
1

RELATIONAL DATA BASE
MANAGEMENT SYSTEM

(R.D.B.M.S)

Digital Notes By

BIGHNARAJ NAIK

Assistant Professor

Department of Master in Computer Application

VSSUT, Burla

2

Syllabus
4th SEMESTER MCA

F.M.- 70
MCA-208 RELATIONAL DATABASE MANAGEMENT SYSTEM (3-1- 0)Cr.-4

Module I (10 hrs)

Database System Architecture – Data Abstraction, Data Independence, Data Definitions and Data
Manipulation Languages.

Data models – Entity Relationship (ER), Mapping ER Model to Relational Mode, Network.
Relational and Object Oriented Data Models, Integrity Constraints and Data Manipulation
Operations.

Module II (10 hrs)

Relation Query Languages, Relational Algebra, Tuple and Domain Relational Calculus, SQL and
QBE.
Relational Database Design: Domain and Data dependency, Armstrong’s Axioms, Normal Forms,
Dependency Preservation, Lossless design, Comparison of Oracle & DB2.

Module III (8 hrs)

Query Processing and Optimization: Evaluation of Relational Algebra Expressions, Query
Equivalence, Join strategies, Query Optimization Algorithms.

Module IV (12 hrs)

Storage Strategies: Indices, B-Trees, Hashing, Transaction processing: Recovery and Concurrency
Control, Locking and Timestamp based Schedulers, Multiversion and Optimistic Concurrency
Control Schemes.
Advanced Topics: Object-Oriented and Object Relational databases. Logical Databases, Web
Databases, Distributed Databases, Data Warehouse and Data Mining.

3

Text Books:
1. Database System Concepts by Sudarshan, Korth (McGraw-Hill Education)
2. Fundamentals of Database System By Elmasari &Navathe- Pearson Education
References Books:
(1) An introduction to Database System – Bipin Desai, Galgotia Publications
(2) Database System: concept, Design & Application by S.K.Singh (Pearson Education)
(3) Database management system by leon &leon (Vikas publishing House).
(4) Database Modeling and Design: Logical Design by Toby J. Teorey, Sam S. Lightstone, and Tom
Nadeau, “”, 4thEdition, 2005, Elsevier India Publications, New Delhi
(5) Fundamentals of Database Management System – Gillenson, Wiley India

4

Module1

File Management System

� INTRODUCTION

A file system (or filesystem) is an abstraction to store, retrieve and update a set of files. The term
also identifies the data structures specified by some of those abstractions, which are designed to
organize multiple files as a single stream of bytes, and the network protocols specified by some other
of those abstractions, which are designed to allow files on a remote machine to be accessed.

The file system manages access to the data and the metadata of the files, and manages the available
space of the device(s) which contain it. Ensuring reliability is a major responsibility of a file system.
A file system organizes data in an efficient manner, and may be tuned to the characteristics of the
backing device.

� FILENAMES

A filename (or file name) is used to identify a storage location in the file system. Most file systems
have restrictions on the length of filenames. In some file systems, filenames are case-insensitive (i.e.,
filenames such as FOO and foo refer to the same file); in others, filenames are case-sensitive (i.e.,
the names FOO and foo refer to two separate files).

Most modern file systems allow filenames to contain a wide range of characters from the Unicode
character set. Most file system interface utilities, however, have restrictions on the use of certain
special characters, disallowing them within filenames (the file system may use these special
characters to indicate a device, device type, directory prefix, or file type).

� DIRECTORIES

File systems typically have directories (also called folders) which allow the user to group files into
separate collections. This may be implemented by associating the file name with an index in a table
of contents or an inode in a Unix-like file system. Directory structures may be flat (i.e. linear), or
allow hierarchies where directories may contain subdirectories. The first file system to support
arbitrary hierarchies of directories was used in the Multics operating system.

� METADATA

The length of the data contained in a file may be stored as the number of blocks allocated for the file
or as a byte count. The time that the file was last modified may be stored as the file's timestamp. File

5

systems might store the file creation time, the time it was last accessed, the time the file's meta-data
was changed, or the time the file was last backed up. Other information can include the file's device
type (e.g. block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access
permissions and other file attributes (e.g. whether the file is read-only, executable, etc.).

� PROS AND CONS OF CONVENTIONAL SYSTEM

Pros
• Easy to design because of their single-application.
• Excellent performance due to optimized organization for a single application.

Cons
• Harder to adapt to sharing across applications focus.
• Harder to adapt to new requirements.
• Need to duplicate attributes in several files.

DBMS Functions

A DBMS performs several important functions that guarantee the integrity and consistency of the
data in the database. Most of those functions are transparent to end users, and most can be achieved
only through the use of a DBMS. They include data dictionary management, data storage
management, data transformation and presentation, security management, multiuser access control,
backup and recovery management, data integrity management, database access languages and
application programming interfaces and database communication interfaces. Each of these functions
is explained below.
1. Data dictionary management.
The DBMS stores definitions of the data elements and their relationships (metadata) in a data
dictionary. In turn, all programs that access the data in the database work through the DBMS. The
DBMS uses the data dictionary to look up the required data component structures and relationships,
thus relieving you from having to code such complex relationships in each program. Additionally,
any changes made in a database structure are automatically recorded in the data dictionary, thereby
freeing you from having to modify all of the programs that access the changed structure. In other
words, the DBMS provides data abstraction, and it removes structural and data dependence from the
system.
2. Data storage management.
The DBMS creates and manages the complex structures required for data storage, thus relieving you
from the difficult task of defining and programming the physical data characteristics. A modern
DBMS provides storage not only for the data, but also for related data entry forms or screen
definitions, report definitions, data validation rules, procedural code, structures to handle video and
picture formats, and so on. Data storage management is also important for database performance

6

tuning. Performance tuning relates to the activities that make the database perform more efficiently
in terms of storage and access speed.
3. Data transformation and presentation.
The DBMS transforms entered data to conform to required data structures. The DBMS relieves you
of the chore of making a distinction between the logical data format and the physical data format.
That is, the DBMS formats the physically retrieved data to make it conform to the user’s logical
expectations. For example, imagine an enterprise database used by a multinational company. An end
user in England would expect to enter data such as July 11, 2010, as “11/07/2010.” In contrast, the
same date would be entered in the United States as “07/11/2010.” Regardless of the data presentation
format, the DBMS must manage the date in the proper format for each country.
4. Security management.
The DBMS creates a security system that enforces user security and data privacy. Security rules
determine which users can access the database, which data items each user can access, and which
data operations (read, add, delete, or modify) the user can perform. This is especially important in
multiuser database systems.
5. Multiuser access control.
To provide data integrity and data consistency, the DBMS uses sophisticated algorithms to ensure
that multiple users can access the database concurrently without compromising the integrity of the
database.
6. Backup and recovery management.
The DBMS provides backup and data recovery to ensure data safety and integrity. Current DBMS
systems provide special utilities that allow the DBA to perform routine and special backup and
restore procedures. Recovery management deals with the recovery of the database after a failure,
such as a bad sector in the disk or a power failure. Such capability is critical to preserving the
database’s integrity.
7. Data integrity management.
The DBMS promotes and enforces integrity rules, thus minimizing data redundancy and maximizing
data consistency. The data relationships stored in the data dictionary are used to enforce data
integrity. Ensuring data integrity is especially important in transaction-oriented database systems.
8. Database access languages and application programming interfaces.
The DBMS provides data access through a query language. A query language is a nonprocedural
language—one that lets the user specify what must be done without having to specify how it is to be
done. Structured Query Language (SQL) is the de facto query language and data access standard
supported by the majority of DBMS vendors.
9. Database communication interfaces.
Current-generation DBMSs accept end-user requests via multiple, different network environments.
For example, the DBMS might provide access to the database via the Internet through the use of
Web browsers such as Mozilla Firefox or Microsoft Internet Explorer. In this environment,
communications can be accomplished in several ways:
- End users can generate answers to queries by filling in screen forms through their preferred Web

7

browser.
- The DBMS can automatically publish predefined reports on a Website.
- The DBMS can connect to third-party systems to distribute information via e-mail or other
productivity applications.

� TYPES OF FILE SYSTEMS

File system types can be classified into disk/tape file systems, network file systems and special-
purpose file systems.

� Disk file systems

A disk file system takes advantages of the ability of disk storage media to randomly address data in a
short amount of time. Additional considerations include the speed of accessing data following that
initially requested and the anticipation that the following data may also be requested. This permits
multiple users (or processes) access to various data on the disk without regard to the sequential
location of the data. Examples include FAT (FAT12, FAT16, FAT32), exFAT, NTFS, HFS and
HFS+, HPFS, UFS, ext2, ext3, ext4, btrfs, ISO 9660, Files-11, Veritas File System, VMFS, ZFS,
ReiserFS and UDF.

� Optical discs

ISO 9660 and Universal Disk Format (UDF) are two common formats that target Compact Discs,
DVDs and Blu-ray discs. Mount Rainier is an extension to UDF supported by Linux 2.6 series and
Windows Vista that facilitates rewriting to DVDs.

� Flash file systems

A flash file system considers the special abilities, performance and restrictions of flash memory
devices. Frequently a disk file system can use a flash memory device as the underlying storage
media but it is much better to use a file system specifically designed for a flash device.

� Tape file systems

• A tape file system is a file system and tape format designed to store files on tape in a self-
describing form. Magnetic tapes are sequential storage media with significantly longer
random data access times than disks, posing challenges to the creation and efficient
management of a general-purpose file system.

8

• In a disk file system there is typically a master file directory, and a map of used and free data
regions. Any file additions, changes, or removals require updating the directory and the
used/free maps. Random access to data regions is measured in milliseconds so this system
works well for disks.

• Tape requires linear motion to wind and unwind potentially very long reels of media. This
tape motion may take several seconds to several minutes to move the read/write head from
one end of the tape to the other.

• Consequently, a master file directory and usage map can be extremely slow and inefficient
with tape. Writing typically involves reading the block usage map to find free blocks for
writing, updating the usage map and directory to add the data, and then advancing the tape to
write the data in the correct spot. Each additional file write requires updating the map and
directory and writing the data, which may take several seconds to occur for each file.

• Tape file systems instead typically allow for the file directory to be spread across the tape
intermixed with the data, referred to as streaming, so that time-consuming and repeated tape
motions are not required to write new data.

� IMPORTANCE OF FILE ORGANISATION IN DATABASE

To implement a database efficiently, there are several design tradeoffs needed. One of the most
important ones is the file Organisation. For example, if there were to be an application that required
only sequential batch processing, then the use of indexing techniques would be pointless and
wasteful.

There are several important consequences of an inappropriate file Organisation being used in a
database. Thus using replication would be wasteful of space besides posing the problem of
inconsistency in the data. The wrong file Organisation can also–

• Mean much larger processing time for retrieving or modifying the required record
• Require undue disk access that could stress the hardware

� FILE MANAGEMENT SYSTEM PROBLEMS
•Data redundancy
•Data Access: New request-new program
•Data is not isolated from the access implementation
•Concurrent program execution on the same file
•Difficulties with security enforcement
•Integrity issues .

� Data isolation. Because data are scattered in various files, and files may be in different
formats, writing new application programs to retrieve the appropriate data is difficult.

9

� Integrity problems. The data values stored in the database must satisfy certain types of
consistency constraints. For example, the balance of a bank account may never fall below a
prescribed amount (say, $25). Developers enforce these constraints in the system by adding
appropriate code in the various application programs. However, when new constraints are
added, it is difficult to change the programs to enforce them. The problem is compounded
when constraints involve several data items from different files.

� Atomicity problems. A computer system, like any other mechanical or electrical device, is
subject to failure. In many applications, it is crucial that, if a failure occurs, the data be
restored to the consistent state that existed prior to the failure. Consider a program to transfer
$50 from account A to account B. If a system failure occurs during the execution of the
program, it is possible that the $50 was removed from account Abut was not credited to
account B, resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur. That is, the funds
transfer must be atomic—it must happen in its entirety or not at all. It is difficult to ensure
atomicity in a conventional file-processing system.

� Concurrent-access anomalies. For the sake of overall performance of the system and faster
response, many systems allow multiple users to update the data simultaneously. In such an
environment, interaction of concurrent updates may result in inconsistent data. Consider bank
account A, containing $500. If two customers withdraw funds (say $50 and $100
respectively) from account A at about the same time, the result of the concurrent executions
may leave the account in an incorrect (or inconsistent) state. Suppose that the programs
executing on behalf of each withdrawal read the old balance, reduce that value by the amount
being withdrawn, and write the result back. If the two programs run concurrently, they may
both read the value $500, and write back $450 and $400, respectively. Depending on which
one writes the value last, the account may contain either $450 or $400, rather than the correct
value of $350. To guard against this possibility, the system must maintain some form of
supervision. But supervision is difficult to provide because data may be accessed by many
different application programs that have not been coordinated previously.

� Security problems. Not every user of the database system should be able to access all the
data. For example, in a banking system, payroll personnel need to see only that part of the
database that has information about the various bank employees. They do not need access to
information about customer accounts. But, since application programs are added to the
system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems. In what follows,
we shall see the concepts and algorithms that enable database systems to solve the problems with
file-processing systems. In most of this book, we use a bank enterprise as a running example of a
typical data-processing application found in a corporation.

� HIERARCHY OF DATA

10

Data are the principal resources of an organization. Data stored in computer systems form a
hierarchy extending from a single bit to a database, the major record-keeping entity of a firm. Each
higher rung of this hierarchy is organized from the components below it.

Data are logically organized into:

1. Bits (characters)

2. Fields

3. Records

4. Files

5. Databases

� Bit (Character) - a bit is the smallest unit of data representation (value of a bit may be a 0 or
1). Eight bits make a byte which can represent a character or a special symbol in a character
code.

� Field - a field consists of a grouping of characters. A data field represents an attribute (a
characteristic or quality) of some entity (object, person, place, or event).

� Record - a record represents a collection of attributes that describe a real-world entity. A
record consists of fields, with each field describing an attribute of the entity.

� File - a group of related records. Files are frequently classified by the application for which
they are primarily used (employee file). A primary key in a file is the field (or fields) whose
value identifies a record among others in a data file.

Magnetic disk

� The primary computer storage device. Like tape, it is magnetically recorded and can be re-
recorded over and over. Disks are rotating platters with a mechanical arm that moves a
read/write head between the outer and inner edges of the platter's surface. It can take as long
as one second to find a location on a floppy disk to as little as a couple of milliseconds on a
fast hard disk. See hard disk for more details.

Tracks and Spots
The disk surface is divided into concentric tracks (circles within circles). The thinner the
tracks, the more storage. The data bits are recorded as tiny magnetic spots on the tracks. The
smaller the spot, the more bits per inch and the greater the storage.

11

Sectors
Tracks are further divided into sectors, which hold a block of data that is read or written at
one time; for example, READ SECTOR 782, WRITE SECTOR 5448. In order to update the
disk, one or more sectors are read into the computer, changed and written back to disk. The
operating system figures out how to fit data into these fixed spaces.

Modern disks have more sectors in the outer tracks than the inner ones because the outer
radius of the platter is greater than the inner radius

Magnetic tape

A sequential storage medium used for data collection, backup and archiving. Like videotape,
computer tape is made of flexible plastic with one side coated with a ferromagnetic material. Tapes
were originally open reels, but were superseded by cartridges and cassettes of many sizes and
shapes.

Tape has been more economical than disks for archival data, but that is changing as disk capacities
have increased enormously. If tapes are stored for the duration, they must be periodically recopied or
the tightly coiled magnetic surfaces may contaminate each other.

