DIRECT FILE ORGANISATION

In the index-sequential file organization consideie the previous sections, the mapping from the
search-key value to the storage location is viaxnehtries. In direct file

- ——

Ry valog —*l Hash fuction | E— i (5

Figure 11 : Mapping from a key value to an addressalue

organization, the key value is mapped directlyhte storage location. The usual method of direct
mapping is by performing some arithmetic manipolatof the key value. This process is called
hashing. Let us consider a hash function h thatsittag key value k to the value h(k). The value h(k)
is used as an address and for our application weireethat this value be in some range. If our
address area for the records lies between S1 grii&Squirement for the hash function h(k) ig tha
for all values of k it should generate values betw81 and S2.

It is obvious that a hash function that maps maffgrént key values to a single address or one that
does not map the key values uniformly is a bad lasttion. A collision is said to occur when two
distinct key values are mapped to the same stdwagdion. Collision is handled in a number of
ways. The colliding records may be assigned tanthe available space, or they may be assigned to
an overflow area. We can immediately see that wi#lshing schemes there are no indexes to
traverse. With well-designed hashing functions \eleallisions are few, this is a great advantage.

Another problem that we have to resolve is to deeithat address is represented by h(k). Let the
addresses generated by the hash function the addresbuckets in which the y, address pair values
of records are stored. Figure shows the bucketdairong the y, address pairs that allow a
reorganization of the actual data file and acteabrd address without affecting the hash functions.
A limited number of collisions could be handledauatically by the use of a bucket of sufficient
capacity. Obviously the space required for the btehkvill be, in general, much smaller than the
actual data file. Consequently, its reorganizatigihnot be that expensive. Once the bucket address
is generated from the key by the hash functionaraein the bucket is also required to locate the
address of the required record. However, sincéto&et size is small, this overhead is small.

The use of the bucket reduces the problem assdardth collisions. In spite of this, a bucket may

become full and the resulting overflow could bediad by providing overflow buckets and using a
32

pointer from the normal bucket to an entry in thverfiow bucket. All such overflow entries are
linked. Multiple overflows from the same bucketuks in a long list and slows down the retrieval of
these records. In an alternate scheme, the adgkeessated by the hash function is a bucket addresg
and the bucket is used to store the records direwdtead of using a pointer to the block contagnin

the record.

Elosks of rmoonds

Hl:;:k-::l.: idl]ﬁ
by acddrusy —
gu-; 177. .. _
al | ——— —_— -
uzn N ’ | e
LG —' -] -
L
Bucke, 176 .
mlT? - 2] -.l
KPR
! sl
n!lﬂku!n 'M-:'
B — =N
. N
] N I 204
Clverflow
i buckels
Lafzsn]| 11)
i D

Figure 12 : Bucket and block organization for hashig

Let s represent the value:

s = upper bucket address value - lower bucket addralue + 1

33

Here, s gives the number of buckets. Assume thdtave some mechanism to convert key values to
numeric ones. Then a simple hashing function is:

h(k) = k mod S

Where k is the numeric representation of the kay latk) produces a bucket address. A moment's
thought tells us that this method would performlwesome cases and not in others.

It has been shown, however, that the choice ofimepnumber for s is usually satisfactory. A
combination of multiplicative and divisive methodan be used to advantage in many practical
situations.

There are innumerable ways of converting a key naraeric value. Most keys are numeric; others
may be either alphabetic or alphanumeric. In titeddwo cases, we can use the bit representation o
the alphabet to generate the numeric equivalentAkeymber of simple hashing methods are given
below. Many hashing functions can be devised froes¢ and other ways.

1. Use the low order part of the key. For keys ta& consecutive integers with few gaps, this
method can be used to map the keys to the avatabige.

2. End folding. For long keys, we identify startiddle, and end regions, such that the sum of the
lengths of the start and end regions equals thgtHeof the middle region. The start and end digits
are concatenated and the concatenated stringftd driadded to the middle region digits. This new
number, mod s where s is the upper limit of thentfaaction, gives the bucket address:

123456 123456789012 654321

For the above key (converted to integer valuedled) the end folding gives the two values to be
added as: 123456654321 and 123456789012.

3. Square all or part of the key and take a parhfthe result. The whole or some defined part ef th
key is squared and a number of digits are seldobea the square as being part of the hash result. A
variation is the multiplicative scheme where ond pathe key is multiplied by the remaining part
and a number of digits are selected from the result

4. Division. As stated in the beginning of thistsmt, a number, usually a prime, can divide the key
and the remainder is taken as the bucket addressnple check with, for instance, a divisor of 100
tells us that the last two digits of any key wdhmain unchanged. In applications where keys may be|
in some multiples, this would produce, a poor restherefore, division by a prime number is
recommended. For many applications, division by wdehbers that have no divisors less than about
19 gives satisfactory results.

34

We can conclude from the above discussion thatnabeu of possible methods for generating a hash
function exist. In general it has been found thashhfunctions using division or multiplication
performs quite well under most conditions.

v' HASH FILES ORGANIZATION

Hashing (hash addressing) is a technique for progithst direct access to a specific record on

the basis of a given value of some field. If twahwore key values hash to the same disk address, we

have a collision.
The hash function should distribute the domainhef key possibly evenly among the address space
of the file to minimize the chance of collision.& bollisions may cause a page to overflow.

v" HASH FUNCTIONS

A good hash function gives an average-case lookap is a small constant, independent of the
number of search keys.

= We hope records are distributed uniformly amongiinekets.

» The worst hash function maps all keys to the sancéed.

» The best hash function maps all keys to distindreskes.

= Ideally, distribution of keys to addresses is umfand random

To summarize the advantages and disadvantagess @fpproach:
Advantages of hashing
1. Exact key matches are extremely quick.

2. Hashing is very good for long keys, or thosehwitultiple columns, provided the complete key
value is provided for the query.

3. This organization usually allows for the allocat of disk space so a good deal of disk
management is possible.

4. No disk space is used by this indexing method.

Disadvantages of hashing
1. It becomes difficult to predict overflow becauke workings of the hashing algorithm will not be
visible to the DBA.

2. No sorting of data occurs either physicallyagitally so sequential access is poor.

35

14

3. This organization usually takes a lot of disk@pto ensure that no overflow occurs there isia pl
side to this though. no space is wasted on indextstes because they simply don't exist.

v' DIRECT ORGANIZATION

Direct file organization provides the fastest diraccess to records. When using direct access
methods, records do not have to be arranged in pamjicular sequence on storage media.
Characteristics of the direct access method include

1. Computers must keep track of the storage lacatib each record using a variety of direct
organization methods so that data can be retriesdesh needed.

2. New transactions' data do not have to be sorted.
3. Processing that requires immediate responsasdating is easily performed.

v DATA ACCESS
Database access and manipulation is performed ubmglata manipulation statements. These
statements, which are specifically designed toraatewith an Eloquence database, are invoked
through Eloquence language programs. These statemenstructured so that each one suggests its
function (for example, DBGET gets data from a daf. All data access is carried out at the data
entry level (this is known as the "full record mtdéData entries may be accessed in one of five
modes:serial, directed, chained, indexed or cal culated.

v' SERIAL ACCESS

When accessing a data set in serial mode, EloqueBddS starts at the most recently accessed
record (data entry), called tloarrent record and sequentially examines records until the neom;
empty record is located. This record is then tramefl to the data buffer and becomes the new
current record. Serial access is often used to maaar list all entries in a data set.

The following example shows entries in the PRODU@aster data set. The record numbers are
shown to the left of each entry. The arrows toléfieof the record number show how entries will be
retrieved in serial mode. If the current recordljdor example, the next record accessed in serial
mode will be record number 5.

36

RECOED SEARCH CTHER

MNUMEER ITERM DATA

< 1 100 Srandard Bisycle

o 2 50 Tricycle

< 3 1000 10-Speed Bicyde
4 500 S-Speed Bioye

< 5 300 3-Speed Bioyde

\/w

Figure 13 A Serial Access of the PRODUCT Masteral&et

v' DIRECTED ACCESS

A second method of accessing a data entry is ddestcess. With this method, Eloquence DBMS
returns the record specified by a record numbeplggby a program. If the specified record is non-
empty the record is transferred to the data buffehe record is empty a status error is returried.
either case, the current record is set to the despecified. Directed access is used to read entrie
following a SORT or FIND operation.

The following example shows the retrieval of anrgnising directed access. The record number 5,
supplied by an application program, instructs Etgpe DBMS to retrieve record 5. Eloquence
DBMS then copies the record into the data buffer @sets the current record to 5.

RECORD SEARCH OTHER
NUMEER ITEM DATA
Record
1 1m0 omndard Bicyck
Namber 5
umber 2 1] Tocycle
Sapplled 2 1000 10-3pesd Bicyde
4 500 5-8peed Bigycle
5 300 3-3peed Bigycle

T~ T~

Figure 14 Directed Access of the PRODUCT Masteralhst

37

v' CHAINED ACCESS

Chained access is used to retrieve detail datéesntith common search item values. Eloquence
DBMS supports chained access in a forward directmtries along a data chain may be accessed in
a reverse direction, however, by using directedesgcand the status information returned by
Eloguence DBMS. Chained access of detail dataisetiken used for retrieving information about
related events.

The following example shows the retrieval of detaitries using chained access. The corresponding
chain pointer information, maintained by EloqueB#MS, is shown along with the record number
for the data set. Eloquence DBMS uses this poinfermation to retrieve the next entry along the
chain. The arrows to the left of the record numistrsw how entries will be retrieved in chained
mode. If the current record is 5, for examplethet mecord accessed in chained mode will be 7.

CUSTOMEE. (detail) Data Set
RECORD FORWARD BACEWARD 3EARCH OTHER
MIMEER CHAIN CHAIN ITEM DATA
POINTER POINTER (FRODUCT-NO) {MAME)
1 N n 100 Jimmy Drailing
2 3 n 0 Malcomb Giesing
< 3 0 n 00 Earton Decker
4 & 0 300 2ean Houeeman
5 7 2] 3am Jolmecn
C & 0 4 300 Eart Beder
7 1] 3 0 Thomas 3mith

- | . ——
T v‘_’_

Figure 5 Chained Access of the CUSTOMER Detail Caett

38

INTRODUCTION TO DATA BASE MANAGEMENT

As the name suggests, the database managememh €gsisists of two parts. They are:
1. Database and
2. Management System

v' WHAT IS A DATABASE?
To find out what database is, we have to start foama, which is the basic building block of any
DBMS.
Data: Facts, figures, statistics etc. having no paléicimeaning (e.g. 1, ABC, 19 etc).
Record: Collection of related data items, e.g. in thevabexample the three data items had no
meaning. But if we organize them in the followingyy then they collectively represent meaningful
information.

Roll | Name | Age
1 ABC 19

Table or Relation: Collection of related records.

Roll | Name Age
1 ABC 19
2 DEF 22
3 XYZ 28

The columns of this relation are callégtlds, Attributes or Domains The rows are calle@uples
orRecords

Database Collection of related relations. Consider thédwing collection of tables:

T1

Roll | Name Age

1 ABC 19

2 DEF 22

3 XYZ 28
T2

Roll Address

1 KOL

2 DEL

3 MUM

39

T3

Roll Year
1 I
2 Il
3 I
T4
Year Hostel
I H1
Il H2

We now have a collection of 4 tables. They candiled a “related collection” because we can
clearly find out that there are some common atteb@xisting in a selected pair of tables. Because
of these common attributes we may combine the afat&o or more tables together to find out the
complete details of a student. Questions like “WHostel does the youngest student live in?” can
be answered now, althougiye andHostd attributes are in different tables.

In a database, data is organized strictly in rod/@lumn format. The rows are call€dple or
Record. The data items within one row may belong to défe data types. On the other hand, the
columns are often callddomain or Attribute . All the data items within a single attribute afe¢he
same data type.

v' WHAT IS MANAGEMENT SYSTEM?
A management system is a set of rules and procedhieh help us to create organize and
manipulate the database. It also helps us to addifyrdelete data items in the database. The
management system can be either manual or compederi
The management system is important because withewgxistence of some kind of rules and
regulations it is not possible to maintain the Hate. We have to select the particular attributes
which should be included in a particular table; ¢benmon attributes to create relationship between
two tables; if a new record has to be insertedetetdd then which tables should have to be handled
etc. These issues must be resolved by having samdeok rules to follow in order to maintain the
integrity of the database.

v' DBMS

A database-management systeDBMS) is a collection of interrelated data andea & programs
to access those data. This is a collection of edlatata with an implicit meaning and hence is a
40

database. The collection of data, usually refetoesis thedatabase contains information relevant to
an enterprise. The primary goal of a DBMS is tovpgie a way to store and retrieve database
information that is botleonvenient andefficient. By data, we mean known facts that can be recorded
and that have implicit meaning. For example, cagrsiie names, telephone numbers, and addresse|
of the people you know. You may have recorded dhis in an indexed address book, or you may
have stored it on a diskette, using a personal atenpand software such as DBASE IV or V,
Microsoft ACCESS, or EXCEL. Alatum — a unit of data — is a symbol or a set of symbdaigh is
used to represent something. This relationship éatwsymbols and what they represent is the
essence of what we mean iyormation. Hence, information is interpreted data — datgpbeg
with semanticsKnowledge refers to the practical use of information. Whitdormation can be
transported, stored or shared without many diffiealthe same can not be said about knowledge.
Knowledge necessarily involves a personal expeeieReferring back to the scientific experiment, a
third person reading the results will have inforimatabout it, while the person who conducted the
experiment personally will have knowledge about it.
Database systems are designed to manage larges lmbdirformation. Management of data involves
both defining structures for storage of informatammd providing mechanisms for the manipulation
of information. In addition, the database systenstansure the safety of the information stored,
despite system crashes or attempts at unauthosizesks. If data are to be shared among severa
users, the system must avoid possible anomaloukses

v DATA PROCESSING VS. DATA MANAGEMENT SYSTEMS
Although Data Processing and Data Management Sgdbeth refer to functions that take raw data
and transform it into usable information, the usafthe terms is very differenData Processings
the term generally used to describe what was dgnkarge mainframe computers from the late
1940's until the early 1980's (and which continieelse done in most large organizations to a greater
or lesser extent even today): large volumes of trawsaction data fed into programs that update a
master file, with fixed-format reports written tager.
The termData Management Systemsefers to an expansion of this concept, where &he data,
previously copied manually from paper to punchedigaand later into data-entry terminals, is now
fed into the system from a variety of sources,udolg ATMs, EFT, and direct customer entry
through the Internet. The master file concept heenbargely displaced by database management
systems, and static reporting replaced or augmebtedad-hoc reporting and direct inquiry,
including downloading of data by customers. Thejulty of the Internet and the Personal Computer
have been the driving force in the transformatibiata Processing to the more global concept of
Data Management Systems.

v" CHARACTERISTICS OF DATABASE
= Concurrent Use

41

%)

= A database system allows several users to accesslatabase concurrently. Answering
different questions from different users with tteene (base) data is a central aspect of an
information system. Such concurrent use of dateeases the economy of a system.

An example for concurrent use is the travel datalmsa bigger travel agency. The employees of
different branches can access the database conttyramd book journeys for their clients. Each
travel agent sees on his interface if there atesstats available for a specific journey or ifist
already fully booked.

» Structured and Described Data
A fundamental feature of the database approadhaisthe database systems does not only contain
the data but also the complete definition and de$on of these data. These descriptions are
basically details about the extent, the structtire type and the format of all data and, additignal
the relationship between the data. This kind ofestalata is called metadata ("data about data”).

= Separation of Data and Applications
As described in the feature structured data thectstre of a database is described throongtadata
which is also stored in the database. An applicag@itware does not need any knowledge about the|
physical data storage like encoding, format, steratace, etc. It only communicates with the
management system f a database (DBMS) via a stdieddr interface with the help of a
standardised language like SQL. The access to dte ahd the metadata is entirely done by the
DBMS. In this way all the applications can be tiytaleperated from the data. Therefore database
internal reorganisations or improvement of efficgmo not have any influence on the application
software.

» Data Integrity
Data integrity is a byword for the quality and ttediability of the data of a database system. In a
broader sense data integrity includes also theeptionh of the database from unauthorised access
(confidentiality) and unauthorised changes. Dafl@cefacts of the real world. database.

» Transactions
A transaction is a bundle of actions which are deitkin a database to bring it from one
consistent state to a new consistent state. In detwthe data are inevitable inconsistent. A
transaction is atomic what means that it cannadieled up any further. Within a transaction all or
none of the actions need to be carried out. Doinly @ part of the actions would lead to an
inconsistent database state. One example of aataos is the transfer of an amount of money from
one bank account to another. The debit of the mémoey one account and the credit of it to another
account makes together a consistent transactias.tnsaction is also atomic. The debit or credit
alone would both lead to an inconsistent stateerAfhishing the transaction (debit and credit) the
changes to both accounts become persistent armhéheho gave the money has now less money on
his account while the receiver has now a highearizsd.

= Data Persistence
Data persistence means that in a DBMS all dataaistained as long as it is not deleted explicitly.
The life span of data needs to be determined djrectindirectly be the user and must not be

dependent on system features. Additionally data @tared in a database must not be lost. Changeg
42

of a database which are done by a transactionesgsfent. When a transaction is finished even a
system crash cannot put the data in danger.

v ADVANTAGES AND DISADVANTAGES OF A DBMS
Using a DBMS to manage data has many advantages:

Redundancy is the problem of storing the sameitiatain more one place. Redundancy
creates several problems like requiring extra g@space, entering same data more than
once during data insertion, and deleting data fneone than one place during deletion.
Anomalies may occur in the database if inserti@hetibn etc are not done properly.

But in computerized DBMS, many users can sharsdinge database if they are connected
via a network.

rules and restrictions about what kind of data im@entered or manipulated within the
database. This increases the reliability of thaluke as it can be guaranteed that no wrong
data can exist within the database at any poitibad.

Concurrent access and crash recovery: A DBMS sdébgadoncurrent accesses to the data in such g
manner that users can think of the data as beiogsaed by only one user at a time. Further, the
DBMS protects users from the effects of systenufas.

Reduction of Redundancy:This is perhaps the most significant advantagesofguDBMS.

Sharing of Data: In a paper-based record keeping, data cannot lbedshenong many users.

Data Integrity: We can maintain data integrity by specifying intggconstrains, which are

Data independenceApplication programs should be as independent asiple from details
of data representation and storage. The DBMS canige an abstract view of the data to
insulate application code from such details.

Efficient data access:A DBMS utilizes a variety of sophisticated techreguo store and
retrieve data efficiently. This feature is espdgiahportant if the data is stored on external
storage devices.

Data integrity and security: If data is always accessed through the DBMS, th&BRan
enforce integrity constraints on the data. For eplanbefore inserting salary information for
an employee, the DBMS can check that the departimedgiet is not exceeded. Also, the
DBMS can enforceaccess controls that govern what data is visible to different ctasef
users.

Data administration: When several users share the data, centralizingdhenistration of
data can offer significant improvements. Experiehggofessionals who understand the
nature of the data being managed, and how diffeggatips of users use it, can be
responsible for organizing the data representatominimize redundancy and fine-tuning
the storage of the data to make retrieval efficient

Reduced application development time:Clearly, the DBMS supports many important
functions that are common to many applications ssiog data stored in the DBMS. This, in
conjunction with the high-level interface to thetajafacilitates quick development of

43

applications. Such applications are also likelypéomore robust than applications developed
from scratch because many important
tasks are handled by the DBMS instead of beingemphted by the application.

v DISADVANTAGES OF A DBMS
= Danger of a Overkill: For small and simple applications for single asemdatabase system
is often not advisable.
= Complexity: A database system creates additional complexitiyraquirements. The supply
and operation of a database management systemsewnttral users and databases is quite
costly and demanding.
» Qualified Personnel The professional operation of a database systgunes appropriately
trained staff. Without a qualified database adntiater nothing will work for long.
= Costs Through the use of a database system new castgeaerated for the system itselfs
but also for additional hardware and the more cemphndling of the system.
» Lower Efficiency: A database system is a multi-use software whschfien less efficient
than specialised software which is produced anoiiged exactly for one problem.
» Instances and Schemas
Databases change over time as information is edeahd deleted. The collection of information
stored in the database at a particular moment lisdcan instance of the database. The overall
design of the database is called the databeaisema Schemas are changed infrequently, if at all.
The concept of database schemas and instances aamdbrstood by analogy to a program written
in a programming language. A database schema pomds to the variable declarations (along with
associated type definitions) in a program. Eaclabée has a particular value at a given instane Th
values of the variables in a program at a pointinme correspond to amstance of a database
schema.
Database systems have several schemas, partitgogedling to the levels of abstraction.
The physical schemadescribes the database design at the physical \ehée thelogical schema
describes the database design at the logical kdlelabase may also have several schemas at th¢
view level, sometimes calleslibschemasthat describe different views of the database.
Of these, the logical schema is by far the mostomigmt, in terms of its effect on application
programs, since programmers construct applicatlmnaising the logical schema. The physical
schema is hidden beneath the logical schema, andisizlly be changed easily without affecting
application programs. Application programs are saidxhibitphysical data independencé they
do not depend on the physical schema, and thus neede rewritten if the physical schema
changes.

v DATABASE LANGUAGES
A database system provideslata definition languageto specify the database schema amthia
manipulation languageto express database queries and updates. In grattecdata definition and

44

U

data manipulation languages are not two separatgudaes; instead they simply form parts of a
single database language, such as the widely u@eda®guage.

v DATA-DEFINITION LANGUAGE
We specify a database schema by a set of definigapressed by a special language callddta-
definition language (DDL).
For instance, the following statement in the SQiglaage defines theecount table:
create table account (account-number char(10), balance integer)
Execution of the above DDL statement createsaticeunt table. In addition, it updates a special set
of tables called thdata dictionary or data directory.
A data dictionary containsietadata—that is, data about data. The schema of a talda sxample
of metadata. A database system consults the dzatardiry before reading or modifying actual data.
We specify the storage structure and access metheeld by the database system by a set of
statements in a special type of DDL calleddata storage and definition language. These
statements define the implementation details obiitebase schemas, which are usually hidden from|
the users.
The data values stored in the database must sagsfginconsistency constraints For example,
suppose the balance on an account should not é&dwb$100. The DDL provides facilities to
specify such constraints. The database system«k ¢hese constraints every time the database is
updated.

v DATA-MANIPULATION LANGUAGE
Data manipulation is

= The retrieval of information stored in the database

» The insertion of new information into the database

= The deletion of information from the database

= The modification of information stored in the dadae
A data-manipulation language (DML) is a language that enables users to access or uaeip
data as organized by the appropriate data modeteTdre basically two types:
Procedural DMLs require a user to specityhat data are needed ahdw to get those data.
Declarative DMLs (also referred to asonprocedural DMLS) require a user to
specifywhat data are needesithout specifying how to get those data.
Declarative DMLs are usually easier to learn ang than are procedural DMLs. However, since a
user does not have to specify how to get the diataglatabase system has to figure out an efficient
means of accessing data. The DML component of @lel8nguage is nonprocedural.
A query is a statement requesting the retrieval of inforomatThe portion of a DML that involves
information retrieval is called guery language Although technically incorrect, it is common
practice to use the termysery language anddata manipulation language synonymously.
This query in the SQL language finds the name efcistomer whose customer-id
is 192-83-7465:

45

selectustomer .customer-name

from customer
wherecustomer.customer-id = 192-83-7465
The query specifies that those rofsm the tablecustomer where the customer-id is 192-83-7465
must be retrieved, and tleastomer-name attribute of these rows must be displayed.
Queries may involve information from more than teigle. For instance, the following
guery finds the balance of all accounts owned byctistomer with customerid 192-83-7465.

selectaccount.balance

fromdepositor, account

wheredepositor.customer-id = 192-83-746%and

depositor.account-number = account.account-number
There are a number of database query language®jreither commercially or experimentally.
The levels of abstraction apply not only to defgor structuring data, but also to manipulatingadat
At the physical level, we must define algorithmatthllow efficient access to data. At higher levels
of abstraction, we emphasize ease of use. Theiggtahllow humans to interact efficiently with the
system. The query processor component of the dsgabgstem translates DML queries into
sequences of actions at the physical level of #talthse system.

v' DATA DICTIONARY

We can define a data dictionary as a DBMS comporibat stores the definition of data
characteristics and relationships. You may rec¢elt such “data about data” were labeled metadata.
The DBMS data dictionary provides the DBMS with stdf describing characteristic. In effect, the
data dictionary resembles and X-ray of the compmeytire data set, and is a crucial element in the
data administration function.
The two main types of data dictionary exist, int#gd and stand alone. An integrated data
dictionary is included with the DBMS. For exampéd, relational DBMSs include a built in data
dictionary or system catalog that is frequentlyessed and updated by the RDBMS. Other DBMSs
especially older types, do not have a built in ditaionary instead the DBA may use third party
stand alone data dictionary systems.
Data dictionaries can also be classified as actvepassive. An active data dictionary is
automatically updated by the DBMS with every dasmbaccess, thereby keeping its access
information up-to-date. A passive data dictionayot updated automatically and usually requires a
batch process to be run. Data dictionary accessnrdtion is normally used by the DBMS for query
optimization purpose.
The data dictionary’s main function is to store thescription of all objects that interact with the
database. Integrated data dictionaries tend ta thmir metadata to the data managed by the DBMS.
Stand alone data dictionary systems are more ysomlfe flexible and allow the DBA to describe
and manage all the organization’s data, whethamobrthey are computerized. Whatever the data
dictionary’s format, its existence provides dat&bdssigners and end users with a much improved

46

ability to communicate. In addition, the data diogry is the tool that helps the DBA to resolveadat
conflicts.

Although, there is no standard format for the infation stored in the data dictionary several
features are common. For example, the data dictydgpically stores descriptions of all:

» Data elements that are define in all tables ofdallabases. Specifically the data
dictionary stores the name, datatypes, display dsmnternal storage formats, and
validation rules. The data dictionary tells whereedement is used, by whom it is
used and so on.

» Tables define in all databases. For example, tie diationary is likely to store the
name of the table creator, the date of creatiomsscauthorizations, the number of
columns, and so on.

* Indexes define for each database tables. For eaelx the DBMS stores at least the
index name the attributes used, the location, 8pecddex characteristics and the
creation date.

» Define databases: who created each database,tthefdaeation where the database
is located, who the DBA is and so on.

* End users and The Administrators of the data base

 Programs that access the database including sciesnats, report formats
application formats, SQL queries and so on.

» Access authorization for all users of all databases

* Relationships among data elements which elemenrdsirarolved: whether the
relationship are mandatory or optional, the conmiggtand cardinality and so on.

If the data dictionary can be organized to incldd¢éa external to the DBMS itself, it becomes an
especially flexible to for more general corporaeaurce management. The management of such a
extensive data dictionary, thus, makes it possiblenanage the use and allocation of all of the
organization information regardless whether ititmsoots in the database data.

v DATABASE USERS AND USER INTERFACES
There are four different types of database-systsarsy differentiated by the way they expect to
interact with the system. Different types of usgeifaces have been designed for the differentstype
of users.
Naive usersare unsophisticated users who interact with theaesysby invoking one of the
application programs that have been written preshipuFor example, a bank teller who needs to
transfer $50 from accourt to accountB invokes a program calledansfer. This program asks the
teller for the amount of money to be transferrdee ticcount from which the money is to be
transferred, and the account to which the monéy e transferred.
As another example, consider a user who wishemtbher account balance over the World Wide
Web. Such a user may access a form, where shes érgieaccount number. An application program
at the Web server then retrieves the account baJamsing the given account number, and passes
this information back to the user. The typical usgerface for naive users is a forms interface,

47

where the user can fill in appropriate fields of florm. Naive users may also simply reagdorts
generated from the database.

Application programmers are computer professionals who write applicatiamgprms. Application
programmers can choose from many tools to develser unterfaces.Rapid application
development (RAD)tools are tools that enable an application programtm construct forms and
reports without writing a program. There are alpecsal types of programming languages that
combine imperative control structures (for exampie;, loops, while loops and if-then-else
statements) with statements of the data manipuldéinguage. These languages, sometimes calleg
fourth-generation languages, often

include special features to facilitate the generatf forms and the display of data on the screen.
Most major commercial database systems includedhf@eneration language.

Sophisticated usersinteract with the system without writing prograniisstead, they form their
requests in a database query language. They sedbwtit such query to guery processor whose
function is to break down DML statements into instions that the storage manager understands,
Analysts who submit queries to explore data inda@base fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by letting them view
summaries of data in different ways. For instarare,analyst can see total sales by region (for
example, North, South, East, and West), or by prhdur by a combination of region and product
(that is, total sales of each product in each r@gidhe tools also permit the analyst to selectiipe
regions, look at data in more detail (for examphldes by city within a region) or look at the deta
less detail (for example, aggregate products t@yddii category).

Another class of tools for analysts data mining tools, which help them find certain kinds of
patterns in data.

Specialized usersare sophisticated users who write specialized datlpplications that do not fit
into the traditional data-processing framework.

Among these applications are computer-aided desygtems, knowledge base and expert systems
systems that store data with complex data typaseffample, graphics data and audio data), and
environment-modeling systems.

v DATABASE ADMINISTRATOR

One of the main reasons for using DBMSs is to hesmtral control of both the data and the
programs that access those data. A person whouichscentral control over the system is called a
database administrator(DBA). The functions of a DBA include:

= Schema definition The DBA creates the original database schemabguting a set of data
definition statements in the DDL.

» Schema and physical-organization modification The DBA carries out changes to the
schema and physical organization to reflect thegimg needs of the organization, or to alter
the physical organization to improve performance.

= Granting of authorization for data access By granting different types of authorization, the
database administrator can regulate which parniseoflatabase various users can access. The

48

authorization information is kept in a special syststructure that the database system
consults whenever someone attempts to accessténendhe system.

* Routine maintenance Examples of the database administrator's routm@ntenance
activities are:

1. Periodically backing up the database, either ceyppes or onto remote servers, to prevent loss
of data in case of disasters such as flooding.

2. Ensuring that enough free disk space is availatnenérmal operations, and upgrading disk
space as required.

3. Monitoring jobs running on the database and engutiat performance is not degraded by
very expensive tasks submitted by some users.

v' DBMS ARCHITECTURE

Three important characteristics of the databaseoapp are (1) insulation of programs and data
(program-data and program-operation independe@e¥upport of multiple user views; and (3) use
of a catalog to store the database descriptiore(salh In this section we specify an architecture fo
database systems, called theee-schema architecture which was proposed to help achieve and
visualize these characteristics.

The goal of the three-schema architecture, illtsttain Figure 1.1, is to separate the user
applications and the physical database. In thisi@cure, schemas can be defined at the following
three levels:

1. Theinternal level has aninternal schema,which describes the physical storage structure of
the database. The internal schema uses a phystalndodel and describes the complete
details of data storage and access paths for tabake.

2. Theconceptual levelhas aconceptual schemaywhich describes the structure of the whole
database for a community of users. The concepttensa hides the details of physical
storage structures and concentrates on describitiies, data types, relationships, user
operations, and constraints. A high-level data rhodan implementation data model can be
used at this level.