Sequential Medium
The major drawback of tape is its sequential format. Locating a specific record requires reading
every record in front of it or searching for markers that identify predefined partitions. Although most
tapes are used for archiving rather than routine updating, some drives allow rewriting in place if the
byte count does not change. Otherwise, updating requires copying files from the original tape to a

12

blank tape (scratch tape) and adding the new data in between.

Track Formats
Tracks run parallel to the edge of the tape (linear recording) or diagonally (helical scan). A linear
variation is serpentine recording, in which the tracks "snake" back and forth from the end of the tape
to the beginning.

Legacy open reel tapes used nine linear tracks (8 bits plus parity), while modern cartridges use 128
or more tracks. Data are recorded in blocks of contiguous bytes, separated by a space called an
"interrecord gap" or "interblock gap." Tape drive speed is measured in inches per second (ips). Over
the years, storage density has increased from 200 to 38,000 bpi.

� FILE ORGANIZATION

Data files are organized so as to facilitate access to records and to ensure their efficient storage. A
tradeoff between these two requirements generally exists: if rapid access is required, more storage is
required to make it possible.

Access to a record for reading it is the essential operation on data. There are two types of access:

1. Sequential access - is performed when records are accessed in the order they are stored.
Sequential access is the main access mode only in batch systems, where files are used and updated at
regular intervals.

2. Direct access - on-line processing requires direct access, whereby a record can be accessed
without accessing the records between it and the beginning of the file. The primary key serves to
identify the needed record.

13

There are three methods of file organization:

1. Sequential organization

2. Indexed-sequential organization

3. Direct organization

RAID :

RAID is short for redundant array of independent (or inexpensive) disks.It is a category of disk
drives that employ two or more drives in combination for fault tolerance and performance. RAID
disk drives are used frequently on servers but aren't generally necessary for personal computers.
RAID allows you to store the same data redundantly (in multiple paces) in a balanced way to
improve overall storage performance.

Different RAID Levels

Different architectures are named RAID followed by a number and each architecture provides a
different balance between performance, capacity and tolerance. There are number of different RAID
levels including the following;

Level 0: Striped Disk Array without Fault Tolerance

Provides data striping(spreading out blocks of each file across multiple disk drives) but no
redundancy. This improves performance but does not deliver fault tolerance. If one drive fails then
all data in the array is lost.

Level 1: Mirroring and Duplexing

Provides disk mirroring. Level 1 provides twice the read transaction rate of single disks and the same
write transaction rate as single disks. The traditional solution, called mirroring or shadowing, uses

14

twice as many disks as a non-redundant disk array. whenever data is written to a disk the same data
is also written to a redundant disk, so that there are always two copies of the information.

When data is read, it can be retrieved from the disk with the shorter queuing, seek and rotational
delays. If a disk fails, the other copy is used to service requests. Mirroring is frequently used in
database applications where availability and transaction time are more important than storage
efficiency.

Level 2: Error-Correcting Coding

Not a typical implementation and rarely used, Level 2 stripes data at the bit level rather than the
block level. Memory systems have provided recovery from failed components with much less cost
than mirroring by using Hamming codes. Hamming codes contain parity for distinct overlapping
subsets of components. In one version of this scheme, four disks require three redundant disks, one
less than mirroring. Since the number of redundant disks is proportional to the log of the total
number of the disks on the system, storage efficiency increases as the number of data disks
increases.

If a single component fails, several of the parity components will have inconsistent values, and the
failed component is the one held in common by each incorrect subset. The lost information is
recovered by reading the other components in a subset, including the parity component, and setting

15

the missing bit to 0 or 1 to create proper parity value for that subset. Thus, multiple redundant disks
are needed to identify the failed disk, but only one is needed to recover the lost information.

Level 3: Bit-Interleaved Parity

Provides byte-level striping with a dedicated parity disk. Level 3, which cannot service simultaneous
multiple requests, also is rarely used. In a bit-interleaved, parity disk array, data is conceptually
interleaved bit-wise over the data disks, and a single parity disk is added to tolerate any single disk
failure. Each read request accesses all data disks and each write request accesses all data disks and
the parity disk.

Thus, only one request can be serviced at a time. Because the parity disk contains only parity and no
data, the parity disk cannot participate on reads, resulting in slightly lower read performance than for
redundancy schemes that distribute the parity and data over all disks. Bit-interleaved, parity disk
arrays are frequently used in applications that require high bandwidth but not high I/O rates.

Level 4: Dedicated Parity Drive

A commonly used implementation of RAID, Level 4 provides block-level striping (like Level 0)
with a parity disk. If a data disk fails, the parity data is used to create a replacement disk. A
disadvantage to Level 4 is that the parity disk can create write bottlenecks.

16

Level 5: Block Interleaved Distributed Parity

Provides data striping at the byte level and also stripe error correction information. This results in
excellent performance and good fault tolerance. Level 5 is one of the most popular implementations
of RAID.

Level 6: Independent Data Disks with Double Parity

RAID Level 6 is similiar to RAID 5 (striped parity) except instead of one parity block per stripe
there are two. With two independent parity blocks, RAID 6 can survive the loss of two disks in the
group.

17

Level 0+1: A Mirror of Stripes

Not one of the original RAID levels, two RAID 0 stripes are created, and a RAID 1 mirror is created
over them. Used for both replicating and sharing data among disks.

Level 10: A Stripe of Mirrors

Not one of the original RAID levels, multiple RAID 1 mirrors are created, and a RAID 0 stripe is
created over these. RAID 10 uses more disk space to provide redundant data than RAID 5. However,
it also provides a performance advantage by reading from all disks in parallel while eliminating the
write penalty of RAID 5. In addition, RAID 10 gives better performance than RAID 5 while a failed
drive remains unreplaced. Under RAID 5, each attempted read of the failed drive can be performed
only by reading all of the other disks.

On RAID 10, a failed disk can be recovered by a single read of its mirrored pair.

� SEQUENTIAL ORGANIZATION

In sequential organization records are physically stored in a specified order according to a key field
in each record.The most basic way to organize the collection of records that from a file is to use
sequential organization. In a sequentially organized file records are written consecutively when the
file is created and must be accessed consecutively when the file is later used for input (figure 2).

18

2. Structure of sequential file

In a sequential file, records are maintained in the logical sequence of their primary key values. The
processing of a sequential file is conceptually simple but inefficient for random access. However, if
access to the file is strictly sequential, a sequential file is suitable. A sequential file could be stored
on a sequential storage device such as a magnetic tape.

Search for a given record in a sequential file requires, on average, access to half the records in the
file. Consider a system where the file is stored on a direct access device such as a disk. Suppose the
key value is separated from the rest of the record and a pointer is used to indicate the location of the
record. In such a system, the device may scan over the key values at rotation speeds and only read in
the desired record. A binary or logarithmic search technique may also be used to search for a record.
In this method, the cylinder on which the required record is stored is located by a series of
decreasing head movements. The search having been localized to a cylinder may require the reading
of half the tracks, on average, in the case where keys are embedded in the physical records, or
require only a scan over the tracks in the case where keys are also stored separately.

Updating usually requires the creation of a new file. To maintain file sequence, records are copied to
the point where amendment is required. The changes are then made and copied into the new file.
Following this, the remaining records in the original file are copied to the new file. This method of
updating a sequential file creates an automatic backup copy. It permits updates of the type U1
through U4.

Addition can be handled in a manner similar to updating. Adding a record necessitates the shifting of
all records from the appropriate point to the end of file to create space for the new record. Inversely,
deletion of a record requires a compression of the file space, achieved by the shifting of records.
Changes to an existing record may also require shifting if the record size expands or shrinks.

The basic advantage offered by a sequential file is the ease of access to the next record, the
simplicity of organization and the absence of auxiliary data structures. However, replies to simple
queries are time consuming for large files. Updates, as seen above, usually require the creation of a

19

new file. A single update is an expensive proposition if a new file must be created. To reduce the
cost per update, all such requests are hatched, sorted in the order of the sequen1tial file, and then
used to update the sequential file in a single pass. Such a file, containing the updates to be made to a
sequential file, is sometimes referred to a transaction file.

In the batched mode of updating, a transaction file of update records is made and then sorted in the
sequence of the sequential file. Ale update process requires the examination of each individual
record in the original sequential file (the old master rile). Records requiring no changes are copied
directly to a new file (the new master rile); records requiring one or Wore changes are written into
the new master file only after all necessary changes have been made. Insertions of new records are
made in the proper sequence. They are written into the new master file at the appropriate place.
Records to be deleted are not copied to the new master file. A big advantage of this method of
update is the creation of an automatic backup copy. The new master file can always be recreated by
processing the old master file and the transaction file.

 3 : A file with empty spaces for record insertions

A possible method of reducing the creation of a new file at each update run is to create the original
file with "holes" (space left for the addition of new records, as shown in the last figure). As such, if a
block could hold K records, then at initial creation it is made to contain only L * K records, where 0
< L < 1 is known as the loading factor. Additional space may also be earmarked for records that may
"overflow" their blocks, e.g., if the record ri logically belongs to block Bi but the physical block Bi
does not contain the requisite free space. This additional free space is known as the overflow area. A
similar technique is employed in index-sequential files.

Advantages of sequential access:

1. It is fast and efficient when dealing with large volumes of data that need to be processed
periodically (batch system).

Disadvantages of sequential access:

1. Requires that all new transactions be sorted into the proper sequence for sequential access
processing.

20

2. Locating, storing, modifying, deleting, or adding records in the file requires rearranging the file.

3. This method is too slow to handle applications requiring immediate updating or responses.

� INDEXED-SEQUENTIAL ORGANIZATION

In the indexed-sequential files method, records are physically stored in sequential order on a
magnetic disk or other direct access storage device based on the key field of each record. Each file
contains an index that references one or more key fields of each data record to its storage location
address.

The retrieval of a record from a sequential file, on average, requires access to half the records in the
file, making such inquiries not only inefficient but very time consuming for large files. To improve
the query response time of a sequential file, a type of indexing technique can be added.

An index is a set of y, address pairs. Indexing associates a set of objects to a set of orderable
quantities, which are usually smaller in number or their properties provide a mechanism for faster
search. The purpose of indexing is to expedite the search process. Indexes created from a sequential
(or sorted) set of primary keys are referred to as index sequential. Although the indices and the data
blocks are held together physically, we distinguish between them logically. We shall use the term
index file to describe the indexes and data file to refer to the data records. The index is usually small
enough to be read into the processor memory.

� TYPES OF INDEXES

The idea behind an index access structure is similar to that behind the indexes used commonly in
textbooks. A textbook index lists important terms at the end of the book in alphabetic order. Along
with each term, a list of page numbers where the term appears is given. We can search the index to
find a list of addresses - page numbers in this case - and use these addresses to locate the term in the
textbook by searching the specified pages. The alternative, if no other guidance is given, is to sift
slowly through the whole textbooks word by word to find the term we are interested in, which
corresponds to doing a linear search on a file. Of course, most books do have additional information,
such as chapter and section titles, which can help us find a term without having to search through the
whole book. However, the index is the only exact indication of where each term occurs in the book.

An index is usually defined on a single field of a file, called an indexing Field. The index typically
stores each value of the index field along with a list of pointers to all disk blocks that contain a
record with that field value. The values in the index are ordered so that we can do a binary search on
the index. The index file is much smaller than the data file, so searching the index using binary

21

search is reasonably efficient. Multilevel indexing does away with the need for binary search at the
expense of creating indexes to the index itself!

There are several types of indexes. A primary index is an index specified on the ordering key field of
an ordered file of records. Recall that an ordering key field is used to physically order the file
records on disk, and every record has a unique value for that field. If the ordering field is not a key
field that is, several records in the file can have the same value for the ordering field another type of
index, called a clustering index, can be used. Notice that a file can have at most one physical
ordering field, so it can have at most one primary index or one clustering index, but not both. A third
type of index, called a secondary index, can be specified on any non-ordering field of a file. A file
can have several secondary indexes in addition to its primary access method. In the next three
subsections we discuss these three types of indexes.

� PRIMARY INDEXES

A primary index is an ordered file whose records are of fixed length with two fields. The first field
is of the same data types as the ordering key field of the data file, and the second field is a pointer to
a disk block - a block address. The ordering key field is called the primary key of the data file there
is one index entry (or index record) in the index file for each block in the data file. Each index entry
has the value of the primary key field for the first record in a block and a pointer to other block as its
two field values. We will refer to the two field values of index entry i as K (i), P (i).

To create a primary index on the ordered file shown in figure 4, we use the Name field as the
primary key, because that is the ordering key field of the file (assuming that each value of NAME is
unique).

22

Figure 4 : Some blocks on an ordered (sequential) file of EMPLOYEE
records with NAME as the ordering field

Each entry in the index will have a NAME value and a pointer. The first three index entries would
be:

<K(1) = (Aaron, Ed), P(I)= address of block 1 >

23

<K(2) = (Adams, John), P(I) = address of block 2 >

<K(3) = (Alexander, Fd), P(3) = address of block 3 >

Figure 5 : Illustrating internal hashing data Structures.
(a) Array of M Positions for use in hashing. (b) Collision resolution by
chaining of records.

Figure 6 illustrates this Primary index. The total number of entries in the index will be the same as
the number of disk block in the ordered data file.The first record in each block of the data file. The
first record in each block of the data file is called the anchor record of the block, or simple the block

24

anchor (a scheme called the anchor record of similar to the one described here can be used, with the
last record in each block, rather than the first as the block anchor. A primary index is an example of
what is called a non-dense index because it includes an entry for each disk block of the data file
rather than for every record in the data file. A dense index, on the other hand, contains an entry for
every record in the file.

The index file for a primary index needs substantially fewer blocks than the data file for two reasons.
First, there are fewer index entries than there are records in the data file because an entry exists for
each whole block of the data file rather than for each record. Second, each index entry is typically
smaller in size than a data record because it has only two fields, so more index entries than data
records will fit in one block. A binary search on the index file will hence require fewer block
accesses than a binary search on the data file.

A record whose primary key value is K will be in the block whose address is P(i), where Ki < K< (i
+ 1). The ith block in the data file contains all such records because of the physical ordering of the
file records on the primary key field, we do a binary search on the index file to find the appropriate
index entry i, then retrieve the data file block whose address is P(i).

25

Figure 6 : Primary index on the ordering key field of the file shown in figure 5

26

� CLUSTERING INDEXES

If records of a file are physically ordered on a non-key field that does not have a distinct value, for
each record, that field is called the clustering field of the file. We can create a different type of index,
called a clustering index, to speed up retrieval of records that have the same value for the clustering
field.

Figure 7 : A clustering Index on the DEPTNUMBER ordering field of
an EMPLOYEE file

This differs from a primary index, which requires that the ordering field of the data file have a
distinct value for each record.

27

A clustering index is also an ordered file with two fields; the first field is of the same type as the
clustering field of the data file and the second field is a block pointer. There is one entry in the
clustering index for each distinct value of the clustering field, containing that value and a pointer to
the first block in the data file that has a record with that value for its clustering field.

28

Figure 8 : Clustering index with separate blocks for each group of records with
the same value for the clustering field

29

Figure 7 shows an exam le of a data file with a clustering index. Note the record and record deletion
still cause considerable problems because the data records are physically ordered. To alleviate the
problem of insertion, it is common to reserve a whole block for each value of the clustering field; all
records with that value are placed in the block. If more than one block is needed to store the records
for a particular value, additional blocks are allocated and linked together. This makes insertion and
deletion relatively straightforward.

� SECONDARY INDEXES

A secondary index also is an ordered file with two fields, and, as in the other indexes, the second
field is a pointer to a disk block. The first field is of the same data type as some non-ordering field of
the data file. The field on which the secondary index is constructed is called an indexing field of the
file, whether its values are distinct for every record or not. There can be many secondary indexes,
and hence indexing fields, for the same file.

We first consider a secondary index on a key field - a field having a distinct value for every record in
the data file. Such a field is sometimes called a secondary key for the file. In this case there is one
index entry for each record in the data file, which has the value of the secondary key for the record
and a pointer to the block in which the record is stored. A secondary index on a key field is a dense
index because it contains one entry for each record in the data file.

We again refer to the two field values of index entry i as K(i), P(i). The entries are ordered by value
of K(i), so we can use binary search on the index. Because the records of the data file are not
physically ordered by values of the secondary key field, we cannot use block

30

Figure 9 : A dense secondary Index on a non ordering key field of a file

anchors. That is why an index entry is created for each record in the data file rather than for each
block as in the case of a primary index. Figure 9 illustrates a secondary index on a key attribute of a
data file. Notice that in figure 9 the pointers P(i) in the index entries are block pointers, not record
pointers. Once the appropriate block is transferred to main memory, a search for the desired record
within the block can be carried out.

A secondary index will usually need substantially more storage space than a primary index because
of its larger number of entries. However, the improvement in search time for an arbitrary record is
much greater for a secondary index than it is for a primary index, because we would have to do a
linear search on the data file if the secondary index did not exist.

31

� STRUCTURE OF INDEX SEQUENTIAL FILES

An index-sequential file consists of the data plus one or more levels of indexes. When inserting a
record, we have to maintain the sequence of records and this may necessitate shifting subsequent
records. For a large file this is a costly and inefficient process. Instead, the records that overflow
their logical area are shifted into a designated overflow area and a pointer is provided in the logical
area or associated index entry points to the overflow location. This is illustrated below (figure 10).
Record 165 is inserted in the original logical block causing a record to be moved to an overflow
block.

Figure 10 : Overflow of record

Multiple records belonging to the same logical area may be chained to maintained logical
sequencing. When records are forced into the overflow areas as a result of insertion, the insertion
process is simplified, but the search time is increased. Deletion of records from index-sequential flies
creates logical gaps; the records are not physically removed but only flagged as having been deleted.
If there were a number of deletions, we may have a great amount of unused space.

An index-sequential file is therefore made up of the following components:

1. A primary data storage area. In certain systems this area may have unused spaces embedded
within it to permit addition of records. It may also include records that have been marked as having
been deleted.

2. Overflow area(s). This permits the addition of records to the files. A number of schemes exist for
the incorporation of records in these areas into the expected logical sequence.

3. A hierarchy of indices. In a random inquiry or update, the physical location of the desired record
is obtained by accessing these indices.

The primary data area contains the records written by the users' programs. The records are written in
data blocks in ascending key sequence. These data blocks are in turn stored in ascending sequence in

32

the primary data area. The highest key of the logical records contained in them sequences the data
blocks.

� DIRECT FILE ORGANISATION �

In the index-sequential file organization considered in the previous sections, the mapping from the
search-key value to the storage location is via index entries. In direct file

Figure 11 : Mapping from a key value to an address value

organization, the key value is mapped directly to the storage location. The usual method of direct
mapping is by performing some arithmetic manipulation of the key value. This process is called
hashing. Let us consider a hash function h that maps the key value k to the value h(k). The value h(k)
is used as an address and for our application we require that this value be in some range. If our
address area for the records lies between S1 and S2, the requirement for the hash function h(k) is that
for all values of k it should generate values between S1 and S2.

It is obvious that a hash function that maps many different key values to a single address or one that
does not map the key values uniformly is a bad hash function. A collision is said to occur when two
distinct key values are mapped to the same storage location. Collision is handled in a number of
ways. The colliding records may be assigned to the next available space, or they may be assigned to
an overflow area. We can immediately see that with hashing schemes there are no indexes to
traverse. With well-designed hashing functions where collisions are few, this is a great advantage.

Another problem that we have to resolve is to decide what address is represented by h(k). Let the
addresses generated by the hash function the addresses of buckets in which the y, address pair values
of records are stored. Figure shows the buckets containing the y, address pairs that allow a
reorganization of the actual data file and actual record address without affecting the hash functions.
A limited number of collisions could be handled automatically by the use of a bucket of sufficient
capacity. Obviously the space required for the buckets will be, in general, much smaller than the
actual data file. Consequently, its reorganization will not be that expensive. Once the bucket address
is generated from the key by the hash function, asearch in the bucket is also required to locate the
address of the required record. However, since the bucket size is small, this overhead is small.

The use of the bucket reduces the problem associated with collisions. In spite of this, a bucket may
become full and the resulting overflow could be handled by providing overflow buckets and using a

33

pointer from the normal bucket to an entry in the overflow bucket. All such overflow entries are
linked. Multiple overflows from the same bucket results in a long list and slows down the retrieval of
these records. In an alternate scheme, the address generated by the hash function is a bucket address
and the bucket is used to store the records directly instead of using a pointer to the block containing
the record.

Figure 12 : Bucket and block organization for hashing

Let s represent the value:

s = upper bucket address value - lower bucket address value + 1

34

Here, s gives the number of buckets. Assume that we have some mechanism to convert key values to
numeric ones. Then a simple hashing function is:

h(k) = k mod S

Where k is the numeric representation of the key and h(k) produces a bucket address. A moment's
thought tells us that this method would perform well in some cases and not in others.

It has been shown, however, that the choice of a prime number for s is usually satisfactory. A
combination of multiplicative and divisive methods can be used to advantage in many practical
situations.

There are innumerable ways of converting a key to a numeric value. Most keys are numeric; others
may be either alphabetic or alphanumeric. In the latter two cases, we can use the bit representation of
the alphabet to generate the numeric equivalent key. A number of simple hashing methods are given
below. Many hashing functions can be devised from these and other ways.

1. Use the low order part of the key. For keys that are consecutive integers with few gaps, this
method can be used to map the keys to the available range.

2. End folding. For long keys, we identify start, middle, and end regions, such that the sum of the
lengths of the start and end regions equals the length of the middle region. The start and end digits
are concatenated and the concatenated string of drifts is added to the middle region digits. This new
number, mod s where s is the upper limit of the hash function, gives the bucket address:

123456 123456789012 654321

For the above key (converted to integer value if required) the end folding gives the two values to be
added as: 123456654321 and 123456789012.

3. Square all or part of the key and take a part from the result. The whole or some defined part of the
key is squared and a number of digits are selected from the square as being part of the hash result. A
variation is the multiplicative scheme where one part of the key is multiplied by the remaining part
and a number of digits are selected from the result.

4. Division. As stated in the beginning of this section, a number, usually a prime, can divide the key
and the remainder is taken as the bucket address. A simple check with, for instance, a divisor of 100
tells us that the last two digits of any key will remain unchanged. In applications where keys may be
in some multiples, this would produce, a poor result. Therefore, division by a prime number is
recommended. For many applications, division by odd numbers that have no divisors less than about
19 gives satisfactory results.

35

We can conclude from the above discussion that a number of possible methods for generating a hash
function exist. In general it has been found that hash functions using division or multiplication
performs quite well under most conditions.

� HASH FILES ORGANIZATION

Hashing (hash addressing) is a technique for providing fast direct access to a specific record on
the basis of a given value of some field. If two or more key values hash to the same disk address, we
have a collision.
The hash function should distribute the domain of the key possibly evenly among the address space
of the file to minimize the chance of collision. The collisions may cause a page to overflow.

� HASH FUNCTIONS
A good hash function gives an average-case lookup that is a small constant, independent of the
number of search keys.

� We hope records are distributed uniformly among the buckets.
� The worst hash function maps all keys to the same bucket.
� The best hash function maps all keys to distinct addresses.
� Ideally, distribution of keys to addresses is uniform and random

To summarize the advantages and disadvantages of this approach:

Advantages of hashing:

1. Exact key matches are extremely quick.

2. Hashing is very good for long keys, or those with multiple columns, provided the complete key
value is provided for the query.

3. This organization usually allows for the allocation of disk space so a good deal of disk
management is possible.

4. No disk space is used by this indexing method.

Disadvantages of hashing:
1. It becomes difficult to predict overflow because the workings of the hashing algorithm will not be
visible to the DBA.

2. No sorting of data occurs either physically or logically so sequential access is poor.

36

3. This organization usually takes a lot of disk space to ensure that no overflow occurs there is a plus
side to this though. no space is wasted on index structures because they simply don't exist.

� DIRECT ORGANIZATION

Direct file organization provides the fastest direct access to records. When using direct access
methods, records do not have to be arranged in any particular sequence on storage media.
Characteristics of the direct access method include:

1. Computers must keep track of the storage location of each record using a variety of direct
organization methods so that data can be retrieved when needed.

2. New transactions' data do not have to be sorted.

3. Processing that requires immediate responses or updating is easily performed.

� DATA ACCESS
Database access and manipulation is performed using the data manipulation statements. These
statements, which are specifically designed to interact with an Eloquence database, are invoked
through Eloquence language programs. These statements are structured so that each one suggests its
function (for example, DBGET gets data from a data set). All data access is carried out at the data
entry level (this is known as the "full record mode"). Data entries may be accessed in one of five
modes: serial, directed, chained, indexed or calculated.

� SERIAL ACCESS

When accessing a data set in serial mode, Eloquence DBMS starts at the most recently accessed
record (data entry), called the current record and sequentially examines records until the next, non-
empty record is located. This record is then transferred to the data buffer and becomes the new
current record. Serial access is often used to examine or list all entries in a data set.

The following example shows entries in the PRODUCT master data set. The record numbers are
shown to the left of each entry. The arrows to the left of the record number show how entries will be
retrieved in serial mode. If the current record is 4, for example, the next record accessed in serial
mode will be record number 5.

37

Figure 13 A Serial Access of the PRODUCT Master Data Set

� DIRECTED ACCESS

A second method of accessing a data entry is directed access. With this method, Eloquence DBMS
returns the record specified by a record number supplied by a program. If the specified record is non-
empty the record is transferred to the data buffer. If the record is empty a status error is returned. In
either case, the current record is set to the record specified. Directed access is used to read entries
following a SORT or FIND operation.

The following example shows the retrieval of an entry using directed access. The record number 5,
supplied by an application program, instructs Eloquence DBMS to retrieve record 5. Eloquence
DBMS then copies the record into the data buffer and resets the current record to 5.

Figure 14 Directed Access of the PRODUCT Master Data Set

38

� CHAINED ACCESS

Chained access is used to retrieve detail data entries with common search item values. Eloquence
DBMS supports chained access in a forward direction. Entries along a data chain may be accessed in
a reverse direction, however, by using directed access and the status information returned by
Eloquence DBMS. Chained access of detail data sets is often used for retrieving information about
related events.

The following example shows the retrieval of detail entries using chained access. The corresponding
chain pointer information, maintained by Eloquence DBMS, is shown along with the record number
for the data set. Eloquence DBMS uses this pointer information to retrieve the next entry along the
chain. The arrows to the left of the record numbers show how entries will be retrieved in chained
mode. If the current record is 5, for examplethe next record accessed in chained mode will be 7.

Figure 5 Chained Access of the CUSTOMER Detail Data Set

39

INTRODUCTION TO DATA BASE MANAGEMENT

As the name suggests, the database management system consists of two parts. They are:
1. Database and
2. Management System

� WHAT IS A DATABASE?
To find out what database is, we have to start from data, which is the basic building block of any
DBMS.
Data: Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19 etc).
Record: Collection of related data items, e.g. in the above example the three data items had no
meaning. But if we organize them in the following way, then they collectively represent meaningful
information.

Roll Name Age
1 ABC 19

Table or Relation: Collection of related records.

Roll Name Age
1 ABC 19
2 DEF 22
3 XYZ 28

The columns of this relation are called Fields, Attributes or Domains. The rows are called Tuples
orRecords.
Database: Collection of related relations. Consider the following collection of tables:
T1

T2

Roll Address
1 KOL
2 DEL
3 MUM

Roll Name

Age

1 ABC 19
2 DEF 22
3 XYZ 28

40

T3

Roll Year
1 I
2 II
3 I

T4

Year Hostel
I H1
II H2

We now have a collection of 4 tables. They can be called a “related collection” because we can
clearly find out that there are some common attributes existing in a selected pair of tables. Because
of these common attributes we may combine the data of two or more tables together to find out the
complete details of a student. Questions like “Which hostel does the youngest student live in?” can
be answered now, although Age and Hostel attributes are in different tables.
In a database, data is organized strictly in row and column format. The rows are called Tuple or
Record. The data items within one row may belong to different data types. On the other hand, the
columns are often called Domain or Attribute . All the data items within a single attribute are of the
same data type.

� WHAT IS MANAGEMENT SYSTEM?

A management system is a set of rules and procedures which help us to create organize and
manipulate the database. It also helps us to add, modify delete data items in the database. The
management system can be either manual or computerized.
The management system is important because without the existence of some kind of rules and
regulations it is not possible to maintain the database. We have to select the particular attributes
which should be included in a particular table; the common attributes to create relationship between
two tables; if a new record has to be inserted or deleted then which tables should have to be handled
etc. These issues must be resolved by having some kind of rules to follow in order to maintain the
integrity of the database.

� DBMS

A database-management system (DBMS) is a collection of interrelated data and a set of programs
to access those data. This is a collection of related data with an implicit meaning and hence is a

41

database. The collection of data, usually referred to as the database, contains information relevant to
an enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database
information that is both convenient and efficient. By data, we mean known facts that can be recorded
and that have implicit meaning. For example, consider the names, telephone numbers, and addresses
of the people you know. You may have recorded this data in an indexed address book, or you may
have stored it on a diskette, using a personal computer and software such as DBASE IV or V,
Microsoft ACCESS, or EXCEL. A datum – a unit of data – is a symbol or a set of symbols which is
used to represent something. This relationship between symbols and what they represent is the
essence of what we mean by information . Hence, information is interpreted data – data supplied
with semantics. Knowledge refers to the practical use of information. While information can be
transported, stored or shared without many difficulties the same can not be said about knowledge.
Knowledge necessarily involves a personal experience. Referring back to the scientific experiment, a
third person reading the results will have information about it, while the person who conducted the
experiment personally will have knowledge about it.
Database systems are designed to manage large bodies of information. Management of data involves
both defining structures for storage of information and providing mechanisms for the manipulation
of information. In addition, the database system must ensure the safety of the information stored,
despite system crashes or attempts at unauthorized access. If data are to be shared among several
users, the system must avoid possible anomalous results.

� DATA PROCESSING VS. DATA MANAGEMENT SYSTEMS
Although Data Processing and Data Management Systems both refer to functions that take raw data
and transform it into usable information, the usage of the terms is very different. Data Processing is
the term generally used to describe what was done by large mainframe computers from the late
1940's until the early 1980's (and which continues to be done in most large organizations to a greater
or lesser extent even today): large volumes of raw transaction data fed into programs that update a
master file, with fixed-format reports written to paper.
The term Data Management Systems refers to an expansion of this concept, where the raw data,
previously copied manually from paper to punched cards, and later into data-entry terminals, is now
fed into the system from a variety of sources, including ATMs, EFT, and direct customer entry
through the Internet. The master file concept has been largely displaced by database management
systems, and static reporting replaced or augmented by ad-hoc reporting and direct inquiry,
including downloading of data by customers. The ubiquity of the Internet and the Personal Computer
have been the driving force in the transformation of Data Processing to the more global concept of
Data Management Systems.

� CHARACTERISTICS OF DATABASE
� Concurrent Use

42

� A database system allows several users to access the database concurrently. Answering
different questions from different users with the same (base) data is a central aspect of an
information system. Such concurrent use of data increases the economy of a system.