3. Theexternal or view level includes a number oéxternal schemasor user views.Each
external schema describes the part of the datdbasa particular user group is interested in
and hides the rest of the database from that usermpg A high-level data model or an
implementation data model can be used at this.level

49

O ey
|

B ol End Users
External External
View o View
b -
I -
‘\-\.H _,.--"’/-/
Cw, >
| Conceptual Schema |
'
| Y

Internal Schema |

el

Stored Datahase

Figure 1.1 The Three Schema Architecture

The three-schema architecture is a convenientftoathe user to visualize the schema levels in a
database system. Most DBMSs do not separate tbe thvels completely, but support the three-
schema architecture to some extent. Some DBMSs imelyde physical-level details in the
conceptual schema. In most DBMSs that support visers, external schemas are specified in the
same data model that describes the conceptualileeeination. Some DBMSs allow different data
models to be used at the conceptual and extenvelkle

Notice that the three schemas are algycriptions of data; the only data thattually exists is at the
physical level. In a DBMS based on the three-scharohitecture, each user group refers only to its
own external schema. Hence, the DBMS must transtomequest specified on an external schema
into a request against the conceptual schema, feard ihto a request on the internal schema for
processing over the stored database. If the reqpastiatabase retrieval, the data extracted fham t
stored database must be reformatted to match tee'suexternal view. The processes of
transforming requests and results between levelsaledmappings. These mappings may be time-
consuming, so some DBMSs—especially those thatrezant to support small databases—do not
support external views. Even in such systems, hewevcertain amount of mapping is necessary to
transform requests between the conceptual andhaitlvels.

DATA INDEPENDENCE
50

The three-schema architecture can be used to axplaiconcept oflata independencewhich can

be defined as the capacity to change the schem@edevel of a database system without having to

change the schema at the next higher level. Welefine two types of data independence:

1. Logical data independencas the capacity to change the conceptual schenteoutithaving

to change external schemas or application progrévesmay change the conceptual schema
to expand the database (by adding a record typitaritem), or to reduce the database (by
removing a record type or data item). In the latt®se, external schemas that refer only to
the remaining data should not be affected. Onlywtbe definition and the mappings need be
changed in a DBMS that supports logical data inddpece. Application programs that
reference the external schema constructs must amiefore, after the conceptual schema
undergoes a logical reorganization. Changes tot@nts can be applied also to the
conceptual schema without affecting the externiaésts or application programs.

2. Physical data independencés the capacity to change the internal schema withaving to
change the conceptual (or external) schemas. Chdadke internal schema may be needed
because some physical files had to be reorganized-example, by creating additional
access structures—to improve the performance okvel or update. If the same data as
before remains in the database, we should not teesfeange the conceptual schema.

Whenever we have a multiple-level DBMS, its catatagst be expanded to include information on
how to map requests and data among the varioussleVbe DBMS uses additional software to
accomplish these mappings by referring to the nmappinformation in the catalog. Data
independence is accomplished because, when thmmadeehanged at some level, the schema at the
next higher level remains unchanged; only ttegping between the two levels is changed. Hence,
application programs referring to the higher-leseiema need not be changed.

TYPES OF DATABASE SYSTEM

Several criteria are normally used to classify DBMS$hefirst is the data model on which the
DBMS is based. The main data model used in mangecticommercial DBMSs is the relational
data model. The object data model was implememtesbime commercial systems but has not had
widespread use. Many legacy (older) applicationl tn on database systems based on the
hierarchical and network data models. The relati@BMSs are evolving continuously, and, in
particular, have been incorporating many of thecepis that were developed in object databases.
This has led to a new class of DBMSs called ohjelettional DBMSs. We can hence categorize
DBMSs based on thdata modd: relational, object, object-relational, hierarchical, network, and
other. Thesecond criterion used to classify DBMSs is the number 4ng supported by the system.
Single-user systemsupport only one user at a time and are mostly wstdpersonal computers.
Multiuser systems which include the majority of DBMSs, support nipié users concurrently. A
third criterion is the number of sites over which theaBdase is distributed. A DBMS is centralized if
the data is stored at a single computer siteetralized DBMS can support multiple users, but the
DBMS and the database themselves reside totallysangle computer site. Aistributed DBMS

51

(DDBMS) can have the actual database and DBMS so&wlistributed over many sites, connected
by a computer network. Homogeneous DDBMSs use dngesDBMS software at multiple sites.

Types of Database Management Systems

There are four structural types of database managesystems:

- Hierarchical databases.

« Network databases.

« Relational databases.

« Object-oriented databases

Hierarchical Databases (DBMS) :

In the Hierarchical Database Model we have to lediout the databases. It is very fast and simple.
In a hierarchical database, records contain infonabout there groups of parent/child
relationships, just like as a tree structure. Sinecture implies that a record can have also a
repeating information. In this structure Data fal®a series of records, It is a set of field values
attached to it. It collects all records togetheeaaecord type. These record types are the eguival
of tables in the relational model, and with theiwidbal records being the equivalent of rows. To
create links between these record types, the ki@l model uses these type Relationships.

Root

Lewell Lewel 1

% % O Child Child
Level2 Lewvel2 Level2 Level2
O O O O Child Child Child Child

Advantage : Hierarchical database can be accessed and updaidty because in this model
structure is like as a tree and the relationshgte/éen records are defined in advance. This feaure
a two-edged.

Disadvantage :This type of database structure is that each ahitde tree may have only one
parent, and relationships or linkages between mnl@dre not permitted, even if they make sense

52

from a logical standpoint. Hierarchical databagessa in their design. it can adding a new field or
record requires that the entire database be restkfin

Network Database:A network databases are mainly used on a largé&atigpmputers. It more
connections can be made between different typdataf network databases are considered more
efficiency It contains limitations must be consielmwhen we have to use this kind of database. It is
Similar to the hierarchical databases, networklztegas .Network databases are similar to
hierarchical databases by also having a hierarchinszcture. A network database looks more like a
cobweb or interconnected network of records.

In network databases, children are called membetgparents are called occupier. The difference
between each child or member can have more thapareat.

Stores

Clerks Custom er s

Transactions

Itemas

The Approval of the network data model similar witle esteem of the hierarchical data model.
Some data were more naturally modeled with more timee parent per child. The network model
authorized the modeling of many-to-many relatiopshin data.

The network model is very similar to the hierarehimodel really. Actually the hierarchical model
is a subset of the network model. However, instdading a single-parent tree hierarchy, the
network model uses set theory to provide a trezHilerarchy with the exception that child tables
were allowed to have more than one parent. It suppaany-to-many relationships.

Relational Databases :

In relational databases, the relationship betweda files is relational. Hierarchical and network

53

databases require the user to pass a hierardrgén to access needed data. These databases
connect to the data in different files by using coom data numbers or a key field. Data in relational
databases is stored in different access contrldgabach having a key field that mainly identifies
each row. In the relational databases are mor@btelthan either the hierarchical or network
database structures. In relational databasesstablédes filled up with data are called relations
(tuples) designates a row or record, and colummsederred to as attributes or fields.

Relational databases work on each table has adeyttat uniquely indicates each row, and that
these key fields can be used to connect one téllata to another.

L]

?I

|
E=xky “g ==
lent ,;S;,I,‘;:._ Client

=

||

==t

The relational database has two major reasons:

1. Relational databases can be used with little draining.
2. Database entries can be modified without spec#yettitire body.

Properties of Relational Tables:
In the relational database we have to follow sonopgrties which are given below.

« It's Values are Atomic

« In Each Row is alone.

« Column Values are of the Same thing.
« Columns is undistinguished.

« Sequence of Rows is Insignificant.

« Each Column has a common Name.

54

Object-Oriented Model :

In this Model we have to discuss the functionabtyhe object oriented Programming .It takes more
than storage of programming language objects.®DBIBMS's increase the semantics of the C++
and Java .It provides full-featured database pragreg capability, while containing native

language compatibility. It adds the database fonetity to object programming languages.This
approach is the analogical of the application aatdlthse development into a constant data model
and language environment. Applications require ¢este, use more natural data modeling, and code
bases are easier to maintain. Object developera/gencomplete database applications with a
decent amount of additional effort.

The object-oriented database derivation is theyittieof object-oriented programming language
systems and consistent systems. The power of lijecteoriented databases comes from the cyclical
treatment of both consistent data, as found inbdestas, and transient data, as found in executing
programs.

e
L~ Diata Oinject
Encapsulation Idenkity

Ieferitanss K Palymsgliam
\\" Object-Grienced
Programeming

An Object-Orented Database is the Marriage of
Object-Ovignted Progmmening and Dainbase Teshnalogy.

Integrity Archiva
m&h
BEAFY

M Databasg pl—— F R
__.——"1 Capdh.llllﬂs Quary

Transactions CongiEraney
Pergighincg

Object-oriented databases use small, recyclabkratsul of software called objects. The objects
themselves are stored in the object-oriented dagligach object contains of two elements:

1. Piece of data (e.g., sound, video, text, or graghic
2. Instructions, or software programs called methéatsywhat to do with the data.

Disadvantage of Object-oriented databases

1. Object-oriented databases have these disadvantages.
2. Object-oriented database are more expensive tdageve

55

3. In the Most organizations are unwilling to abana@od convert from those databases.

DATA MODEL

A data model is a collection of conceptual toolsdescribing data, data relationships, data
semantics, and consistency constraints.

= Entity: An entity is a “thing” or “object” in the real watlthat is distinguishable from all
other objects. For example, each person in anpigeris an entity.

= Entity Set:An entity set is a set of entities of the same tyja¢ share the same properties,
orattributes. The set of all persons who are custsrat a given bank, for example, can be
defined as the entity set customer. Similarly,éhgty set loan might represent the set of all
loans awarded by a particular bank.

An entity is represented by a set of attributesriddtes are descriptive properties possessed
by each member of an entity set. The designati@nddttribute for an entity set expresses
that the database stores similar information comnogreach entity in the entity set; however,
each entity may have its own value for each attebu

» Simple and composite attributesThe attributes havebeen simple; that is, they ate n
divided into subparts is called asrple attributes’. on the other hand, can be divided into
subparts is called asdmposite attributes’.For example, an attribute name could be
structured as a composite attribute consistingst-hame, middle-initial, and last-name.

» Single-valued and multivalued attributesFor instance, the loan-number attribute for a
specific loan entity refers to only one loan numl&rch attributes are said to be single
valued. There may be instances where an attritagalset of values for a specific entity.
Consider an employee entity set with the attrifpitene-number. An employee may have
zero, one, or several phone numbers, and differ@ployees may have different numbers of
phones.

This type of attribute is said to be multivalued.

= Derived attribute: The value for this type of attribute can be derifredn the values of other
related attributes or entities. For instance, letsay that the customer entity set has an
attribute loans-held, which represents how mangdaacustomer has from the bank.We can
derive the value for this attribute by counting thember of loan entities associated with that
customer.

» Relationship SetsA relationship is an association among severatieatiA relationship set
is a set of relationships of the same type.

» Mapping Cardinalities: Mapping cardinalities, or cardinality ratios, exggehe number of
entities to which another entity can be associgiaa relationship set. Mapping cardinalities
are most useful in describing binary relationshapssalthough they can contribute to the
description of relationship sets that involve mibran two entity sets.

56

One to one. An entity in A is associated with at most oneitgnih B, and an entity in B is
associated with at most one entity in A.

One to many. An entity in A is associated with amynber (zero or more) of entities in B.
An entity in B, however, can be associated witmast one entity in A.

Many to one. An entity in A is associated with absnone entity in B. An entity in B,
however, can be associated with any number (zenaooe) of entities in A.

Many to many. An entity in A is associated with amymber (zero or more) of entities in B,
and an entity in B is associated with any humbergor more) of entities in A.

= Keys: A key allows us to identify a set of attributesttisaffice to distinguish entities
from each other. Keys also help uniquely identi&ationships, and thus distinguish
relationships from each other.
. SuperkeyA superkey is a set of one or more attributes ttakien collectively, allow us to
identify uniquely an entity in the entity set. Fexample, the customer-id attribute of the
entity set customer is sufficient to distinguisheooustomer entity from another. Thus,
customer-id is a superkey. Similarly, the combioatf customer-name and customer-id is a
superkey for the entity set customer. The custamaene attribute of customer is not a
superkey, because several people might have the same.
. Candidate keyMinimal superkeys are called candidate keys.If Kaisuperkey, then so is
any superset of K. We are often interested in dgysr for which no proper subset is a
superkey.lt is possible that several distinct s#tsattributes could serve as a candidate
key.Suppose that a combination of customer-name arstiomer-street is sufficient to
distinguish among members of the customer entity $ken, both {customer-id} and
{customer-name, customer-street} are candidate .kai{though the attributes customerid
and customer-name together can distinguish custemeties, their combination does not
form a candidate key, since the attribute custochafene is a candidate key.
. Primary key:which denotes the unique identity is called as primkey.primary key to
denote a candidate key that is chosen by the dsgatbe@signer as the principal means of
identifying entities within an entity set. A keyrijmary, candidate, and super) is a property of
the entity set, rather than of the individual easit Any two individual entities in the set are
prohibited from having the same value on the keyibates at the same time. The
designation of a key represents a constraint imehkworld enterprise being modeled.
. Weak Entity SetsAn entity set may not have sufficient attributesfaom a primary key.
Such an entity set is termed a weak entity setertity set that has a primary key is termed a
strong entity set. For a weak entity set to be nmggnl, it must be associated with another
entityset, called the identifying or owner entitgt.sEvery weak entity must be associated
with an identifying entity; that is, the weak ent#tet is said to be existence dependent on the
identifying entity set. The identifying entity st said to own the weak entity set that it
identifies. The relationship associating the weatitye set with the identifying entity set is
called the identifying relationship. The identifginelationship is many to one from the weak
57

entity set to the identifying entity set, and thartgipation of the weak entity set in the
relationship is total.

SPECIALIZATION

An entity set may include subgroupings of entitlest are distinct in some wayfrom other entities in
the set. For instance, a subset of entities wahientity set may have attributes that are notshar
by all the entities in the entity set. The E-R mqatevides a means for representing these distiacti
entity groupings. Consider an entity set persoth) aitributes name, street, and city. A personmay
be further classified as one of the following:

* customer

* employee

Each of these person types is described by a s#trdfutes that includes all the attributes ofitgnt
set person plus possibly additional attributes. E&oample, customer entities may be described
further by the attribute customer-id, whereas engxoentities may be described further by the
attributes employee-id and salary. The processesigdating subgroupings within an entity set is
called specialization. The specialization of peratbows us to distinguish among persons according
to whether they are employees or customers.

GENERALIZATION

The design process may also proceed in a bottomawmmer, in which multiple entity sets are
synthesized into a higher-level entity set on thsi®of common features. The database designer
may have first identified a customer entity setwifte attributes name, street, city, and custoaher-i
and an employee entity set with the attributes natneet, city, employee-id, and salary. There are
similarities between the customer entity set ardetmployee entity set in the sense that they have
several attributes in common. This commonality lsarexpressed by generalization, which is a
containment relationship that exists between adridgvel entity set and one or more lower-level
entity sets. In our example, person is the higheellentity set and customer and employee are
lower-level entity sets.

Higher- and lower-level entity sets also may bagtesed by the terms superclass and subclass,
respectively. The person entity set is the supgesabd the customer and employee subclasses.For all
practical purposes, generalization is a simplersiea of specialization. We will apply both
processes, in combination, in the course of desggtiie E-R schema for an enterprise. In terms of
the E-R diagram itself, we do not distinguish bedwepecialization and generalization. New levels
of entity representation will be distinguished (@pézation) or synthesized (generalization) as the
design schema comes to express fully the datalpgdieation and the user requirements of the
database. Differences in the two approaches mahdracterized by their starting point and overall
goal.Generalization proceeds from the recognitiat & number of entity sets share some common

58

features (namely, they are described by the satmleuaés and participatein the same relationship
sets).

ireet city

perai

4

saliry Ve :.-1'.:'!5 mting

. A -

ity 1A RS T

\E*‘{ y

s teller STy

ofice-minmber N hnirz-sorked

shatio-members O hners-aarked

v DATA MODELS
Underlying the structure of a database is da@a model a collection of conceptual tools for
describing data, data relationships, data semaumticsconsistency constraints.
To illustrate the concept of a data model, we oatliwo data models in this section: the entity-
relationship model and the relational model. Batbvfle a way to describe the design of a database
at the logical level.

v" RELATIONAL MODEL
The relational model uses a collection of tablesefwresent both data and the relationships among
those data. Each table has multiple columns, add eslumn has a unique name.

The data is arranged in a relation which is visuadpresented in a two dimensional table. The data
is inserted into the table in the form of tuplesi@h are nothing but rows). A tuple is formed byon
or more than one attributes, which are used a< lmsiding blocks in the formation of various
expressions that are used to derive a meanindiinmation. There can be any number of tuples in

59

the table, but all the tuple contain fixed and sattebutes with varying values. The relational
model is implemented in database where a relasioagresented by a table, a tuple is represented by
a row, an attribute is represented by a colummeftable, attribute name is the name of the column
such as ‘identifier’, ‘name’, ‘city’ etc., attribetvalue contains the value for column in the row.
Constraints are applied to the table and form dlgecal schema. In order to facilitate the selectbn

a particular row/tuple from the table, the attrémif.e. column names are used, and to expedite th¢
selection of the rows some fields are defined ugligjto use them as indexes, this helps in searching
the required data as fast as possible. All thetioslal algebra operations, such as Select,
Intersection, Product, Union, Difference, Projeldin, Division, Merge etc. can also be performed
on the Relational Database Model. Operations orRtiational Database Model are facilitated with
the help of different conditional expressions, oas key attributes, pre-defined constraints etc.

v' THE ENTITY-RELATIONSHIP MODEL

» The entity-relationship (E-R) data model is based @erception of a real world that consists
of a collection of basic objects, calledtities, and ofrelationships among these objects. An
entity is a “thing” or “object” in the real worldhat is distinguishable from other objects. For
example, each person is an entity, and bank ace@antbe considered as entities.

» Entities are described in a database by a settabutes. For example, the attributes
account-number and balance may describe one particular account in a bank,thag form
attributes of theaccount entity set. Similarly, attributesustomer-name, customer-street
address andustomer-city may describe austomer entity.

* An extra attributecustomer-id is used to uniquely identify customers (since itynize
possible to have two customers with the same natrext address, and city).

* A unique customer identifier must be assigned theaistomer. In the United States, many
enterprises use the social-security number of sgpefa unique number the U.S. government
assigns to every person in the United States)cast@mer identifier.

* A relationship is an association among several entities. For ebgm@ depositor
relationship associates a customer with each at¢banshe has. The set of all entities of the
same type and the set of all relationships of timestype are termed amtity set and
relationship set respectively.

» The overall logical structure (schema) of a datals be expressed graphically byEaR
diagram.

Advantages and Disadvantages of E-R Data Model
Following are advantages of an E-R Model:

 Straightforward relation representation: Having designed an E-R diagram for a database
application, the relational representation of thtalase model becomes relatively straightforward.

60

» Easy conversion for E-R to other data modelConversion from E-R diagram to a network or
hierarchical data model can- easily be accomplished

» Graphical representation for better understandiAg E-R model gives graphical and
diagrammatical representation of various entitiess attributes and relationships between entities.
This is turn helps in the clear understanding efdata structure and in minimizing redundancy and
other problems.

Disadvantages of E-R Data Model

Following are disadvantages of an E-R Model:

* No industry standard for notation: There is no industry standard notation for develg@an E-R
diagram.

* Popular for high-level design The E-R data model is especially popular for Hegrel

Symbols used in the E-R notation:

i E anEHe ot) attrkbe
T] - mvulbivaluwed
¥ E i ik errh ey st Y A atErihus
Q/ selatamelp st A Serived astribane
it by ing i hevtal
relalzenslug _.-'"'--Ex G part .'i'-':i.-r
. R] Joe weak of kb met
g enilify sed v . i e latioeship
. . eliserinuntiog
& pramary key e i attribuhe df

Wik anhdy &el

F> many-ho-rmarn /F '-.-_ _ Enamy-to-ome
relarmely T H"H._.-""f relwhion -\.||i!1

", I I. —
b R"". g | cardimalicy

™
= ; X o F :
\f// relatomelbap b L | limnits

i
. 5 7 (oA
L R Ti | w54, [34
L B E |eole andicabos "'-\.__." eIl ZATion o
wereralization}
il 5 wrvy O s
-\._JM._.-' LIk 2 ",_ls:"'-." ||.\,...- .|.
L girwralizatiom L _-'i_ . geveralization
T st

61

ER MODEL FOR A COLLEGE DB

Assumptions:

A college contains many departments

Each department can offer any number of courses
Many instructors can work in a department

An instructor can work only in one department

For each department there is a Head

An instructor can be head of only one department
Each instructor can take any number of courses

A course can be taken by only one instructor

A student can enroll for any number of courses
Each course can have any number of students

Steps in ER Modeling:

Identify the Entities

Find relationships

Identify the key attributes for every Entity

Identify other relevant attributes

Draw complete E-R diagram with all attributes irthg Primary Key

Step 1: Identify the Entities:

DEPARTMENT
STUDENT
COURSE
INSTRUCTOR

Step 2: Find the relationships:

One course is enrolled by multiple students and sindent enrolls for multiple courses,
hence the cardinality between course and studénaimns/ to Many.

The department offers many courses and each cdeags to only one department,
hence the cardinality between department and casiGae to Many.

One department has multiple instructors and ontuc®r belongs to one and only one
department , hence the cardinality between depattared instructor is one to Many.

62

- Each department there is a “Head of department” and instructor is “Head of
department “,hence the cardinality is one to one .

« One course is taught by only one instructor, b thstructor teaches many courses,
hence the cardinality between course and instrustmany to one.

Step 3: Identify the key attributes

- Deptname is the key attribute for the Entity “Depaent”, as it identifies the Department
uniquely.

« Course# (Courseld) is the key attribute for “Colsetity.

- Student# (Student Number) is the key attribute'S&udent” Entity.

« Instructor Name is the key attribute for “Instrutt&ntity.

Step 4: Identify other relevant attributes
For the department entity, the relevant attribatl®cation

= For course entity, course name,duration,prereguisit
» For instructor entity, room#, telephone#
» For student entity, student name, date of birth

ER MODEL FOR BANKING BUSINESS

Assumptions :

« There are multiple banks and each bank has mamgloea. Each branch has multiple
customers

« Customers have various types of accounts

« Some Customers also had taken different typesamislérom these bank branches

« One customer can have multiple accounts and Loans

Step 1: Identify the Entities

* BANK

* BRANCH

* LOAN

* ACCOUNT

* CUSTOMER

Step 2: Find the relationships

» One Bank has many branches and each branch kelmogly one bank, hence the
cardinality between Bank and Branch is One to Many.

63

» One Branch offers many loans and each loan @caged with one branch, hence the
cardinality between Branch and Loan is One to Many.

» One Branch maintains multiple accounts and eacbumt is associated to one and
only one Branch, hence the cardinality between &ramnd Account is One to Many

* One Loan can be availed by multiple customerd,eath Customer can avail multiple
loans, hence the cardinality between Loan and @ustess Many to Many.

» One Customer can hold multiple accounts, and Aacbunt can be held by multiple
Customers, hence the cardinality between CustonteAacount is Many to Many

Step 3: Identify the key attributes

* BankCode (Bank Code) is the key attribute forEméity “Bank”, as it identifies the bank
uniquely.

» Branch# (Branch Number) is the key attribute“®ranch” Entity.

» Customer# (Customer Number) is the key attribotéCustomer” Entity.

» Loan# (Loan Number) is the key attribute for “bdd&ntity.

» Account No (Account Number) is the key attribtdge “Account” Entity.

Step 4: Identify other relevant attributes

* For the “Bank” Entity, the relevant attributefiet than “BankCode” would be “Name”
and “Address”.

* For the “Branch” Entity, the relevant attributaher than “Branch#” would be “Name”
and “Address”.

* For the “Loan” Entity, the relevant attribute etlthan “Loan#” would be “Loan Type”.
* For the “Account” Entity, the relevant attribugéher than “Account No” would be
“Account Type”.

* For the “Customer” Entity, the relevant attribaitther than “Customer#” would be
“Name”, “Telephone#” and “Address”.

64

| BANK_BRANGCH |l

[CacoCUNE [Loan |_.®

ER DIAGRAM FOR A MANAGEMENT SYSTEM

65

Lastheet

\’ 1‘@

Skill g

),

Cemt > Cecom > %
L

=

(4

(1.*)

(1.%)

e

Population

Y

ER DIAGRAM FOR COLLEGE LIBRARY

Engineer

(vmame

Phone

Mam‘e@

Empi#t
Title

Secretary

ER DIAGRAM FOR A CAR STORE DATABASE

66

Name

Ny

i

Employes

Salesman

Drescription

o
Number ———| RepairJob Date E§|m> %% Vinluge

License = - TR
Part= — Cost Value Coanission
- [
Work
Car
/ [\\\ =eller biiyes
Year Client 1)

MManufacturer Model

Aledress

ER DIAGRAM FOR A MOVIE SHOW

Director

SCREEN

THEATER

67

Skill
Department Phone
EstCost ?_3
Use
Project o
- e
=
Participate (1%
(1.7
CltyName City

Engineer Secretary

=
VName

ER DIAGRAM FOR A COMPANY DATABASE

= Cmsame
@ Description
(1*)

=

Skill =
Department Phone
EstCost % (1.%),

S

Y

>

=
.n)
C=>

w
g
d
£
2

| Engineer

Degree TypingSpeed

ER DIAGRAM FOR A TEACHING MEYHODOLOGY

68

<

Subject

Subject1d s

SpErVISEs

Teacher
Teache ld ——

Group
Date I ark Id
Mark Y //
N
Mark
belong
gives Student
gigentld ¥

-
-
-

Yo

ER DIAGRAM FOR A ORDERING RELATIONSHIP

Matme

—= Wyiorker

Adddress

I

Project IO

Project

Supplier

fl

]
Circlerl

Buy-order

Delivery date

DepartmentiC

Department

1
1

Order date

ER DIAGRAM FOR A INSURANCE COMPANY

il

Address

Colaur

:

Procuct

:

Parta#

69

Payment_num) ~Paymedt,

% =

(Tuoed _ Peductibi> N P, G
“ roiey | et LT

e i “WPaymong e
cUser_name> | ™ - = F b :
FlL 5 =2 1 iy,
/ / iy

ssues_dai)

Lics -Pﬁ;rriem-.
3 Term_price: . Amaunt,
/ -. Policy_holdar: = e
Customes ™, \,

. Agent L isa/ : T

\ / __;_F__.@mw "House id> House_cosl

I'I. I...) ; L ", \ \ | - —— .
/ 7 4 \x / g | e

g b 5 -
--@uwr.s_hurng,- | House

BSM) ; i #pCIE‘ Auto_pokicy Hnmjmlin:y =
: 'r
Quet - S\ h

,

Foar_buld)

Works_at = i Customer | : e ; m“.a
%, / 1F'_F‘-5'_|'|ﬂm§"" T e R ~PTOTE i
f L_'a?,.l__na.n'-._ei 3 I‘.. D-L_j:lul‘\"- 3

s ([&_Faults v %,
/ \ — / Located at

Lives_in .x'l-la.ci_a:ccm o %
\/ : ey SN

@ \ s _Total> LT (MakeD

[l — o i U \ |/ aww
T '-._. —— Acciden) | Was._in_sccid 1 Ca 3

”] g ~ @olots /N T(Door

“Beport_oum - Date > C¥ears <De_plates

ER DIAGRAM FOR A MUSIC STORE SPECIFICATION

70

SINGER

IS

=2

PRODUCE |

COMPANY

i)
MARKET:
Chs TAFES RECORDS

ER DIAGRAM FOR A BANK DATABASE

71

i | BANK_BRANCH |

1

ERANCHES

] N

[ACCOUNT [LoaN

LM M
AC LG
N
N
&=
CUSTOMER | —_ Addr)

ER DIAGRAM FOR A HOSPITAL MANAGEMENT SYSTEM

72

B+ Tree Index Files:

A B+ treeis an n-ary tree with a variable but often largenber of children per node. B+ tree
consists of a root, internal nodes and leaves.rdbemay be either leaf or node with two or more

children.

A B+ tree can be viewed as a B-tree in which each node rentmly keys (not pairs), and to which
an additional level is added at the bottom witlkdich leaves.

35
ﬁ—- |[el
1 2 3 | 4 S Gl 7
e [o o | o o [o] o]
I Pl
d1 dZ d3 d4 d5 d6 d7

73

A simple B+ tree example linking the keys 1-7 to da values d-d;

The primary value of B+ treeis in storing data for efficient retrieval in aobk-oriented storage
context — in particular, file systems. This is pairy because unlike binary search trees, B+ trees
have very high fan out (humber of pointers to chitdles in a node, typically on the order of 100 or
more), which reduces the number of /O operatiegsired to find an element in the tree.

Insertion
Perform a search to determine what bucket the Beard should go into.

+ If the bucket is not full (at most b - 1 entrieteathe insertion), add the record.
« Otherwise, split the bucket.
o Allocate new leaf and move half the bucket's elesanthe new bucket.
o Insert the new leaf's smallest key and addresgiet@arent.
o If the parent is full, split it too.
= Add the middle key to the parent node.
o Repeat until a parent is found that need not split.
- If the root splits, create a new root which has kegand two pointers. (That is, the value
that gets pushed to the new root gets removed tinenoriginal node)

B-trees grow at the root and not at the leaves.
Deletion

- Start at root, find leaf L where entry belongs.
- Remove the entry.
o IfLis atleast half-full, done!
o If L has fewer entries than it should,
= Try to re-distribute, borrowing from sibling (adga node with same parent
asL).
= If re-distribution fails, merge L and sibling.
« If merge occurred, must delete entry (pointing torlsibling) from parent of L.
« Merge could propagate to root, decreasing height.

Module 2
RELATIONAL ALGEBRA

Relational Algebra Operators are mathematical fonstused to retrieve queries by describing a
sequence operations on tables or even databasas@cimvolved. With relational algebra
74

operators, a query is always composed of a nunfagyeyators, which each in turn are composed of
relations as variables and return an individuatrabson as the end product.

The following are the main relational algebra opensias applied to SQL:
The SELECT Operator

The SELECT operator is used to choose a subsbkedtiples(rows) from a relation that satisfies a
selection condition, acting as a filter to retamyatuples that fulfills a qualifying requirement.

« The SELECT operator is relational algebra is deshbiethe symbob (sigma).
« The syntax for the SELECT statement is then asviall

G<Selection conditionéR)

+ Theo would represent the SELECT command

« The <selection condition> would represent the chordifor selection.

« The (R) would represent the Relation or the Tatdenfwhich we are making a selection of
the tuples.

To implement the SELECT statement in SQL, we tal@k at an example in which we would like
to select the EMPLOYEE tuples whose employee nunsbéror those whose date of birth is before
1980...

Gempno={EMPLOYEE)
Gdob<'01-Jan-198§EMPLOYEE)

The SQL implementation would translate into:
SELECT empno

FROM EMPLOYEE

WHERE empno=7

SELECT dob

FROM EMPLOYEE

WHERE DOB < ’'01-Jan-1980

75

The PROJECT Operator

This operator is used to reorder, select and dadfrattributes from a table. At some point we niigh
want only certain attributes in a relation and @liate others from our query result. Therefore the
PROJECT operator would be used in such operations.

« The symbol used for the PROJECT operatig igi).
« The general syntax for the PROJECT operator is:

H<attribute |ist>(R)

« J] would represent the ROJECT.
« <attribute list> would represent the attributesgoohs) we want from a relational.
+ (R) would represent the relation or table we warghoose the attributes from.