An example for concurrent use is the travel database of a bigger travel agency. The employees of
different branches can access the database concurrently and book journeys for their clients. Each
travel agent sees on his interface if there are still seats available for a specific journey or if it is
already fully booked.

� Structured and Described Data
A fundamental feature of the database approach is that the database systems does not only contain
the data but also the complete definition and description of these data. These descriptions are
basically details about the extent, the structure, the type and the format of all data and, additionally,
the relationship between the data. This kind of stored data is called metadata ("data about data").

� Separation of Data and Applications
As described in the feature structured data the structure of a database is described through metadata
which is also stored in the database. An application software does not need any knowledge about the
physical data storage like encoding, format, storage place, etc. It only communicates with the
management system f a database (DBMS) via a standardised interface with the help of a
standardised language like SQL. The access to the data and the metadata is entirely done by the
DBMS. In this way all the applications can be totally seperated from the data. Therefore database
internal reorganisations or improvement of efficiency do not have any influence on the application
software.

� Data Integrity
Data integrity is a byword for the quality and the reliability of the data of a database system. In a
broader sense data integrity includes also the protection of the database from unauthorised access
(confidentiality) and unauthorised changes. Data reflect facts of the real world. database.

� Transactions
A transaction is a bundle of actions which are done within a database to bring it from one
consistent state to a new consistent state. In between the data are inevitable inconsistent. A
transaction is atomic what means that it cannot be divided up any further. Within a transaction all or
none of the actions need to be carried out. Doing only a part of the actions would lead to an
inconsistent database state. One example of a transaction is the transfer of an amount of money from
one bank account to another. The debit of the money from one account and the credit of it to another
account makes together a consistent transaction. This transaction is also atomic. The debit or credit
alone would both lead to an inconsistent state. After finishing the transaction (debit and credit) the
changes to both accounts become persistent and the one who gave the money has now less money on
his account while the receiver has now a higher balance.

� Data Persistence
Data persistence means that in a DBMS all data is maintained as long as it is not deleted explicitly.
The life span of data needs to be determined directly or indirectly be the user and must not be
dependent on system features. Additionally data once stored in a database must not be lost. Changes

43

of a database which are done by a transaction are persistent. When a transaction is finished even a
system crash cannot put the data in danger.

� ADVANTAGES AND DISADVANTAGES OF A DBMS
Using a DBMS to manage data has many advantages:

� Reduction of Redundancy: This is perhaps the most significant advantage of using DBMS.
Redundancy is the problem of storing the same data item in more one place. Redundancy
creates several problems like requiring extra storage space, entering same data more than
once during data insertion, and deleting data from more than one place during deletion.
Anomalies may occur in the database if insertion, deletion etc are not done properly.

� Sharing of Data: In a paper-based record keeping, data cannot be shared among many users.
But in computerized DBMS, many users can share the same database if they are connected
via a network.

� Data Integrity: We can maintain data integrity by specifying integrity constrains, which are
rules and restrictions about what kind of data may be entered or manipulated within the
database. This increases the reliability of the database as it can be guaranteed that no wrong
data can exist within the database at any point of time.

� Data independence: Application programs should be as independent as possible from details
of data representation and storage. The DBMS can provide an abstract view of the data to
insulate application code from such details.

� Efficient data access: A DBMS utilizes a variety of sophisticated techniques to store and
retrieve data efficiently. This feature is especially important if the data is stored on external
storage devices.

� Data integrity and security: If data is always accessed through the DBMS, the DBMS can
enforce integrity constraints on the data. For example, before inserting salary information for
an employee, the DBMS can check that the department budget is not exceeded. Also, the
DBMS can enforce access controls that govern what data is visible to different classes of
users.

� Data administration: When several users share the data, centralizing the administration of
data can offer significant improvements. Experienced professionals who understand the
nature of the data being managed, and how different groups of users use it, can be
responsible for organizing the data representation to minimize redundancy and fine-tuning
the storage of the data to make retrieval efficient.

Concurrent access and crash recovery: A DBMS schedules concurrent accesses to the data in such a
manner that users can think of the data as being accessed by only one user at a time. Further, the
DBMS protects users from the effects of system failures.

� Reduced application development time: Clearly, the DBMS supports many important
functions that are common to many applications accessing data stored in the DBMS. This, in
conjunction with the high-level interface to the data, facilitates quick development of

44

applications. Such applications are also likely to be more robust than applications developed
from scratch because many important

tasks are handled by the DBMS instead of being implemented by the application.

� DISADVANTAGES OF A DBMS
� Danger of a Overkill: For small and simple applications for single users a database system

is often not advisable.
� Complexity: A database system creates additional complexity and requirements. The supply

and operation of a database management system with several users and databases is quite
costly and demanding.

� Qualified Personnel: The professional operation of a database system requires appropriately
trained staff. Without a qualified database administrator nothing will work for long.

� Costs: Through the use of a database system new costs are generated for the system itselfs
but also for additional hardware and the more complex handling of the system.

� Lower Efficiency: A database system is a multi-use software which is often less efficient
than specialised software which is produced and optimised exactly for one problem.

� Instances and Schemas
Databases change over time as information is inserted and deleted. The collection of information
stored in the database at a particular moment is called an instance of the database. The overall
design of the database is called the database schema. Schemas are changed infrequently, if at all.
The concept of database schemas and instances can be understood by analogy to a program written
in a programming language. A database schema corresponds to the variable declarations (along with
associated type definitions) in a program. Each variable has a particular value at a given instant. The
values of the variables in a program at a point in time correspond to an instance of a database
schema.
Database systems have several schemas, partitioned according to the levels of abstraction.
The physical schema describes the database design at the physical level, while the logical schema
describes the database design at the logical level.Adatabase may also have several schemas at the
view level, sometimes called subschemas, that describe different views of the database.
Of these, the logical schema is by far the most important, in terms of its effect on application
programs, since programmers construct applications by using the logical schema. The physical
schema is hidden beneath the logical schema, and can usually be changed easily without affecting
application programs. Application programs are said to exhibit physical data independence if they
do not depend on the physical schema, and thus need not be rewritten if the physical schema
changes.

� DATABASE LANGUAGES

A database system provides a data definition language to specify the database schema and a data
manipulation language to express database queries and updates. In practice, the data definition and

45

data manipulation languages are not two separate languages; instead they simply form parts of a
single database language, such as the widely used SQL language.

� DATA-DEFINITION LANGUAGE
We specify a database schema by a set of definitions expressed by a special language called a data-
definition language (DDL).
For instance, the following statement in the SQL language defines the account table:
create table account (account-number char(10), balance integer)
Execution of the above DDL statement creates the account table. In addition, it updates a special set
of tables called the data dictionary or data directory.
A data dictionary contains metadata—that is, data about data. The schema of a table is an example
of metadata. A database system consults the data dictionary before reading or modifying actual data.
We specify the storage structure and access methods used by the database system by a set of
statements in a special type of DDL called a data storage and definition language. These
statements define the implementation details of the database schemas, which are usually hidden from
the users.
The data values stored in the database must satisfy certain consistency constraints. For example,
suppose the balance on an account should not fall below $100. The DDL provides facilities to
specify such constraints. The database systems check these constraints every time the database is
updated.

� DATA-MANIPULATION LANGUAGE
Data manipulation is

� The retrieval of information stored in the database
� The insertion of new information into the database
� The deletion of information from the database
� The modification of information stored in the database

A data-manipulation language (DML) is a language that enables users to access or manipulate
data as organized by the appropriate data model. There are basically two types:
Procedural DMLs require a user to specify what data are needed and how to get those data.
Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specifywhat data are needed without specifying how to get those data.
Declarative DMLs are usually easier to learn and use than are procedural DMLs. However, since a
user does not have to specify how to get the data, the database system has to figure out an efficient
means of accessing data. The DML component of the SQL language is nonprocedural.
A query is a statement requesting the retrieval of information. The portion of a DML that involves
information retrieval is called a query language. Although technically incorrect, it is common
practice to use the terms query language and data manipulation language synonymously.
This query in the SQL language finds the name of the customer whose customer-id
is 192-83-7465:

46

selectcustomer.customer-name
fromcustomer

wherecustomer.customer-id = 192-83-7465
The query specifies that those rows from the table customer where the customer-id is 192-83-7465
must be retrieved, and the customer-name attribute of these rows must be displayed.
Queries may involve information from more than one table. For instance, the following
query finds the balance of all accounts owned by the customer with customerid 192-83-7465.

selectaccount.balance
fromdepositor, account
wheredepositor.customer-id = 192-83-7465 and
depositor.account-number= account.account-number

There are a number of database query languages in use, either commercially or experimentally.
The levels of abstraction apply not only to defining or structuring data, but also to manipulating data.
At the physical level, we must define algorithms that allow efficient access to data. At higher levels
of abstraction, we emphasize ease of use. The goal is to allow humans to interact efficiently with the
system. The query processor component of the database system translates DML queries into
sequences of actions at the physical level of the database system.

� DATA DICTIONARY
We can define a data dictionary as a DBMS component that stores the definition of data
characteristics and relationships. You may recall that such “data about data” were labeled metadata.
The DBMS data dictionary provides the DBMS with its self describing characteristic. In effect, the
data dictionary resembles and X-ray of the company’s entire data set, and is a crucial element in the
data administration function.
The two main types of data dictionary exist, integrated and stand alone. An integrated data
dictionary is included with the DBMS. For example, all relational DBMSs include a built in data
dictionary or system catalog that is frequently accessed and updated by the RDBMS. Other DBMSs
especially older types, do not have a built in data dictionary instead the DBA may use third party
stand alone data dictionary systems.
Data dictionaries can also be classified as active or passive. An active data dictionary is
automatically updated by the DBMS with every database access, thereby keeping its access
information up-to-date. A passive data dictionary is not updated automatically and usually requires a
batch process to be run. Data dictionary access information is normally used by the DBMS for query
optimization purpose.
The data dictionary’s main function is to store the description of all objects that interact with the
database. Integrated data dictionaries tend to limit their metadata to the data managed by the DBMS.
Stand alone data dictionary systems are more usually more flexible and allow the DBA to describe
and manage all the organization’s data, whether or not they are computerized. Whatever the data
dictionary’s format, its existence provides database designers and end users with a much improved

47

ability to communicate. In addition, the data dictionary is the tool that helps the DBA to resolve data
conflicts.
Although, there is no standard format for the information stored in the data dictionary several
features are common. For example, the data dictionary typically stores descriptions of all:

• Data elements that are define in all tables of all databases. Specifically the data
dictionary stores the name, datatypes, display formats, internal storage formats, and
validation rules. The data dictionary tells where an element is used, by whom it is
used and so on.

• Tables define in all databases. For example, the data dictionary is likely to store the
name of the table creator, the date of creation access authorizations, the number of
columns, and so on.

• Indexes define for each database tables. For each index the DBMS stores at least the
index name the attributes used, the location, specific index characteristics and the
creation date.

• Define databases: who created each database, the date of creation where the database
is located, who the DBA is and so on.

• End users and The Administrators of the data base
• Programs that access the database including screen formats, report formats

application formats, SQL queries and so on.
• Access authorization for all users of all databases.
• Relationships among data elements which elements are involved: whether the

relationship are mandatory or optional, the connectivity and cardinality and so on.
If the data dictionary can be organized to include data external to the DBMS itself, it becomes an
especially flexible to for more general corporate resource management. The management of such an
extensive data dictionary, thus, makes it possible to manage the use and allocation of all of the
organization information regardless whether it has its roots in the database data.

� DATABASE USERS AND USER INTERFACES
There are four different types of database-system users, differentiated by the way they expect to
interact with the system. Different types of user interfaces have been designed for the different types
of users.
Naive users are unsophisticated users who interact with the system by invoking one of the
application programs that have been written previously. For example, a bank teller who needs to
transfer $50 from account A to account B invokes a program called transfer. This program asks the
teller for the amount of money to be transferred, the account from which the money is to be
transferred, and the account to which the money is to be transferred.
As another example, consider a user who wishes to find her account balance over the World Wide
Web. Such a user may access a form, where she enters her account number. An application program
at the Web server then retrieves the account balance, using the given account number, and passes
this information back to the user. The typical user interface for naive users is a forms interface,

48

where the user can fill in appropriate fields of the form. Naive users may also simply read reports
generated from the database.
Application programmers are computer professionals who write application programs. Application
programmers can choose from many tools to develop user interfaces. Rapid application
development (RAD) tools are tools that enable an application programmer to construct forms and
reports without writing a program. There are also special types of programming languages that
combine imperative control structures (for example, for loops, while loops and if-then-else
statements) with statements of the data manipulation language. These languages, sometimes called
fourth-generation languages, often
include special features to facilitate the generation of forms and the display of data on the screen.
Most major commercial database systems include a fourth generation language.
Sophisticated users interact with the system without writing programs. Instead, they form their
requests in a database query language. They submit each such query to a query processor, whose
function is to break down DML statements into instructions that the storage manager understands.
Analysts who submit queries to explore data in the database fall in this category.
Online analytical processing (OLAP) tools simplify analysts’ tasks by letting them view
summaries of data in different ways. For instance, an analyst can see total sales by region (for
example, North, South, East, and West), or by product, or by a combination of region and product
(that is, total sales of each product in each region). The tools also permit the analyst to select specific
regions, look at data in more detail (for example, sales by city within a region) or look at the data in
less detail (for example, aggregate products together by category).
Another class of tools for analysts is data mining tools, which help them find certain kinds of
patterns in data.
Specialized users are sophisticated users who write specialized database applications that do not fit
into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge base and expert systems,
systems that store data with complex data types (for example, graphics data and audio data), and
environment-modeling systems.

� DATABASE ADMINISTRATOR
One of the main reasons for using DBMSs is to have central control of both the data and the
programs that access those data. A person who has such central control over the system is called a
database administrator (DBA). The functions of a DBA include:

� Schema definition. The DBA creates the original database schema by executing a set of data
definition statements in the DDL.

� Schema and physical-organization modification. The DBA carries out changes to the
schema and physical organization to reflect the changing needs of the organization, or to alter
the physical organization to improve performance.

� Granting of authorization for data access. By granting different types of authorization, the
database administrator can regulate which parts of the database various users can access. The

49

authorization information is kept in a special system structure that the database system
consults whenever someone attempts to access the data in the system.

� Routine maintenance. Examples of the database administrator’s routine maintenance
activities are:

1. Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss
of data in case of disasters such as flooding.

2. Ensuring that enough free disk space is available for normal operations, and upgrading disk
space as required.

3. Monitoring jobs running on the database and ensuring that performance is not degraded by
very expensive tasks submitted by some users.

� DBMS ARCHITECTURE
Three important characteristics of the database approach are (1) insulation of programs and data
(program-data and program-operation independence); (2) support of multiple user views; and (3) use
of a catalog to store the database description (schema). In this section we specify an architecture for
database systems, called the three-schema architecture, which was proposed to help achieve and
visualize these characteristics.
The goal of the three-schema architecture, illustrated in Figure 1.1, is to separate the user
applications and the physical database. In this architecture, schemas can be defined at the following
three levels:

1. The internal level has an internal schema, which describes the physical storage structure of
the database. The internal schema uses a physical data model and describes the complete
details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole
database for a community of users. The conceptual schema hides the details of physical
storage structures and concentrates on describing entities, data types, relationships, user
operations, and constraints. A high-level data model or an implementation data model can be
used at this level.

3. The external or view level includes a number of external schemas or user views. Each
external schema describes the part of the database that a particular user group is interested in
and hides the rest of the database from that user group. A high-level data model or an
implementation data model can be used at this level.