To implement the PROJECT statement in SQL, we &lk®k at an example in which we would
like to choose the Date of Birth (dob) and Emploiesnber (empno) from the relation
EMPLOYE...

* [ldob, empnd EMPLOYEE)
In SQL this would translate to:
SELECT dob, empno
FROM EMPLOYEE
The RENAME Operator

The RENAME operator is used to give a hame to tesuloutput of queries, returns of selection
statements, and views of queries that we wouldtbkaew at some other point in time:

« The RENAME operator is symbolized pby(rho).

- The general syntax for RENAME operatorgs;s1, 2, g3,...er§R)
« pisthe RENAME operation.

« Sis the new relation name.

« B, By, Bs, ...By are the new renamed attributes (columns).

+ R s the relation or table from which the attrilsitee chosen.

76

To implement the RENAME statement in SQL, we takeok at an example in which we would
like to choose the Date of Birth and Employee Nundtibutes and RENAME them as
‘Birth_Date’ and ‘Employee_Number’ from the EMPLO¥Eelation...

P s(Birth_Date, Emponee_Number(ENI PLOYEE) — Hdob, empnc(EM PLOYEE)

« The arrow symbot— means that we first get the PROJECT operatioriteesn the right side
of the arrow then apply the RENAME operation onrgults on the left side of the arrow.

In SQL we would translate the RENAME operator ugimg SQL ‘AS’ statement:
SELECT dob AS ‘Birth_Date’, empno AS ‘Employee_Nuarb

FROM EMPLOYEE

The UNION, INTERSECTION, and MINUS Operators

UNION: the UNION operation on relation A UNION relati@designated a& U B, joins or
includes all tuples that are in A or in B, elimiimat duplicate tuples. The SQL implementation of
the UNION operations would be as follows:

UNION
RESULT—AUB
SQL Statement:
SELECT * From A
UNION

SELECT * From B

INTERSECTION : the INTERSECTION operation on a relation A INTEHRSTION relation B,
designated byA N B, includes tuples that are only in A and B. In otwerds only tuples belonging
to A and B, or shared by both A and B are incluihethe result. The SQL implementation of the
INTERSECTION operations would be as follows:

INTERSECTION

RESULT—ANB

77

SQL Statement:
SELECT dob From A
INTERSECT
SELECT dob from B

MINUS Operations: the MINUS operation includes tuplesrifrone Relation that are not in another
Relation. Let the Relations be A and B, the MINUfiation A MINUS B is denoted by — B, that
results in tuples that are A and not in B. The 3@plementation of the MINUS operations would
be as follows:

MINUS

RESULT— A-B

SQL Statement

SELECT dob From A

MINUS

SELECT dob from B

CARTESIAN PRODUCT Operator

The CARTERSIAN PRODUCT operator, also referredddhge cross product or cross join, creates a
relation that has all the attributes of A and Bowing all the attainable combinations of tuplesnfr
A and B in the result. The CARTERSIAN PRODUCT A dhds symbolized by X as in A X B.

Let there be Relation A(AA>) and Relation B(BB>)

The CARTERSIAN PRODUCT C of A and B which is A Xi8
C=AXB

C = (A1B1, A1B2 AB1 A2B>)

The SQL implementation would be something like:

SELECT A.dob, B.empno
78

from A, B
JOIN Operator

The JOIN operation is denoted by thesymbol and is used to compound similar tuples fram
Relations into single longer tuples. Every rowtw first table is joined to every row of the second
table. The result is tuples taken from both tables.

« The general syntax would be®@\<join condition>B
SQL translation example where attribute dob is &Rirth and empno is Employee Number:
SELECT A.dob, A.empno
from employee
JOIN B on B.empno=A.empno
THETA JOIN Operator
This operation results in all combinations of tgleom Relation A and Relation B satisfying a join
requirement. The THETA JOIN is designated by: Thd $mplementation would be the same as for
the JOIN example above.

« A& Soin condition>B
EQUIJOIN Operator

The EQUIJOIN operation returns all combinationsupies from Relation A and Relation B
satisfying a join requirement with only equalityngparisons. The EQUIJOIN operation is
symbolized by :

A <join condition>B, OR

- A (<join attributes 1>),

(<join attributes 2>B

SQL translation example where attribute dob is &tRirth and empno is Employee Number:

79

SELECT * from A

INNER JOIN B

on A.empno=B.empno
NATURAL JOIN Operator

The NATURAL JOIN operation returns results thatsloet include the JOIN attributes of the
second Relation B. It is not required that attrsutvith the same name be mentioned. The
NATURAL JOIN operator is symbolized by:

e A* @ oin condition> B,
OR A * B (<join attributes 1>),
(<join attributes 253
ORA*B
SQL translation example where attribute dob is &tRirth and empno is Employee Number:
SELECT A.dob, B.empno
FROM A
NATURAL JOIN B
/lwhere depno =5

We can always use the ‘where’ clause to furtherict®ur output and stop a Cartesian product
output.

DIVISION Operator

The DIVISION operation will return a Relation R(¥)at includes all tuples t[X] in R(Z) that appear
in R1 in combination with every tuple from R2(Y)here Z = XU Y. The DIVISION operator is
symbolized by:

- R1(2)+ R2(Y)

80

The DIVISION operator is the most difficult to ingshent in SQL as no SQL command is given for
DIVISION operation. The DIVISION operator would been as the opposite of the CARTERSIAN
PRODUCT operator; just as in standard math, trediogl between division and multiplication.
Therefore a series of current SQL commands hate tdilized in implementation of the DIVISION
operator. An example of the SQL implementation 8fIBION operator:

SELECT surname, forenames
FROM employee X

WHERE NOT EXISTS
(SELECT ‘X’

FROM employee y

WHERE NOT EXISTS
(SELECT ‘X’

FROM employee z

WHERE x.empno = z.empno
AND y.surname = z.surname))

ORDER BY empno

RELATIONAL CALCULUS

In relational calculus, a query is expressed as@ula consisting of a number of variables and an
expression involving these variables. It is uph® DBMS to transform these nonprocedural queries
into equivalent, efficient, procedural queries. Tdoacept of relational calculus was first proposed
by Codd. The relational calculus is used to meatheeselective power of relational languages. A
language that can be used to produce any reldtatrcan be derived using the relational calculus is
said to be relationally complete.

81

Relation calculus, which in effect means calculgtivith relations, is based on predicate calculus,
which is calculating with predicates. It is a folrfenguage used to symbolize logical arguments in
mathematics. Propositions specifying a propertysstrof an expression that names an individual
object, and another expression, called the preglichat stands for the property that the individual
object possesses. If for instanpgndq are propositions, we can build other propositiams p”, "p

or q', "p and g* and so on. In predicate calculus, propositions tmayuilt not only out of other
propositions but also out of elements that arethemselves propositions. In this manner we can
build a proposition that specifies a certain proper characteristic of an object.

TUPLE RELATIONAL CALCULUS

The tuple relational calculus is based on spedjfyannumber of tuple variables. Each such tuple
variable normally ranges over a particular datalvekdion. This means that the variable may take
any individual tuple from that relation as its valW\ simple tuple relational calculus query is o t
form { t | COND(t)-}, where '1' is a tuple variablend COND(t) is a conditional expression
involving '1". The result of such a query is a tiela that contains all the tuples (rows) that $atis
COND(t).

For example, the relational calculus query {t | BR© and t.PRICE>IOO} will get you all the
books whose price is greater than 100. In the aleaaenple, the condition 'BOOK(t)' specifies that
the range relation of the tuple variable '1' is BO@®ach BOOK tuple 't' that satisfies the condition
't.PRICE> 100' will be retrieved. Note that 't.PEIGeferences the attribute PRICE of the tuple
variable "1'.

The query {t IBOOK (t) and t.PRICE>100} retrievetattribute values for each selected

BOOK tuple. To retrieve only some of the attribu{say TITLE, AUTHOR and PRICE) we can
modify the query as follows:

{t.TITLE, t AUTHOR, t.PRICE | BOOK(t) and t.PRICEX®D}
Thus, in a tuple calculus expression we need toifypte following information:

For each tuple variable the range relation 'RiaThis value is specified by a condition of thenfio
R(t) .

* A condition to select the required tuples frora tklation.

82

* A set of attributes to be retrieved. This setafled the requested attributes. The values ofethes
attributes for each selected combination of tudkethe requested attribute list is not specifittgn
all the attributes of the selected tuples areaetrl.

Thus, to retrieve the details of all books (TitlelaAuthor name) which were published by 'Kalyani'
and whose price is greater than 100 we will wiie query as follows:

{t.TITLE, t AUTHOR | BOOK (t) and t.PUBLISHER="xyzind t.PRICE>100}

Expressions and Formulas
A general expression of the.tuple relational calsus of the following form:
{tI-Aj,t2-A2, tn-An, | COND(tl,t2- .. tn, tn+j,1n+2. th+m)}

Where tj,t2 1n,1n+j,1n+2 1n+mare tuple variablegheAi is an attribute of the relation on which
ranges and COND is a condition or formula of th@duelational calculus.

A formula is defined as follows:

Every condition is a WFF (Well Formed Formula). elea well-formed formula is constructed from
conditions, Boolean operations (AND, OR, NOT) andmtifiers like for all values (V) or there
exists (3).

There are following rules which are applicable oRFV

* Every condition is WFF.

* If Fis a WFF the (F) and NOT(F) are also WFF.

* If Fj and F2 are WFFs, then (Fj AND F2), (Fj OR)fre also WFFs .

* If Fis a WFF in which T occurs as a free vargafitee variables are those range
variables when, the meaning of the formula chaniyaitithe occurrences of range
variable say 'x' were replaced by some other veasagay 'y') then 3 T(t) and

V T(F) are WFFs .

83

* Nothing else is WFF.

Bound variables: Bound variables are those range variables whenmbaning of the formula
would remain unchanged if all the occurrence ofjeamariable say 'x' were replaced by some other
variable say 'y'. Then range variable X' is caledhe Bound variable.

For example: x (x>3) means
EXISTS x (x>3)

Here, WFF simply states that there exists somegéntex that is greater than 3. Note, that the
meaning of this WFF would remain totally unchangeall references of x were replaced by
references to some other variable y. In other widrdsNFF EXISTS y(y>3) is semantically same.

Free Variables: Free variables are those range variables wheméaming of the formula changed,
if all the occurrences of range variable say 'xXtemeplaced by some other variables say 'y'. Then
range variable 'x' is called as the Free variable.

For example: x (x>3) and x<O means
EXISTS x (x>3) and x <0

Here, there are three references to x, denotingdifferent variables. The first two references are
bound and could be replaced by references to sahex wariable y without changing the overall

meaning. The third reference is free, and cannatepkaced without changing the meaning of the
formula. Thus, of the two WFFs shown below, thetfis equivalent to the one just given and the
second is not: -

EXIST Y (y>3) and x<O
EXITS y (y>3) and y<O

Closed and Open WFF:A WFF in which all variables references are boisdalled Closed WFF.
e.g. EXISTS x (x>3) is a closed WFF.

An open WFF is a WFF that is not closed i.e. o tlonsists of at least one free variable reference
e.g. EXISTS y (y>3) and x<O

DOMAIN RELATIONAL CALCULUS

84

The domain calculus differs from the tuple calcuilnghe type of variables used in formulas. In
domain calculus the variables range over singleieslfrom domains of attributes rather than
ranging over tuples. To form a relation of degréddr a query result, we must have 'n' of these
domain variables-one for each attribute.

An expression of the domain calculus is of thedelhg form:
{XI, X2, ..., Xn I COND(XI, X2, .. -, Xn, Xn+b Xn2, , Xn+m)}

In the above expression Xl, X2, ... , Xn, Xn+b Xn+Xn+m are domain variables that range over
domains of attributes and COND is a condition emfala of the domain relational calculus.

Expression of the domain calculus are constructad the following elements:

* Domain variables Xl, X2, ..., Xn, Xn+b Xn+2, ,.Xn+m each domain variable is to range over
some specified domain .

» Conditions, which can take two forms:

» Simple comparisons of the form x * y, as for thple calculus, except that x and yare now domain
variables.

* Membership conditions, of the form R (term,
term ...).
Here, R is a relation, and each "term" is a pair, Atere A in turn is an attribute

Of R and V is either a domain variable or a cortsteor example EMP (empno: 100, ename: 'Ajay’)
is a membership condition (which evaluates to tfud only if there exists an EMP tuple having
empno=100 and ename = 'Ajay’) .

» Well Formed Formulates (WFFs), formed in accoogawith rules of tuple calculus (but with the
revised definition of "condition™).

Free and Bound Variables

The rules concerning free and bound variables gieenthe tuple calculus are also applicable
similarly on the domain calculus.

85

SQL
What is SQL?

SQL is structured Query Language which is a comgateguage for storing, manipulating and
retrieving data stored in relational database.

SQL is the standard language for Relation DataBgseem. All relational database management
systems like MySQL, MS Access, Oracle, Sybase rinifg postgres and SQL Server uses SQL as
standard database language.

Also they are using different dialects, Such as:

« MS SQL Server using T-SQL,
« Oracle using PL/SQL,
« MS Access version of SQL is called JET SQL (natorenat)etc

Why SQL?

« Allow users to access data in relational databameagement systems.

« Allow users to describe the data.

« Allow users to define the data in database and podette that data.

+ Allow to embed within other languages using SQL oled, libraries & pre-compilers.
« Allow users to create and drop databases and tables

« Allow users to create view, stored procedure, flmmstin a database.

« Allow users to set permissions on tables, procexjuned views

SQL Process:

When you are executing an SQL command for any RDBiRSsystem determines the best way to
carry out your request and SQL engine figures ow to interpret the task.

There are various components included in the peoddsese components are Query Dispatcher,
Optimization engines, Classic Query Engine and §Q@dry engine etc. Classic query engine
handles all non-SQL queries but SQL query engine'Wandle logical files.

Following is a simple diagram showing SQL Architeet

86

Processor

DBEMS

|

Physical Database

SQL DATABASE :

MySQL

MySQL is open source SQL database, which is deeeldyy Swedish company MySQL AB.
MySQL is pronounced "my ess-que-ell," in contraghvQL, pronounced "sequel."

MySQL is supporting many different platforms indiugl Microsoft Windows, the major Linux

distributions, UNIX, and Mac OS X.

MySQL has free and paid versions, depending oasiégge (hon-commercial/commercial) and

Cuery Language 4_{ Parser + Optimizer

Engine -«

File MManager
+

Transaction manager

features. MySQL comes with a very fast, multi-tlied, multi-user, and robust SQL database

server.
Features:

- High Performance.

« High Availability.

« Scalability and Flexibility Run anything.

« Robust Transactional Support.

« Web and Data Warehouse Strengths.

- Strong Data Protection.

« Comprehensive Application Development.
- Management Ease.

« Open Source Freedom and 24 x 7 Support.

- Lowest Total Cost of Ownership.

87

MS SQL Server

MS SQL Server is a Relational Database Managemeste® developed by Microsoft Inc. Its
primary query languages are:

. T-SQL.
+ ANSI SQL.
Features:

- High Performance.

« High Availability.

« Database mirroring.
- Database snapshots.
+ CLR integration.

« Service Broker.

- DDL triggers.

« Ranking functions.

« Row version-based isolation levels.
« XML integration.

« TRY..CATCH.

- Database Mail.

ORACLE

It is very large and multi-user database managesyatém. Oracle is a relational database
management system developed by ‘Oracle Corporation'

Oracle works to efficiently manage its resourcdatabase of information, among the multiple
clients requesting and sending data in the network.

It is an excellent database server choice for #ZBerver computing. Oracle supports all major

operating systems for both clients and serversyanmeg MSDOS, NetWare, UnixWare, OS/2 and

most UNIX flavors.
Features:

« Concurrency
« Concurrency
+ Read Consistency

88

« Locking Mechanisms
« Quiesce Database

« Portability

- Self managing database
« SQL*Plus

- ASM

« Scheduler

+ Resource Manager
- Data Warehousing
- Materialized views
« Bitmap indexes

- Table compression
- Parallel Execution
« Analytic SQL

« Data mining
 Partitioning

MS- ACCESS

This is one of the most popular Microsoft produbigcrosoft Access is entry-level database
management software. MS Access database is notarihexpensive but also powerful database
for small-scale projects.

MS Access uses the Jet database engine whiclestdizpecific SQL language dialect

Features:

- Users can create tables, queries, forms and repoidsconnect them together with macros.

« The import and export of data to many formats idcig Excel, Outlook, ASCII, dBase,
Paradox, FoxPro, SQL Server, Oracle, ODBC, etc.

« There is also the Jet Database format (MDB or ACG@®DBccess 2007) which can contain
the application and data in one file. This makegily convenient to distribute the entire
application to another user, who can run it in diisected environments.

« Microsoft Access offers parameterized queries. &lugeries and Access tables can be
referenced from other programs like VB6 and .NEDtigh DAO or ADO.

« The desktop editions of Microsoft SQL Server camubed with Access as an alternative to
the Jet Database Engine.

« Microsoft Access is a file server-based databasékélclient-server relational database
management systems (RDBMS), Microsoft Access doesnplement database triggers,
stored procedures, or transaction logging.

89

- SQL data type is an attribute that specifies tyjpggata of any object. Each column, variable

and expression has related data type in SQL.

« You would use these data types while creating yalles. You would choose a particular

data type for a table column based on your requargm
« SQL Server offers six categories of data typeyéar use:

SQL DATA TYPE :

Exact Numeric Data Types:

DATA TYPE FROM TO
bigint -9,223,372,036,854,775,8 9,223,372,036,854,775,€
int -2,147,483,64 2,147,483,64
smallini -32,76¢ 32,76.
tinyint 0 25k
bit 0 1
decima -10738 +: 10738 .:
numeric -10"38 +: 10738 .:
money -922,337,203,685,477.58 +922,337,203,685,477.5€
smallmone -214,748.364 +214,748.364

- Approximate Numeric Data Types:

DATA TYPE FROM TO
float -1.79E + 30 1.79E + 30
rea -3.40E + 3 3.40E + 3

- Date and Time Data Types:
DATA TYPE FROM TO

datetime Jan 1, 1753 Dec 31, 9999

90

SmalldatetimeJan 1, 1900 Jun 6, 2079
date Stores a date like June 30, 1991

Stores a time of day like 12::

time
P.M.

Character Strings Data Types:
DATA TYPE FROM TO

Maximum length of 8,00
char char characters.(Fixed length non-
Unicode characters)

Maximum of 8,00(
varchar varchar characters.(Variable-length non-
Unicode data).

Maximum length of 231characte
varchar(max) varchar(max) Variable-length non-Unicode data
(SQL Server 2005 only).

Variable-length nor-Unicode datz
text text with a maximum length of
2,147,483,647 characters.

Operator in SQL

An operator is a reserved word or a character peethrily in an SQL statement's WHERE clause
to perform operation(s), such as comparisons atithaatic operations.

Operators are used to specify conditions in an S@tement and to serve as conjunctions for
multiple conditions in a statement.

« Arithmetic operators

- Comparison operators

- Logical operators

« Operators used to negate conditions

91

SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holdh&0o:

Operator Description Example

Addition - Adds values on either side of t L
+ a + b will give 30
operator

Subtractior- Subtracts right hand operand fr(S
- a - b will give -10
left hand operand

Multiplication - Multiplies values on either sic a* b will give 200
of the operator
Division - Divides left hand operand by rig

hand operand b /a will give 2

Modulus- Divides left hand operand by rig

% .
hand operand and returns remainder

b % a will give 0

SQL Comparison Operators:

Assume variable a holds 10 and variable b hold#h&n:

Operator Description Example

Checks if the value of two operands are equ. .
= , . (a =Db) is not true.
not, if yes then condition becomes true.

Checks if the vlue of two operands are equal
I= not, if values are not equal then condition (a !=b) is true.
becomes true.

Checks if the value of two operands are equ.

<> not, if values are not equal then condition (a <> b) is true.
becomes true.

92

Checks if th value of left operand is greal
> than the value of right operand, if yes then (a > b) is not true.
condition becomes true.

Checks if the value of left operand is less t
< the value of right operand, if yes then conditidia < b) is true.
becomes true.

Checks if the value of left operand is gre:
>= than or equal to the value of right operand, if (a >= b) is not true.
then condition becomes true.

Checks if the value of left operand is less tha
<= equal to the value of right operand, if yes therfa <= b) is true.
condition becomes true.

Checks if the value of left operand is not |
I< than the value of right operand, if yes then (a !< b) is false.
condition becomes true.

Checks if the value of left operand is not gre

1> than the value of right operand, if yes then (a !> b) is true.
condition becomes true.

SQL Logical Operators:

Here is a list of all the logical operators avdigain SQL.

Operator Description
ALL The ALL operator is used to compare a value teallies in anter value se

The AND operator allows the existence of multipdeditions in an SQL statemen

AND WHERE clause.

The ANY operator is used to compare a value toagpficable value in the i
ANY . "

according to the condition.
BETWEEN The BETWEEN opeiltor is used to search for values that are withseteof values

given the minimum value and the maximum value.

93

EXISTS

LIKE

NOT

OR

IS NULL

UNIQUE

The EXISTS operator is used to search for the prsef a row in a specified tat
that meets certain criteria.

The IN operators used to compare a value to a list of literal @althat have bee¢
specified.

The LIKE operator is used to compare a value tdlaindalues using wildcar
operators.

The NOT operator reverses the meaning of the lbgjperator with which iis used
Eg. NOT EXISTS, NOT BETWEEN, NOT IN et¢his is negate operator.

The OR operator is used to combine multiple cood#iin an SQL statemen
WHERE clause.

The NULL operator is used to compare a value wittLaA L value

The LNIQUE operator searches every row of a specifibtettor uniqueness (r
duplicates).

COMMANDS IN SQL :

1. CREATE DATABASE

The SQLCREATE DATABASE statement is used to create new SQL database.

Syntax:

Basic syntax of CREATE DATABASE statement is asoiak:

CREATE DATABASE DatabaseName;

Always database name should be unique within thBIRS.

Example:

If you want to create new database <testDB>, thHeEATE DATABASE statement would be as

follows:

SQL> CREATE DATABASE testDB,;

2. DROP DATABASE

94

The SQLDROP DATABASE statement is used to drop any existing databaS@Iinschema.

Syntax:
Basic syntax of DROP DATABASE statement is as folo
DROP DATABASE DatabaseName;

Always database name should be unique within thBIRS.

Example:

If you want to delete an existing database <testDBen DROP DATABASE statement would be
as follows:

SQL> DROP DATABASE testDB;
3. USE
The SQLUSE statement is used to select any existing datah&8@L schema.
Syntax:
Basic syntax of USE statement is as follows:
USE DatabaseName;
4. CREATE TABLE

The SQLCREATE TABLE statement is used to create a new table.

Syntax:

Basic syntax of CREATE TABLE statement is as fokow

CREATE TABLE table_name(
columnl datatype,
column2 datatype,
column3 datatype,
columnN datatype,
PRIMARY KEY(one or more columns)

95

CREATE TABLE is the keyword telling the databaseteyn what you want to do.in this case, you
want to create a new table. The unique name otifarfor the table follows the CREATE TABLE
statement.

Then in brackets comes the list defining each calumthe table and what sort of data type it is= Th
syntax becomes clearer with an example below.

A copy of an existing table can be created usingrabination of the CREATE TABLE statement
and the SELECT statement.

5. DROP TABLE

The SQLDROP TABLE statement is used to remove a table definitionaindata, indexes,
triggers, constraints, and permission specificatimn that table.

Syntax:
Basic syntax of DROP TABLE statement is as follows:
DROP TABLE table_name;
6. INSERT INTO
The SQLINSERT INTO Statement is used to add new rows of data tola talbhe database.
Syntax:

There are two basic syntax of INSERT INTO stateneeas follows:

INSERT INTO TABLE_NAME (columnl, column2, column3golumnN)]
VALUES (valuel, value2, value3,...valueN);

Here columnl, column2,...columnN are the namebletblumns in the table into which you want
to insert data.

You may not need to specify the column(s) nam&en3QL query if you are adding values for all
the columns of the table. But make sure the ortidreovalues is in the same order as the columns in
the table. The SQL INSERT INTO syntax would bea®vs:

INSERT INTO TABLE_NAME VALUES

96

Example:

Following statements would create six records ir6COMERS table:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, 'Ramesh’, 32, ‘"Ahmedabad’, 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, 'Khilan', 25, 'Delhi’, 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, 'kaushik’, 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (4, 'Chaitali’, 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (5, 'Hardik', 27, 'Bhopal’, 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6, 'Komal', 22, 'MP’, 4500.00);

You can create a record in CUSTOMERS table usingrs#syntax as follows:

INSERT INTO CUSTOMERS
VALUES (7, 'Muffy', 24, 'Indore’, 10000.00);

All the above statement would product followingaets in CUSTOMERS table:

Sa— et + +
|ID|NAME | AGE | ADDRESS | SALARY |
Sa— et + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6] Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
B B + + +

97

7. SELECT

SQLSELECT Statement is used to fetch the data from a dagatade which returns data in the
form of result table. These result tables are daksult-sets.

Syntax:
The basic syntax of SELECT statement is as follows:
SELECT columnil, column2, columnN FROM table_name;

Here columnl, column2...are the fields of a tabh®se values you want to fetch. If you want to
fetch all the fields available in the field thenuycan use following syntax:

SELECT * FROM table_name;

Example:

Consider CUSTOMERS table is having following record

S— S + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+ot S — + + +

Following is an example which would fetch ID, Naared Salary fields of the customers available in
CUSTOMERS table:

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

This would produce following result:

S — S +
|ID|NAME | SALARY |
S S — S — +

| 1| Ramesh | 2000.00 |
| 2 |Khilan | 1500.00 |

98

3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6] Komal	4500.00	
7	Muffy	10000.00
S S B —— +

8. WHERE CLAUSE

The SQLWHERE clause is used to specify a condition while feighthe data from single table or
joining with multiple table.

If the given condition is satisfied then only ituens specific value from the table. You would use
WHERE clause to filter the records and fetching/ordcessary records.

The WHERE clause not only used in SELECT statenimritit is also used in UPDATE, DELETE
statement etc. which we would examine in subseqeleters.

Syntax:

The basic syntax of SELECT statement with WHERKs#ais as follows:

SELECT columnil, column2, columnN
FROM table_name
WHERE [condition]

You can specify a condition using comparision gidal operators like >, <, =, LIKE, NOT etc.
Below examples would make this concept clear.

Example:

Consider CUSTOMERS table is having following resord

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
S— S + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2 |Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+ot S — + + +

99

Following is an example which would fetch ID, Naared Salary fields from the CUSTOMERS
table where salary is greater than 2000:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000;

This would produce following result:

S S — S — +
|ID|NAME | SALARY |
S — S +

4 | Chaitali | 6500.00 |
5 | Hardik | 8500.00 |
6 | Komal | 4500.00 |
7 | Muffy | 10000.00 |
S S — S — +

9. AND andOR OPERATORS

The SQLAND andOR operators are used to combile multiple conditi@nsarrow data in an SQL
statement. These two operators are called conyenoperators.

These operators provide a means to make multiptgpadsons with different operators in the same
SQL statement.

The AND Operator:

The AND operator allows the existence of multiple condisian an SQL statement's WHERE
clause.

Syntax:

The basic syntax of AND operator with WHERE claissas follows:

SELECT columnl, column2, columnN
FROM table_name
WHERE [condition1] AND [condition2]...AND [conditiaN];

You can combine N number of conditions using ANRmgpor. For an action to be taken by the
SQL statement, whether it be a transaction or qurgonditions separated by the AND must be
TRUE.

100

Example:

Consider CUSTOMERS table is having following resord

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
SR— ST + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |

| 6|Komal | 22|MP | 4500.00 |
| 7|Muffy | 24 |Indore |10000.00 |
S— S + +

Following is an example which would fetch ID, Naared Salary fields from the CUSTOMERS
table where salary is greater than 2000 AND adesistan 25 years:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000 AND age < 25;

This would produce following result:

S R +
| ID | NAME | SALARY |
S R +

| 6|Komal | 4500.00 |
| 7 | Muffy | 10000.00 |
S S— e —— +

10.UPDATE
The SQLUPDATE Query is used to modify the existing records talde.

You can use WHERE clause with UPDATE query to updatected rows otherwise all the rows
would be effected.

Syntax:

The basic syntax of UPDATE query with WHERE claissas follows:

UPDATE table_name

101

SET columnl = valuel, column2 = value2...., colummbalueN
WHERE [condition];

11.DELETE
The SQLDELETE Query is used to delete the existing records fadible.

You can use WHERE clause with DELETE query to @eteflected rows, otherwise all the records
would be deleted.

Syntax:

The basic syntax of DELETE query with WHERE claissas follows:

DELETE FROM table_name
WHERE [condition];

You can combine N number of conditions using ANBD& operators.
Example:

Consider CUSTOMERS table is having following record

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+-———+ S — + + +

Following is an example which would DELETE a cusesmwhose ID is 6:

SQL> DELETE FROM CUSTOMERS
WHERE ID = 6;

Now CUSTOMERS table would have following records:

SR— ST + +
|ID|NAME | AGE | ADDRESS |SALARY |

102

+ot S — + + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |

| 7| Muffy | 24]Indore |10000.00 |
+----+ +----- + + +

12.LIKE

The SQLLIKE clause is used to compare a value to similar gaiseng wildcard operators. There
are two wildcards used in conjunction with the LIKgerator:

« The percent sign (%)
« The underscore ()

The percent sign represents zero, one, or multipeacters. The underscore represents a single
number or character. The symbols can be used ibications.

Syntax:

The basic syntax of % and _is as follows:

SELECT FROM table_name
WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE 'XXXX_'

consider CUSTOMERS table is having following resord

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
SR— ST + +

1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00

103

| 4] Chaitali| 25| Mumbai | 6500.00 |
| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+-———+ S — + + +

Following is an example which would display all tieeords from CUSTOMERS table where
SALARY starts with 200:

SQL> SELECT * FROM CUSTOMERS
WHERE SALARY LIKE '200%,;

This would produce following result:

S— S + +
|ID|NAME | AGE | ADDRESS |SALARY |
S— S + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 3|kaushik | 23 |Kota | 2000.00 |
+ommt +ommem + + +

13.TOP
The SQLTORP clause is used to fetch a TOP N number or X pérmesords from a table.
Syntax:

The basic syntax of TOP clause with SELECT statémwenld be as follows:
SELECT TOP number|percent column_name(s)

FROM table_name

WHERE [condition]

Example:

Consider CUSTOMERS table is having following record

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00

104

| 4] Chaitali| 25| Mumbai | 6500.00 |
| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+-———+ S — + + +

Following is an example on SQL server which wow@ttlh top 3 records from CUSTOMERS table:
SQL> SELECT TOP 3 * FROM CUSTOMERS;

This would produce following result:

SO S S R — S — +
|ID|NAME | AGE | ADDRESS | SALARY |
S — R — R S +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2 |Khilan | 25| Delhi |1500.00 |

| 3 |kaushik| 23 |Kota]2000.00 |

L R I S T R +

14.ORDER BY

The SQLORDER BY clause is used to sort the data in ascendingsmeteing order, based on one
or more columns. Some database sorts query résw@ssending order by default.

Syntax:

The basic syntax of ORDER BY clause is as follows:

SELECT column-list

FROM table_name

[WHERE condition]

[ORDER BY columnil, column2, .. columnN] [ASC | DE[SC

You can use more than one column in the ORDER Bvis#. Make sure whatever column you are
using to sort, that column should be in column-list

Example:

Consider CUSTOMERS table is having following record

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

105

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
B B + + +

Following is an example which would sort the resulascending order by NAME and SALARY:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME, SALARY;

This would produce following result:

SR— ST + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 2|Khilan | 25| Delhi | 1500.00 |

| 6| Komal | 22| MP | 4500.00 |

| 7| Muffy | 24]Indore |10000.00 |

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
+-———+ S — + + +

15.GROUP BY

The SQLGROUP BY clause is used in collaboration with the SELECTesteent to arrange
identical data into groups.

The GROUP BY clause follows the WHERE clause ire&SCT statement and precedes the
ORDER BY clause.

Syntax:

The basic syntax of GROUP BY clause is given belbwe GROUP BY clause must follow the
conditions in the WHERE clause and must preced ©RBER BY clause if one is used.

SELECT columni, column2
FROM table_name

WHERE [conditions]

GROUP BY columni, column2

106

ORDER BY columnl, column2

Example:

Consider CUSTOMERS table is having following record

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
S— S + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2 |Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
B B + + +

If you want to know the total amount of salary @tle customer, then GROUP BY query would be
as follows:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
GROUP BY NAME;

This would produce following result:

+ + +
| NAME | SUM(SALARY) |
+ + +

| Chaitali| 6500.00 |

| Hardik | 8500.00 |

| kaushik | 2000.00 |

| Khilan | 1500.00 |

| Komal | 4500.00 |

| Muffy | 10000.00 |

| Ramesh | 2000.00 |
+ + +

16.DISTINCT KEYWORD

The SQLDISTINCT keyword is used in conjunction with SELECT stataite eliminate all the
duplicate records and fetching only unique records.

There may be a situation when you have multipldidaie records in a table. While fetching such
records, it makes more sense to fetch only unigoerds instead of fetching duplicate records.

107

Syntax:

The basic syntax of DISTINCT keyword to eliminatgticate records is as follows:
SELECT DISTINCT columnl, column2,.....columnN

FROM table_name

WHERE [condition]

Example:

Consider CUSTOMERS table is having following resord

S— S + +
|ID|NAME | AGE | ADDRESS |SALARY |
SR— ST + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+ot S — + + +

First let us see how the following SELECT querwres duplicate salary records:

SQL> SELECT SALARY FROM CUSTOMERS
ORDER BY SALARY;

This would produce following result where salary)@@s coming twice which is a duplicate record
from the original table.

| SALARY |

1500.00 |
2000.00 |
2000.00 |
4500.00 |
6500.00 |
8500.00 |
| 10000.00 |

Now let us use DISTINCT keyword with the above SEEquery and see the result:

108

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
ORDER BY SALARY;

This would produce following result where we do hate any duplicate entry:

| 1500.00 |
| 2000.00 |
| 4500.00 |
| 6500.00 |
| 8500.00 |
| 10000.00 |

17.CONSTRAINTS

Constraints are the rules enforced on data colnrable. These are used to limit the type of data
that can go into a table. This ensures the accuaadyeliability of the data in the database.

Contraints could be column level or table levellu@m level constraints are applied only to one
column where as table level constraints are appliede whole table.

Following are commonly used constraints availabl8QL. These constraints have already been
discussed in SQL - RDBMS Concepts chapter but a@gtwto revise them at this point.

« NOT NULL Constraint: Ensures that a column canraatehNULL value.

- DEFAULT Constraint : Provides a default value faradumn when none is specified.

« UNIQUE Constraint: Ensures that all values in auout are different.

- PRIMARY Key: Uniquely identified each rows/recoridsa database table.

« FOREIGN Key: Uniquely identified a rows/recordsainy another database table.

« CHECK Constraint: The CHECK constraint ensures #flatalues in a column satisfy
certain conditions.

« INDEX: Use to create and retrieve data from theldase very quickly.

Constraints can be specified when a table is aleaith the CREATE TABLE statement or you can
use ALTER TABLE statment to create constraints eaféer the table is created.

Dropping Constraints:

Any constraint that you have defined can be dropgsiag the ALTER TABLE command with the
DROP CONSTRAINT option.
109

For example, to drop the primary key constrairthemEMPLOYEES table, you can use the
following command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;

Some implementations may provide shortcuts for glirggpcertain constraints. For example, to drop
the primary key constraint for a table in Oracley gan use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Some implementations allow you to disable constsainstead of permanently dropping a
constraint from the database, you may want to tearpy disable the constraint, and then enable it
later.

Integrity Constraints:

Integrity constraints are used to ensure accuradycansistency of data in a relational database.
Data integrity is handled in a relational datalthseugh the concept of referential integrity.

There are many types of integrity constraints ghay a role in referential integrity (RI). These
constraints include Primary Key, Foreign Key, Ur@dtionstraints and other constraints mentioned
above.

The SQLJoins clause is used to combine records from two or rtedkes in a database. A JOIN is a
means for combining fields from two tables by usmafues common to each.

Consider following two tables, (a) CUSTOMERS taislas follows:

SR— ST + +
|ID|NAME | AGE | ADDRESS |SALARY |
SR— ST + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+-———+ S — + + +

(b) Another table is ORDERS as follows:

S + + +

110

|OID | DATE | CUSTOMER_ID | AMOUNT

. + + +
| 102 | 2009-10-08 00:00:00 | 3| 3p00
| 100 | 2009-10-08 00:00:00 | 3| 1p00
| 101 | 2009-11-20 00:00:00 | 2| 1p60
| 103 | 2008-05-20 00:00:00 | 4| 2p60
. + + +

Now let us join these two tables in our SELECTestant as follows:

SQL> SELECT ID, NAME, AGE, AMOUNT
FROM CUSTOMERS, ORDERS
WHERE CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce following result:

SR— ST +
|ID|NAME | AGE | AMOUNT |
S— ot +

3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
SR— ST +

Here it is noteable that the join is performedna WHERE clause. Several operators can be used to
join tables, such as =, <, >, <>, <=, >=, |=, BETBK LIKE, and NOT; they can all be used to join
tables. However, the most common operator is thalesymbol.

18. SQL JOIN TYPES
There are different type of joins available in SQL:

« INNER JOIN: returns rows when there is a matchdthliables.

« LEFT JOIN: returns all rows from the left table eevf there are no matches in the right
table.

« RIGHT JOIN: returns all rows from the right tabéen if there are no matches in the left
table.

« FULL JOIN: returns rows when there is a match ie ohthe tables.

« SELF JOIN: is used to join a table to itself, ath# table were two tables, temporarily
renaming at least one table in the SQL statement.

« CARTESIAN JOIN: returns the cartesian product & sets of records from the two or more
joined tables.

111

19. UNION

The SQLUNION clause/operator is used to combine the results@br more SELECT
statements without returning any duplicate rows.

To use UNION, each SELECT must have the same nuaflmEiumns selected, the same number of
column expressions, the same data type, and haweiththe same order but they do not have to be
the same length.

Syntax:

The basic syntax diNION is as follows:
SELECT columnl [, column2]

FROM tablel [, table2]

[WHERE condition]

UNION

SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expresbsiased on your requirement.
Example:

Consider following two tables, (a) CUSTOMERS taislas follows:

SR— ST + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+-———+ S — + + +

(b) Another table is ORDERS as follows:

S + + +

112

|OID | DATE | CUSTOMER_ID | AMOUNT

. + + +
| 102 | 2009-10-08 00:00:00 | 3| 3p00
| 100 | 2009-10-08 00:00:00 | 3| 1p00
| 101 | 2009-11-20 00:00:00 | 2| 1p60
| 103 | 2008-05-20 00:00:00 | 4| 2p60
. + + +

Now let us join these two tables in our SELECTestant as follows:

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID
UNION

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce following result:

+ + + + +
|ID |NAME | AMOUNT | DATE |
+ + + + +

| 1]Ramesh | NULL | NULL |

2] Khilan	1560	2009-11-20 00:00:00
3] kaushik	3000	2009-10-08 00:00:00
3] kaushik	1500	2009-10-08 00:00:00
4] Chaitali	2060	2008-05-20 00:00:00
5]Hardik	NULL	NULL

| 6]Komal | NULL|NULL |

| 7 |Muffy | NULL]|NULL |

+ + + + +

20.NULL

The SQLNULL is the term used to represent a missing valueUAINvalue in a table is a value in
a field that appears to be blank.

A field with a NULL value is a field with no valudt.is very important to understand that a NULL
value is different than a zero value or a field #t@ntains spaces.

113

Syntax:

The basic syntax dlULL while creating a table:

SQL> CREATE TABLE CUSTOMERS(

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

HereNOT NULL signifies that column should always accept anieikplalue of the given data
type. There are two column where we did not use MOJLL which means these column could be
NULL.

A field with a NULL value is one that has been lgiink during record creation.
Example:

The NULL value can cause problems when selecting, t@wever, because when comparing an
unknown value to any other value, the result issgswnknown and not included in the final results.

You must use théS NULL or IS NOT NULL operators in order to check for a NULL value.

Consider following table, CUSTOMERS having follogirecords:

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
SR— ST + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2 |Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4| Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | |

| 7| Muffy | 24]Indore | |

+----+ +-eeee + + +

Now following is the usage a6 NOT NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS

114

WHERE SALARY IS NOT NULL,;

This would produce following result:

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4| Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |
+-———+ S — + + +

21ALIAS

You can rename a table or a column temporarilyiyng another name known as alias.

The use of table aliases means to rename a tablpanticular SQL statement. The renaming is a
temporary change and the actual table name doeshange in the database.

The column aliases are used to rename a tableimaoslfor the purpose of a particular SQL query.
Syntax:

The basic syntax dable alias is as follows:
SELECT columnil, column2....

FROM table_name AS alias_name
WHERE [condition];

The basic syntax afolumn alias is as follows:

SELECT column_name AS alias_name
FROM table_name
WHERE [condition];

Example:

Consider following two tables, (a) CUSTOMERS taislas follows:

SR— ST + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

115

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
B B + + +

(b) Another table is ORDERS as follows:

ot + + +
|OID | DATE | CUSTOMER_ID | AMOUNT
. + + +

| 102 | 2009-10-08 00:00:00 | 3| 3p00

| 100 | 2009-10-08 00:00:00 | 3| 1p00

| 101 | 2009-11-20 00:00:00 | 2| 1p60

| 103 | 2008-05-20 00:00:00 | 4] 2060
. + + +

Now following is the usage d@éble alias

SQL> SELECT C.ID, C.NAME, C.AGE, O.AMOUNT
FROM CUSTOMERS AS C, ORDERS AS O
WHERE C.ID = O.CUSTOMER_ID;

This would produce following result:

S— ot +
|ID|NAME | AGE | AMOUNT |
SR— ST +

3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
SR— ST +

Following is the usage ablumn alias

SQL> SELECT ID AS CUSTOMER_ID, NAME AS CUSTOMER_WFE
FROM CUSTOMERS
WHERE SALARY IS NOT NULL;

This would produce following result:

116

| CUSTOMER_ID | CUSTOMER_NAME |
+ + +

| 1 | Ramesh |
| 2 | Khilan |

| 3 | kaushik |

| 4 | Chaitali |
|
I
|

5 | Hardik |
6 | Komal |
7 | Muffy |

+ + +

22.ALTER TABLE
The SQLALTER TABLE command is used to add, delete, or modify columias existing table.

You would also use ALTER TABLE command to add anapdvarious constraints on a an existing
table.

Syntax:

The basic syntax ALTER TABLE to add a new column in an existing table is aee:
ALTER TABLE table_name ADD column_name datatype;

The basic syntax of ALTER TABLE tbROP COLUMN in an existing table is as follows:
ALTER TABLE table_name DROP COLUMN column_name;

The basic syntax of ALTER TABLE to change DATA TYPE of a column in a table is as
follows:

ALTER TABLE table_name MODIFY COLUMN column_nametdgype;

The basic syntax of ALTER TABLE to add\®OT NULL constraint to a column in a table is as
follows:

ALTER TABLE table_name MODIFY column_name datatjp® T NULL;
The basic syntax of ALTER TABLE tADD UNIQUE CONSTRAINT to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT MyUniqueConstraint UNIQUE(columniglamn2...);

The basic syntax of ALTER TABLE tdDD CHECK CONSTRAINT to a table is as follows:
117

ALTER TABLE table_name
ADD CONSTRAINT MyUnigueConstraint CHECK (CONDITION)

The basic syntax of ALTER TABLE tdDD PRIMARY KEY constraint to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT MyPrimaryKey PRIMARY KEY (columnl,aumn2...);

The basic syntax of ALTER TABLE tDROP CONSTRAINT from a table is as follows:

ALTER TABLE table_name
DROP CONSTRAINT MyUnigueConstraint;

If you're using MySQL, the code is as follows:

ALTER TABLE table_name
DROP INDEX MyUniqueConstraint;

The basic syntax of ALTER TABLE tbROP PRIMARY KEY constraint from a table is as
follows:

ALTER TABLE table_name
DROP CONSTRAINT MyPrimaryKey;

If you're using MySQL, the code is as follows:

ALTER TABLE table_name
DROP PRIMARY KEY;

Example:

Consider CUSTOMERS table is having following resord

S— S + +
|ID|NAME | AGE | ADDRESS |SALARY |
S— S + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
B B + + +

118

Following is the example to ADD a new column inexisting table:
ALTER TABLE CUSTOMERS ADD SEX char(1);

Now CUSTOMERS table is changed and following wdwddoutput from SELECT statement:

R — S + + +
|ID|NAME |AGE | ADDRESS |SALARY |SEK
R — S + + +

| 1| Ramesh | 32 | Ahmedabad | 2000.00 | NULL
| 2| Ramesh | 25| Delhi | 1500.00 | NYLL

| 3 |kaushik| 23 |Kota | 2000.00 | NULL

| 4| kaushik| 25| Mumbai | 6500.00 | NYLL

| 5|Hardik | 27 | Bhopal | 8500.00 | NULL

| 6| Komal | 22| MP | 4500.00 | NULL
| 7| Muffy | 24 |Indore |210000.00 | NULL
+--mt ot + + +

Following is the example to DROP sex column frorstmng table:
ALTER TABLE CUSTOMERS DROP SEX;

Now CUSTOMERS table is changed and following wdpgdoutput from SELECT statement:

SR— SR + +
|ID|NAME |AGE | ADDRESS |SALARY |
S S R — + +

| 1| Ramesh | 32 | Ahmedabad | 2000.00 |
| 2| Ramesh | 25| Delhi | 1500.00 |

| 3| kaushik| 23 |Kota | 2000.00 |

| 4]kaushik | 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |

| 7| Muffy | 24 |Indore |10000.00 |

S R S — + + +

23. TRUNCATE TABLE
The SQLTRUNCATE TABLE command is used to delete complete data from etirgxtable.

You can also use DROP TABLE command to delete cetaghble but it would remove complete
table structure form the database and you would teee-create this table once again if you wish
you store some data.

119

Syntax:

The basic syntax 0FRUNCATE TABLE is as follows:

TRUNCATE TABLE table_name;

Example:

Consider CUSTOMERS table is having following record

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
S— S + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2| Khilan | 25| Delhi | 1500.00 |

| 3| kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |
| 7| Muffy | 24 |Indore |10000.00 |
+-———+ S — + + +

Following is the example to turncate:
SQL > TRUNCATE TABLE CUSTOMERS;
Now CUSTOMERS table is truncated and following wbhbé output from SELECT statement:

SQL> SELECT * FROM CUSTOMERS;
Empty set (0.00 sec)

The HAVING clause enables you to specify condititrat filter which group results appear in the
final results.

The WHERE clause places conditions on the selatikonns, whereas the HAVING clause places
conditions on groups created by the GROUP BY clause

Syntax:

The following is the position of the HAVING claugea query:

SELECT
FROM
WHERE

120

GROUP BY
HAVING
ORDER BY

The HAVING clause must follow the GROUP BY clausaiquery and must also precede the
ORDER BY clause if used. The following is the syntd the SELECT statement, including the
HAVING clause:

SELECT columni1, column2
FROM tablel, table2

WHERE [conditions]

GROUP BY columnl, column2
HAVING [conditions]
ORDER BY columnl, column2

Example:

Consider CUSTOMERS table is having following record

Sa— et + +
|ID|NAME | AGE | ADDRESS |SALARY |
Sa— et + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2 |Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 |Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |

| 6|Komal | 22|MP | 4500.00 |
| 7|Muffy | 24 |Indore |10000.00 |
SR— ST + +

Following is the example which would display recfwdwhich similar age count would be more
than or equal to 2:

SQL > SELECT *

FROM CUSTOMERS
GROUP BY age

HAVING COUNT (age) >= 2;

This would produce following result:

SR— SR + +
|ID | NAME |AGE | ADDRESS | SALARY |
T R S — S +

| 2| Khilan| 25 | Delhi |1500.00 |
T R S — S +

121

24. DATE FUNCTIONS

Following is the list of all important Date and Temelated functions available through SQL. There
are various other functions supported by your RDBE&en list is based on MySQL RDBMS.

Name Description
ADDDATE() Add date
ADDTIME() Add time
CONVERT_TZ(Convert from one timezone to anot
CURDATE() Return the current de

CURRENT_DATE(), CURRENT_DAT Syncnyms for CURDATE(
CURRENT_TIME(), CURRENT_TIMI Synonyms for CURTIME:

CURRENT_TIMESTAMP(),

CURRENT_TIMESTAMP Synonyms for NOW()

CURTIME() Return the current tin

DATE_ADD() Add two date

DATE_FORMAT() Format date as specifi

DATE_SUB(Subtract two dat

DATE() Extract the date part of a date or datetime exjma
DATEDIFF() Subtract two dat

DAY() Synonym for DAYOFMONTH(

DAYNAME() Return the name of the weeki

DAYOFMONTH() Return the day of the mon(1-31)
DAYOFWEEK() Return the weekday index of the argun

122

DAYOFYEAR()

EXTRACT

FROM_DAYS(
FROM_UNIXTIME()
HOUR()

LAST_DAY

LOCALTIME(), LOCALTIME

LOCALTIMESTAMP,
LOCALTIMESTAMP()

MAKEDATE()
MAKETIME
MICROSECOND(
MINUTE()
MONTH()
MONTHNAME()
NOW()
PERIOD_ADD(
PERIOD_DIFF(
QUARTER(
SEC_TO_TIME(
SECOND(
STR_TO_DATE(

SUBDATE()

Return the day of the year-366

Extract part of a da

Convert a day number to a d

Format date as a UNIX timesta

Extract the hot

Return the last day of the month for the argui

Synonym for NOW(

Synonym for NOW()

Create a date from the year and day of
MAKETIME()

Return the microseconds from argun
Return the minute from the argum
Return the month from the date pas
Return the name of the mo

Return the current date and ti

Add a period to a ye-montt

Return the number of months between pel
Return the quarter from a date argun
Converts seconds to 'HH:MM:SS' forr
Return the second-59)

Convert a string to a d¢

When invoked with three arguments a synonym for BAZUB(

123

SUBTIME() Subtract time

SYSDATE(Return the time at which the function exec
TIME_FORMAT() Format as tim

TIME_TO_SEC(Return the argument convertecsecond
TIME() Extract the time portion of the expression pa
TIMEDIFF() Subtract tim

With a single argument, this function returns théecbr datetim

TIMESTAMP . .
0 expression. With two arguments, the sum of theraegis

TIMESTAMPADD() Add an interval to a datetime expres:
TIMESTAMPDIFF() Subtract an interval from a datetime expres
TO_DAYS() Return the date argument converted to
UNIX_TIMESTAMP() Return a UNIX timestan

UTC_DATE() Return the current UTC d:

UTC_TIME() Return the current UTC tir
UTC_TIMESTAMP(Return the curint UTC date and tin
WEEK() Return the week numt

WEEKDAY/() Returr the weekday inde
WEEKOFYEAR(Return the calendar week of the dai-53)
YEAR() Return the yei

YEARWEEK() Return the year and we

124

Examples of SQL Commands in Different Tables:

ITEMS table

This table stores information about all the itehet tare offered by compnay. The structure of the
table is as follows:

Column Datatype Meaning

Itemno Number(5) A unigue number assigned to &ach
IltemName| Varchar2(20) Name of the item.

Rate Number(8,2) Rate of the item.

taxrate Number(4,2) Sales tax rate for this item.

The following are the constraints related to ITEMBle:

« ITEMNO is primary key
- RATE and TAXRATE must be >=0
« Default value for TAXRATE is O

create table ITEMS

(

itemno number(5) constraint items_pk primaey,

itemname varchar2(20),

rate number(8,2) constraint items_rate chkkheate >= 0),

taxrate number(4,2) default O constraint itemi® _rehk check(rate >= 0)

);

insert into items values(1,'Samsung 14" monito@0700.5);
insert into items values(2,' TVS Gold Keyboard',1,000;
insert into items values(3,'Segate HDD 20GB',65261
insert into items values(4,'PIll processor',8000,8)

insert into items values(5,'Logitech Mouse',500,5);
insert into items values(6, Creative MMK',4500,91.5

CUSTOMERS Table

This table contains information about customers e placed one or more orders. The following
is the structure of the table.

Column Datatype Meaning

125

Custno Number(5) A unique number assigned to eastomer.
CustName, Varchar2(20)| Complete name of the customer.
Addressl | varchar2(5Q)First line of address.

Address2 | varchar2(5C)Second line of address.

City varchar2(30) | Name of the city where customer lives.
state varchar2(30) Name of the state where customer lives.
PinCode | varchar2(10) Pincode of the city.

Phone varchar2(30) One or more phone numbers separated using commay,).

The following are the constraint related to CUSTOR&Etable.

« CUSTNO is primary key
« CUSTNAME is not null column

create table CUSTOMERS

(

custno number(5) constraint customers_phknany key,
custname varchar2(20) constraint customers_augtnan not null,
addressl varchar2(50),

address2 varchar2(50),

city varchar2(30),

state varchar2(30),

pin varchar2(10),

phone varchar2(30)

);

insert into customers values(101,'Raul’,'12-22E2®arakanagar’,
'Vizag','AP','530016','453343,634333);

insert into customers values(102,'Denilson’,'’43222CBM Compound’,
'Vizag','AP','530012','744545");

insert into customers values(103,'Mendiator','4525Abid Nagar’,
'Vizag','AP','530016','567434");

insert into customers values(104,'Figo’,'33-34'¥6talinagar’,
'Vizag','AP','530021','875655,876563 B72);

insert into customers values(105,'Zidane’,'23-22Lt85 Colony’,
'Vizag','AP','530013','765533");

126

ORDERS Table

Contains information about all orders placed by@uers. Contains one row for each order. The
details of items ordered in an order will be found.INEITEMS table. The following is the
structure of the table.

Column | Datatype Meaning

OrdNo Number(5) | A unique number assigned to eadhbr.

OrdDate Date Date on which order is placed.

ShipDate Date Date on which goods are to be shipped t@oest
Address1 varchar2(50) First line of shipping address.

Address?2| varchar2(50) Second line of shipping address.

City varchar2(30) City name in shipping address.

state varchar2(30)State name in shipping address.

PinCode varchar2(10) Pincode of the city in shipping address.

Phone varchar2(30)One or more phone numbers separated using comoha@)pping place|

The following are the constraint related to ORDERISe.

« ORDNO is primary key
+ CUSTNO is foreign key referencing CUSTNO of CUSTOREtable.
« SHIPDATE must be >= ORDDATE.

create table ORDERS

(

ordno number(5) constraint orders_pk priniaay,
orddate date,

shipdate date,

custno number(5) constraint orders_custno_fateaces customers,
addressl varchar2(50),

address2 varchar2(50),

city varchar2(30),

state varchar2(30),

pin varchar2(10),

127

phone varchar2(30),
constraint order_dates_chk check(orddate <=dsit)

);

insert into orders values(1001,'15-May-2001","1®-2001',102,
'43-22-22','CBM Compound','Vizag','AP','5300124345");

insert into orders values(1002,'15-May-2001','52091',101,
'12-22-29','Dwarakanagar’,'Vizag',’AP','53004563343,634333);

insert into orders values(1003,'17-May-2001",'7-2091',101,
'12-22-29','Dwarakanagar’,'Vizag',’AP','53004563343,634333);

insert into orders values(1004,'18-May-2001',"17-001',103,
'45-45-52''Abid Nagar', 'Vizag','AP','5300B87434");

insert into orders values(1005,'20-May-2001",'3-2001',104,
'33-34-56','Muralinagar','Vizag','AP','530021'",'8%5,876563,872222");

insert into orders values(1006,'23-May-2001",'"1i-001',104,
'54-22-12''MVP Colony','Vizag','’AP','530024',null)

LINEITEMS Table

Contains details of items ordered in each ordereBeh item in each order this table contains one

row. The following is the structure of the table.

Column | Datatype Meaning

OrdNo | Number(5) @ Refers to the order number ofaifuer.

ltemno | Number(5) @ Refers to the item number ofiti.

gty number(3) Howmany units of this item arereediin this order.
price Number(8,2) Selling price of the item for this order.

DisRate | Number(4,2) Discount Rate for this item in this order.

The following are the constraint related to ORDERISe.

« Primary key is ORDNO and ITEMNO.
+ ORDNO is a foreign key referencing ORDNO of ORDERSIe.
« ITEMNO is a foreign key referencing ITEMNO of ITEMS8ble.

128

- Default DISRATE is O
« QTY mustbe>=1
« DISRATE mustbe >=0

create table LINEITEMS
(
ordno number(5) constraint LINEITEMS_ORDNO_Ferences ORDERS,
itemno number(5) constraint LINEITEMS_itemno_Ferences ITEMS,
gty number(3) constraint LINEITEMS_ qty CHKIECK(gty >= 1),
price number(8,2),
disrate number(4,2) default O
constraint LINEITEMS_DISRATE_CHK CHECdisrate >= 0),
constraint lineitems_pk primary key (ordno,itemno)

);

insert into lineitems values(1001,2,3,1000,10.0);
insert into lineitems values(1001,1,3,7000,15.0);
insert into lineitems values(1001,4,2,8000,10.0);
insert into lineitems values(1001,6,1,4500,10.0);

insert into lineitems values(1002,6,4,4500,20.0);
insert into lineitems values(1002,4,2,8000,15.0);
insert into lineitems values(1002,5,2,600,10.0);

insert into lineitems values(1003,5,10,500,0.0);
insert into lineitems values(1003,6,2,4750,5.0);

insert into lineitems values(1004,1,1,7000,10.0);
insert into lineitems values(1004,3,2,6500,10.0);
insert into lineitems values(1004,4,1,8000,20.0);

insert into lineitems values(1005,6,1,4600,10.0);
insert into lineitems values(1005,2,2,900,10.0);

insert into lineitems values(1006,2,10,950,20.0);
insert into lineitems values(1006,4,5,7800,10.0);
insert into lineitems values(1006,3,5,6600,15.0);

Procedure to create tables and data

129

You can download and run sqgl scripts used to ctiatge tables and data using the following
procedure.

1. First download tables.sql

2. Getinto SQL*PLUS and run it by using START filenanWherdilename is complete path
of the tables.sq|l file in your system. For examglgpu downloaded the file into
c:\downloads then the command will be
SQL>START C:\DOWNLOADS\TABLES.SQL
This will create all four tables with required ctiaints.

3. Download_data.sql

4. Follow the same procedure as above to run it USSIP§RT command in SQL*PLUS.

Queries
DISPLAY DETAILS OF ITEMS WHERE ITEMNAME CONTAINS LETER 'O' TWICE

SELECT * FROM ITEMS
WHERE ITEMNAME LIKE '%0%0%";

DISPLAY ITEMNO,NAME,PRICE AND SELLING PRICE(PRICE+AX) ROUND SELLING
PRICE TO 100

SELECT ITEMNO, ITEMNAME, RATE, ROUND(RATE + RATE TAXRATE /100) "SPRICE"
FROM ITEMS,;

DISPLAY DETAILS OF ITEMS BY PADDING ITEMNAME TO 20CHARACTERS WITH "'
AND IN UPPERCASE

SELECT ITEMNO, UPPER(RPAD(ITEMNAME,20,".")) ITEMNAK, RATE, TAXRATE
FROM ITEMS,;

DISPLAY CUSTNO,NAME AND ADDRESS

COLUMN ADDRESS FORMAT A40

COLUMN PHONE FORMAT A15

SELECT CUSTNO, CUSTNAME, TRIM(ADDRESS1 || ', || BRESS2 ||, || CITY ||
'l STATE || ', || PIN) ADDRESS , PHONE

FROM CUSTOMERS;

DISPLAY ORDERDATE,APPROXIMATE SHIPDATE, WHICH WILIBE COMMING
MONDAY AFTER 7 DAYS FROM ORDERDATE

SELECT ORDNO,ORDDATE, NEXT_DAY(ORDDATE+7,'MON') SRDATE
FROM ORDERS;

130

DISPLAY ALL THE ORDERS THAT ARE PLACED IN THE CURRET MONTH

SELECT * FROM ORDERS
WHERE TO_CHAR(ORDDATE,'MMYY") = TO_CHAR(SYSDATE,' MMY");

DISPLAY THE ORDERS THAT WERE PLACED IN THE LASTWEERF PREVIOUS MONTH

SELECT * FROM ORDERS
WHERE ORDDATE BETWEEN LAST_DAY(ADD_MONTHS(SYSDAK,-1)) - 7
AND LAST DAY(ADD_MONTHS(SYSDATE,-1));

DISPLAY ORDERNO,ORDERDATE IN DD-MM HH24:MI FORMAT ,BIPDATE IF NOT
AVAILABLE TAKE IT AS 15 DAYS FROM THE DAY OF ORDER

SELECT ORDNO, TO_CHAR(ORDDATE,' DD-MM HH24:MI') ORDATE,
NVL(SHIPDATE,ORDDATE + 15) SHIPDATE
FROM ORDERS;

DISPALY TOTAL NO OF ORDERS

SELECT COUNT(*) "TOTAL NO. ORDERS"
FROM ORDERS;

DISPLY ORDERNO,NO.OF ITEMS IN AN ORDER AND AVG RATBF ORDERS

SELECT ORDNO, COUNT(*) "NO ITEMS", ROUND(AVG(PRICE) "AVERAGE RATE"
FROM LINEITEMS
GROUP BY ORDNO;

DISPLAY ORDERNO FOR ORDERS WHERE ATLEAST ONE PRODUG HAVING RATE
MORE THAN 5000 AND TOTAL NO.OF UNITS IS MORE THANAL

SELECT ORDNO

FROM LINEITEMS

GROUP BY ORDNO

HAVING MAX(PRICE) > 5000 AND SUM(QTY) > 10;

DISPLAY MONTH NAME AND NO.OF ORDERS RECEIVED IN THEMONTH
SELECT TO_CHAR(ORDDATE,'MONTH') MONTH, COUNT(*) "8. ORDERS"
FROM ORDERS

GROUP BY TO_CHAR(ORDDATE,'"MONTH');

DISPLAY CUSTNO WHO HAVE PLACED MORE THAN 2 ORDER®ITHE LAST 3
MONTHS

131

SELECT CUSTNO

FROM ORDERS

WHERE ORDDATE > ADD_MONTHS(SYSDATE,-3)
GROUP BY CUSTNO

HAVING COUNT(*) > 2;

DISPLAY CUSTNO,NO.OF ORDERS ,DATE OF MOST RECENT DRER

SELECT CUSTNO, COUNT(*) "NO. ORDERS", MAX(ORDDATERECENT ORDER ON"
FROM ORDERS
GROUP BY CUSTNO;

DISPLAY CUSTNO,DATE ON WHICH FIRST ORDER WAS PLACEBND THE GAP
BETWEEN FIRST ORDER AND LAST ORDER IN DAYS

SELECT CUSTNO, MIN(ORDDATE) "FIRST ORDER", MAX(ORDATE) - MIN(ORDDATE)
"GAP IN DAYS"

FROM ORDERS

GROUP BY CUSTNO;

DISPLAY ORDERNO,MAX PRICE IN THE ORDER FOR THE ORI WHERE THE
AMOUNT OF ITEMS IS MORE THAN 10000

SELECT ORDNO, MAX(PRICE) "MAX PRICE"
FROM LINEITEMS

GROUP BY ORDNO

HAVING SUM(PRICE * QTY) > 10000;

DISPLAY ITEMNO,TOTAL NO.OF UNITS SOLD,MAXPRICE,MINRICE
SELECT ITEMNO, SUM(QTY) "TOTAL NO. UNITS", MAX(PRIE), MIN(PRICE)
FROM LINEITEMS

GROUP BY ITEMNO;

DISPLAY CUSTNO,DATE,NO.OF ORDERS PLACED

SELECT CUSTNO, ORDDATE, COUNT(*) "NO. ORDRES"

FROM ORDERS

GROUP BY CUSTNO, ORDDATE;

DISPLAY ORDERNO,CUSTNAME,ORDERDATE,NO.OF DATE BETVEN SHIPDATE AND
ORDERDATE FOR ORDERS THAT HAVE BEEN SHIPPED

SELECT ORDNO, CUSTNAME, ORDDATE, SHIPDATE - ORDDATIBAYS"

132

FROM ORDERS O, CUSTOMERS C
WHERE SHIPDATE IS NOT NULL AND O.CUSTNO = C.CUSID;

DISPLAY ORDERNO,ORDERDATE,CUSTNO,NAME FOR ALL THERDERS WHERE THE
ORDER CONTAINS ORDER FOR ITEMNO 5.