50

Figure 1.1 The Three Schema Architecture
The three-schema architecture is a convenient tool for the user to visualize the schema levels in a
database system. Most DBMSs do not separate the three levels completely, but support the three-
schema architecture to some extent. Some DBMSs may include physical-level details in the
conceptual schema. In most DBMSs that support user views, external schemas are specified in the
same data model that describes the conceptual-level information. Some DBMSs allow different data
models to be used at the conceptual and external levels.
Notice that the three schemas are only descriptions of data; the only data that actually exists is at the
physical level. In a DBMS based on the three-schema architecture, each user group refers only to its
own external schema. Hence, the DBMS must transform a request specified on an external schema
into a request against the conceptual schema, and then into a request on the internal schema for
processing over the stored database. If the request is a database retrieval, the data extracted from the
stored database must be reformatted to match the user’s external view. The processes of
transforming requests and results between levels are called mappings. These mappings may be time-
consuming, so some DBMSs—especially those that are meant to support small databases—do not
support external views. Even in such systems, however, a certain amount of mapping is necessary to
transform requests between the conceptual and internal levels.

DATA INDEPENDENCE

51

The three-schema architecture can be used to explain the concept of data independence, which can
be defined as the capacity to change the schema at one level of a database system without having to
change the schema at the next higher level. We can define two types of data independence:

1. Logical data independence is the capacity to change the conceptual schema without having
to change external schemas or application programs. We may change the conceptual schema
to expand the database (by adding a record type or data item), or to reduce the database (by
removing a record type or data item). In the latter case, external schemas that refer only to
the remaining data should not be affected. Only the view definition and the mappings need be
changed in a DBMS that supports logical data independence. Application programs that
reference the external schema constructs must work as before, after the conceptual schema
undergoes a logical reorganization. Changes to constraints can be applied also to the
conceptual schema without affecting the external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema without having to

change the conceptual (or external) schemas. Changes to the internal schema may be needed
because some physical files had to be reorganized—for example, by creating additional
access structures—to improve the performance of retrieval or update. If the same data as
before remains in the database, we should not have to change the conceptual schema.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include information on
how to map requests and data among the various levels. The DBMS uses additional software to
accomplish these mappings by referring to the mapping information in the catalog. Data
independence is accomplished because, when the schema is changed at some level, the schema at the
next higher level remains unchanged; only the mapping between the two levels is changed. Hence,
application programs referring to the higher-level schema need not be changed.

TYPES OF DATABASE SYSTEM
Several criteria are normally used to classify DBMSs. The first is the data model on which the
DBMS is based. The main data model used in many current commercial DBMSs is the relational
data model. The object data model was implemented in some commercial systems but has not had
widespread use. Many legacy (older) applications still run on database systems based on the
hierarchical and network data models. The relational DBMSs are evolving continuously, and, in
particular, have been incorporating many of the concepts that were developed in object databases.
This has led to a new class of DBMSs called object-relational DBMSs. We can hence categorize
DBMSs based on the data model: relational, object, object-relational, hierarchical, network, and
other. The second criterion used to classify DBMSs is the number of users supported by the system.
Single-user systems support only one user at a time and are mostly used with personal computers.
Multiuser systems, which include the majority of DBMSs, support multiple users concurrently. A
third criterion is the number of sites over which the database is distributed. A DBMS is centralized if
the data is stored at a single computer site. A centralized DBMS can support multiple users, but the
DBMS and the database themselves reside totally at a single computer site. A distributed DBMS

52

(DDBMS) can have the actual database and DBMS software distributed over many sites, connected
by a computer network. Homogeneous DDBMSs use the same DBMS software at multiple sites.

Types of Database Management Systems

There are four structural types of database management systems:

• Hierarchical databases.
• Network databases.
• Relational databases.
• Object-oriented databases

Hierarchical Databases (DBMS) :

In the Hierarchical Database Model we have to learn about the databases. It is very fast and simple.
In a hierarchical database, records contain information about there groups of parent/child
relationships, just like as a tree structure. The structure implies that a record can have also a
repeating information. In this structure Data follows a series of records, It is a set of field values
attached to it. It collects all records together as a record type. These record types are the equivalent
of tables in the relational model, and with the individual records being the equivalent of rows. To
create links between these record types, the hierarchical model uses these type Relationships.

Advantage : Hierarchical database can be accessed and updated rapidly because in this model
structure is like as a tree and the relationships between records are defined in advance. This feature is
a two-edged.

Disadvantage : This type of database structure is that each child in the tree may have only one
parent, and relationships or linkages between children are not permitted, even if they make sense

53

from a logical standpoint. Hierarchical databases are so in their design. it can adding a new field or
record requires that the entire database be redefined.

Network Database: A network databases are mainly used on a large digital computers. It more
connections can be made between different types of data, network databases are considered more
efficiency It contains limitations must be considered when we have to use this kind of database. It is
Similar to the hierarchical databases, network databases .Network databases are similar to
hierarchical databases by also having a hierarchical structure. A network database looks more like a
cobweb or interconnected network of records.

In network databases, children are called members and parents are called occupier. The difference
between each child or member can have more than one parent.

The Approval of the network data model similar with the esteem of the hierarchical data model.
Some data were more naturally modeled with more than one parent per child. The network model
authorized the modeling of many-to-many relationships in data.

The network model is very similar to the hierarchical model really. Actually the hierarchical model
is a subset of the network model. However, instead of using a single-parent tree hierarchy, the
network model uses set theory to provide a tree-like hierarchy with the exception that child tables
were allowed to have more than one parent. It supports many-to-many relationships.

Relational Databases :

In relational databases, the relationship between data files is relational. Hierarchical and network

54

databases require the user to pass a hierarchy in order to access needed data. These databases
connect to the data in different files by using common data numbers or a key field. Data in relational
databases is stored in different access control tables, each having a key field that mainly identifies
each row. In the relational databases are more reliable than either the hierarchical or network
database structures. In relational databases, tables or files filled up with data are called relations
(tuples) designates a row or record, and columns are referred to as attributes or fields.

Relational databases work on each table has a key field that uniquely indicates each row, and that
these key fields can be used to connect one table of data to another.

The relational database has two major reasons:

1. Relational databases can be used with little or no training.
2. Database entries can be modified without specify the entire body.

Properties of Relational Tables:

In the relational database we have to follow some properties which are given below.

• It's Values are Atomic
• In Each Row is alone.
• Column Values are of the Same thing.
• Columns is undistinguished.
• Sequence of Rows is Insignificant.
• Each Column has a common Name.

55

Object-Oriented Model :

In this Model we have to discuss the functionality of the object oriented Programming .It takes more
than storage of programming language objects. Object DBMS's increase the semantics of the C++
and Java .It provides full-featured database programming capability, while containing native
language compatibility. It adds the database functionality to object programming languages.This
approach is the analogical of the application and database development into a constant data model
and language environment. Applications require less code, use more natural data modeling, and code
bases are easier to maintain. Object developers can write complete database applications with a
decent amount of additional effort.

The object-oriented database derivation is the integrity of object-oriented programming language
systems and consistent systems. The power of the object-oriented databases comes from the cyclical
treatment of both consistent data, as found in databases, and transient data, as found in executing
programs.

Object-oriented databases use small, recyclable separated of software called objects. The objects
themselves are stored in the object-oriented database. Each object contains of two elements:

1. Piece of data (e.g., sound, video, text, or graphics).
2. Instructions, or software programs called methods, for what to do with the data.

Disadvantage of Object-oriented databases

1. Object-oriented databases have these disadvantages.
2. Object-oriented database are more expensive to develop.

56

3. In the Most organizations are unwilling to abandon and convert from those databases.

DATA MODEL
A data model is a collection of conceptual tools for describing data, data relationships, data
semantics, and consistency constraints.

� Entity: An entity is a “thing” or “object” in the real world that is distinguishable from all
other objects. For example, each person in an enterprise is an entity.

� Entity Set:An entity set is a set of entities of the same type that share the same properties,
orattributes. The set of all persons who are customers at a given bank, for example, can be
defined as the entity set customer. Similarly, the entity set loan might represent the set of all
loans awarded by a particular bank.
An entity is represented by a set of attributes. Attributes are descriptive properties possessed
by each member of an entity set. The designation of an attribute for an entity set expresses
that the database stores similar information concerning each entity in the entity set; however,
each entity may have its own value for each attribute.

� Simple and composite attributes:The attributes havebeen simple; that is, they are not
divided into subparts is called as "simple attributes". on the other hand, can be divided into
subparts is called as "composite attributes".For example, an attribute name could be
structured as a composite attribute consisting of first-name, middle-initial, and last-name.

� Single-valued and multivalued attributes:For instance, the loan-number attribute for a
specific loan entity refers to only one loan number. Such attributes are said to be single
valued. There may be instances where an attribute has a set of values for a specific entity.
Consider an employee entity set with the attribute phone-number. An employee may have
zero, one, or several phone numbers, and different employees may have different numbers of
phones.
This type of attribute is said to be multivalued.

� Derived attribute: The value for this type of attribute can be derived from the values of other
related attributes or entities. For instance, let us say that the customer entity set has an
attribute loans-held, which represents how many loans a customer has from the bank.We can
derive the value for this attribute by counting the number of loan entities associated with that
customer.

� Relationship Sets:A relationship is an association among several entities. A relationship set
is a set of relationships of the same type.

� Mapping Cardinalities: Mapping cardinalities, or cardinality ratios, express the number of
entities to which another entity can be associated via a relationship set. Mapping cardinalities
are most useful in describing binary relationship sets, although they can contribute to the
description of relationship sets that involve more than two entity sets.

57

• One to one. An entity in A is associated with at most one entity in B, and an entity in B is
associated with at most one entity in A.

• One to many. An entity in A is associated with any number (zero or more) of entities in B.
An entity in B, however, can be associated with at most one entity in A.

• Many to one. An entity in A is associated with at most one entity in B. An entity in B,
however, can be associated with any number (zero or more) of entities in A.

• Many to many. An entity in A is associated with any number (zero or more) of entities in B,
and an entity in B is associated with any number (zero or more) of entities in A.

� Keys: A key allows us to identify a set of attributes that suffice to distinguish entities
from each other. Keys also help uniquely identify relationships, and thus distinguish
relationships from each other.

1. Superkey:A superkey is a set of one or more attributes that, taken collectively, allow us to
identify uniquely an entity in the entity set. For example, the customer-id attribute of the
entity set customer is sufficient to distinguish one customer entity from another. Thus,
customer-id is a superkey. Similarly, the combination of customer-name and customer-id is a
superkey for the entity set customer. The customer-name attribute of customer is not a
superkey, because several people might have the same name.

2. Candidate key:Minimal superkeys are called candidate keys.If K is a superkey, then so is
any superset of K. We are often interested in superkeys for which no proper subset is a
superkey.It is possible that several distinct sets of attributes could serve as a candidate
key.Suppose that a combination of customer-name and customer-street is sufficient to
distinguish among members of the customer entity set. Then, both {customer-id} and
{customer-name, customer-street} are candidate keys. Although the attributes customerid
and customer-name together can distinguish customer entities, their combination does not
form a candidate key, since the attribute customer-id alone is a candidate key.

3. Primary key:which denotes the unique identity is called as primary key.primary key to
denote a candidate key that is chosen by the database designer as the principal means of
identifying entities within an entity set. A key (primary, candidate, and super) is a property of
the entity set, rather than of the individual entities. Any two individual entities in the set are
prohibited from having the same value on the key attributes at the same time. The
designation of a key represents a constraint in the real-world enterprise being modeled.

4. Weak Entity Sets:An entity set may not have sufficient attributes to form a primary key.
Such an entity set is termed a weak entity set. An entity set that has a primary key is termed a
strong entity set. For a weak entity set to be meaningful, it must be associated with another
entityset, called the identifying or owner entity set. Every weak entity must be associated
with an identifying entity; that is, the weak entity set is said to be existence dependent on the
identifying entity set. The identifying entity set is said to own the weak entity set that it
identifies. The relationship associating the weak entity set with the identifying entity set is
called the identifying relationship. The identifying relationship is many to one from the weak

58

entity set to the identifying entity set, and the participation of the weak entity set in the
relationship is total.

SPECIALIZATION

An entity set may include subgroupings of entities that are distinct in some wayfrom other entities in
the set. For instance, a subset of entities within an entity set may have attributes that are not shared
by all the entities in the entity set. The E-R model provides a means for representing these distinctive
entity groupings. Consider an entity set person, with attributes name, street, and city. A personmay
be further classified as one of the following:
• customer
• employee

Each of these person types is described by a set of attributes that includes all the attributes of entity
set person plus possibly additional attributes. For example, customer entities may be described
further by the attribute customer-id, whereas employee entities may be described further by the
attributes employee-id and salary. The process of designating subgroupings within an entity set is
called specialization. The specialization of person allows us to distinguish among persons according
to whether they are employees or customers.

GENERALIZATION

The design process may also proceed in a bottom-up manner, in which multiple entity sets are
synthesized into a higher-level entity set on the basis of common features. The database designer
may have first identified a customer entity set with the attributes name, street, city, and customer-id,
and an employee entity set with the attributes name, street, city, employee-id, and salary. There are
similarities between the customer entity set and the employee entity set in the sense that they have
several attributes in common. This commonality can be expressed by generalization, which is a
containment relationship that exists between a higher-level entity set and one or more lower-level
entity sets. In our example, person is the higher-level entity set and customer and employee are
lower-level entity sets.
Higher- and lower-level entity sets also may be designated by the terms superclass and subclass,
respectively. The person entity set is the superclass of the customer and employee subclasses.For all
practical purposes, generalization is a simple inversion of specialization. We will apply both
processes, in combination, in the course of designing the E-R schema for an enterprise. In terms of
the E-R diagram itself, we do not distinguish between specialization and generalization. New levels
of entity representation will be distinguished (specialization) or synthesized (generalization) as the
design schema comes to express fully the database application and the user requirements of the
database. Differences in the two approaches may be characterized by their starting point and overall
goal.Generalization proceeds from the recognition that a number of entity sets share some common

59

features (namely, they are described by the same attributes and participatein the same relationship
sets).

� DATA MODELS

Underlying the structure of a database is the data model: a collection of conceptual tools for
describing data, data relationships, data semantics, and consistency constraints.
To illustrate the concept of a data model, we outline two data models in this section: the entity-
relationship model and the relational model. Both provide a way to describe the design of a database
at the logical level.

� RELATIONAL MODEL
The relational model uses a collection of tables to represent both data and the relationships among
those data. Each table has multiple columns, and each column has a unique name.
The data is arranged in a relation which is visually represented in a two dimensional table. The data
is inserted into the table in the form of tuples (which are nothing but rows). A tuple is formed by one
or more than one attributes, which are used as basic building blocks in the formation of various
expressions that are used to derive a meaningful information. There can be any number of tuples in

60

the table, but all the tuple contain fixed and same attributes with varying values. The relational
model is implemented in database where a relation is represented by a table, a tuple is represented by
a row, an attribute is represented by a column of the table, attribute name is the name of the column
such as ‘identifier’, ‘name’, ‘city’ etc., attribute value contains the value for column in the row.
Constraints are applied to the table and form the logical schema. In order to facilitate the selection of
a particular row/tuple from the table, the attributes i.e. column names are used, and to expedite the
selection of the rows some fields are defined uniquely to use them as indexes, this helps in searching
the required data as fast as possible. All the relational algebra operations, such as Select,
Intersection, Product, Union, Difference, Project, Join, Division, Merge etc. can also be performed
on the Relational Database Model. Operations on the Relational Database Model are facilitated with
the help of different conditional expressions, various key attributes, pre-defined constraints etc.