SELECT O.ORDNO, ORDDATE, O.CUSTNO, CUSTNAME

FROM ORDERS O, CUSTOMERS C, LINEITEMS L
WHERE ITEMNO =5 AND L.ORDNO = O.ORDNO AND O.CUSID = C.CUSTNO;

The above query can also be written as follows.

SELECT ORDNO, ORDDATE, O.CUSTNO, CUSTNAME
FROM ORDERS O, CUSTOMERS C
WHERE O.CUSTNO = C.CUSTNO

AND ORDNO IN

(SELECT ORDNO FROM LINEITEMS WHERE IMNO = 5);

DISPLAY ITEMNO,NAME,ORDERNO,CUSTNAME AND AMOUNT.

SELECT LITEMNO, ITEMNAME, O.ORDNO, CUSTNAME, PRICEQTY "AMOUNT"
FROM CUSTOMERS C, ORDERS O, LINEITEMS L, ITEMS |
WHERE O.CUSTNO = C.CUSTNO AND O.ORDNO = L.ORDNO

AND LLITEMNO = L.ITEMNO

DISPLAY DETAILS OF ORDEERS IN WHICH ORDERDATE IS ABONDAY AND
CUSTOMER RESIDES IN VSP

SELECT * FROM ORDERS
WHERE TO_CHAR(ORDDATE,'fmDAY") = 'MONDAY"
AND CUSTNO IN (SELECT CUSTNO FROM CUSTOMERS WHERCITY LIKE "%VIS%);

DISPLAY DETAILS OF CUSTOMERS WHO PLACED ANY ORDER®ORTH MORE THAN
30000

133

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN
(SELECT CUSTNO
FROM ORDERS
WHERE ORDNO IN
(SELECT ORDNO
FROM LINEITEMS
GROUP BY ORDNO
HAVING SUM(QTY*PRICE) > 30000)

);
DISPLAY DETAILS OF ITEMS FOR WHICH THERE IS AN ORDEIN THE CURRENT
MONTH

SELECT * FROM ITEMS
WHERE ITEMNO IN
(SELECT ITEMNO
FROM LINEITEMS
WHERE ORDNO IN
(SELECT ORDNO
FROM ORDERS
WHERE TO_CHAR(ORDDATE,'MMYY") = TO_CHAR{SDATE,'MMYY")

)
);

DISPLAY DETAILS OF ORDER IN WHICH WE SOLD ITEM 3 FR MAX PRICE

SELECT * FROM ORDERS
WHERE ORDNO IN
(
SELECT ORDNO
FROM LINEITEMS
WHERE PRICE =
(SELECT MAX(PRICE) FROM LINEITEMS
WHERE ITEMNO = 3)
AND ITEMNO =3

);

DISPLAY DETAILS OF ITEMS FOR WHICH THERE IS AN ORDEIN THE LAST 7 DAYS
OR TOTAL NO.OF UNITS ORDERED IS MORE THAN 10.

SELECT * FROM ITEMS
WHERE ITEMNO IN
(SELECT ITEMNO

134

FROM LINEITEMS
WHERE ORDNO IN

(SELECT ORDNO FROM ORDERS WHERE SYSDATE-ORMIE <= 7)
)

OR ITEMNO IN

(SELECT ITEMNO

FROM LINEITEMS
GROUP BY ITEMNO
HAVING SUM(QTY) > 10

);

DISPLAY ALL THE LINEITEMS IN WHICH THE RATE OF THEITEM IS MORE THAN AVG
RATE OF THE ITEMS

SELECT * FROM LINEITEMS L
WHERE PRICE >

(SELECT AVG(PRICE)

FROM LINEITEMS

WHERE ITEMNO = L.ITEMNO);

DISPLAY DETAILS OF CUSTOMER WHO HAS PLACED MAX NO BORDERS

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN
(SELECT CUSTNO
FROM ORDERS
GROUP BY CUSTNO
HAVING COUNT(*) =
(
SELECT MAX(COUNT(*))
FROM ORDERS
GROUP BY CUSTNO

)
);

DISPLAY DETAILS OF ORDERS IN WHICH ATLEAST ONE ITEMS SOLD FOR HIGHER
RATE THAN ACTUAL RATE

SELECT * FROM ORDERS
WHERE ORDNO IN
(SELECT ORDNO

FROM LINEITEMS L, ITEMS |

135

WHERE L.ITEMNO = LLITEMNO
AND PRICE > RATE);

DETAILS OF CUSTOMERS WHO HAVE NOT PLACED ANY ORDEROR THE LAST 15
DAYS

SELECT * FROM CUSTOMERS
WHERE CUSTNO NOT IN
(SELECT CUSTNO
FROM ORDERS
WHERE SYSDATE - ORDDATE <= 15);

DISPLAY DETAILS OF ITEMS FOR WHICH THERE WAS NO ORER IN THE PREVIOUS
MONTH

SELECT * FROM ITEMS
WHERE ITEMNO NOT IN
(
SELECT ITEMNO
FROM LINEITEMS
WHERE ORDNO IN
(SELECT ORDNO
FROM ORDERS
WHERE TO_CHAR(ORDDATE,'MMYY") = TO_CHARKDD_MONTHS(SYSDATE, -
1), MMYY")

)
);

DISPLAY ORDERS WHERE ORDDATE IS IN THE CURRENT MOMIOR AFTER ORDER
1004.

SELECT O1.*

FROM ORDERS 01, ORDERS 02

WHERE TO_CHAR(O1.0RDDATE,'MMYY") = TO_CHAR(SYSDATBMMYY")
OR (O2.0RDNO = 1004 AND O1.ORDDATE > O2.0RDD&);

DISPLAY DETAILS OF ITEMS THAT ARE PURCHASED BY CUSOMER 102

SELECT * FROM ITEMS
WHERE ITEMNO IN
(SELECT ITEMNO
FROM LINEITEMS
WHERE ORDNO IN
(SELECT ORDNO

136

FROM ORDERS
WHERE CUSTNO =102

)
);

DISPLAY DETAILS OF ITEMS THAT ARE PURCHASED BY CUSOMER 102

SELECT * FROM ITEMS
WHERE ITEMNO IN
(SELECT ITEMNO
FROM LINEITEMS
WHERE ORDNO IN
(SELECT ORDNO
FROM ORDERS
WHERE CUSTNO =102

)
);

CHANGE SHIPDATE OF ORDER 1004 TO THE ORDER DATE ®OIOST RECENT ORDER

UPDATE ORDERS
SET SHIPDATE = (SELECT MAX(ORDDATE)
FROM ORDERS)
WHERE ORDNO = 1004;
DISPLAY THE DETAILS OF ITEMS WHERE ITEMNAME CONTAIN LETTER O OR M

SELECT * FROM ITEMS
WHERE ITEMNAME LIKE '%0%' OR ITEMNAME LIKE '%0M%,;

DISPLAY DETAILS OF ORDERS THAT WERE PLACED IN THE ®NTH OF JUNE 2000.

SELECT * FROM ORDERS
WHERE ORDDATE BETWEEN '01-JUN-2000" AND '30-JUN-2D0

DISPLAY ORDERNO,ORDERDATE AND APPROXIMATE SHIPDATHEB DAYS FROM
ORDDATE) FOR ALL ORDERS THAT ARE NOT SHIPPED.

137

SELECT ORDNO, ORDDATE, ORDDATE + 15 "SHIPDATE"
FROM ORDER WHERE SHIPDATE IS NULL;

DISPLAY ITEMNO,ORDERNO AND TOTAL AMOUNT AFTER ROUNING THE VALUE TO
100’S FOR ALL THE ITEMS WHERE THE QUANTITY IS MOREHAN 5 UNITS OR PRICE
IS LESS THAN 5000.

SELECT ITEMNO, ORDNO, ROUND(QTY*PRICE,-2) "TOTAL"
FROM LINEITEMS
WHERE QTY >5 OR PRICE < 5000;

DISPLAY ITEMNO,ITEMNAME,PRICE AND TAX FOR ITEMS THA" ARE TAXABLE.

SELECT ITEMNO, ITEMNAME, PRICE , PRICE * TAX /100TAX"
FROM ITEMS
WHERE TAXRATE IS NOT NULL,

DISPLAY ORDERNO,CUSTMERNO,ORDERDATE,NO. OF DAYS BB®MEEN DAYS
ORDERDATE AND SYSTEM DATE AND DATE ON WHICH THE AMONT SHOULD BE
COLLECTED, WHICH IS 5TH OF NEXT MONTH OF THE MONTHN WHICH ITEMS ARE
DELIVERED.

SELECT ORDNO, CUSTNO, ORDDATE, SYSDATE - ORDDATRODAYS" ,
LAST_DAY(SHIPDATE) + 5 "COLLDATE"
FROM ORDERS
WHERE SHIPDATE IS NOT NULL;

DISPLAY THE DETAILS OF ORDERS THAT PLACED IN THE L&T 20 DAYS AND
DELIVERED.

SELECT * FROM ORDERS
WHERE SYSDATE - ORDDATE <= 20 AND SHIPDATE IS NONULL;

CHANGE THE RATE OF ITEMS IN ORDER 1003 SO THAT 1®SCOUNT IS GIVEN TO
ALL ITEMS.

UPDATE LINEITEMS SET PRICE = PRICE * 0.90
WHERE ORDNO = 1003;

DISPLAY THE ITEMS WHERE ITEMNAME CONTAINS MORE THANLO CHARACTERS.

SELECT * FROM ITEMS

138

WHERE LENGTH(ITEMNAME) > 10;

DISPLAY ITEMS WHERE ITEMNAME CONTAINS LETTER ‘O’ AHER 5TH POSITION.

SELECT * FROM ITEMS
WHERE INSTR(ITEMNAME,'0’) > 5;

DISPLAY FIRST NAME OF THE CUSTOMER.

SELECT SUBSTR(ITEMNAME,1, INSTR(ITEMNAME,'") -1 FIRST NAME"
FROM CUSTOMERS;

DISPLAY ITEMNO,ITEMNAME IN UPPER CASE FOR ALL ITEMSNVHERE THE LETTER
‘M’ IS EXISTING IN ANY CASE.

SELECT ITEMNO, UPPER(ITEMNAME)
FROM ITEMS
WHERE UPPER(ITEMNAME) LIKE '%M%",

DISPLAY THE ORDERS THAT ARE PLACED IN THE CURRENT ®NTH.

SELECT * FROM ORDERS
WHERE TO_CHAR(ORDDATE,"YYMM') = TO_CHAR(SYSDATE,'YMM");

INSERT INTO A NEW ORDER WITH THE FOLLOWING: ORDERNQ010,CUSTOMERNO-
105,0RDERDATE-13-JULY-2001 AT 4:45 PM,SHIPDATE-NU|LEHIPADDRESS-NULL.

INSERT INTO ORDERS VALUES(1010,TO_DATE('13-07-2006:45','DD-MM-YYYY
HH24:MI"),NULL,105,
NULL,NULL,NULL,NULL,NUI,NULL);

DISPLAY ORDERNO,CUSTOMERNO,THE NO. OF DAYS BETWEEBHIPDATE AND
ORDERDATE.IF SHIPDATE IS-NOT AVAILABLE, TAKE IT ASSYSTEM DATE.

SELECT ORDNO,CUSTNO, NVL(SHIPDATE,SYSDATE)-ORDDATE
FROM ORDERS;

DISPLAY ITEMNO,PRICE,QUANTITY,DISCOUNT RATE FOR ITEMS WHERE THE
DISCOUNT RATE IS NON-ZERO. DISCOUNT-RATE IS CALUCWTED AS 10% FOR ITEM
1,7% FOR ITEM 6 AND 8% FOR REMAINING.

139

SELECT ITEMNO, PRICE, QTY, DECODE(ITEMNO,1,10,6,0)I'DISRATE"
FROM LINEITEMS
WHERE DISRATE <> 0

DISPLAY TOTAL AMOUNT OF ORDERS WE RECEIVED SO FAR.

SELECT SUM(QTY*PRICE)
FROM LINEITEMS;

DISPLAY CUSTOMERNO,MONTH-NAME,NO. OF ORDERS OF THEBJRRENT YEAR.

SELECT CUSTNO, TO_CHAR(ORDDATE,'MONTH'), COUNT(*)
FROM ORDERS
GROUP BY CUSTNO, TO_CHAR(ORDDATE,'MONTH');

DISPLAY DIFFERENCE BETWEEN HIGHEST PRICE AND LOWE3®RICE AT WHICH THE
ITEM WAS SOLD.

SELECT MAX(PRICE) - MIN(PRICE)
FROM LINEITEMS
GROUP BY ITEMNO;

DISPLAY HOW MANY ORDERS ARE STILL PENDING.

SELECT COUNT(*)
FROM ORDERS
WHERE SHIPDATE IS NULL;

DISPLAY ORDERNO,AVERAGE OF PRICE BY TAKING INTO ORERS THAT WERE
PLACED IN THE LAST 15 DAYS.

SELECT O.ORDNO, AVG(PRICE)

FROM ORDERS O, LINEITEMS L

WHERE O.ORDNO = L.ORDNO AND SYSDATE - ORDDATE <6
GROUP BY O.ORDNGO;

DISPLAY YEAR,NO.OF ORDERS IN WHICH THE DIFFERENCEEH'WEEN SHIPDATE
AND ORDERDATE IS LESS THAN 10 DAYS.

140

SELECT TO_CHAR(ORDDATE,'YYYY'), COUNT(*)
FROM ORDERS

WHERE SHIPDATE - ORDDATE <=10

GROUP BY TO_CHAR(ORDDATE,'YYYY");

DISPLAY STATE,NO.OF CUSTOMERS IN THE STATE WHERE BHCUSTOMER NAME
CONTAINS THE WORD ‘NIKE".

SELECT STATE, COUNT(¥)

FROM CUSTOMERS

WHERE CUSTNAME LIKE '%NIKE%'
GROUP BY STATE;

DISPLAY CUSTOMER WHO HAS PLACED MORE THAN 2 ORDERS A SINGLE MONTH.

SELECT CUSTNO

FROM ORDERS

GROUP BY CUSTNO, TO_CHAR(ORDDATE,' MMYY')
HAVING COUNT(*) > 2;

DISPLAY HIGHEST NO.OF ORDERS PLACED BY A SINGLE CU®MER.

SELECT MAX(COUNT(*))
FROM ORDERS
GROUP BY CUSTNO;

DISPLAY CUSTOMERNO,NO.OF COMPLETED ORDERS AND NO.O¥COMPLETE
ORDERS.

SELECT CUSTNO, SUM(DECODE(SHIPDATE,NULL,1,0)) "COMP ORDERS", SUM(
DECODE(SHIPDATE,NULL,0,1)) "COMP ORDERS"

FROM ORDERS

GROUP BY CUSTNO;

DISPLAY ORDERNO,ITEMNO,ITEMNAME,PRICE AT WHICH ITEMS SOLD AND
CURRENT PRICE OF THE ITEM.
SELECT ORDNO, L.ITEMNO, ITEMNAME, PRICE,RATE

FROM LINEITEMS L, ITEMS |
WHERE L.ITEMNO = LLITEMNO;

141

DISPLAY ORDERNO,ITEMNO,AMOUNT FOR ITEMS WHERE THERCE OF THE ITEM IS
MORE THAN THE CURRENT PRICE OF THE ITEM.

SELECT ORDNO, L.ITEMNO, QTY * PRICE
FROM LINEITEMS L, ITEMS |
WHERE PRICE > RATE

AND L.ITEMNO = LLITEMNO;

DISPLAY ITEMNO,ITEMNAME,ORDERNO,DIFFERENCE BETWEEKRURRENT PRICE
AND SELLING PRICE FOR THE ITEMS WHERE THERE IS A BFERENCE BETWEEN
CURRENT PRICE AND SELLING PRICE.

SELECT L.ITEMNO, ITEMNAME, ORDNO, RATE- PRICE
FROM ITEMS |, LINEITEMS L
WHERE L.ITEMNO = L.ITEMNO AND RATE <>PRICE;

DISPLAY CUSTOMERNO,CUTOMER NAME,ORDERNO, ORDERDATEOR ORDERS
WHERE THE SHIPADDRESS AND CUSTOMER ADDRESS ARE SAME

SELECT O.CUSTNO, CUSTNAME, ORDNO, ORDDATE

FROM ORDERS O, CUSTOMERS C

WHERE O.ADDRESS1 = C.ADDRESS1 AND O.ADDRESS2= DIPRESS2 AND C.CITY =
O.CITY

AND C.STATE = O.STATE AND C.PIN = O.PIN;

DISPLAY ITEMNO,ITEMNAME,ORDERNO,QUANTITY REQUIRED PR ALL ITEMS
(THAT ARE NOT EVEN ORDERED FOR).

SELECT LITEMNO, ITEMNAME, ORDNO, QTY
FROM LINEITEMS L, ITEMS I
WHERE LITEMNO = L.ITEMNO(+);

DISPLAY NO.OF ORDERS PLACED BY CUSTOMERS RESIDIN® VIZAG.
SELECT O.CUSTNO, COUNT(¥)
FROM ORDERS O, CUSTOMERS C

WHERE O.CUSTNO = C.CUSTNO AND C.CITY ="'VIZAG'
GROUP BY O.CUSTNO;

142

DISPLAY ORDERNO,CUSTOMER NAME,DIFFERENCE BETWEEN SYEM DATE AND
ORDERDATE FOR ORDERS THAT HAVE NOT BEEN SHIPPED ANDLDER THAN 10
DAYS.

SELECT ORDNO, CUSTNAME, SYSDATE - ORDDATE

FROM ORDERS O, CUSTOMERS C

WHERE O.CUSTNO = C.CUSTNO AND SYSDATE - ORDDATELS AND SHIPDATE IS
NULL,;

DISPLAY CUSTOMER NAME AND TOTAL AMOUNT OF ITEMS PURHASED BY
CUSTOMER.

SELECT CUSTNAME, SUM(QTY * PRICE)

FROM LINEITEMS L, ORDERS O, CUSTOMERS C

WHERE L.ORDNO = O.ORDNO AND O.CUSTNO = C.CUSTNO

GROUP BY CUSTNAME;

DISPLAY THE DETAILS OF ITEM THAT HAS HIGHEST PRICE.

SELECT * FROM ITEMS
WHERE RATE = (SELECT MAX(RATE) FROM ITEMS);

DISPLAY DETAILS OF CUSTOMERS WHO PLACED MORE THAN GRDERS.
SELECT * FROM CUSTOMERS

WHERE CUSTNO IN (SELECT CUSTNO FROM ORDERS GROUP BUSTNO HAVING
COUNT(*) > 5);

DISPLAY DETAILS OF CUTOMERS WHO HAVE NOT PLACED ANYORDER.

SELECT * FROM CUSTOMERS

WHERE CUSTNO NOT IN (SELECT CUSTNO FROM ORDERS);

DISPLAY DETAILS OF CUTOMERS WHO HAVE PLACED AN ORDE IN THE LAST 6
MONTHS.

SELECT * FROM CUSTOMERS

WHERE CUSTNO IN (SELECT CUSTNO FROM ORDERS WHERE
MONTHS_BETWEEN(SYSDATE,ORDDATE) <= 6);

143

DISPLAY THE ITEMS FOR WHICH WE HAVE SOLD MORE THAMNO UNITS BY TAKING
INTO ORDERS WHERE THE PRICE IS MORE THAN 5000.

SELECT * FROM ITEMS
WHERE ITEMNO IN (SELECT ITEMNO FROM LINEITEMS WHEE PRICE > 5000 GROUP
BY ITEMNO

HAVING SUM(QTY) > 50);

DISPLAY THE DETAILS OF ORDERS THAT WERE PLACED BY ERUSTOMER WITH
PHONE NUMBER STARTING WITH 541 OR THE ORDERS IN WEH WE HAVE MORE
THAN 5 ITEMS.

SELECT * FROM ORDERS

WHERE CUSTNO IN (SELECT CUSTNO FROM CUSTOMERS WHERHONE LIKE '541%")
OR ORDNO IN (SELECT ORDNO FROM LINEITEMS GROWY ORDNO HAVING

COUNT(*) > 5);

CHANGE THE RATE OF ITEMNO 1 IN ITEMS TABLE TO THE KGHEST RATE OF
LINEITEMS TABLE OF THAT ITEM.

UPDATE ITEMS SET RATE = (SELECT MAX(PRICE) FROLINEITEMS WHERE
ITEMNO = 1)

WHERE ITEMNO = 1,

DELETE CUSTOMERS WHO HAVE NOT PLACED ANY ORDER.

DELETE FROM CUSTOMERS WHERE CUSTNO NOT IN (SELECUSTNO FROM
ORDERS);

RENAME COLUMN RATE IN ITEMS TO PRICE
STEP1: CREATE TABLE NEWITEMS AS SELECT ITEMNO, IMINAME, RATE PRICE,
TAXRATE
FROM ITEMS,;
STEP2: DROP TABLE ITEMS;
STEP3: RENAME NEWITEMS TO ITEMS;
DISPLAY DETAILS OF CUSTOMERS WHO HAVE PLACED MAXIMM NUMBER OF
ORDERS.

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN (SELECT CUSTNO FROM ORDERS

144

GROUP BY CUSTNO HAVING COUNT(%
(SELECT MAX(COUNT(*)
FROM ORDERS
GROUP BY CUSTNO));

DISPLAY DETAILS OF CUSTOMERS WHO HAVEN'T PLACED ANYORDER IN THAT
CURRENT MONTH.

SELECT * FROM CUSTOMERS
WHERE CUSTNO NOT IN (SELECT CUSTNO FROM ORDERS WBRE
TO_CHAR(ORDDATE,'MMYY') =

TO_CHAR(SYSDATE,' MMYY"));

DISPLAY DETAILS OF ITEMS FOR WHICH THERE WAS NO ORER IN THE CURRENT
MONTH BUT THERE WAS AN ORDER IN THE PREVIOUS MONTH.

SELECT * FROM ITEMS
WHERE ITEMNO IN (SELECT ITEMNO FROM LINEITEMS LORDERS O
WHERE L.ORDNO = O.ORDNO AND
TO_CHAR(ADD_MONTHS(SYSDATE,-NIMYY') =
TO_CHAR(ORDDATE,'MMYY"))
AND ITEMNO NOT IN (SELECT ITEMNO FROM LINEITEMS LORDERS O
WHERE L.ORDNO = O.ORDNO AND
TO_CHAR(SYSDATE,'MMYY') = TO_CHR(ORDDATE, MMYY"));

DISPLAY DETAILS OF ITEMS THAT WERE PURCHASED BY CUSDMER WHO HAS
PLACED MORE THAN 3 ORDERS.

SELECT * FROM ITEMS
WHERE ITEMNO IN (SELECT ITEMNO FROM LINEITEMS
WHERE ORDNO IN (SELECT ORDN®BM ORDERS
WHERE CUSTNI(
SELECT CUSTNO
FROM ORDERS
GROUP BY CUSTNO
HAVING COUNT(*) > 1

145

DISPLAY THE ORDERS IN WHICH THE GAP BETWEEN SHIPDATAND ORDERDATE IS
MORE THAN THE AVERAGE GAP FOR INDIVIDUAL CUSTOMERS.

SELECT * FROM ORDERS O

WHERE SHIPDATE - ORDDATE >
(SELECT AVG(SHIPDATE - ORDDATE)
FROM ORDERS
WHERE CUSTNO = O.CUSTNO);

DISPLAY THE DETAILS OF ITEMS IN WHICH THE CURRENT RICE IS MORE THAN THE
MAXIMUM PRICE AT WHICH WE SOLD IT.

SELECT * FROM ITEMS |
WHERE RATE >
(SELECT MAX(PRICE)
FROM LINEITEMS
WHERE ITEMNO = LITEMNO);

CREATE A NEW TABLE ‘COMPORDERS’ WITH ORDNO, CUSTOME-
NAME,ORDERDATE,SHIPDATE,DIFFERENCE BETWEEN SHIPDATAND ORDERDATE.

CREATE TABLE COMPORDERS AS SELECT ORDNO, CUSTNANIRDDATE,
SHIPDATE, SHIPDATE-ORDDATE "NODAYS"

FROM ORDERS O, CUSTOMERS C

WHERE O.CUSTNO= C.CUSTNO AND SHIPDATE IS NOT NULL,

DISPLAY THE ITEMS THAT HAVE TOP 3 HIGHEST PRICES.

SELECT * FROM ITEMS |

WHERE 2 >= (SELECT COUNT(*) FROM ITEMS WHERE RATEI.RATE)
ORDER BY RATE DESC,;

DISPLAY DETAILS OF ITEM THAT HAS SECOND LOWEST PRE
SELECT * FROM ITEMS |

WHERE 1= (SELECT COUNT(*) FROM ITEMS WHERE RATEI.RATE)

<
ADD A NEW ITEM TO THE LAST ORDER PLACED BY CUSTOMERO06 WITH THE
FOLLOWING DETAILS- ITEMNO-3,QUANTITY-2,PRICE AS THECURRENT RATE OF THE
ITEM,DISCOUNT-8%.

146

DECLARE
V_ORDNO ORDERS.ORDNO%TYPE;
V_RATE ITEMS.RATE%TYPE;

BEGIN
SELECT MAX(ORDNO) INTO V_ORDNO
FROM ORDERS WHERE CUSTNO = 106;

SELECT RATE INTO V_RATE
FROM ITEMS WHERE ITEMNO = 3;

INSERT INTO LINEITEMS VALUES (V_ORDNO,3,2,V_RAH,8);

END;

CHANGE RATE OF ITEM 5 TO EITHER AVERAGE RATE OF I 5 OR CURRENT RATE
WHICHEVER IS HIGHER.

DECLARE
V_APRICE LINEITEMS.PRICE%TYPE;
V_RATE ITEMS.RATE%TYPE;

BEGIN
SELECT AVG(PRICE) INTO V_APRICE
FROM LINEITEMS WHERE ITEMNO = 5;

SELECT RATE INTO V_RATE
FROM ITEMS WHERE ITEMNO =5;

UPDATE ITEMS SET RATE = GREATEST(V_APRICE, RATE)
WHERE ITEMNO = 5;
END;

INSERT A NEW ROW INTO LINEITEMS WITH THE FOLLOWINMETAILS. ORDERNO IS
THE LAST ORDER PLACED BY CUSTOMERNO 102,ITEMNO ISHE ITEM OF P3
PROCESSOR, RATE IS LOWEST RATE OF THAT ITEM,QUANTTS 2,DISCOUNT IS 10%
IF ITEM’'S CURRENT RATE IS MORE THAN THE LEAST RATETHERWISE NO
DISCOUNT.

DECLARE
V_ORDNO ORDERS.ORDNO%TYPE;
V_PRICE LINEITEMS.PRICE%TYPE,;

147

V_DIS NUMBER(2);
V_RATE ITEMS.RATE%TYPE;
V_ITEMNO ITEMS.ITEMNO%TYPE;

BEGIN
SELECT MAX(ORDNO) INTO V_ORDNO
FROM ORDERS WHERE CUSTNO =102,

SELECT ITEMNO, RATE INTO V_ITEMNO , V_RATE
FROM ITEMS WHERE UPPER(ITEMNAME) = 'Plll PROGSORY;

-- GET LOWEST RATE OF THE ITEM
SELECT MIN(PRICE) INTO V_PRICE
FROM LINEITEMS

WHERE ITEMNO = V_ITEMNO;

IF V_RATE >V_PRICE THEN

V_DIS := 10;
ELSE

V_DIS :=0;
END IF;

INSERT INTO LINEITEMS VALUES (V_ORDNO, V_ITEMN, 2, V_PRICE, V_DIS);

END;

DISPLAY THE HIGHEST OF THE MISSING ORDERNOS.
DECLARE

V_MAXORDNO ORDERS.ORDNO%TYPE;
V_MINORDNO ORDERS.ORDNO%TYPE;
V_CNT NUMBER(2);

BEGIN
SELECT MAX(ORDNO), MIN(ORDNO) INTO V_MAXORDNQV_MINORDNO
FROM ORDERS;

FOR | IN REVERSE V_MINORDNO..V_MAXORDNO
LOOP

SELECT COUNT(*) INTO V_CNT

FROM ORDERS WHERE ORDNO = I;

148

IF V_CNT =0 THEN
DBMS_OUTPUT.PUT_LINE();
EXIT;

END IF;

END LOOP;

END;

DISPLAY CUSTOMER NAMES OF THE CUSTOMERS WHO HAVE RCED MORE THAN 3
ORDERS WHERE THE TOTAL AMOUNT OF THE ORDER IS MOREHAN 10,000.

SELECT CUSTNAME
FROM CUSTOMERS
WHERE CUSTNO IN (SELECT CUSTNO
FROM ORDERS
WHERE ORDNO IN (SELECT ORDNO
FROM LINEIVS
GROUP BY ORDNO
HAVING SUM(QTY*PRICE) > 10000)
GROUP BY CUSTNO
HAVING COUNT(*) > 1);

CHANGE THE RATE OF EACH ITEM AS FOLLOWS (1) INCREASTHE RATE BY 10% IF
THE ITEM WAS SOLD IN MORE THAN 5 ITEMS. (2) INCREASTHE RATE BY 2% IF
AVERAGE PRICE IS GREATER THAN CURRENT PRICE, OTHERSE DECREASE THE
PRICE BY 3%.

DECLARE
CURSOR CITEMS IS
SELECT ITEMNO,COUNT(*) CNT, AVG(PRICE) APRICEEROM LINEITEMS
GROUP BY ITEMNO;

V_PER NUMBER(5,2);
V_RATE ITEMS.RATE%TYPE;

BEGIN
FOR REC IN CITEMS
LOOP

IF REC.CNT >5 THEN
V_PER :=0.90;
ELSE

149

-- GET CURRENT RATE
SELECT RATE INTO V_RATE
FROM ITEMS WHERE ITEMNO = REC.ITEMNO;

IF REC.APRICE >V_RATE THEN

V_PER :=1.02;
ELSE
V_PER :=0.97;
END IF;
END IF;

UPDATE ITEMS SET RATE = RATE * V_PER
WHERE ITEMNO = REC.ITEMNO;

END LOOP;

END;

CREATE A NEW TABLE CALLED CUSTSUM AND STORE THE FQIOWING DATA INTO

THE TABLE - CUSTOMERNO,CUSTOMER NAME,NO.OF ORDERS&ACED, DATE OF
MOST RECENT ORDER AND TOTAL AMOUNT OF ALL THE ORDER

BEFORE THIS PROGRAM IS RUN, YOU HAVE TO CREATE TABLAS FOLLOWS:

CREATE TABLE CUSTSUM
(CUSTNO NUMBER(5),
CUSTNAME VARCHAR2(20),
NOORD NUMBER(5),
RORDDATE DATE,
TOTAMT NUMBER(10)

);

DECLARE
CURSOR CUSTCUR IS
SELECT CUSTNO, CUSTNAME FROM CUSTOMERS;
V_ORDCNT NUMBER(5);
V_MORDDATE DATE;
V_TOTAMT NUMBER(10);

BEGIN

150

FOR REC IN CUSTCUR
LOOP
-- GET DETAILS OF CUSTOMER
SELECT COUNT(*), MAX(ORDDATE), SUM(QTY*PRIE) INTO V_ORDCNT,
V_MORDDATE, V_TOTAMT
FROM ORDERS O, LINEITEMS L
WHERE O.ORDNO = L.ORDNO AND CUSTNO = RESLISTNO;

INSERT INTO CUSTSUM VALUES (REC.CUSTNO, RECUSTNAME, V_ORDCNT,
V_MORDDATE,V_TOTAMT);
END LOOP;

END;

DISPLAY ITEMNAMES OF ITEMS FOR WHICH THE CURRENT RRE IS LESS THAN THE
AVERAGE PRICE OR TOTAL QUANTITY SOLD IS LESS THANQLUNITS.

SELECT ITEMNAME
FROM ITEMS
WHERE ITEMNO [N
(SELECT ITEMNO
FROM ITEMS |
WHERE RATE < (SELECT AVG(PRICE) FROM LINEITE WHERE ITEMNO =
lITEMNO)
)
OR ITEMNO IN
(SELECT ITEMNO
FROM LINEITEMS
GROUP BY ITEMNO
HAVING SUM(QTY) > 10);

CREATE A PROCEDURE THAT TAKES ORDERNO,ITEMNO AND BERTS A ROW INTO
LINEITEMS, PRICE-RATE OF THE ITEM, QTY-1,DISCOUNT@PRA.

CREATE OR REPLACE PROCEDURE NEWITEM(P_ORDNO NUMBER,ITEMNO
NUMBER)
AS
V_RATE ORDERS.ORDNO%TYPE;
BEGIN
SELECT RATE INTO V_RATE
FROM ITEMS WHERE ITEMNO = P_ITEMNO;

151

INSERT INTO LINEITEMS VALUES (P_ORDNO, P_ITEMD, V_RATE, 1, 10);

END;

CREATE A FUNCTION THAT RETURNSTHE FIRST MISSING ORIRNO.

CREATE OR REPLACE FUNCTION FIRSTMISORDNO RETURN MBER
AS

V_MAXORDNO ORDERS.ORDNO%TYPE;

V_MINORDNO ORDERS.ORDNO%TYPE;

V_CNT NUMBER(2);

BEGIN
SELECT MAX(ORDNO), MIN(ORDNO) INTO V_MAXORDNQV_MINORDNO
FROM ORDERS;

FOR I IN V_MINORDNO..V_MAXORDNO
LOOP
SELECT COUNT(*) INTO V_CNT
FROM ORDERS WHERE ORDNO = [;

IF V_CNT =0 THEN
RETURN [;
END IF;
END LOOP;

-- NO MISSING ORDNO
RETURN NULL,
END;

CREATE A FUNCTION THAT TAKES ORDERNO AND RETURNS CG3XOMER NAME OF
THAT ORDER.

CREATE OR REPLACE FUNCTION GETCUSTNAME (P_ORDN@NBER) RETURN
VARCHAR2
IS
V_CUSTNAME VARCHAR2(30);

BEGIN

SELECT CUSTNAME INTO V_CUSTNAME

FROM CUSTOMERS

WHERE CUSTNO = (SELECT CUSTNO FROM ORDERS BRE ORDNO = P_ORDNO);

152

RETURN V_CUSTNAME;
END;

CREATE A PROCEDURE THAT INSERTS A NEW ROW INTO LINEEMS WITH GIVEN
ITEMNO,PRICE,QUANTITY, ORDERNO IS THE MOST RECENTRIDER. CHECK
WHETHER PRICE IS MORE THAN THE CURRENT RATE OF THEEM, CHECK
WHETHER ITEM IS ALREADY EXISTING IN THE ORDER AND GECK WHETHER THE
TOTAL AMOUNT OF THE ORDER INCLUDING THE NEW ITEM HA EXCEEDED 50,000.

CREATE OR REPLACE PROCEDURE NEWITEMS(P_ITEMNO NUER, P_PRICE
NUMBER, P_QTY NUMBER)
IS
V_CNT NUMBER(2);
V_RATE ITEMS.RATE%TYPE;
V_TOTAMT NUMBER(10);
V_ORDNO ORDERS.ORDNO%TYPE;
BEGIN
SELECT MAX(ORDNO) INTO V_ORDNO FROM ORDERS;

-- CHECK CONDITIONS
SELECT RATE INTO V_RATE FROM ITEMS WHERE ITEMN= P_ITEMNO;
IF P_PRICE > V_RATE THEN
RAISE_APPLICATION_ERROR(-20001,' PRICEN®RE THAN CURRENT PRICE),
END IF;
SELECT COUNT(*) INTO V_CNT
FROM LINEITEMS
WHERE ORDNO =V_ORDNO AND ITEMNO = P_ITEMNO;
IF V_CNT =1 THEN
RAISE_APPLICATION_ERROR(-20002,'ITEM IS READY EXISTING');
END IF;
-- GET TOTAL AMOUNT

SELECT SUM(QTY * PRICE) INTO V_TOTAMT
FROM LINEITEMS WHERE ORDNO = V_ORDNGO;

IF V_TOTAMT + P_PRICE * P_QTY > 50000 THEN

153

RAISE_APPLICATION_ERROR(-20003, TOTAL AMQUI EXCEEDED 50000');
END IF;

INSERT INTO LINEITEMS VALUES (V_ORDNO, P_ITEMNCP_PRICE,P_QTY,0);

END;

MAKE SURE AN ORDER IS NOT CONTAINING MORE THAN 5 [EMS.

CREATE OR REPLACE TRIGGER CHECKITEMCOUNT
BEFORE INSERT
ON LINEITEMS
FOR EACH ROW
DECLARE
V_CNT NUMBER(5);
BEGIN

SELECT COUNT(*) INTO V_CNT
FROM LINEITEMS WHERE ORDNO = :NEW.ORDNO;

IF V_CNT >=5 THEN
RAISE_APPLICATION_ERROR(-20010, CANNOTANE MORE THAN 5 ITEMS IN AN
ORDERY);
END IF;
END;

DO NOT ALLOW ANY CHANGES TO ITEMS TABLE AFTER 9PM BFORE 9AM.

CREATE OR REPLACE TRIGGER CHECKTIME
BEFORE INSERT OR DELETE OR UPDATE
ON ITEMS
BEGIN
IF TO_CHAR(SYSDATE,'HH24) <9 OR TO_CHAR({SDATE,'HH24") > 21 THEN
RAISE_APPLICATION_ERROR(-200011,'NO CNGES CAN BE MADE BEFORE 9
A.M AND AFTER 9 P.M);
END IF;
END;

DO NOT ALLOW ANY CHANGE TO ITEM RATE IN SUCH A WAYDIFFERENCE IS MORE
THAN 25% OF THE EXISTING RATE.

CREATE OR REPLACE TRIGGER TRGDIFFRATE

154

BEFORE UPDATE
ON ITEMS
FOR EACH ROW
DECLARE
V_DIFF NUMBER(5);
BEGIN
V_DIFF := ABS(:NEW.RATE - :OLD.RATE);

IF V_DIFF > :OLD.RATE * 0.25 THEN
RAISE_APPLICATION_ERROR(-20014, INVALIRATE FOR AMOUNT. CHANGE IS
TOO BIGY);
END IF;

END;

DATABASE DEVELOPMENT LIFE CYCLE (DDLC)

The database development life cycle (DDLC) is agss of designing, implementing and
maintaining a database system to meet strategipemational information needs of an organization
or enterprise such as:

« Improved customer support and customer satisfaction
« Better production management.

- Better inventory management.

« More accurate sales forecasting.

PHASES OFDDLC

The software development is the group of actioreslad to transform the user’s need into an
effectual software solution. Software developnyaicedure consist the activities needed for
building the software systems and integrating éohniques and practices to be accepted. It also
includes the planning of project, tracking develaeptrand managing the complications of building
software.

This different database related activities canroeged into below phases (more commonly known
as DDLC — Database Development Life Cycle):

Requirements Analysis Database Design EvaluatidrSatection Logical Database Design Physical

Database Design Implementation Data Loading TestimtgPerformance Tuning Operation
Maintenance

155

* Requirements Analysis

The most important step n implementing a databgserm is to find out what is needed — What
type of a database is required for the businessntzgtion, daily volume of the data, how much data
needs to be stored in the master files etc. Inrdadeollect all this required information, a dedab
analyst need to spend a lot of time within the hess organization talking to people, end users and
get acquainted with day-to-day process.

» Database Design

In this stage the database designers will make@ida on the database model that is perfectly
suited for the organization’s requirements. Thaase designers will study the documents
prepared by the analysts in the requirements asaiage and then start developing a system that
fulfills the needs.

« Evaluation and Selection

Once the data model is designed, tested and deratatstthe next phase is to evaluate the diverse
database management systems and choose the orsepiadiectly suited for the requirements of the
organization. In order to identify best performutgfabase for the organization, end user should be
involved in this phase.

» Logical Database Design

Once the evaluation and selection phase is congpsetecessfully, the next step n the database
development life cycle is logical database desidre conceptual design is translated into internal
model in the logical design phase. This includesntfapping of all objects i.e. tables design,
indexes, views, transactions, access privileges etc

* Physical Database Design

Physical database design is the procedure of sedeaid characterizing the data storage and data
access of the database. The data storage depettustype of devices supported by the hardware,
the data access methods and the DBMS.

Physical design is mainly significant for olderaadse models like hierarchical and network
models. Physical design is very vital in databasestbpment life cycle and has great significance as
a bad design can result in deprived performance.

* Implementation

156

In most databases a new database implementatiols tieeformation of special storage related
constructs to house the end user tables. Thes&ecissypically comprise storage group, table
spaces, data files, tables etc.

» Data Loading

Once the database has been created, the dataerlostled into the database. The data required to
be converting and migrating to the new databagbeifoaded data is currently stored n a different
system or in a different format.

» Testing and Performance Tuning

The next phase is testing and performance tung phase starts soon the data is loaded into the
database. In this phase, database is tested aatlfied for performance, integrity, access and
security constraints. It is very important that tte#gabase administrators and application
programmers work together during this phase, bectasting and performance tuning happens in
parallel.

* Operation

Once the data is loaded into the database arfdllysested, the database is than released into
production.

In operation phase, the database is accessed bndhasers and application programs. This stage
includes adding of new data, modifying existingadamd deletion of obsolete data. The database
administrators perform the administrative tasksquically such as performance tuning, expanding
storage space, database backup etc. This is tblgphase as it provides useful information and
helps management to make a business decisionptakisg the smooth and well-organized
functioning of the organization.

« Maintenance

Database maintenance phase is very important adiie of the ongoing phases in DDLC. Factors
such as new business needs, new information regents, acquisition of new data etc will make it
essential to formulate ongoing changes and imprewsito the existing design. The major tasks in
this phase include: database backup and recoverfgrmance tuning, design modifications, access
management and audits, usage monitoring, hardwairgenance, upgradation etc.

Functional Dependencies
FD's are constraints on well-formed relations aptesent a formalism on the infrastructure of refat

157

Definition: A functional dependency (FD) on a relation scheniis a_constrainKk — Y, whereX

andY are subsets of attributesi®f An FD is a relationship between an attribute "Ytian
determinant (1 or more other attributes) "X" suudt ffor a given value of a determinant the value of
the attribute is uniquely defined.

« Xis a determinant

+ X determines Y

« Y is functionally dependent on X
e XY

e X -Yistrivial if Y1 X

Example:

Let R be
NewStuden{stul d, lastName, major, credits, status, socSecNo)

FDs in R include

{stul d}—{lastName}, but not the reverse

{stul d} —{lastName, major, credits, status, socSecNo, stul d}
{socSecNo} —{stuld, lastName, major, credits, status, socSecNo}
{credits}—{status}, but not{status}—{credits}

ZipCode—AddressCity
ArtistName—BirthYear
Autobrand—Manufacturer, Engine type

Author, Title—PublDate
TRIVIAL FUNCTIONAL DEPENDENCY

A functional dependency is trivial if Y is a subséiX. In a table with attributes of employee name
and Social Security number (SSN), employee narfenitionally dependant on SSN because the
SSN is unique for individual names. An SSN ideasifthe employee specifically, but an employee
name cannot distinguish the SSN because more tl@memployee could have the same name.
Functional dependency defines Boyce-Codd normat famd third normal form. This preserves
dependency between attributes, eliminating thetitege of information. Functional dependency is
related to a candidate key, which uniquely ideesifa tuple and determines the value of all other
attributes in the relation. In some cases, funeligrdependant sets are irreducible if: The rigath

158

set of functional dependency holds only one attebtihe left-hand set of functional dependency
cannot be reduced, since this may change the @atitent of the set. Reducing any of the existing
functional dependency might change the contertt@fet. An important property of a functional
dependency is Armstrong’s axiom, which is usedatadase normalization. In a relation, R, with
three attributes (X, Y, Z) Armstrong’s axiom hoktsong if the following conditions are satisfied:
Axiom of Transivity: If X->Y and Y->Z then, X->Z. Aiom of Reflexivity (Subset Property): If Y is
a subset of X then X->Y. Axiom of AugmentationX{>Y then XZ->YZ.

Dependency Preservation

1. Another desirable property in database desiglependency preservation

o We would like to check easily that updates to thbase do not result in illegal relations
being created.

o It would be nice if our design allowed us to chepidates without having to compute natural
joins.

o To know whether joins must be computed, we neelbtermine what functional
dependencies may be tested by checking each relatvidually.

o LetF be a set of functional dependencies on schiema

o Let be a decomposition &t

o Therestriction of F to Riis the set of all functional dependenciegifithat include only

attributes oﬁ" .
o Functional dependencies in a restriction can ldedds one relation, as they involve
attributes in one relation schema.

o The set of restrictionfsrh
efficiently.

o We need to know whether testing only the restmdiis sufficient.

tF’ =R.F, ... F;

Fo .
is the set of dependencies that can be checked

o Le
| | | | F' & F

F'is a set of functional dependencies on schienimuit in general,

o However, it may be tha&'t = FT.
If this is so, then every functional dependenci iis implied byF', and ifF' is satisfied, then
F must also be satisfied.

o A decomposition having the property tifétt = F tis adependency-preserving
decomposition.

MULTIVALUED DEPENDENCIES

Multivalued dependenciesoccur when the presence of one or more rowsabla implies the presence of
one or more other rows in that same table.

Examples:
159

For example, imagine a car company that manufastmany models of car, but always makes both
red and blue colors of each model. If you havébéetthat contains the model name, color and year
of each car the company manufactures, there isl@valued dependency in that table. If there is a
row for a certain model name and year in blue gimeust also be a similar row corresponding to the
red version of that same car.

NORMALIZATION

Normalization is a process of reducing redundancies of datadat@base. Quite often we come across tables
having a lot of bulk data with many columns. Alkie data might not be necessary all the time wisevey

use those tables. So, a better option is to gpliha bulk table into small parts and use only ¢ltables

which suit the actual purpose at a given instarfi¢cien@. In this way, redundancy is reduced. To midilee

long story short, we can simply say that normailirais a process of dividing a big table into smratines in
order to reduce redundancy.

ANAMOLIES IN DBMS:

Insertion Anomaly

It is a failure to place information about a newadb@se entry into all the places in the database
where information about the new entry needs taded. In a properly normalized database,
information about a new entry needs to be inserdonly one place in the database, in an
inadequatly normalized database, information abaw#w entry may need to be inserted into more
than one place, and human fallibility being whas jtsome of the needed additional insertions may
be missed.

Deletion anomaly

It is a failure to remove information about an &rig database entry when it is time to remove that
entry. In a properly normalized database, infororatibout an old, to-be-gotten-rid-of entry needs to
be deleted from only one place in the databasan imadequatly normalized database, information
about that old entry may need to be deleted fromertitan one place.

Update Anomaly
An update of a database involves modifications tey be additions, deletions, or both. Thus
“update anomalies” can be either of the kinds dised above.

All three kinds of anomalies are highly undesirablace thier occurence constitutes corruption of
the database. Properly normalized database are lesgBusceptible to corruption than are un-
normalized databases.

Normalization Avoids
» Duplication of Data — The same data is listed uitiple lines of the database

* Insert Anomaly — A record about an entity canrtriserted into the table without first inserting
information about another entity — Cannot enteastamer without a sales order

160

» Delete Anomaly — A record cannot be deleted witlimléting a record about a related entity.
Cannot delete a sales order without deleting athefcustomer’s information.
» Update Anomaly — Cannot update information withthinging information in many places. To
update customer information, it must be updateeémh sales order the customer has placed
Process of normalization
Before getting to know the normalization techniguredetail, let us define a few building blocks
which are used to define normal form.

1. Determinant : Attribute X can be defined as determinant ifntquely defines the value Y in
a given relationship or entity .To qualify as deterant attribute need NOT be a key attribute
.Usually dependency of attribute is represented-a¥ ,which means attribute X decides
attribute Y.

Example: In RESULT relation, Marks attribute magide the grade attribute .This is represented as
Marks->grade and read as Marks decides Grade.

Marks -> Grade

In the result relation, Marks attribute is not § ktribute .Hence it can be concluded that key
attributes are determinants but not all the deteamtis are key attributes.

2. Functional Dependency Yes functional dependency has definition buslet care about
that. Let’s try to understand the concept by exampbnsider the following relation :

REPORT(Student#,Cours€urseName,IName,Room#,Marks,Grade)
Where:

+ Student#-Student Number

+ Course#-Course Number

« CourseName -CourseName

« IName- Name of the instructor who delivered therseu

+ Room#-Room number which is assigned to respeatisteuctor

« Marks- Scored in Course Course# by student Stuélent

« Grade —Obtained by student Student# in course €atrs

« Student#,Course# together (called composite at&)defines EXACTLY ONE value of
marks .This can be symbolically represented as

Student#Course# kdar
This type of dependency is calladhctional dependency In above example Marks is functionally
dependent on Student#Course#.
Other Functional dependencies in above examples are

« Course# -> CourseName

« Course#-> IName(Assuming one course is taught leyamd only one instructor)

« IName -> Room# (Assuming each instructor has res dwwn and non shared room)
« Marks ->Grade

161

Formally we can define functional dependency ast ¢jiven relation R, X and Y are attributes.
Attribute Y is functional dependent on attributefX¢ach value of X determines exactly one value of
Y. This is represented as :

X->Y
However X may be composite in nature.

3. Full functional dependency:In above example Marks is fully functional depemden
student#Course# and not on the sub set 8tident#Course# . This means marks cannot be
determined either by student # or Course# alorgaritbe determined by using Student# and
Course# together. Hence Marks is fully functiongbendent on student#course#.

CourseName is not fully functionally dependent tudent#course# because one of the subset
course# determines the course name and Studemndthdbbaving role in deciding Course name
.Hence CourseName is not fully functional dependenstudent #Course#.

Student#

Marks
Course#
Formal Definition of full functional dependencyn & given relation R ,X and Y are attributes. Y is
fully functionally dependent on attribute X onlyiifis not functionally dependent on sub-set of
X.However X may be composite in nature.

4. Partial Dependency In the above relationship CourseName,IName,Roara#partially
dependent on composite attribute Student#Coursestibe Course# alone can defines the
coursename, IName,Room#.

Room#

IName

CourseName

Course#

Student#

Formal Definition of Partial dependency: In a givetation R, X and Y are attributes .Attribute Y is
partially dependent on the attribute X only ifstdependent on subset attribute X .However X may
be composite in nature.

5. Transitive Dependency In above example , Room# depends on IName atdnrdepends
on Course# .Here Room# transitively depends on &dur

IName

Room#

Course#

Similarly Grade depends on Marks,in turn Marks aejseon Student# Course# hence Grade

162

Fully transitively depends on Student# Course#.
6. Key attributes : In a given relationship R ,if the attribute X unély defines all other
attributes ,then the attribute X is a key attribatech is nothing but the candidate key.
Ex: Student#Course# together is a composite kepuaie which determines all attributes in

relationship REPORT (student#,Course#,CourseNammé\aoom#,Marks,Grade)uniquely.Hence
Student# and Course# are key attributes.

Un-Normalized Form (UNF)
If a table contains non-atomic values at each row,said to be in UNF. Aatomic valueis

something that can not be further decomposedoratomic valug as the name suggests, can be
further decomposed and simplified. Consider thio¥ahg table:

Emp-Id Emp-Name | Month | Sales Bank-Id Bank-Name

EO1 AA Jan 1000 BO1 SBI
Feb 1200
Mar 850

EO2 BB Jan 2200 B0O2 UTI
Feb 2500

EO3 CcC Jan 1700 BO1 SBI
Feb 1800
Mar 1850
Apr 1725

In the sample table above, there are multiple secges of rows under each key Emp-Id. Although
considered to be the primary key, Emp-Id cannot gis the unique identification facility for any
single row. Further, each primary key points tadable length record (3 for EO1, 2 for EO2 and 4

for EO3).

First Normal Form (1NF)

A relation is said to be in 1NF if it contains nomatomic values and each row can provide a unique
combination of values. The above table in UNF captocessed to create the following table in

INF.

Emp-Name | Month | Sales Bank-Id Bank-Name
Emp-Id
EO1 AA Jan 1000 BO1 SBI

163

EO1 AA Feb 1200 BO1 SBI
EO1 AA Mar 850 BO1 SBI

EO02 BB Jan 2200 B0O2 UTI
EO02 BB Feb 2500 BO2 UTI
EO3 CC Jan 1700 BO1 SBI
EO3 CcC Feb 1800 BO1 SBI
EO3 CC Mar 1850 BO1 SBI
EO3 CcC Apr 1725 BO1 SBI

As you can see now, each row contains unique catibmof values. Unlike in UNF, this relation

contains only atomic values, i.e. the rows canbeofurther decomposed, so the relation is now in
INF.

Second Normal Form (2NF)

A relation is said to be in 2NF f if it is alreathyINF and each and every attribute fully depends o
the primary key of the relation. Speaking inversédla table has some attributes which is not
dependant on the primary key of that table, thénriot in 2NF.

Let us explain. Emp-Id is the primary key of the@ad relation. Emp-Name, Month, Sales and Bank-
Name all depend upon Emp-Id. But the attribute Blakne depends on Bank-Id, which is not the
primary key of the table. So the table is in 1N, fot in 2NF. If this position can be removed into
another related relation, it would come to 2NF.

Emp-ld Emp-NameMonth Sale<Bank-1d
EO1 AA JAN 1000 BO1
EO1 AA FEB 1200 BO1
EO1 AA MAR 850 BO1

EO02 BB JAN 2200 BO2
EO02 BB FEB | 2500 BO2
EO3 CC JAN 1700 BO1
EO3 CcC FEB 1800 BO1
EO3 CC MAR 185C BO1
EO3 CC APR172¢ BO1

Bank-ld Bank-Name
BO1 SBI
B02 UTI

After removing the portion into another relation stere lesser amount of data in two relations
without any loss information. There is also a digant reduction in redundancy.

164

Third Normal Form (3NF)

A relation is said to be in 3NF, if it is already2NF and there exists m@nsitive dependencyin
that relation. Speaking inversely, if a table corddransitive dependency, then it is not in 3N# a
the table must be split to bring it into 3NF.

What is a transitive dependency? Within a relatiore see
A — B [B depends on A]

And

B — C [C depends on B]

Then we may derive

A — C[C depends on A]

Such derived dependencies hold well in most okthetions. For example if we have
Roll — Marks

And

Marks— Grade

Then we may safely derive

Roll — Grade.

This third dependency was not originally specifoed we have derived it.

The derived dependency is called a transitive depdancy when such dependency becomes
improbable. For example we have been given

Roll — City

And

City —» STDCode

If we try to derive Roll-= STDCode it becomes a transitive dependency, beaausously the
STDCode of a city cannot depend on the roll nundgred by a school or college. In such a case
the relation should be broken into two, each coimagione of these two dependencies:

Roll — City

And

City — STD code

Boyce-Code Normal Form (BCNF)

A relationship is said to be in BCNF if it is aldsain 3NF and the left hand side of every
dependency is a candidate key. A relation whigh BNF is almost always in BCNF. These could
be same situation when a 3NF relation may not lBBJNF the following conditions are found true.

1. The candidate keys are composite.
2. There are more than one candidate keys in théaelat
3. There are some common attributes in the relation.

165

Professor CodiDepartmentHead of Dept Percent Time

P1 Physics Ghosh 50
P1 MathematicKrishnan 50
P2 Chemistry | Rao 25
P2 Physics Ghosh 75
P3 Mathematic Krishnan 100

Consider, as an example, the above relation.asssimed that:

1. A professor can work in more than one department
2. The percentage of the time he spends in each degmatris given.
3. Each department has only one Head of Department.

The relation diagram for the above relation is gias the following:

Head of
Department Department

Professor Code Percent Time

Head of
Department

>

I

Department

Cepartment

| Head of Department |

Professor Code
Percent Time

The given relation is in 3NF. Observe, howevert tha names of Dept. and Head of Dept. are
duplicated. Further, if Professor P2 resigns, r8vasid 4 are deleted. We lose the information that
Rao is the Head of Department of Chemistry.

The normalization of the relation is done by creg& new relation for Dept. and Head of Dept. and
deleting Head of Dept. form the given relation. Hleemalized relations are shown in the following.

Professor CodiDepartmentPercent Time

P1 Physics 50
P1 Mathematics 50
P2 Chemistry 25

166

P2 Physics 75
P3 Mathematic 100

Head of Dept
Department

Physics Ghosh
Mathematic Krishnan
Chemistry | Rao

See the dependency diagrams for these new relations

W
“| PercentTime
Professor Code

Head of
Department S

Department

Fourth Normal Form (4NF)

When attributes in a relation have multi-valuedetegency, further Normalization to 4NF and 5NF
are required. Let us first find out what multi-vatudependency is.

A multi-valued dependencyis a typical kind of dependency in which each awnery attribute
within a relation depends upon the other, yet rafritbem is a unique primary key.

We will illustrate this with an example. Considevendor supplying many items to many projects in
an organization. The following are the assumptions:

A vendor is capable of supplying many items.
A project uses many items.

A vendor supplies to many projects.

An item may be supplied by many vendors.

E A

A multi valued dependency exists here becaus@alatiributes depend upon the other and yet none
of them is a primary key having unique value.

Vendor Codeltem CodeProject No.

V1 11 P1
V1 12 P1
V1 11 P3

167

Vi 12 P3

V2 12 P1
V2 13 P1
V3 11 P2
V3 11 P3

The given relation has a number of problems. Fangte:

1. If vendor V1 has to supply to project P2, but tieeni is not yet decided, then a row with a blank for
item code has to be introduced.
2. The information about item I1 is stored twice fendor V3.

Observe that the relation given is in 3NF and alBCNF-. It still has the problem mentioned

above. The problem is reduced by expressing thatioa as two relations in the Fourth Normal

Form (4NF). A relation is in 4NF if it has no mdten one independent multi valued dependency or
one independent multi valued dependency with atfonal dependency.

The table can be expressed as the two 4NF relagivea as following. The fact that vendors are
capable of supplying certain items and that theyasisigned to supply for some projects in
independently specified in the 4NF relation.

Vendor-Supply

ltem Code
Vendor Code
Vi1 11
Vi1 12
V2 12
V2 13
V3 11

Vendor-Project

Project No.
Vendor Code

V1 P1
V1 P3
V2 P1
V3 P2

Fifth Normal Form (5NF)
168

These relations still have a problem. While definine 4NF we mentioned that all the attributes
depend upon each other. While creating the twaetainl the 4NF, although we have preserved the
dependencies between Vendor Code and Item cote ifir$t table and Vendor Code and Item code
in the second table, we have lost the relationbbtgreen Item Code and Project No. If there were a
primary key then this loss of dependency wouldhaate occurred. In order to revive this
relationship we must add a new table like the foilg. Please note that during the entire process of
normalization, this is the only step where a nebvletés created by joining two attributes, ratherth
splitting them into separate tables.

Project No.ltem Code

P1 11
P1 12
P2 11
P3 11
P3 13

QUERY PROCESSING

Query processingincludes translation of high-level queries interdtevel expressions that can be used at the
physical level of the file system, query optimipatiand actual execution of the query to get theltdsis a
three-step process that consists of parsing andlétéon, optimization and execution of the querymitted

by the user.

Query in high-level
language

!

Parzer and
translator

Internal representation
of the query

Query optimizer
Execution plan 6

¥ DBMS catalog

Query Evaluation
engine

Eesult of the gquery
Data

Query-processing Steps

A query is processed in four general steps:

169

N

Scanning and Parsing

Query Optimization or planning the execution sigite
Query Code Generator (interpreted or compiled)
Execution in the runtime database processor

1. Scanning and Parsing

When a query is first submitted (via an applicagipnogram), it must be scanned and parsed to
determine if the query consists of appropriateaynt

Scanningis the process of converting the query text intok&nized representation.

The tokenized representation is more compact agditable for processing by the parser.

This representation may be in a tree form.

TheParser checks the tokenized representation for corrattasy

In this stage, checks are made to determine ifnaetuand tables identified in the query exist in the
database and if the query has been formed corneittithe appropriate keywords and structure.

If the query passes the parsing checks, therpissed on to the Query Optimizer.

2. Query Optimization or Planning the Execution Stategy

For any given query, there may be a number of @iffeways to execute it.

Each operation in the query (SELECT, JOIN, etcr) loa implemented using one or more different
Access Routines.

For example, an access routine that employs ax iledestrieve some rows would be more efficient
that an access routine that performs a full tatds s

The goal of thejuery optimizer is to find areasonably efficient strategy for executing the query (not
guite what the name implies) using the accessrresiti

Optimization typically takes one of two formseuristic Optimization or Cost Based Optimization

In Heuristic Optimization, the query execution is refined basecheuristic rules for reordering the
individual operations.

With Cost Based Optimization the overall cost of executing the query is systieally reduced by
estimating the costs of executing several diffeexatcution plans.