� THE ENTITY-RELATIONSHIP MODEL
• The entity-relationship (E-R) data model is based on a perception of a real world that consists

of a collection of basic objects, called entities, and of relationships among these objects. An
entity is a “thing” or “object” in the real world that is distinguishable from other objects. For
example, each person is an entity, and bank accounts can be considered as entities.

• Entities are described in a database by a set of attributes. For example, the attributes
account-number and balance may describe one particular account in a bank, and they form
attributes of the account entity set. Similarly, attributes customer-name, customer-street
address and customer-city may describe a customer entity.

• An extra attribute customer-id is used to uniquely identify customers (since it may be
possible to have two customers with the same name, street address, and city).

• A unique customer identifier must be assigned to each customer. In the United States, many
enterprises use the social-security number of a person (a unique number the U.S. government
assigns to every person in the United States) as a customer identifier.

• A relationship is an association among several entities. For example, a depositor
relationship associates a customer with each account that she has. The set of all entities of the
same type and the set of all relationships of the same type are termed an entity set and
relationship set, respectively.

• The overall logical structure (schema) of a database can be expressed graphically by an E-R
diagram.

Advantages and Disadvantages of E-R Data Model

Following are advantages of an E-R Model:

• Straightforward relation representation: Having designed an E-R diagram for a database
application, the relational representation of the database model becomes relatively straightforward.

61

• Easy conversion for E-R to other data model: Conversion from E-R diagram to a network or
hierarchical data model can· easily be accomplished.

• Graphical representation for better understanding: An E-R model gives graphical and
diagrammatical representation of various entities, its attributes and relationships between entities.
This is turn helps in the clear understanding of the data structure and in minimizing redundancy and
other problems.

Disadvantages of E-R Data Model

Following are disadvantages of an E-R Model:

• No industry standard for notation: There is no industry standard notation for developing an E-R
diagram.

• Popular for high-level design: The E-R data model is especially popular for high level

Symbols used in the E-R notation:

62

ER MODEL FOR A COLLEGE DB

Assumptions :

• A college contains many departments
• Each department can offer any number of courses
• Many instructors can work in a department
• An instructor can work only in one department
• For each department there is a Head
• An instructor can be head of only one department
• Each instructor can take any number of courses
• A course can be taken by only one instructor
• A student can enroll for any number of courses
• Each course can have any number of students

Steps in ER Modeling:

• Identify the Entities
• Find relationships
• Identify the key attributes for every Entity
• Identify other relevant attributes
• Draw complete E-R diagram with all attributes including Primary Key

Step 1: Identify the Entities:

• DEPARTMENT
• STUDENT
• COURSE
• INSTRUCTOR

Step 2: Find the relationships:

• One course is enrolled by multiple students and one student enrolls for multiple courses,
hence the cardinality between course and student is Many to Many.

• The department offers many courses and each course belongs to only one department,
hence the cardinality between department and course is One to Many.

• One department has multiple instructors and one instructor belongs to one and only one
department , hence the cardinality between department and instructor is one to Many.

63

• Each department there is a “Head of department” and one instructor is “Head of
department “,hence the cardinality is one to one .

• One course is taught by only one instructor, but the instructor teaches many courses,
hence the cardinality between course and instructor is many to one.

Step 3: Identify the key attributes

• Deptname is the key attribute for the Entity “Department”, as it identifies the Department
uniquely.

• Course# (CourseId) is the key attribute for “Course” Entity.
• Student# (Student Number) is the key attribute for “Student” Entity.
• Instructor Name is the key attribute for “Instructor” Entity.

Step 4: Identify other relevant attributes

For the department entity, the relevant attribute is location

� For course entity, course name,duration,prerequisite
� For instructor entity, room#, telephone#
� For student entity, student name, date of birth

ER MODEL FOR BANKING BUSINESS

Assumptions :

• There are multiple banks and each bank has many branches. Each branch has multiple
customers

• Customers have various types of accounts
• Some Customers also had taken different types of loans from these bank branches
• One customer can have multiple accounts and Loans

Step 1: Identify the Entities
• BANK
• BRANCH
• LOAN
• ACCOUNT
• CUSTOMER
Step 2: Find the relationships
• One Bank has many branches and each branch belongs to only one bank, hence the
cardinality between Bank and Branch is One to Many.

64

• One Branch offers many loans and each loan is associated with one branch, hence the
cardinality between Branch and Loan is One to Many.
• One Branch maintains multiple accounts and each account is associated to one and
only one Branch, hence the cardinality between Branch and Account is One to Many
• One Loan can be availed by multiple customers, and each Customer can avail multiple
loans, hence the cardinality between Loan and Customer is Many to Many.
• One Customer can hold multiple accounts, and each Account can be held by multiple
Customers, hence the cardinality between Customer and Account is Many to Many

Step 3: Identify the key attributes
• BankCode (Bank Code) is the key attribute for the Entity “Bank”, as it identifies the bank
uniquely.
• Branch# (Branch Number) is the key attribute for “Branch” Entity.
• Customer# (Customer Number) is the key attribute for “Customer” Entity.
• Loan# (Loan Number) is the key attribute for “Loan” Entity.
• Account No (Account Number) is the key attribute for “Account” Entity.
Step 4: Identify other relevant attributes
• For the “Bank” Entity, the relevant attributes other than “BankCode” would be “Name”
and “Address”.
• For the “Branch” Entity, the relevant attributes other than “Branch#” would be “Name”
and “Address”.
• For the “Loan” Entity, the relevant attribute other than “Loan#” would be “Loan Type”.
• For the “Account” Entity, the relevant attribute other than “Account No” would be
“Account Type”.
• For the “Customer” Entity, the relevant attributes other than “Customer#” would be
“Name”, “Telephone#” and “Address”.

65

ER DIAGRAM FOR A MANAGEMENT SYSTEM

66

ER DIAGRAM FOR COLLEGE LIBRARY

ER DIAGRAM FOR A CAR STORE DATABASE

67

ER DIAGRAM FOR A MOVIE SHOW

68

ER DIAGRAM FOR A COMPANY DATABASE

ER DIAGRAM FOR A TEACHING MEYHODOLOGY

69

ER DIAGRAM FOR A ORDERING RELATIONSHIP

ER DIAGRAM FOR A INSURANCE COMPANY

70

ER DIAGRAM FOR A MUSIC STORE SPECIFICATION

71

ER DIAGRAM FOR A BANK DATABASE

72

ER DIAGRAM FOR A HOSPITAL MANAGEMENT SYSTEM

73

B+ Tree Index Files:

A B+ tree is an n-ary tree with a variable but often large number of children per node. A B+ tree
consists of a root, internal nodes and leaves. The root may be either leaf or node with two or more
children.

A B+ tree can be viewed as a B-tree in which each node contains only keys (not pairs), and to which
an additional level is added at the bottom with linked leaves.

74

A simple B+ tree example linking the keys 1–7 to data values d1-d7

The primary value of a B+ tree is in storing data for efficient retrieval in a block-oriented storage
context — in particular, file systems. This is primarily because unlike binary search trees, B+ trees
have very high fan out (number of pointers to child nodes in a node, typically on the order of 100 or
more), which reduces the number of I/O operations required to find an element in the tree.

Insertion

Perform a search to determine what bucket the new record should go into.

• If the bucket is not full (at most b - 1 entries after the insertion), add the record.
• Otherwise, split the bucket.

o Allocate new leaf and move half the bucket's elements to the new bucket.
o Insert the new leaf's smallest key and address into the parent.
o If the parent is full, split it too.

� Add the middle key to the parent node.
o Repeat until a parent is found that need not split.

• If the root splits, create a new root which has one key and two pointers. (That is, the value
that gets pushed to the new root gets removed from the original node)

B-trees grow at the root and not at the leaves.

Deletion

• Start at root, find leaf L where entry belongs.
• Remove the entry.

o If L is at least half-full, done!
o If L has fewer entries than it should,

� Try to re-distribute, borrowing from sibling (adjacent node with same parent
as L).

� If re-distribution fails, merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
• Merge could propagate to root, decreasing height.

Module 2
RELATIONAL ALGEBRA

Relational Algebra Operators are mathematical functions used to retrieve queries by describing a
sequence operations on tables or even databases(schema) involved. With relational algebra

75

operators, a query is always composed of a number of operators, which each in turn are composed of
relations as variables and return an individual abstraction as the end product.

The following are the main relational algebra operators as applied to SQL:

The SELECT Operator

The SELECT operator is used to choose a subset of the tuples(rows) from a relation that satisfies a
selection condition, acting as a filter to retain only tuples that fulfills a qualifying requirement.

• The SELECT operator is relational algebra is denoted by the symbol σ (sigma).
• The syntax for the SELECT statement is then as follows:

σ<Selection condition>(R)

• The σ would represent the SELECT command
• The <selection condition> would represent the condition for selection.
• The (R) would represent the Relation or the Table from which we are making a selection of

the tuples.

To implement the SELECT statement in SQL, we take a look at an example in which we would like
to select the EMPLOYEE tuples whose employee number is 7, or those whose date of birth is before
1980…

σempno=7(EMPLOYEE)

σdob<’01-Jan-1980′(EMPLOYEE)

The SQL implementation would translate into:

SELECT empno

FROM EMPLOYEE

WHERE empno=7

SELECT dob

FROM EMPLOYEE

WHERE DOB < ’01-Jan-1980′

76

The PROJECT Operator

This operator is used to reorder, select and get rid of attributes from a table. At some point we might
want only certain attributes in a relation and eliminate others from our query result. Therefore the
PROJECT operator would be used in such operations.

• The symbol used for the PROJECT operation is ∏ (pi).
• The general syntax for the PROJECT operator is:

∏<attribute list>(R)

• ∏ would represent the ROJECT.
• <attribute list> would represent the attributes(columns) we want from a relational.
• (R) would represent the relation or table we want to choose the attributes from.

To implement the PROJECT statement in SQL, we take a look at an example in which we would
like to choose the Date of Birth (dob) and Employee Number (empno) from the relation
EMPLOYE…

• ∏dob, empno(EMPLOYEE)

In SQL this would translate to:

SELECT dob, empno

FROM EMPLOYEE

The RENAME Operator

The RENAME operator is used to give a name to results or output of queries, returns of selection
statements, and views of queries that we would like to view at some other point in time:

• The RENAME operator is symbolized by ρ (rho).
• The general syntax for RENAME operator is: ρ s(B1, B2, B3,….Bn)(R)
• ρ is the RENAME operation.
• S is the new relation name.
• B1, B2, B3, …Bn are the new renamed attributes (columns).
• R is the relation or table from which the attributes are chosen.

77

To implement the RENAME statement in SQL, we take a look at an example in which we would
like to choose the Date of Birth and Employee Number attributes and RENAME them as
‘Birth_Date’ and ‘Employee_Number’ from the EMPLOYEE relation…

ρ s(Birth_Date, Employee_Number)(EMPLOYEE) ← ∏dob, empno(EMPLOYEE)

• The arrow symbol ← means that we first get the PROJECT operation results on the right side
of the arrow then apply the RENAME operation on the results on the left side of the arrow.

In SQL we would translate the RENAME operator using the SQL ‘AS’ statement:

SELECT dob AS ‘Birth_Date’, empno AS ‘Employee_Number’

FROM EMPLOYEE

The UNION, INTERSECTION, and MINUS Operators

UNION : the UNION operation on relation A UNION relation B designated as A ∪ B, joins or
includes all tuples that are in A or in B, eliminating duplicate tuples. The SQL implementation of
the UNION operations would be as follows:

UNION

RESULT ← A ∪ B

SQL Statement:

SELECT * From A

UNION

SELECT * From B

INTERSECTION : the INTERSECTION operation on a relation A INTERSECTION relation B,
designated by A ∩ B, includes tuples that are only in A and B. In other words only tuples belonging
to A and B, or shared by both A and B are included in the result. The SQL implementation of the
INTERSECTION operations would be as follows:

INTERSECTION

RESULT ← A ∩ B

78

SQL Statement:

SELECT dob From A

INTERSECT

SELECT dob from B

MINUS Operations: the MINUS operation includes tuples from one Relation that are not in another
Relation. Let the Relations be A and B, the MINUS operation A MINUS B is denoted by A – B, that
results in tuples that are A and not in B. The SQL implementation of the MINUS operations would
be as follows:

MINUS

RESULT ← A – B

SQL Statement

SELECT dob From A

MINUS

SELECT dob from B

CARTESIAN PRODUCT Operator

The CARTERSIAN PRODUCT operator, also referred to as the cross product or cross join, creates a
relation that has all the attributes of A and B, allowing all the attainable combinations of tuples from
A and B in the result. The CARTERSIAN PRODUCT A and B is symbolized by X as in A X B.

Let there be Relation A(A1, A2) and Relation B(B1, B2)

The CARTERSIAN PRODUCT C of A and B which is A X B is

C = A X B

C = (A1B1, A1B2 , A2B1, A2B2)

The SQL implementation would be something like:

SELECT A.dob, B.empno

79

from A, B

JOIN Operator

The JOIN operation is denoted by the � symbol and is used to compound similar tuples from two
Relations into single longer tuples. Every row of the first table is joined to every row of the second
table. The result is tuples taken from both tables.

• The general syntax would be A � <join condition> B

SQL translation example where attribute dob is Date of Birth and empno is Employee Number:

SELECT A.dob, A.empno

from employee

JOIN B on B.empno=A.empno

THETA JOIN Operator

This operation results in all combinations of tuples from Relation A and Relation B satisfying a join
requirement. The THETA JOIN is designated by: The SQL implementation would be the same as for
the JOIN example above.

• A � <join condition> B

EQUIJOIN Operator

The EQUIJOIN operation returns all combinations of tuples from Relation A and Relation B
satisfying a join requirement with only equality comparisons. The EQUIJOIN operation is
symbolized by :

A � <join condition> B, OR

•
• A � (<join attributes 1>),

(<join attributes 2>) B

SQL translation example where attribute dob is Date of Birth and empno is Employee Number:

80

SELECT * from A

INNER JOIN B

on A.empno=B.empno

NATURAL JOIN Operator

The NATURAL JOIN operation returns results that does not include the JOIN attributes of the
second Relation B. It is not required that attributes with the same name be mentioned. The
NATURAL JOIN operator is symbolized by:

• A * � <join condition> B,

OR A * � (<join attributes 1>),

(<join attributes 2>) B

OR A * B

SQL translation example where attribute dob is Date of Birth and empno is Employee Number:

SELECT A.dob, B.empno

FROM A

NATURAL JOIN B

//where depno =5

We can always use the ‘where’ clause to further restrict our output and stop a Cartesian product
output.

DIVISION Operator

The DIVISION operation will return a Relation R(X) that includes all tuples t[X] in R(Z) that appear
in R1 in combination with every tuple from R2(Y), where Z = X ∪ Y. The DIVISION operator is
symbolized by:

• R1(Z) ∻ R2(Y)

81

The DIVISION operator is the most difficult to implement in SQL as no SQL command is given for
DIVISION operation. The DIVISION operator would be seen as the opposite of the CARTERSIAN
PRODUCT operator; just as in standard math, the relation between division and multiplication.
Therefore a series of current SQL commands have to be utilized in implementation of the DIVISION
operator. An example of the SQL implementation of DIVISION operator:

SELECT surname, forenames

FROM employee X

WHERE NOT EXISTS

(SELECT ‘X’

FROM employee y

WHERE NOT EXISTS

(SELECT ‘X’

FROM employee z

WHERE x.empno = z.empno

AND y.surname = z.surname))

ORDER BY empno

RELATIONAL CALCULUS

In relational calculus, a query is expressed as a formula consisting of a number of variables and an
expression involving these variables. It is up to the DBMS to transform these nonprocedural queries
into equivalent, efficient, procedural queries. The concept of relational calculus was first proposed
by Codd. The relational calculus is used to measure the selective power of relational languages. A
language that can be used to produce any relation that can be derived using the relational calculus is
said to be relationally complete.