3. Query Code Generator (interpreted or compiled)

Once the query optimizer has determined the exatpian (the specific ordering of access routines),
the code generator writes out the actual accesimesuto be executed.

With an interactive session, the query code igjméted and passed directly to the runtime database
processor for execution.

It is also possible toompile the access routines and store them for later ¢oecu

. Execution in the runtime database processor

At this point, the query has been scanned, papadned and (possibly) compiled.
The runtime database processor then executes¢hssamutines against the database.
The results are returned to the application thatenthe query in the first place.

Any runtime errors are also returned.

170

Query Optimization

« To enable the system to achieve (or improve) aetdpperformance by choosing a better (if not the
best) strategy during the process of a query. @tigeagreat strengths to the relational database.

Automatic Optimization vs. Human Programmer

1. A good automatic optimizer will have a wealth dibirmation available to it that human
programmers typically do not have.

2. An automatic optimizer can easily reprocess thgimai relational request when the
organization of the database is changed. For a hymggrammer, reorganization would
involve rewriting the program.

3. The optimizer is a program, and therefore is capabtonsidering literally hundreds of
different implementation strategies for a givenuesf, which is much more than a human
programmer can.

4. The optimizer is available to a wide range of useran efficient and cost-effective manner.

The Optimization Process

1. Castthe query into some internal representatioch as a query tree structure.
2. Convert the internal representation to canonicahfo

*A subset (say C) of a set of queries (say Q) id &abe a set of canonical forms for Q if and oifily
every query Q is equivalent to just one query in C.

During this step, some optimization is already aeéd by transforming the internal representation
to a better canonical form.

Possible improvements

a. Doing the restrictions (selects) before the join.

b. Reduce the amount of comparisons by convertingtaicgon condition to an equivalent
condition inconjunctive normal form- that is, a condition consisting of a set of rietins

that are ANDed together, where each restricticmiin consists of a set of simple comparisons
connected only by OR's.

A sequence of restrictions (selects) before the joi

. In a sequence of projections, all but the lastlmignored.

. A restriction of projection is equivalent to a @ciion of a restriction.

. Others

3. Choose candidate low-level procedures by evalbaéransformed query.

® Qo

—h

*Access path selection: Consider the query expoesas a series of basic operations (join,
restriction, etc.), then the optimizer choose fiset of pre-defined, low-level
implementation procedures. These procedures majwavthe user of primary key, foreign
key or indexes and other information about the lukzda.

171

4. Generate query plans and choose the cheapest Blyuimg a set of candidate query plans
first, then choose the best plan. To pick the pkst can be achieved by assigning cost to
each given plan. The costs is computed accorditigetaumber of disk I/O's involved.

MODULE 3

Database security

Database securityconcerns the use of a broad range of informatexursty controls to protect
databases (potentially including the data, thelista applications or stored functions, the database
systems, the database servers and the associdi®drindinks) against compromises of their
confidentiality, integrity and availability. It irolves various types or categories of controls, agh
technical, procedural/administrative and physi€aitabase security is a specialist topic within the
broader realms of computer security, informatiocuséy and risk management.

Security risks to database systems include, fomeiex

« Unauthorized or unintended activity or misuse byhatized database users, database
administrators, or network/systems managers, owhguthorized users or hackers (e.g.
inappropriate access to sensitive data, metadatafunctions within databases, or
inappropriate changes to the database prograrastugtes or security configurations);

« Malware infections causing incidents such as urai#éd access, leakage or disclosure of
personal or proprietary data, deletion of or damiagthe data or programs, interruption or
denial of authorized access to the database, at@elother systems and the unanticipated
failure of database services;

« Overloads, performance constraints and capacityesssresulting in the inability of
authorized users to use databases as intended,;

« Physical damage to database servers caused by tmmpom fires or floods, overheating,
lightning, accidental liquid spills, static dischar electronic breakdowns/equipment failures
and obsolescence;

- Design flaws and programming bugs in databasedtendssociated programs and systems,
creating various security vulnerabilities (e.g. wth@rized privilege escalation), data
loss/corruption, performance degradation etc.;

- Data corruption and/or loss caused by the entrinwdlid data or commands, mistakes in
database or system administration processes, g@hataninal damage etc.

Many layers and types of information security cohéire appropriate to databases, including:

« Access control

+ Auditing

« Authentication

« Encryption

+ Integrity controls

« Backups

« Application security

172

Traditionally databases have been largely secumgginst hackers through network security
measures such as firewalls, and network-basedsintrudetection systems. While network security
controls remain valuable in this regard, securihg tatabase systems themselves, and the
programs/functions and data within them, has ardgublecome more critical as networks are

increasingly opened to wider access, in particataness from the Internet. Furthermore, system,
program, function and data access controls, alonth the associated user identification,

authentication and rights management functionse ledways been important to limit and in some
cases log the activities of authorized users anthirddtrators. In other words, these are

complementary approaches to database securityjivgoitom both the outside-in and the inside-out
as it were.

Many organizations develop their own "baseline"usiég standards and designs detailing basic
security control measures for their database syst@mese may reflect general information security
requirements or obligations imposed by corporaterimation security policies and applicable laws
and regulations (e.g. concerning privacy, finanaiahagement and reporting systems), along with
generally-accepted good database security pragsced as appropriate hardening of the underlying
systems) and perhaps security recommendations tihenrelevant database system and software
vendors. The security designs for specific databsgstems typically specify further security
administration and management functions (such asirastration and reporting of user access
rights, log management and analysis, databasea¢ipl/synchronization and backups) along with
various business-driven information security costneithin the database programs and functions
(e.g. data entry validation and audit trails). Rartmore, various security-related activities (manua
controls) are normally incorporated into the praged, guidelines etc. relating to the design,
development, configuration, use, management andtere@nce of databases.

Database security cannot be seen as an isolatbteprdecause it is effected by other components
of a computerized system as well. The securityirements of a system are specified by means of a
security policy which is then enforced by varioeswity mechanisms. For databases, requirements
on the security can be classified into the follogvaategories:

"Il dentification, Authentication

Usually before getting access to a database eacthas to identify himself to the computer system.
Authentication is the way to verify the identity @user at log-on time. Most common authentication
methods are passwords but more advanced technidpgebadge readers, biometric recognition
techniques, or signature analysis devices areaaigitable.

_JAuthorization, Access Controls

Authorization is the specification of a set of gitlbat specify who has which type of access to what
information. Authorization policies therefore goneéhe disclosure and modification of information.
Access controls are procedures that are designedntivol authorizations. They are responsible to
limit access to stored data to authorized useng onl

_lIntegrity, Consistency

An integrity policy states a set of rules (i. emsatic integrity constraints) that define the cotre
states of the database during database operatrth@nefore can protect against malicious or
accidental modification of information. Closelyatdd issues to integrity and consistency are
concurrency control and recovery. Concurrency cbmolicies protect the integrity of the database
in the presence of concurrent transactions. Ifahesnsactions do not terminate normally due to

173

system crashes or security violations recoveryrtiegtes are used to reconstruct correct or valid
database states.

"JAuditing

The requirement to keep records of all securitguaht actions issued by a user is called auditing.
Resulting audit records are the basis for furtherews and examinations in order to test the
adequacy of system controls and to recommend aaygels in the security policy.

Locking

Locking is a mechanism commonly used by systemsotttrol access to shared resources by
concurrently running users. In the context of a DBNhese shared resources are data objects, an
the users are transactions.

Locking is typically implemented using a lock maaggwvhich records which objects are locked, by
whom, and in what mode. When a transaction wishesée a particular

object (to read or write), it must request a loobnrf the lock manager. After it is done with the
object, it releases the lock by again notifying liliek manager. In certain cases, the lock manager i
not able to immediately grant a lock when it isuested (e.g., if it is held by another transactitm)
this case, the lock manager maintains a queuaidactions waiting for the lock.

It is important to also recognize that some datm# can be shared simultaneously between
transactions (e.g., transactions T1 and T2 botht wanead object X), but in other cases it is
necessary for a transaction to have an exclusite (@.g., T1 wants to write to X). This motivates
the need for multiple lock modes. In this case,itlea is that, if a transaction requests a loclaion
object in a mode that is incompatible with an emgtock on that object, then it must wait on the
lock queue until the existing lock is released.

In a DBMS, the goal is to develop a locking proidbat guarantees a schedule with desirable
properties (e.g., serializability, recoverabilivoid cascading aborts). Two common protocols are
two-phase locking (2PL) and strict two-phase logkiStrict 2PL).

Strict Two-Phase Locking (Strict 2PL)

1. If a transaction T wants to read object X, quests a shared lock on X. If it wants to writeitX,
requests an exclusive lock.

2. All locks requested by a transaction are heldl dhe transaction is completed (commits or
aborts), at which point the locks are releasedaft be shown that Strict 2PL guarantees scheduleg
that are serializable, recoverable, and that avagtading aborts.

Two-Phase Locking (2PL)

2PL relaxes Strict 2PL slightly. A transaction new®xt hold all locks until completion, but once it
has released a lock, it may not request any maiesI@PL is guaranteed to produce schedules that
are serializable.

Shared and Exclusive Locks

A lock is a system object associated with a shaesdurce such as a data item of an elementary
type, a row in a database, or a page of memorg. database, a lock on a database object (a data
access lock) may need to be acquired by a transabgfore accessing the object. Correct use of
locks prevents undesired, incorrect or inconsistepérations on shared resources by other
concurrent transactions. When a database objehtamitexisting lock acquired by one transaction
needs to be accessed by another transaction, thngxock for the object and the type of the

174

&N

intended access are checked by the system. Ifxiséing lock type does not allow this specific
attempted concurrent access type, the transactiempating access is blocked (according to a
predefined agreement/scheme). In practice a locknoobject does not directly block a transaction's
operation upon the object, but rather blocks treatgaction from acquiring another lock on the same
object, needed to be held/owned by the transatigdare performing this operation. Thus, with a
locking mechanism, needed operation blocking istrolled by a proper lock blocking scheme,
which indicates which lock type blocks which logkeé.

Two major types of locks are utilized:

« Write-lock (exclusive loch is associated with a database object by a tréoeac
(Terminology: "the transaction locks the objecty""acquires lock for it") beforevriting
(inserting/modifying/deleting) this object.

+ Read-lock(shared locK is associated with a database object by a trénsaweforereading
(retrieving the state of) this object.

The common interactions between these lock typeselined by blocking behavior as follows:

« An existingwrite-lock on a database object blocks an intendeide upon the same object
(already requested/issued) by another transactyobldrking a respectivarite-lock from
being acquired by the other transaction. The seamrii-lock will be acquired and the
requested write of the object will take place (matze) after the existing write-lock is
released.

« A write-lock blocks an intended (already requested/issueat) by another transaction by
blocking the respectivesad-lock .

« A read-lock blocks an intendedrite by another transaction by blocking the respeaiirige-
lock .

« A read-lock does not block an intendeead by another transaction. The respectisad-lock
for the intended read is acquired (shared with ghevious read) immediately after the
intended read is requested, and then the interedetlitself takes place.

TRANSCATION

A transaction is a set of changes that must athbde together. It is a program unit whose execution
mayor may not change the contents of a databasasdction is executed as a single unit. If the
database was in consistent state before a traosatitien after execution of the transaction alse, t
database must be in a consistent state. For exampiansfer of money from one bank account to
another requires two changes to the database hathsucceed or fail together.

Example:

You are working on a system for a bank. A custoguss to the ATM and instructs it to transfer Rs.
1000 from savings to a checking account. This senginsaction requires two steps:

175

* Subtracting the money from the savings accoulatnoa.
» Adding the money to the checking account balance.

The code to create this transaction will require typdates to the database. For example, there will
be two SQL statements: one UPDATE command to dserd@& balance in savings and a second
UPDATE command to increase the balance in the ¢chgaccount.

You have to consider what would happen if a macknashed between these two operations. The
money has already been subtracted from the sawdogsunt will not be added to the checking
account. It is lost. You might consider performitige addition to checking first, but then the
customer ends up with extra money, and the bar@sldghe point is that both changes must be made
successfully. Thus, a transaction is defined a afschanges that must be made together

States of Transaction

A transaction must be in one of the following state

- Active: the initial state, the transaction stays in thite while it is executing.

- Partially committed: after the final statement has been executed.

- Failed: when the normal execution can no longer proceed.

- Aborted: after the transaction has been rolled back arddtiabase has been restored to its state
prior to the start of the transaction.

« Committed: after successful completion.

partially
committed

States of transaction

We say that a transaction has committed onlyhfg entered the committed state. Similarly, we say
that a transaction has aborted only if it has edtéhe aborted state. A transaction is said to have|
terminated if has either committed or aborted.

A transaction starts in the active state. Whennislies its final statement, it enters the pastiall
committed state. At this point, the transaction ¢@®pleted its execution, but it is still possitiat

176

it may have to be aborted, since the actual outpay still be temporarily hiding in main memory
and thus a hardware failure may preclude its sségkesompletion

The database system then writes out enough infayméd disk that, even in the event of a failure,
the updates performed by the transaction can beatx when the system restarts after the failure.
When the last of this information is written odttettransaction enters the committed state.

ACID Properties of Transactions

Most of what we’re calling transactional lockingates to the ability of a database management
system (DBMS) to ensure reliable transactions #uttere to these ACID properties. ACID is an
acronym that stands for Atomicity, Consistencyldson, and Durability. Each of these properties is
described in more detail below. However, all ofstag@roperties are related and must be considereq
together. They are more like different views of #aene object than independent things.

Atomicity

Atomicity means all or nothing. Transactions oftemtain multiple separate actions. For example, a
transaction may insert data into one table, deieten another table, and update a third table.
Atomicity ensures that either all of these actionsur or none at all.

Consistency

Consistency means that transactions always takddtabase from one consistent state to another
So, if a transaction violates the databases cemagtrules, then the entire transaction will béerbl
back.

Isolation

Isolation means that concurrent transactions, hedchanges made within them, are not visible to
each other until they complete. This avoids manmgblems, including those that could lead to
violation of other properties. The implementatidnsolation is quite different in different DBMS'.
This is also the property most often related tdilog problems.

Durability

Durability means that committed transactions widit rbe lost, even in the event of abnormal
termination. That is, once a user or program has Ipetified that a transaction was committed, they
can be certain that the data will not be lost.

Timestamp Ordering Protocol

A timestamp is a tag that can be attached to any transacticany data item, which denotes a
specific time on which the transaction or data itead been activated in any way. We, who use
computers, must all be familiar with the concept®ate Created” or “Last Modified” properties of
files and folders. Well, timestamps are things likat.

A timestamp can be implemented in two ways. Thepkst one is to directly assign the current
value of the clock to the transaction or the dé&ai The other policy is to attach the value of a
logical counter that keeps incrementing as new diamps are required.
The timestamp of a transaction denotes the timenitheas first activated. The timestamp of a data
item can be of the following two types:

177

W-timestamp (Q): This means the latest time when the data itema® lbeen written into.
R-timestamp (Q): This means the latest time when the data iteragoleen read from.

These two timestamps are updated each time a sfielcesad/write operation is performed on the
data item Q.

How should timestamps be used?

The timestamp ordering protocol ensures that amyqgdaconflicting read/write operations will be
executed in their respective timestamp order. & alternative solution to using locks.

For Read operations

1. If TS (T) < W-timestamp (Q), then the transactiomsTrying to read a value of data item Q
which has already been overwritten by some otharsaction. Hence the value which T
wanted to read from Q does not exist there anynaové, T would be rolled back.

2. If TS (T) >= W-timestamp (Q), then the transactiors trying to read a value of data item Q
which has been written and committed by some attagrsaction earlier. Hence T will be
allowed to read the value of Q, and the R-timestafr should be updated to TS (T).

For Write operations:

1. If TS (T) < R-timestamp (Q), then it means that #ystem has waited too long for
transaction T to write its value, and the delay Ib@some so great that it has allowed another
transaction to read the old value of data itemrQsuch a case T has lost its relevance and
will be rolled back.

2. Else if TS (T) < W-timestamp (Q), then transactibmas delayed so much that the system
has allowed another transaction to write into thedtem Q. in such a case too, T has lost its
relevance and will be rolled back.

3. Otherwise the system executes transaction T andtepthe W-timestamp of Q to TS (T).

Causes of DBMS Failure

There are many causes of DBMS failure. When a DBAMIS, it falls into an incorrect state and will
likely contain erroneous data. Typical causes ofM3Bfailures include errors in the application
program, an error by the terminal user, an operatar, loss of data validity and consistency, a
hardware error, media failures, an error introdubgdthe environment, and errors caused by
mischief or catastrophe.

Typically, the three major types of failure thasu from a major hardware or software malfunction
are transaction, system, and media. These failmags be caused by a natural disaster, computer
crime, or user, designer, developer, or operatooreEach type of failure is described in the
following paragraphs.

Transaction Failure.

Transaction failures occur when the transactiomotsprocessed and the processing steps are rolleg
back to a specific point in the processing cyctealdistributed data base environment, a single
logical data base may be spread across severdtphglata bases.

178

Transaction failure can occur when some, but npphysical data bases are updated at the

same time.

System Failure.

System failure can be caused by bugs in the dat, loperating system, or hardware. In each case
the Transaction processing is terminated withoutrob of the application. Data in the memory is
lost; however, disk storage remains stable. Theesysnust recover in the amount of time it takes to
complete all interrupted transactions. At one taatisn per second, the system should recover in &
few seconds. System failures may occur as ofteeasral times a week.

Media Failure.

Disk crashes or controller failures can occur beeaof disk-write bugs in the operating system
release, hardware errors in the channel or coetroliead crashes, or media degradation. These
failures are rare but costly.

By identifying the type of DBMS failure, an orgaation can define the state of activity to return to
after recovery. To design the data base recovergepiures, the potential failures must be identified
and the reliability of the hardware and softwarestrhe determined. the following is a summary of
four such recovery actions:

- TRANSACTION UNDO. a transaction that aborts itself or must be abobmgdhe system during
routine execution.

- GLOBAL REDO. When recovering from a system failure, the effeftsll incomplete transaction
must be rolled back.

- PARTIAL UNDO. While a system is recovering from failure, the tesof completed transactions
may not yet be reflected in the data base becatessitton has been terminated in an uncontrolled
manner. Therefore, they must be repeated, if nacgdsy the recovery component.

- GLOBAL UNDO. If the data base is totally destroyed, a copy efdhtire data base must be reloaded
from a backup source. A supplemental copy of taedaction is necessary to roll up the state of the
data base to the present.

Techniques for Reviewing DBMS Recovery

The review of a DBMS recovery must ensure that eyg®s with specific responsibilities perform
their functions in accordance with operational ppkand procedure. There are several useful DBMS
recovery review techniques.

There are two ways to make the system operate .agast, all transactions that have occurred since
the last backup can be reapplied, which would btivegdata base up to date.

Second, the current contents of the data base e€dakien and all transactions can be backed out
until the integrity and validity of the data arest@red. Whichever method is selected, it should be
documented and a checklist of specific tasks asplarsibilities identified.

The DBMS typically provides exhaustive review e that the system can know its exact state at
any time. These review tails should be completeughoto reconstruct transactions and aid in
recovery procedures. A data base administrator ldhknow how to use these review trails in
recovery to fully understand the inner workingstef DBMS.

A data base that has been backed up regularly hie¢psystem recover from a failure and begin
operating again as soon as possible. Daily baclaspssufficient in most organizations. Those
organizations that must always have current datat reametimes perform hourly backups. Each
backup should be well documented to provide furthgight into the review process.

179

Review techniques should examine application desigourity procedures, and personnel control to
ensure that managers can meet emergencies anctiewttve contingencies in place. These three
areas are extremely critical review points for dloelitor, management, users, and IS personnel.

Application Design

It is important to build sound recovery proceduaesl processes into an application during the
design phase. The design of an application shailel into consideration the data base control issueg
that affect backup and recovery processes. Posgda&nesses in controls include:

- Inaccurate or incomplete data in the data base.

- An inadequate audit trail.

- An inadequate service level.

- Failure of the DBMS to function as specified.

- Inadequate documentation.

- Lack of processing continuity.

- Lack of management support.

- Fraud or embezzlement.

The data base administrator should be responsiblexfamining the backup and recovery controls
being considered by the user and developer wheewewg application design. The user and the
developer of the application must assess the akkst having appropriate controls in place toiaid
recovery. Some key controls that should be adogted

- Review trails. A method of chronologically recording system adies that allows the
reconstruction, review, and examination of eacheirea transaction from inception to

the final results.

- Recovery proceduresAutomated or manual tools and techniques for rewogehe integrity of a
data base.

- Application system failure procedures.Procedures for users to follow in the event tha&irth
applications cannot operate.

- Checkpoint data basesCopies of the data base and transaction filesatteatnade at specific point
in time for recovery purposes.

At a minimum, these controls should be tested dutite module and integration testing phases of
development. In terms of a new system review befonelementation, these controls are most
effective if thoroughly validated and approved bg tiser and developer before the system is placeq
into operation. One important issue to be consttlarapplication design is data integrity.

Maintaining Data Integrity.

Data integrity concerns the accuracy of the costefthe data base. The integrity of the data @n b

compromised because of failures(i.e., events athwtiie system fails to provide normal operation or

correct data). Failures are caused primarily bgrerrwhich may originate in programs, interactions

between these programs, or the system. A transaistia sequence of actions. It should be designed
and executed so that it either is successfully deteg or has no effect on the data base. A

transaction can fail to be completed for the foilogwreasons:

- An action violates a security or integrity coastt.

- The user cancels the transaction.

- An unrecoverable I/O error occurs.

180

- The system backs out the transaction to resotieadl|ock.

- The application program fails.

- The system crashes.

Semantic Integrity.

This refers to the accuracy of the data base ae#tfact that users or applications programsotry
modify it incorrectly. Assuming that the data baseurity system prevents unauthorized access, ang
hence malicious attempts to corrupt data, mostnpi@deerrors will be caused by incorrect input,
incorrect programs, or lack of user understanding.

Traditionally, most integrity checking has beenfpened by the applications programs and by
periodic auditing of the data base. The following aome problems that occur when relying on
application programs for integrity checking:

- Checking is likely to be incomplete because thi@ieations programmer may not be aware of the
semantics of the complete data base.

- Each application program relies on other progrdrascan modify the data base, and a problem in
one program could corrupt the whole data base.

- Code that enforces the same integrity constrameturs in several programs. This leads to
unnecessary duplication of the programming effond aexposes the system to potential
inconsistencies.

- The criteria for integrity are buried within pestures and are therefore difficult to understardl an
control.

- Maintenance operations performed by users ofleghl query language cannot be controlled.

Most of these errors could be detected throughtiagglialthough the time lag in detecting errors by
auditing can cause problems, such as difficultracing the source of an error and hence correcting
it as well as incorrect data used in various wagsising errors to propagate through the data base
and into the environment.

The semantics, or meaning, of a data base is pdmabyn from a shared understanding among the
users, partly implied by the data structures uaad, partly expressed as integrity constraints. &hes
constraints are explicitly stated by the individueg¢sponsible for data control. Data bases can alsg
be classified as:

- A single record or set.

- Static or transitional.

- General or selective.

- Immediate or deferred.

- Unconditional or conditional.

A system of concurrent transactions must be cdyreghchronized—that is, the processing of these
transactions must reach the same final state andupe the same output. Three forms of
inconsistency result from concurrence: lost updatesncorrect read, and an unrepeatable read. Los
updates can also result from backing up or undaitrgnsaction.

Correcting Inconsistency Problems.

The most commonly used approach to eliminate ctargig problems is locking. The DBMS can
use the locking facilities that the operating systprovides so that multiple processes can
synchronize their concurrent access of shared ressuA lock can be granted to multiple processes,
but a given object cannot be locked in shared amiligive mode at the same time. Shared and
exclusive modes conflict because they are incorlgatlhe operating system usually provides lock
and unlock commands for requesting and releasiokslolf a lock request cannot be granted, the

181

process is suspended until the request can beegradhtransactions do not follow restrictive loegi
rules, Deadlock can occur. Deadlock can causedade df an entire file; therefore, it is critical to
have a recovery system in place to alleviate thoblem.

The Deadlock problem can be solved either by priavgrDeadlock or by detecting them after they
occur and taking steps to resolve them. Deadlonkbegprevented by placing restrictions on the way
locks are requested. They can be detected by ekagrtime status of locks. After they are detected,
the Deadlock can be resolved by aborting a traisaand rescheduling it. Methods for selecting the
best transaction to abort have also been developed.

A synchronization problem can occur in a distrildutiata base environment, such as a client/server
network. Data bases can become out of sync whenfoah one data base fails to be updated on
other data bases. When updates fail to occur, ase@me locations may use data that is not current
with data at other locations. Distributed data bgs®vide different types of updating mechanisms.
In a two-phase commit update process, network nowest be online and receive data
simultaneously before updates can occur. A newdatgpmethod calledata replication enables
updates to be stored until nodes are online andyréa receive. Update methods must ensure
currency in all network data bases.

Security Procedures
A data base usually contains information that talvio an organization's survival. A secure data
base environment, with physical and logical seguriintrols, is essential during recover procedures.

Physical Security.

In some distributed environments, many physicausgc controls, such as the use of security
badges and cipher locks, are not feasible and than@ation must rely more heavily on logical
security measures. In these cases, many orgamahtimembers may have data processing needsg
that do not involve a data base but require theoisemputer peripherals.

Logical Security.

Logical security prevents unauthorized users fromoking DBMS functions. The primary means of
implementing this type of security is the use ofgveords to prevent access to files, records, data
elements, and DBMS utilities. Passwords shouldhieeked to ensure that they are designated in an
intelligent, logical manner.

Security Logs.

Each time an unauthorized user attempts to acbhesdata base, it should be recorded in a security
log. Entries in this log should consist of user tBrminal or port number, time, date, and type of
infraction. With this information, it is possible tnvestigate any serious breaches of securitynFro
the data base administrator's standpoint, evidératehe DBMS is detecting security violations and
that a consistent procedure is used to follow thmshould be sufficient.

Personnel Control

Data base recovery involves ensuring that only aigbd users are allowed access and that no
subsequent misuse of information occurs. Theseralsnare usually reestablished when a system
becomes operational. When operations cease orgmnsbbccur, however, controls often become
inoperative.

The three primary classes of data base users taebdae administrator, applications and systems
programmers, and end users--and each has a ungweof/the data. The DBMS must be flexible
enough to present data appropriately to each ofasser and maintain the proper controls to inhibit
abuse of the system, especially during recovergnadontrols may not be fully operational.

182

Data Base Administrator.

The data base administrator is responsible forremgthat the data base retains its integrity and i
accountable if the data base becomes compromisednatter what circumstances arise. This
individual has ultimate power over the schema ttie organization has implemented. Any
modifications or additions to this schema must Ippraved by the data base administrator.
Permission to use subschema (i.e., logical viewgjven to end users and programmers only after
their intentions are fully known and are consisteith organizational goals.

Because the data base administrator has immedidteraestricted access to almost every piece of
valuable organizational information, an incompetentployee in this position can expose the
organization to enormous risk, especially duringMiEBrecovery. Therefore, an organization should
have controls in place to ensure the appointmeatmqfalified data base administrator.

The data base administrator must ensure that apgt®procedures are followed during DBMS
recovery. The data base administrator should ad¢idate and verify the system once it has been
recovered before allowing user access so thatnfrots are not functioning or accessing problem
continue, users will not be affected.

Applications and Systems Programmers.

After recovery, programmers must access the daa tsamanipulate and report on data according
to some predetermined specification or to accessthvehn data loss has occurred. Each application
should have a unique subschemas with which to whitier recovery, the data base administrator
validates the subschemas organization to ensuteittha operating properly and allowing the
application to receive only the data necessaryetfopm its tasks. Systems programmers must be
controlled in a slightly different manner than apalions programmers. They must have the
freedom to perform their tasks but be constrainednfaltering production programs or system
utility programs in a fraudulent

manner.

End Users.

End users are defined as all organizational memhetsncluded in the previous categories who
need to interact with the data base through DBM8ies or application programs. Data elements of
the data base generally originate from end useash Elata element should be assigned to an eng
user. The end user is then responsible for defitlegelement's access and security rules. Every|
other user who wishes to use this data element candéer with the responsible end user. If access is
granted, the data base administrator must implemepntrestrictions placed on the request through
the DBMS.

Assigning ownership of specific data elements td esers discourages the corruption of data
elements, thereby enhancing data base integrityieRers should ensure that this process exists and
is appropriately reinstituted after the recoverggass has been completed and operational approva|
has been provided by the data base administrator.

After recovery, the data base administrator shaudure that all forms of security practices and
procedures are reinstated. These processes ared @ata base security.

Object Oriented Database(OODB)

183

Object Oriented Database (OODB) provides all the facilities associated with objeciented
paradigm. It enables us to create classes, orgabjeets, structure an inheritance hierarchy afid ca
methods of other classes. Besides these, it alseidass the facilities associated with standard
database systems. However, object oriented datalyatems have not yet replaced the RDBMS in
commercial business applications. Following are tive different approaches for designing an
object-oriented database:

 Designed to store, retrieve and manage objeetd@d by programs written in some object oriented
languages (OOL) such as C++ or java.

Although a relational database can be used to stodemanage objects, it does not understand
objects as such. Therefore, a middle layer callgdad manager or object-oriented layer software is
required to translate objects into tuples of ati@ta.

» Designed to provide object-oriented facilities wigers of non object-oriented programming
languages (OOPLs) such as C or Pascal.

The user will create classes, objects, inheritaare® so on and the database system will store ang
manage these objects and classes. This secondaapptbus, turns non-OOPLs into OOPLs. A
translation layer is required to map the objectmtad by user into objects of the database system.

Advantages of OODBMS

Enriched modeling capabilities

The object-oriented data model allows the 'reatldvdo be modeled more closely. The object,
which encapsulates both state and behavior, is r@ matural and realistic representation of real-
world objects. An object can store all the relagioips it has with other objects, including many-to-
many relationships, and objects can be formedantoplex objects that the traditional data models
cannot cope with easily.

Extensibility

OODBMSs allow new data types to be built from &rg types. The ability to factor out common
properties of several classes and form them irdoperclass that can be shared with subclasses ca
greatly reduce redundancy within system and, astated- at the start of this chapter, is regarded a
one of the main advantages of object orientatiamthier, the reusability of classes promotes faster
development and easier maintenance of the datalpaisiées applications.

Capable of handling a large variety of data types

184

Unlike traditional databases (such as hierarchinatwork or relational), the object oriented
database are capable of storing different typegatd, for example, pictures, voice video, including
text, numbers and so on.

Removal of impedance mismatch

A single language interface between the Data Mdaipn Language (DML) and the programming
language overcomes the impedance mismatch. Thignalies many of the efficiencies that occur in
mapping a declarative language such as SQL to gerative ‘'language such as 'C'. Most
OODBMSs provide a DML that is computationally coetel compared with SQL, the 'standard
language of RDBMSs.

More expressive query language

Navigational access from the object is the mosetroon form of data access in an OODBMS. This
is in contrast to the associative access of SQat () declarative statements with selection based
one or more predicates). Navigational access i®mitable for handling parts explosion, recursive
gueries, and so on.

Support for schema evolution

The tight coupling between data and applicationan OODBMS makes schema evolution more
feasible.

Support for long-duration, transactions

Current relational DBMSs enforce serializability ooncurrent transactions to maintain database
consistency. OODBMSs use a different protocol todtathe types of long-duration transaction that
are common in many advanced database application.