82

Relation calculus, which in effect means calculating with relations, is based on predicate calculus,
which is calculating with predicates. It is a formal language used to symbolize logical arguments in
mathematics. Propositions specifying a property consist of an expression that names an individual
object, and another expression, called the predicate, that stands for the property that the individual
object possesses. If for instance, p and q are propositions, we can build other propositions "not p", "p
or q", "p and q" and so on. In predicate calculus, propositions may be built not only out of other
propositions but also out of elements that are not themselves propositions. In this manner we can
build a proposition that specifies a certain property or characteristic of an object.

TUPLE RELATIONAL CALCULUS

The tuple relational calculus is based on specifying a number of tuple variables. Each such tuple
variable normally ranges over a particular database relation. This means that the variable may take
any individual tuple from that relation as its value. A simple tuple relational calculus query is of the
form { t I COND(t)·}, where '1' is a tuple variable and COND(t) is a conditional expression
involving '1'. The result of such a query is a relation that contains all the tuples (rows) that satisfy
COND(t).

For example, the relational calculus query {t I BOOK(t) and t.PRICE>lOO} will get you all the
books whose price is greater than 100. In the above example, the condition 'BOOK(t)' specifies that
the range relation of the tuple variable '1' is BOOK. Each BOOK tuple 't' that satisfies the condition
't.PRICE> 100' will be retrieved. Note that 't.PRICE' references the attribute PRICE of the tuple
variable '1'.

The query {t IBOOK (t) and t.PRICE>100} retrieves all attribute values for each selected

BOOK tuple. To retrieve only some of the attributes (say TITLE, AUTHOR and PRICE) we can
modify the query as follows:

{t.TITLE, t.AUTHOR, t.PRICE I BOOK(t) and t.PRICE>200}

Thus, in a tuple calculus expression we need to specify the following information:

For each tuple variable the range relation 'R' of 'to This value is specified by a condition of the form
R(t) .

• A condition to select the required tuples from the relation.

83

• A set of attributes to be retrieved. This set is called the requested attributes. The values of these
attributes for each selected combination of tuples. If the requested attribute list is not specified, then
all the attributes of the selected tuples are retrieved.

Thus, to retrieve the details of all books (Title and Author name) which were published by 'Kalyani'
and whose price is greater than 100 we will write the query as follows:

{t.TITLE, t.AUTHOR I BOOK (t) and t.PUBLISHER='xyz' and t.PRICE>100}

Expressions and Formulas

A general expression of the.tuple relational calculus is of the following form:

{tl·Aj,t2·A2, tn·An, I COND(tl,t2· .. tn, tn+j,1n+2.... tn+m)}

Where tj,t2 1n,1n+j,1n+2 1n+mare tuple variables, each Ai is an attribute of the relation on which
ranges and COND is a condition or formula of the tuple relational calculus.

A formula is defined as follows:

Every condition is a WFF (Well Formed Formula). Here, a well-formed formula is constructed from
conditions, Boolean operations (AND, OR, NOT) and quantifiers like for all values (V) or there
exists (3).

There are following rules which are applicable on WFF:

• Every condition is WFF.

• If F is a WFF the (F) and NOT(F) are also WFF.

• If Fj and F2 are WFFs, then (Fj AND F2), (Fj OR F2) are also WFFs .

• If F is a WFF in which T occurs as a free variable (free variables are those range

variables when, the meaning of the formula changed if all the occurrences of range

variable say 'x' were replaced by some other variables say 'y') then 3 T(t) and

V T(F) are WFFs .

84

• Nothing else is WFF.

Bound variables: Bound variables are those range variables when the meaning of the formula
would remain unchanged if all the occurrence of range variable say 'x' were replaced by some other
variable say 'y'. Then range variable 'x' is called as the Bound variable.

For example: x (x>3) means

EXISTS x (x>3)

Here, WFF simply states that there exists some integer x that is greater than 3. Note, that the
meaning of this WFF would remain totally unchanged if all references of x were replaced by
references to some other variable y. In other words the WFF EXISTS y(y>3) is semantically same.

Free Variables: Free variables are those range variables when the meaning of the formula changed,
if all the occurrences of range variable say 'x' were replaced by some other variables say 'y'. Then
range variable 'x' is called as the Free variable.

For example: x (x>3) and x<O means

EXISTS x (x>3) and x <0

Here, there are three references to x, denoting two different variables. The first two references are
bound and could be replaced by references to some other variable y without changing the overall
meaning. The third reference is free, and cannot be replaced without changing the meaning of the
formula. Thus, of the two WFFs shown below, the first is equivalent to the one just given and the
second is not: -

EXIST Y (y>3) and x<O

EXITS y (y>3) and y<O

Closed and Open WFF: A WFF in which all variables references are bound is called Closed WFF.
e.g. EXISTS x (x>3) is a closed WFF.

An open WFF is a WFF that is not closed i.e. one that consists of at least one free variable reference.
e.g. EXISTS y (y>3) and x<O

DOMAIN RELATIONAL CALCULUS

85

The domain calculus differs from the tuple calculus in the type of variables used in formulas. In
domain calculus the variables range over single values from domains of attributes rather than
ranging over tuples. To form a relation of degree 'n' for a query result, we must have 'n' of these
domain variables-one for each attribute.

An expression of the domain calculus is of the following form:

{Xl, X2, ... , Xn I COND(XI, X2, .. ·, Xn, Xn+b Xn+2, , Xn+m)}

In the above expression Xl, X2, ... , Xn, Xn+b Xn+2, , Xn+m are domain variables that range over
domains of attributes and COND is a condition or formula of the domain relational calculus.

Expression of the domain calculus are constructed from the following elements:

• Domain variables Xl, X2, ... , Xn, Xn+b Xn+2, ... , Xn+m each domain variable is to range over
some specified domain .

• Conditions, which can take two forms:

• Simple comparisons of the form x * y, as for the tuple calculus, except that x and yare now domain
variables.

• Membership conditions, of the form R (term,

term ...).

Here, R is a relation, and each "term" is a pair AV, where A in turn is an attribute

Of R and V is either a domain variable or a constant. For example EMP (empno: 100, ename: 'Ajay')
is a membership condition (which evaluates to true if and only if there exists an EMP tuple having
empno=100 and ename = 'Ajay') .

• Well Formed Formulates (WFFs), formed in accordance with rules of tuple calculus (but with the
revised definition of "condition").

 Free and Bound Variables

The rules concerning free and bound variables given for the tuple calculus are also applicable
similarly on the domain calculus.

86

SQL

What is SQL?

SQL is structured Query Language which is a computer language for storing, manipulating and
retrieving data stored in relational database.

SQL is the standard language for Relation Database System. All relational database management
systems like MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL Server uses SQL as
standard database language.

Also they are using different dialects, Such as:

• MS SQL Server using T-SQL,
• Oracle using PL/SQL,
• MS Access version of SQL is called JET SQL (native format)etc

Why SQL?

• Allow users to access data in relational database management systems.
• Allow users to describe the data.
• Allow users to define the data in database and manipulate that data.
• Allow to embed within other languages using SQL modules, libraries & pre-compilers.
• Allow users to create and drop databases and tables.
• Allow users to create view, stored procedure, functions in a database.
• Allow users to set permissions on tables, procedures, and views

SQL Process:

When you are executing an SQL command for any RDBMS, the system determines the best way to
carry out your request and SQL engine figures out how to interpret the task.

There are various components included in the process. These components are Query Dispatcher,
Optimization engines, Classic Query Engine and SQL query engine etc. Classic query engine
handles all non-SQL queries but SQL query engine won't handle logical files.

Following is a simple diagram showing SQL Architecture:

87

SQL DATABASE :

MySQL

MySQL is open source SQL database, which is developed by Swedish company MySQL AB.
MySQL is pronounced "my ess-que-ell," in contrast with SQL, pronounced "sequel."

MySQL is supporting many different platforms including Microsoft Windows, the major Linux
distributions, UNIX, and Mac OS X.

MySQL has free and paid versions, depending on its usage (non-commercial/commercial) and
features. MySQL comes with a very fast, multi-threaded, multi-user, and robust SQL database
server.

Features:

• High Performance.
• High Availability.
• Scalability and Flexibility Run anything.
• Robust Transactional Support.
• Web and Data Warehouse Strengths.
• Strong Data Protection.
• Comprehensive Application Development.
• Management Ease.
• Open Source Freedom and 24 x 7 Support.
• Lowest Total Cost of Ownership.

88

MS SQL Server

MS SQL Server is a Relational Database Management System developed by Microsoft Inc. Its
primary query languages are:

• T-SQL.
• ANSI SQL.

Features:

• High Performance.
• High Availability.
• Database mirroring.
• Database snapshots.
• CLR integration.
• Service Broker.
• DDL triggers.
• Ranking functions.
• Row version-based isolation levels.
• XML integration.
• TRY...CATCH.
• Database Mail.

ORACLE

It is very large and multi-user database management system. Oracle is a relational database
management system developed by 'Oracle Corporation'.

Oracle works to efficiently manage its resource, a database of information, among the multiple
clients requesting and sending data in the network.

It is an excellent database server choice for client/server computing. Oracle supports all major
operating systems for both clients and servers, including MSDOS, NetWare, UnixWare, OS/2 and
most UNIX flavors.

Features:

• Concurrency
• Concurrency
• Read Consistency

89

• Locking Mechanisms
• Quiesce Database
• Portability
• Self managing database
• SQL*Plus
• ASM
• Scheduler
• Resource Manager
• Data Warehousing
• Materialized views
• Bitmap indexes
• Table compression
• Parallel Execution
• Analytic SQL
• Data mining
• Partitioning

MS- ACCESS

This is one of the most popular Microsoft products. Microsoft Access is entry-level database
management software. MS Access database is not only an inexpensive but also powerful database
for small-scale projects.

MS Access uses the Jet database engine which utilizes a specific SQL language dialect

Features:

• Users can create tables, queries, forms and reports, and connect them together with macros.
• The import and export of data to many formats including Excel, Outlook, ASCII, dBase,

Paradox, FoxPro, SQL Server, Oracle, ODBC, etc.
• There is also the Jet Database format (MDB or ACCDB in Access 2007) which can contain

the application and data in one file. This makes it very convenient to distribute the entire
application to another user, who can run it in disconnected environments.

• Microsoft Access offers parameterized queries. These queries and Access tables can be
referenced from other programs like VB6 and .NET through DAO or ADO.

• The desktop editions of Microsoft SQL Server can be used with Access as an alternative to
the Jet Database Engine.

• Microsoft Access is a file server-based database. Unlike client-server relational database
management systems (RDBMS), Microsoft Access does not implement database triggers,
stored procedures, or transaction logging.

90

• SQL data type is an attribute that specifies type of data of any object. Each column, variable
and expression has related data type in SQL.

• You would use these data types while creating your tables. You would choose a particular
data type for a table column based on your requirement.

• SQL Server offers six categories of data types for your use:

SQL DATA TYPE :

Exact Numeric Data Types:
DATA TYPE FROM TO

bigint -9,223,372,036,854,775,808 9,223,372,036,854,775,807

int -2,147,483,648 2,147,483,647

smallint -32,768 32,767

tinyint 0 255

bit 0 1

decimal -10^38 +1 10^38 .1

numeric -10^38 +1 10^38 .1

money -922,337,203,685,477.5808 +922,337,203,685,477.5807

smallmoney -214,748.3648 +214,748.3647

• Approximate Numeric Data Types:
DATA TYPE FROM TO

float -1.79E + 308 1.79E + 308

real -3.40E + 38 3.40E + 38

• Date and Time Data Types:
DATA TYPE FROM TO

datetime Jan 1, 1753 Dec 31, 9999

91

Smalldatetime Jan 1, 1900 Jun 6, 2079

date Stores a date like June 30, 1991

time
Stores a time of day like 12:30
P.M.

Character Strings Data Types:
DATA TYPE FROM TO

char char
Maximum length of 8,000
characters.(Fixed length non-
Unicode characters)

varchar varchar
Maximum of 8,000
characters.(Variable-length non-
Unicode data).

varchar(max) varchar(max)
Maximum length of 231characters,
Variable-length non-Unicode data
(SQL Server 2005 only).

text text
Variable-length non-Unicode data
with a maximum length of
2,147,483,647 characters.

Operator in SQL

An operator is a reserved word or a character used primarily in an SQL statement's WHERE clause
to perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for
multiple conditions in a statement.

• Arithmetic operators
• Comparison operators
• Logical operators
• Operators used to negate conditions

92

SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example

+
Addition - Adds values on either side of the
operator

a + b will give 30

-
Subtraction - Subtracts right hand operand from
left hand operand

a - b will give -10

*
Multiplication - Multiplies values on either side
of the operator

a * b will give 200

/
Division - Divides left hand operand by right
hand operand

b / a will give 2

%
Modulus - Divides left hand operand by right
hand operand and returns remainder

b % a will give 0

SQL Comparison Operators:

Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example

=
Checks if the value of two operands are equal or
not, if yes then condition becomes true.

(a = b) is not true.

!=
Checks if the value of two operands are equal or
not, if values are not equal then condition
becomes true.

(a != b) is true.

<>
Checks if the value of two operands are equal or
not, if values are not equal then condition
becomes true.

(a <> b) is true.

93

>
Checks if the value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

(a > b) is not true.

<
Checks if the value of left operand is less than
the value of right operand, if yes then condition
becomes true.

(a < b) is true.

>=
Checks if the value of left operand is greater
than or equal to the value of right operand, if yes
then condition becomes true.

(a >= b) is not true.

<=
Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(a <= b) is true.

!<
Checks if the value of left operand is not less
than the value of right operand, if yes then
condition becomes true.

(a !< b) is false.

!>
Checks if the value of left operand is not greater
than the value of right operand, if yes then
condition becomes true.

(a !> b) is true.

SQL Logical Operators:

Here is a list of all the logical operators available in SQL.

Operator Description

ALL The ALL operator is used to compare a value to all values in another value set.

AND
The AND operator allows the existence of multiple conditions in an SQL statement's
WHERE clause.

ANY
The ANY operator is used to compare a value to any applicable value in the list
according to the condition.

BETWEEN
The BETWEEN operator is used to search for values that are within a set of values,
given the minimum value and the maximum value.

94

EXISTS
The EXISTS operator is used to search for the presence of a row in a specified table
that meets certain criteria.

IN
The IN operator is used to compare a value to a list of literal values that have been
specified.

LIKE
The LIKE operator is used to compare a value to similar values using wildcard
operators.

NOT
The NOT operator reverses the meaning of the logical operator with which it is used.
Eg. NOT EXISTS, NOT BETWEEN, NOT IN etc. This is negate operator.

OR
The OR operator is used to combine multiple conditions in an SQL statement's
WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

UNIQUE
The UNIQUE operator searches every row of a specified table for uniqueness (no
duplicates).

COMMANDS IN SQL :

1. CREATE DATABASE

The SQL CREATE DATABASE statement is used to create new SQL database.

Syntax:

Basic syntax of CREATE DATABASE statement is as follows:

CREATE DATABASE DatabaseName;

Always database name should be unique within the RDBMS.

Example:

If you want to create new database <testDB>, then CREATE DATABASE statement would be as
follows:

SQL> CREATE DATABASE testDB;

2. DROP DATABASE

95

The SQL DROP DATABASE statement is used to drop any existing database in SQL schema.

Syntax:

Basic syntax of DROP DATABASE statement is as follows:

DROP DATABASE DatabaseName;

Always database name should be unique within the RDBMS.