Applicability to advanced database applications

There are many areas where traditional DBMSs heotebeen particularly successful, such as,
Computer-Aided Design (CAD), Computer-Aided SoftevarEngineering (CASE), Office
Information System(OIS), and Multimedia Systems.e Thnriched modeling capabilities of
OODBMSs have made them suitable for these appicsti

Improved performance

There have been a number of benchmarks that haygested OODBMSs provide significant

performance improvements over relational DBMSs. Treeults showed an average 30-fold
performance improvement for the OODBMS over the RI[3B

185

Disadvantages of OODBMSs

There are following disadvantages of OODBMSs:

Lack of universal data model: There is no universally agreed data model for &DBMS, and
most models lack a theoretical foundation. Thisadvantage is seen as a significant drawback, ang
is comparable to pre-relational systems.

Lack of experience:In comparison to RDBMSs the use of OODBMS is sélatively limited. This
means that we do not yet have the level of expeeighat we have with traditional systems.
OODBMSs are still very much geared towards the anogner, rather than the naive end-user. Also
there is a resistance to the acceptance of theatundy. While the OODBMS is limited to a small
niche market, this problem will continue to exist

Lack of standards: There is a general lack of standards of OODBMSs.hake already mentioned
that there is not universally agreed data modehil&ily, there is no standard object-oriented query
language.

Competition: Perhaps one of the most significant issues the¢ fODBMS vendors is the
competition posed by the RDBMS and the emerging BB products. These products have an
established user base with significant experiena@@lable. SQL is an approved standard and the
relational data model has a solid theoretical fadromaand relational products have many supporting
tools to help .both end-users and developers.

Query optimization compromises encapsulationsQuery optimization requires. An understanding
of the underlying implementation to access theluzta efficiently. However, this compromises the
concept of incrassation.

Locking at object level may impact performanceMany OODBMSs use locking as the basis for
concurrency control protocol. However, if locking applied at the object level, locking of an
inheritance hierarchy may be problematic, as welhgacting performance.

Complexity: The increased functionality provided by the OODBg68ch as the illusion of a single-
level storage model, pointer sizzling, long-dunattcansactions, version management, and schemg
evolution--makes the system more complex thandhataditional DBMSs. In complexity leads to
products that are more expensive and more diffioulise.

Lack of support for views: Currently, most OODBMSs do not provide a view natgbm, which,
as we have seen previously, provides many advasmtageh as data independence, security, reduceq
complexity, and customization.

Lack of support for security: Currently, OODBMSs do not provide adequate secumi&zhanisms.
The user cannot grant access rights on individojgats or classes.

If OODBMSs are to expand fully into the businesddj these deficiencies must be rectified.
186

OBJECT RELATIONAL DBMS

Relational DBMSs are currently the dominant dataltashnology. The OODBMS has also become the
favored system for financial and telecommunicatigpglications. Although the OODBMS market is still
same. The OODBMS continues to find new applicasiceas, such as the World Wide Web. Some industry
analysts expect the market for the OODBMSs to grbawver 50% per year, a rate faster than the total
database market. However, their sales are unltkebyertake those of relational systems becautieeof
wealth of businesses that find RDBMSs acceptablg because businesses have invested to much modey a
resources in their development that change is bitbheé. This is the approach that has been takemdnyy
extended relational DBMSs, although each has imgiged different combinations of features. Thuseligr
no single extended relational model rather, thezeaavariety of these models, whose characteridépgnds
upon the way and the degree to which extensions made. However, all the models do share the same
basic relational tables and query language, afiriparate some concept of 'object, and some havaiility

to store methods (or procedures or triggers), dsasalata in the database.

Relalionat DEME Objpct-Relational DEME

Epgrch capabifsss
muk-gssr suppan

Fila Systamy

|

| Data comploxityfextansibiily

Four-Quadrant View of Database World

In a four-quadrant view of the database worldJlastrated in the figure, the lower-left quadrareg a
those applications that process simple data ane havequirements for querying the data.

These types of application, for example standattdgecessing packages such as Word,

WordPerfect, and Frame maker, can use the undgrigperating systento obtain the essential
DBMS functionality of persistence. In the lowerhigquadrant are those applications that process
complex data but again have no significant requémeis for querying the data. For these types of
application, for example computer-aided design pgek, an OODBMS may be an appropriate

choice of DBMS.

In the top-left quadrant are those applications gracess simple data and also have requirements
for complex querying. Many traditional business laggpions fall into this quadrant and an RDBMS

may be the most appropriate DBMS.
187

Finally, in the top-right quadrant are those amlans that process completed data and have
complex querying requirements. This represents nodmlye advanced database applications and for
these applications an ORDBMS may be the appropclatee of DBMS.

Advantages and Disadvantages of ORDBMSS

ORDBMSs can provide appropriate solutions for m&ypes of advanced database applications.
However, there are also disadvantages.

Advantages of ORDBMSs

There are following advantages of ORDBMSs:

Reuse and Sharing:The main advantages of extending the Relation@ nedel come from reuse
and sharing. Reuse comes from the ability to extdrel DBMS server to perform standard
functionality centrally, rather than have it codecach application.

Increased Productivity: ORDBMS provides increased productivity both foe theveloper and for
the, end user

Use of experience in developing RDBMSAnother obvious advantage is that .the extended
relational approach preserves the significant baidgnowledge and experience that has gone into
developing relational applications. This is a digant advantage, as many organizations would find
it prohibitively expensive to change. If the newdtionality is designed appropriately, this apptoac
should allow organizations to take advantage ofrida@ extensions in an evolutionary way without
losing the benefits of current database featurdsamctions.

Disadvantages of ORDBMSs

The ORDBMS approach has the obvious disadvantafje®mplexity and associated increased
costs. Further, there are the proponents of thatioehl approach that believe the- essential
simplicity’ and purity of the .relational model dost with these types of extension.

ORDBMS vendors are attempting to portray object e®ds extensions to the relational model with
some additional complexities. This potentially rsshe point of object orientation, highlighting th
large semantic gap between these two technolo@bgect applications are simply not as data-
centric as relational-based ones.

PARALLEL DATABASE

* A parallel database system seeks to improve padoce through parallelization of various
operations, such as loading data, building indexekevaluating queries. Although data may be
stored in a distributed fashion, the distributisrgoverned solely by performance considerations.
Parallel database improves processing and inppiivgpeeds by using multiple CPUs and disks in
188

parallel. Centralized and client-server databaseesys are not powerful enough to handle such
applications. In parallel processing, many operetiare performed simultaneously, as opposed to
serial processing, in which the computational sepsperformed sequentially.

» A parallel database system seeks to improve pediocethrough parallelization of various
operations, such as loading data, building indexesevaluating queries.

» Although data may be stored in a distributed fashile distribution is governed solely by
performance considerations. Parallel databaseoimprocessing and input/output speeds
by using multiple CPUs and disks in parallel.

» Centralized and client—server database systemsoamowerful enough to handle such
applications.

* In parallel processing, many operations are peradrsimultaneously, as opposed to serial
processing, in which the computational steps armpred sequentially.

» Parallel databases can be roughly divided intodgwaips, the first group of architecture is
the multiprocessor architecture, the alternatifestoch are the followings :

v Shared memory architecture,where multiple processors share the main memagesp

v Shared disk architecture where each node has its own main memory, butoaés share
mass storage, usually a storage area networkabtipe, each node usually also has multiple
processors.

v Shared nothing architecture where each node has its own mass storage aasvelain
memory.

Distributed Database Architecture

A distributed database systenallows applications to access data from local remdote databases.

In ahomogenous distributed database systemeach database is an Oracle Database. In
aheterogeneous distributed database systenat least one of the databases is not an Oracle
Database. Distributed databases use ¢ienter architecture to process information requests.

It contains the following database systems:

» Homogenous Distributed Database Systems

» Heterogeneous Distributed Database Systems

+ Client/Server Database Architecture

Homogenous Distributed Database Systems

A homogenous distributed database system is a netfdwo or more Oracle Databases that reside
on one or more machines. Below Figure illustrateslistributed system that connects three
databases: hqg, mfg, and sales. An application icamtaneously access or modify the data in several
databases in a single distributed environment. eéxample, a single query from a Manufacturing
client on local database mfg can retrieve joineth deom the products table on the local database
and the dept table on the remote hq database.

189

For a client application, the location and platfooithe databases are transparent. You can alsg
createsynonymsfor remote objects in the distributed system s tlsers can access them with the
same syntax as local objects. For example, if yeucannected to database mfg but want to accesg
data on database hq, creating a synonym on mfthéremote dept table enables you to issue this
query:

SELECT * FROM dept;

Homogeneous Distributed Database

Manufacturing Distributed Database Headquarters
[. MEG . ACME . COM HQ.ACME. COM _— [.
i \ / al

. % SALES . ACME . COM . &

Sales

([
==

An Oracle Database distributed database systemirzamporate Oracle Databases of different
versions. All supported releases of Oracle Databaseparticipate in a distributed database system.
Nevertheless, the applications that work with thetritbuted database must understand the
functionality that is available at each node in system. A distributed database application cannot

expect an Oracle7 database to understand the St@hstons that are only available with Oracle
Database.

Heterogeneous Distributed Database Systems

In a heterogeneous distributed database systerteast one of the databases is a non-Oracle
Database system. To the application, the heteragesndistributed database system appears as ¢

single, local, Oracle Database. The local Oracldabsse server hides the distribution and
heterogeneity of the data.

-

190

The Oracle Database server accesses the non-Qatdbase system using Oracle Heterogeneous
Services in conjunction with agent If you access the non-Oracle Database data sging an
Oracle Transparent Gateway, then the agent is temsyspecific application. For example, if you
include a Sybase database in an Oracle Databasiuisd system, then you need to obtain a
Sybase-specific transparent gateway so that thel®©fatabase in the system can communicate
with it.

Alternatively, you can usgeneric connectivityto access non-Oracle Database data stores so lon
as the non-Oracle Database system supports the QDBCE DB protocols.

Heterogeneous Services

Heterogeneous Services (HS) is an integrated coempamthin the Oracle Database server and the
enabling technology for the current suite of Orablansparent Gateway products. HS provides the
common architecture and administration mechanissnsOfracle Database gateway products and
other heterogeneous access facilities. Also, ivides upwardly compatible functionality for users
of most of the earlier Oracle Transparent Gatewetsases.

Transparent Gateway Agents

For each non-Oracle Database system that you ad¢tessogeneous Services can use a transparen
gateway agent to interface with the specified noael@ Database system. The agent is specific to
the non-Oracle Database system, so each type teinsysquires a different agent.

The transparent gateway agent facilitates commtiaicdetween Oracle Database and non-Oracle
Database systems and uses the Heterogeneous Sergioponent in the Oracle Database server.
The agent executes SQL and transactional requetlis aon-Oracle Database system on behalf of
the Oracle Database server.

Client/Server Database Architecture

A database server is the Oracle software managidagtabase, and a client is an application that
requests information from a server. Each computer metwork is a node that can host one or more
databases. Each node in a distributed databasssgan act as a client, a server, or both, depgndin
on the situation.

An Oracle Database Distributed Database System

191

Server Server

QOracle
Database Link >
CONI;]-E-C-:T TO...

IDENTIFIED BY ...

EMP Table |

—|—,_

DEPT Table | »

Application

TRANSACTION

INSERT INTO EMPESALES..:
DELETE FROM DEPT. . ;

SELECT. ..
FROM EMP@SALES. . . ;

COMMIT ;

A client can connedirectly orindirectly to a database server. A direct connection occlenva

client connects to a server and accesses informéton a database contained on that server. For
example, if you connect to the hq database andsadte dept table on this database as in below
Figure, you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessirapject on a remote database.

In contrast, an indirect connection occurs whenlient connects to a server and then accesses
information contained in a database on a differsatver. For example, if you connect to
the hg database but access the emp table on tleersales database as in above Figune can
issue the following:

SELECT * FROM emp@sales;

PARALLEL VS. DISTRIBUTED DATABASE :

Parallel Database Systenseeks to improve performance through parallebratif various
operations, such as data loading, index buildirdygrery evaluating. Although data may be stored
in a distributed fashion in such a system, thaidistion is governed solely by performance
considerations.

In Distributed Database Systemdata is physically stored across several sitegseach site is

192

typically managed by a DBMS capable of running petelent of the other sites. In contrast to
parallel databases, the distribution of data isegoed by factors such as local ownership and
increased availability.

PDB & DDB Comparison:

1. System Components

- Distributed DBMS consists of mar@yeo-distributed, low-bandwidth link connected
autonomic sites.

- Parallel DBMS consists aightly coupled, high-bandwidth link connected non-autonomic
nodes.

2. Component Role

- Sites in Distributed DBMS can work independemthhandldocal transactions or work together to
handleglobal transactions.

- Nodes in Parallel DBMS can only work togethehémdleglobal transactions.

3. Design Purposes
= Distributed DBMS is for:
- Sharing Data
- Local Autonomy
- High Availability
= Parallel DBMS is for:
- High Performance
- High Availability

But both PDB&DDB need to consider the following plems:
1. Data Distribution (Placement & Replicatioin);

2. Query Parallelization(Distributed Evaluationhddalso, many parallel system consists of network
of workstation, the difference between Parallel & Bistributed DB is becoming smaller.

DATA WAREHOUSING

A data warehouse is a collection of data martsasgnting historical data from different operations
in the company. This data is stored in a struobptémized for querying and data analysis as a data
warehouse. Table design, dimensions and organieatiould be consistent throughout a data
warehouse so that reports or queries across thengaehouse are consistent.

193

A data warehouse can also be viewed as a datatyasistorical data from different functions
within a company. The term Data Warehouse wasecoly Bill Inmon in 1990, which he defined
in the following way: "A warehouse is a subjectemtied, integrated, time-variant and non-volatile
collection of data in support of management's decisiaking process". He defined the terms in
the sentence as follows: Subject Oriented: Datiagivas information about a particular subject
instead of about a company's ongoing operations.

Integrated: Data that is gathered into the data warehouse &@ariety of sources and merged
into a coherent whole.

Time-variant: All data in the data warehouse is identified vatparticular time period.
Non-volatile: Data is stable in a data warehouse. More datddsdibut data is never removed.
This enables management to gain a consistent piofithe business. It is a single, complete and
consistent store of data obtained from a varietyitbérent sources made available to end users
in what they can understand and use in a busirmegsxd. It can be

* Used for decision Support

» Used to manage and control business

» Used by managers and end-users to understarisiess and make judgments

Benefits of data warehousing

» Data warehouses are designed to perform well agtiregate queries running on large amounts of
data.

» The structure of data warehouses is easier fusers to navigate, understand and query against
unlike the relational databases primarily desigtoeldandle lots of transactions.

» Data warehouses enable queries that cut acrtfssedt segments of a company's operation. E.g.
production data could be compared against inverdatg even if they were originally stored in
different databases with different structures.

* Queries that would be complex in very normalidathbases could be easier to build and maintain
in data warehouses, decreasing the workload osdcéion systems.

» Data warehousing is an efficient way to managkraport on data that is from a variety of
sources, non uniform and scattered throughout gpaamm

» Data warehousing is an efficient way to manageatel for lots of information from lots of users.

» Data warehousing provides the capability to arealarge amounts of historical data for nuggets
of wisdom that can provide an organization with petitive advantage.

Data Warehouse Characteristics
* A data warehouse can be viewed as an informatietem with the following attributes:
— It is a database designed for analytical tasks

— It's content is periodically updated

194

— It contains current and historical data to prewadhistorical perspective of information
Data warehouse admin and management
The management of data warehouse includes,

* Security and priority management

* Monitoring updates from multiple sources

* Data quality checks

* Managing and updating meta data

* Auditing and reporting data warehouse usage tatdss
* Purging data

* Replicating, sub setting and distributing data

* Backup and recovery

» Data warehouse storage management which inctagegcity planning, hierarchical storage
management and purging of aged data etc..

DESIGN OF DATA WAREHOUSE

The following nine-step method is followed in thestyn of a data warehouse:
1. Choosing the subject matter

2. Deciding what a fact table represents

3. Identifying and conforming the dimensions

4. Choosing the facts

5. Storing pre calculations in the fact table

6. Rounding out the dimension table

7. Choosing the duration of the db
195

8. The need to track slowly changing dimensions
9. Deciding the query priorities and query models
Technical considerations

A number of technical issues are to be considetteehvdesigning a data warehouse environment.
These issues include:

* The hardware platform that would house the dateetouse

» The dbms that supports the warehouse data

» The communication infrastructure that connecta daarts, operational systems and end users
» The hardware and software to support meta datsi@ry

» The systems management framework that enablemadithe entire environment
Implementation considerations

The following logical steps needed to implemenatadvarehouse:

* Collect and analyze business requirements

* Create a data model and a physical design

* Define data sources

* Choose the db tech and platform

* Extract the data from operational db, transfarnslean it up and load it into the warehouse
» Choose db access and reporting tools

» Choose db connectivity software

» Choose data analysis and presentation s/w

» Update the data warehouse

Access tools
196

Data warehouse implementation relies on selectiitglsle data access tools. The best way to
choose this is based on the type of data can betsdlusing this tool and the kind of access it

permits for a particular user. The following ligh® various type of data that can be accessed:
 Simple tabular form data

» Ranking data

* Multivariable data

» Time series data

* Graphing, charting and pivoting data

» Complex textual search data

* Statistical analysis data

» Data for testing of hypothesis, trends and paster

* Predefined repeatable queries

» Ad hoc user specified queries

* Reporting and analysis data

» Complex queries with multiple joins, multi lev&ib queries and sophisticated search criteria
Data extraction, clean up, transformation and migrdion

A proper attention must be paid to data extractvbich represents a success factor for a data
warehouse architecture. When implementing datalveaise several the following selection criteria
that affect the ability to transform, consolidatgegrate and repair the data should be considered:

» Timeliness of data delivery to the warehouse
» The tool must have the ability to identify thetfpaular data and that can be read by conversioh to
* The tool must support flat files, indexed filésce corporate data is still in this type

* The tool must have the capability to merge dedenfmultiple data stores
197

* The tool should have specification interfacenicate the data to be extracted

* The tool should have the ability to read datarfrdata dictionary

» The code generated by the tool should be conlpletaintainable

* The tool should permit the user to extract trguned data

* The tool must have the facility to perform datpe and character set translation

 The tool must have the capability to create sunration, aggregation and derivation of records
» The data warehouse database system must beogi#eform loading data directly from

these tools

Data placement strategies

— As a data warehouse grows, there are at leasbptions for data placement. One is to put some of
the data in the data warehouse into another stonegka.

— The second option is to distribute the data éndata warehouse across multiple servers.
User levels

The users of data warehouse data can be classifiite basis of their skill level in accessing the
warehouse. There are three classes of users:Qesral are most comfortable in retrieving info
from warehouse in pre defined formats and runniegegisting queries and reports. These users do
not need tools that allow for building standard adchoc reports

Power Users can use pre defined as well as user defined epiticreate simple and ad hoc reports. These
users can engage in drill down operations. Thesesusay have the experience of using reportingjaiedy

tools.

Expert users: These users tend to create their own complex egiarid perform standard analysis on the info
they retrieve. These users have the knowledge d@beutse of query and report tools

Benefits of data warehousing
Data warehouse usage includes,

— Locating the right info
198

— Presentation of info

— Testing of hypothesis

— Discovery of info

— Sharing the analysis

The benefits can be classified into two:

* Tangible benefits (quantified / measureablefdiudes,
— Improvement in product inventory

— Decrement in production cost

— Improvement in selection of target markets

— Enhancement in asset and liability management

« Intangible benefits (not easy to quantified)nttludes,
— Improvement in productivity by keeping all datesingle location and eliminating
— Reduced redundant processing

— Enhanced customer relation rekeying of data

ARCHITECTURE OF DATA WAREHOUSING

The data in a data warehouse comes from operatgys#éms of the organization as well as from other
external sources. These are collectively referedgsource systems. The dataextracted from source
systems is stored in a area calldala staging area, where the data is cleanemansformed, combined,
duplicated to prepare the data for us in the daeklouse. The data staging area is generally ectiolh of
machines where simple activities like sorting arduential processing takes place. The data stagem
does not provide any query or presentation servidessoon as a system provides query or presentatio
services, it is categorized agiesentation server. A presentation server is the target machine oictwthe
data isloaded from the data staging area organized and storedifect querying by end users, report writers
and other applications. The three different kintisystems that are required for a data warehowse ar

1. Source Systems

2. Data Staging Area
3. Presentation servers

199

The data travels from source systems to presentatovers via the data staging area. The entireepsois
popularly known as ETL (extract, transform, anddloar ETT (extract, transform, and transfer). Qs&cl
ETL tool is called Oracle Warehouse Builder (OWB)daMS SQL Server's ETL tool is called Data
Transformation Services (DTS).

A typical architecture of a data warehouse is shbalow:

N >

—1__» HIG e
. - STMI DATA =
= = =
Z S—— g Zz | END USER
E e = v E 7| ACCESS TOOLS
=2 [T = RIZED DATA :
25 2 | z
) 3 ! ;

—— | =

\H"-\—___-—F"" P

| WAREHOUSE MANAGER |
"«-._,_‘___'_,,-" k

ARCHIVE / BACK LT

Each component and the tasks performed by themxtained below:

1. OPERATIONAL DATA
The sources of data for the data warehouse isisdppbm:

® The data from the mainframe systems in the tratitioetwork and hierarchical format.

(i) Data can also come from the relational DBMS likad, Informix.

(i) In addition to these internal data, operationahddso includes external data obtained from
commercial databases and databases associateslipfilier and customers.

2. LOAD MANAGER

The load manager performs all the operations assatiwith extraction and loading data into the
data warehouse. These operations include simpieftianations of the data to prepare the data for
entry into the warehouse. The size and complexitghs component will vary between data
warehouses and may be constructed using a condnnetivendor data loading tools and custom
built programs.

200

3. WAREHOUSE MANAGER

The warehouse manager performs all the operatiss@cated with the management of data in the
warehouse. This component is built using vendaoa danagement tools and custom built programs.
The operations performed by warehouse managerdeciu

® Analysis of data to ensure consistency
(i) Transformation and merging the source data fronpteary storage into data warehouse
tables

(i) Create indexes and views on the base table.

(iv) Denormalization

(v) Generation of aggregation

(vi) Backing up and archiving of data
In certain situations, the warehouse manager atswergtes query profiles to determine which
indexes ands aggregations are appropriate.

4. QUERY MANAGER

The query manager performs all operations assaciaith management of user queries. This
component is usually constructed using vendor esail-access tools, data warehousing monitoring
tools, database facilities and custom built prograffihe complexity of a query manager is
determined by facilities provided by the end-usmess tools and database.

5. DETAILED DATA

This area of the warehouse stores all the detddéea in the database schema. In most cases detaile
data is not stored online but aggregated to the lesel of details. However the detailed data is
added regularly to the warehouse to supplemerdaghecgated data.

6. LIGHTLY AND HIGHLY SUMMERIZED DATA

The area of the data warehouse stores all the fimeddightly and highly summarized (aggregated)
data generated by the warehouse manager. Thisoargee warehouse is transient as it will be
subject to change on an ongoing basis in orderespand to the changing query profiles. The
purpose of the summarized information is to spgethe query performance. The summarized data
is updated continuously as new data is loadedth@avarehouse.

7. ARCHIVE AND BACK UP DATA
This area of the warehouse stores detailed and sumed data for the purpose of archiving and
back up. The data is transferred to storage arstsueh as magnetic tapes or optical disks.

8. META DATA
The data warehouse also stores all the Meta data @bout data) definitions used by all processes
in the warehouse. It is used for variety of purgbiseluding:
0] The extraction and loading process — Meta datases] Lto map data sources to a
common view of information within the warehouse.
(i) The warehouse management process — Meta dataddaiseitomate the production
of summary tables.
(i) As part of Query Management process Meta dataad tesdirect a query to the most
appropriate data source.

201

[®N

The structure of Meta data will differ in each pees, because the purpose is different. More about
Meta data will be discussed in the later LecturéeNo

9. END-USER ACCESS TOOLS
The principal purpose of data warehouse is to pewhformation to the business managers for
strategic decision-making. These users interadt thi¢ warehouse using end user access tools. Thg¢
examples of some of the end user access toolsecan b
0] Reporting and Query Tools
(i) Application Development Tools
(i) Executive Information Systems Tools
(iv) Online Analytical Processing Tools
(v) Data Mining Tools

THE E T L (EXTRACT TRANSFORMATION LOAD) PROCESS

In this section we will discussed about the 4 majarcess of the data warehouse. Theyeateact
(data from the operational systems and bring ithi data warehouseyansform (the data into
internal format and structure of the data warehpuseanse(to make sure it is of sufficient quality
to be used for decision making) dodd (cleanse data is put into the data warehouse).

The four processes from extraction through loadiften referred collectively d3ata Staging

EXTRACT

Some of the data elements in the operational ds¢aban be reasonably be expected to be usefukin th
decision making, but others are of less value liat purpose. For this reason, it is necessary traetxthe
relevant data from the operational database bdfianging into the data warehouse. Many commercialst
are available to help with the extraction proc&ssta Junction is one of the commercial products. The user
of one of these tools typically has an easy-towiselowed interface by which to specify the followin

® Which files and tables are to be accessed in theesaatabase?
(i) Which fields are to be extracted from them? Thisften done internally by SQL Select
statement.

(i) What are those to be called in the resulting daba
(iv) What is the target machine and database form&eodttput?
(V) On what schedule should the extraction processeated?

TRANSFORM

The operational databases developed can be basedyoset of priorities, which keeps changing wtib t
requirements. Therefore those who develop datahsase based on these databases are typically faded
inconsistency among their data sources. Transfoiomarrocess deals with rectifying any inconsisten(gly

any).

202

One of the most common transformation issues ifritAtte Naming Inconsistency’. It is common for the
given data element to be referred to by differaatachames in different databases. Employee Namebmay
EMP_NAME in one database, ENAME in the other. Tlmme set of Data Names are picked and used
consistently in the data warehouse. Once all the el@ments have right names, they must be comveste
common formats. The conversion may encompass tlosving:

® Characters must be converted ASCII to EBCDIC oe visrsa.
(i) Mixed Text may be converted to all uppercase foisgsiency.
(i) Numerical data must be converted in to a commaomdibr
(iv) Data Format has to be standardized.
(v) Measurement may have to convert. (Rs/ $)
(vi) Coded data (Male/ Female, M/F) must be convertiedadrcommon format.
All these transformation activities are automated many commercial products are available to perftire

tasks.DataMAPPER from Applied Database Technologies is one suchpzehensive tool.

CLEANSING

Information quality is the key consideration in@tetining the value of the information. The developiethe
data warehouse is not usually in a position to ghahe quality of its underlying historic data, ulgb a data
warehousing project can put spotlight on the datlity issues and lead to improvements for theréutlt is,
therefore, usually necessary to go through the elatiered into the data warehouse and make it asfeze as
possible. This process is knownRata Cleansing

Data Cleansing must deal with many types of pos®hblors. These include missing data and incodatzt at
one source; inconsistent data and conflicting edtan two or more source are involved. There arersév
algorithms followed to clean the data, which wi| #iscussed in the coming lecture notes.

LOADING

Loading often implies physical movement of the dadan the computer(s) storing the source databpse(s
that which will store the data warehouse datakes®jming it is different. This takes place immesliaafter
the extraction phase. The most common channeldta shovement is a high-speed communication link. Ex
Oracle Warehouse Builder is the APl from Oraclejoltprovides the features to perform the ETL task o
Oracle Data Warehouse.

203

DATA MINING

Architecture of a Data Mining System

Graphical User Interface

~

Jl’

[Pattern evaluaton

)

L

[l Data mining engine | KIIG“'IEdgE

base

A

v

Database or
data warehouse server

e

E rY
Data cleaning o
Data Integration Filtering
Data
warehouse

The architecture of a typical data mining systeny e the following major components .

» Database, data warehouse, or other information remitory: This is one or a set of databases, data
warehouses, spreadsheets, or other kinds of infmaepositories. Data cleaning and data

integration techniques may be performed on the data

« Database or data warehouse serveiThe database or data warehouse server is resfmfmitfetching
the relevant data, based on the user’s data mieiqgest.
» Knowledge base:This is the domain knowledge that is used to guiue search, or evaluate the

interestingness of resulting patterns. Such knogdeckn include concept hierarchies, used to organiz
204

attributes or attribute values into different leveff abstraction. Knowledge such as user beliefsciw
can be used to assess a pattern’s interestingased bn its unexpectedness, may also be includbdr O
examples of domain knowledge are additional intergsess constraints or thresholds, and metadata
(e.g., describing data from multiple heterogenesmusces).

Data mining engine:This is essential to the data mining system aedlig consists of a set of functional
modules for tasks such as characterization, assngi&lassification, cluster analysis, and evaatand
deviation analysis.

Pattern evaluation module: This component typically employs interestingnessasures and interacts
with the data mining modules so as to focus thechetowards interesting patterns. It may use
interestingness thresholds to filter out discovepatterns. Alternatively, the pattern evaluationduie

may be integrated with the mining module, dependinghe implementation of the data mining method
used. For efficient data mining, it is highly reaoended to push the evaluation of pattern intergséas

as deep as possible into the mining process smamfine the search to only the interesting paster
Graphical user interface: This module communicates between users and thee mating system,
allowing the user to interact with the system bgdfying a data mining query or task, providing
information to help focus the search, and perfogrérploratory data mining based on the intermediate
data mining results. In addition, this componeiaved the user to browse database and data warehous¢

schemas or data structures, evaluate mined pattardwvisualize the patterns in different forms.

Functions of Data Mining

Data mining identifies facts or suggests conclusiosised on sifting through the data to discovéeeit

patterns or anomalies. Data mining has five manctions:

» Classification: infers the defining characteristics of a certaioup (such as customers who have
been lost to competitors).

» Clustering: identifies groups of items that share a particalzaracteristic. (Clustering differs from

classification in that no predefining charactecissi given in classification.)

» Association: identifies relationships between events that oetume time (such as the contents of a
shopping basket).

205

e Sequencing:similar to association, except that the relatigm&xists over a period of time (such as

repeat visits to a supermarket or use of a findiptéaning product).

» Forecasting: estimates future values based on patterns witirigel sets of data (such as demand
forecasting).

Data Mining Applications

The areas where data mining has been applied reaecitide:

- Science
o astronomy,
o bioinformatics,
o drug discovery, ...
« Business
o advertising,
Customer modeling and CRM (Customer Relationshipagament)
e-Commerce,
fraud detection
health care, ...
investments,
manufacturing,
sports/entertainment,
telecom (telephone and communications),
targeted marketing,

T ooooooo oo

=
@

o search engines, bots, ...
« Government

o anti-terrorism efforts

o law enforcement,

o profiling tax cheaters

One of the most important and widespread busingsigations of data mining is Customer
Modeling, also called Predictive Analytics. Thisluides tasks such as

« predicting attrition or churn, i.e. find which casters are likely to terminate service
- targeted marketing:
o customer acquisition - find which prospects areliiko become customers
o cross-sell - for given customer and product, fifdol other product(s) they are likely to buy
« credit-risk - identify the risk that this customeill not pay back the loan or credit card
- fraud detection - is this transaction fraudulent?

The largest users of Customer Analytics are inéessuch as banking, telecom, retailers, where
businesses with large numbers of customers arengakitensive use of these technologies.

206