Example:

If you want to delete an existing database <testDB>, then DROP DATABASE statement would be
as follows:

SQL> DROP DATABASE testDB;

3. USE

The SQL USE statement is used to select any existing database in SQL schema.

Syntax:

Basic syntax of USE statement is as follows:

USE DatabaseName;

4. CREATE TABLE

The SQL CREATE TABLE statement is used to create a new table.

Syntax:

Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,
 column3 datatype,

 columnN datatype,
 PRIMARY KEY(one or more columns)
);

96

CREATE TABLE is the keyword telling the database system what you want to do.in this case, you
want to create a new table. The unique name or identifier for the table follows the CREATE TABLE
statement.

Then in brackets comes the list defining each column in the table and what sort of data type it is. The
syntax becomes clearer with an example below.

A copy of an existing table can be created using a combination of the CREATE TABLE statement
and the SELECT statement.

5. DROP TABLE

The SQL DROP TABLE statement is used to remove a table definition and all data, indexes,
triggers, constraints, and permission specifications for that table.

Syntax:

Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table_name;

6. INSERT INTO

The SQL INSERT INTO Statement is used to add new rows of data to a table in the database.

Syntax:

There are two basic syntax of INSERT INTO statement is as follows:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]
VALUES (value1, value2, value3,...valueN);

Here column1, column2,...columnN are the names of the columns in the table into which you want
to insert data.

You may not need to specify the column(s) name in the SQL query if you are adding values for all
the columns of the table. But make sure the order of the values is in the same order as the columns in
the table. The SQL INSERT INTO syntax would be as follows:

INSERT INTO TABLE_NAME VALUES

97

Example:

Following statements would create six records in CUSTOMERS table:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6, 'Komal', 22, 'MP', 4500.00);

You can create a record in CUSTOMERS table using second syntax as follows:

INSERT INTO CUSTOMERS
VALUES (7, 'Muffy', 24, 'Indore', 10000.00);

All the above statement would product following records in CUSTOMERS table:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

98

7. SELECT

SQL SELECT Statement is used to fetch the data from a database table which returns data in the
form of result table. These result tables are called result-sets.

Syntax:

The basic syntax of SELECT statement is as follows:

SELECT column1, column2, columnN FROM table_name;

Here column1, column2...are the fields of a table whose values you want to fetch. If you want to
fetch all the fields available in the field then you can use following syntax:

SELECT * FROM table_name;

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields of the customers available in
CUSTOMERS table:

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

This would produce following result:

+----+----------+----------+
| ID | NAME | SALARY |
+----+----------+----------+
| 1 | Ramesh | 2000.00 |
| 2 | Khilan | 1500.00 |

99

3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
+----+----------+----------+

8. WHERE CLAUSE

The SQL WHERE clause is used to specify a condition while fetching the data from single table or
joining with multiple table.

If the given condition is satisfied then only it returns specific value from the table. You would use
WHERE clause to filter the records and fetching only necessary records.

The WHERE clause not only used in SELECT statement, but it is also used in UPDATE, DELETE
statement etc. which we would examine in subsequent chapters.

Syntax:

The basic syntax of SELECT statement with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition]

You can specify a condition using comparision or logical operators like >, <, =, LIKE, NOT etc.
Below examples would make this concept clear.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

100

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS
table where salary is greater than 2000:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000;

This would produce following result:

+----+----------+----------+
| ID | NAME | SALARY |
+----+----------+----------+
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
+----+----------+----------+

9. AND and OR OPERATORS

The SQL AND and OR operators are used to combile multiple conditions to narrow data in an SQL
statement. These two operators are called conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the same
SQL statement.

The AND Operator:

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE
clause.

Syntax:

The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken by the
SQL statement, whether it be a transaction or query, all conditions separated by the AND must be
TRUE.

101

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS
table where salary is greater than 2000 AND age is less tan 25 years:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000 AND age < 25;

This would produce following result:

+----+-------+----------+
| ID | NAME | SALARY |
+----+-------+----------+
| 6 | Komal | 4500.00 |
| 7 | Muffy | 10000.00 |
+----+-------+----------+

10. UPDATE

The SQL UPDATE Query is used to modify the existing records in a table.

You can use WHERE clause with UPDATE query to update selected rows otherwise all the rows
would be effected.

Syntax:

The basic syntax of UPDATE query with WHERE clause is as follows:

UPDATE table_name

102

SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];

11. DELETE

The SQL DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise all the records
would be deleted.

Syntax:

The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name
WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is an example which would DELETE a customer whose ID is 6:

SQL> DELETE FROM CUSTOMERS
WHERE ID = 6;

Now CUSTOMERS table would have following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |

103

+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

12. LIKE

The SQL LIKE clause is used to compare a value to similar values using wildcard operators. There
are two wildcards used in conjunction with the LIKE operator:

• The percent sign (%)
• The underscore (_)

The percent sign represents zero, one, or multiple characters. The underscore represents a single
number or character. The symbols can be used in combinations.

Syntax:

The basic syntax of % and _ is as follows:

SELECT FROM table_name
WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE 'XXXX_'

consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00

104

4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is an example which would display all the records from CUSTOMERS table where
SALARY starts with 200:

SQL> SELECT * FROM CUSTOMERS
WHERE SALARY LIKE '200%';

This would produce following result:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
+----+----------+-----+-----------+----------+

13. TOP

The SQL TOP clause is used to fetch a TOP N number or X percent records from a table.

Syntax:

The basic syntax of TOP clause with SELECT statement would be as follows:

SELECT TOP number|percent column_name(s)
FROM table_name
WHERE [condition]

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00

105

4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is an example on SQL server which would fetch top 3 records from CUSTOMERS table:

SQL> SELECT TOP 3 * FROM CUSTOMERS;

This would produce following result:

+----+---------+-----+-----------+---------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+---------+-----+-----------+---------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
+----+---------+-----+-----------+---------+

14. ORDER BY

The SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one
or more columns. Some database sorts query results in ascending order by default.

Syntax:

The basic syntax of ORDER BY clause is as follows:

SELECT column-list
FROM table_name
[WHERE condition]
[ORDER BY column1, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column you are
using to sort, that column should be in column-list.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+

106

1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is an example which would sort the result in ascending order by NAME and SALARY:

SQL> SELECT * FROM CUSTOMERS
 ORDER BY NAME, SALARY;

This would produce following result:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
3	kaushik	23	Kota	2000.00
2	Khilan	25	Delhi	1500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
1	Ramesh	32	Ahmedabad	2000.00
+----+----------+-----+-----------+----------+

15. GROUP BY

The SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange
identical data into groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the
ORDER BY clause.

Syntax:

The basic syntax of GROUP BY clause is given below. The GROUP BY clause must follow the
conditions in the WHERE clause and must precede the ORDER BY clause if one is used.

SELECT column1, column2
FROM table_name
WHERE [conditions]
GROUP BY column1, column2

107

ORDER BY column1, column2

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

If you want to know the total amount of salary on each customer, then GROUP BY query would be
as follows:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
 GROUP BY NAME;

This would produce following result:

+----------+-------------+
| NAME | SUM(SALARY) |
+----------+-------------+
Chaitali	6500.00
Hardik	8500.00
kaushik	2000.00
Khilan	1500.00
Komal	4500.00
Muffy	10000.00
Ramesh	2000.00
+----------+-------------+

16. DISTINCT KEYWORD

The SQL DISTINCT keyword is used in conjunction with SELECT statement to eliminate all the
duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While fetching such
records, it makes more sense to fetch only unique records instead of fetching duplicate records.

108

Syntax:

The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows:

SELECT DISTINCT column1, column2,.....columnN
FROM table_name
WHERE [condition]

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

First let us see how the following SELECT query returns duplicate salary records:

SQL> SELECT SALARY FROM CUSTOMERS
 ORDER BY SALARY;

This would produce following result where salary 2000 is coming twice which is a duplicate record
from the original table.

+----------+
| SALARY |
+----------+
| 1500.00 |
| 2000.00 |
| 2000.00 |
| 4500.00 |
| 6500.00 |
| 8500.00 |
| 10000.00 |
+----------+

Now let us use DISTINCT keyword with the above SELECT query and see the result:

109

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
 ORDER BY SALARY;

This would produce following result where we do not have any duplicate entry:

+----------+
| SALARY |
+----------+
| 1500.00 |
| 2000.00 |
| 4500.00 |
| 6500.00 |
| 8500.00 |
| 10000.00 |
+----------+

17. CONSTRAINTS

Constraints are the rules enforced on data columns on table. These are used to limit the type of data
that can go into a table. This ensures the accuracy and reliability of the data in the database.

Contraints could be column level or table level. Column level constraints are applied only to one
column where as table level constraints are applied to the whole table.

Following are commonly used constraints available in SQL. These constraints have already been
discussed in SQL - RDBMS Concepts chapter but its worth to revise them at this point.

• NOT NULL Constraint: Ensures that a column cannot have NULL value.
• DEFAULT Constraint : Provides a default value for a column when none is specified.
• UNIQUE Constraint: Ensures that all values in a column are different.
• PRIMARY Key: Uniquely identified each rows/records in a database table.
• FOREIGN Key: Uniquely identified a rows/records in any another database table.
• CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy

certain conditions.
• INDEX: Use to create and retrieve data from the database very quickly.

Constraints can be specified when a table is created with the CREATE TABLE statement or you can
use ALTER TABLE statment to create constraints even after the table is created.

Dropping Constraints:

Any constraint that you have defined can be dropped using the ALTER TABLE command with the
DROP CONSTRAINT option.

110

For example, to drop the primary key constraint in the EMPLOYEES table, you can use the
following command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;

Some implementations may provide shortcuts for dropping certain constraints. For example, to drop
the primary key constraint for a table in Oracle, you can use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Some implementations allow you to disable constraints. Instead of permanently dropping a
constraint from the database, you may want to temporarily disable the constraint, and then enable it
later.

Integrity Constraints:

Integrity constraints are used to ensure accuracy and consistency of data in a relational database.
Data integrity is handled in a relational database through the concept of referential integrity.

There are many types of integrity constraints that play a role in referential integrity (RI). These
constraints include Primary Key, Foreign Key, Unique Constraints and other constraints mentioned
above.

The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN is a
means for combining fields from two tables by using values common to each.

Consider following two tables, (a) CUSTOMERS table is as follows:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

(b) Another table is ORDERS as follows:

+-----+---------------------+-------------+--------+

111

|OID | DATE | CUSTOMER_ID | AMOUNT |
+-----+---------------------+-------------+--------+
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-----+---------------------+-------------+--------+

Now let us join these two tables in our SELECT statement as follows:

SQL> SELECT ID, NAME, AGE, AMOUNT
 FROM CUSTOMERS, ORDERS
 WHERE CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce following result:

+----+----------+-----+--------+
| ID | NAME | AGE | AMOUNT |
+----+----------+-----+--------+
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
+----+----------+-----+--------+

Here it is noteable that the join is performed in the WHERE clause. Several operators can be used to
join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to join
tables. However, the most common operator is the equal symbol.

18. SQL JOIN TYPES

There are different type of joins available in SQL:

• INNER JOIN: returns rows when there is a match in both tables.
• LEFT JOIN: returns all rows from the left table, even if there are no matches in the right

table.
• RIGHT JOIN: returns all rows from the right table, even if there are no matches in the left

table.
• FULL JOIN: returns rows when there is a match in one of the tables.
• SELF JOIN: is used to join a table to itself, as if the table were two tables, temporarily

renaming at least one table in the SQL statement.
• CARTESIAN JOIN: returns the cartesian product of the sets of records from the two or more

joined tables.

112

19. UNION

 The SQL UNION clause/operator is used to combine the results of two or more SELECT
statements without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same number of
column expressions, the same data type, and have them in the same order but they do not have to be
the same length.

Syntax:

The basic syntax of UNION is as follows:

SELECT column1 [, column2]
FROM table1 [, table2]
[WHERE condition]

UNION

SELECT column1 [, column2]
FROM table1 [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:

Consider following two tables, (a) CUSTOMERS table is as follows:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

(b) Another table is ORDERS as follows:

+-----+---------------------+-------------+--------+

113

|OID | DATE | CUSTOMER_ID | AMOUNT |
+-----+---------------------+-------------+--------+
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-----+---------------------+-------------+--------+

Now let us join these two tables in our SELECT statement as follows:

SQL> SELECT ID, NAME, AMOUNT, DATE
 FROM CUSTOMERS
 LEFT JOIN ORDERS
 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID
UNION
 SELECT ID, NAME, AMOUNT, DATE
 FROM CUSTOMERS
 RIGHT JOIN ORDERS
 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce following result:

+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
+------+----------+--------+---------------------+

20. NULL

The SQL NULL is the term used to represent a missing value. A NULL value in a table is a value in
a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL
value is different than a zero value or a field that contains spaces.

114

Syntax:

The basic syntax of NULL while creating a table:

SQL> CREATE TABLE CUSTOMERS(
 ID INT NOT NULL,
 NAME VARCHAR (20) NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR (25) ,
 SALARY DECIMAL (18, 2),
 PRIMARY KEY (ID)
);

Here NOT NULL signifies that column should always accept an explicit value of the given data
type. There are two column where we did not use NOT NULL which means these column could be
NULL.

A field with a NULL value is one that has been left blank during record creation.

Example:

The NULL value can cause problems when selecting data, however, because when comparing an
unknown value to any other value, the result is always unknown and not included in the final results.

You must use the IS NULL or IS NOT NULL operators in order to check for a NULL value.

Consider following table, CUSTOMERS having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	
7	Muffy	24	Indore	
+----+----------+-----+-----------+----------+

Now following is the usage of IS NOT NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
 FROM CUSTOMERS

115

 WHERE SALARY IS NOT NULL;

This would produce following result:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
+----+----------+-----+-----------+----------+

21. ALIAS

You can rename a table or a column temporarily by giving another name known as alias.

The use of table aliases means to rename a table in a particular SQL statement. The renaming is a
temporary change and the actual table name does not change in the database.

The column aliases are used to rename a table's columns for the purpose of a particular SQL query.

Syntax:

The basic syntax of table alias is as follows:

SELECT column1, column2....
FROM table_name AS alias_name
WHERE [condition];

The basic syntax of column alias is as follows:

SELECT column_name AS alias_name
FROM table_name
WHERE [condition];

Example:

Consider following two tables, (a) CUSTOMERS table is as follows:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+

116

1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

(b) Another table is ORDERS as follows:

+-----+---------------------+-------------+--------+
|OID | DATE | CUSTOMER_ID | AMOUNT |
+-----+---------------------+-------------+--------+
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-----+---------------------+-------------+--------+

Now following is the usage of table alias:

SQL> SELECT C.ID, C.NAME, C.AGE, O.AMOUNT
 FROM CUSTOMERS AS C, ORDERS AS O
 WHERE C.ID = O.CUSTOMER_ID;

This would produce following result:

+----+----------+-----+--------+
| ID | NAME | AGE | AMOUNT |
+----+----------+-----+--------+
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
+----+----------+-----+--------+

Following is the usage of column alias:

SQL> SELECT ID AS CUSTOMER_ID, NAME AS CUSTOMER_NAME
 FROM CUSTOMERS
 WHERE SALARY IS NOT NULL;

This would produce following result:

+-------------+---------------+

117

| CUSTOMER_ID | CUSTOMER_NAME |
+-------------+---------------+
1	Ramesh
2	Khilan
3	kaushik
4	Chaitali
5	Hardik
6	Komal
7	Muffy
+-------------+---------------+

22. ALTER TABLE

The SQL ALTER TABLE command is used to add, delete, or modify columns in an existing table.

You would also use ALTER TABLE command to add and drop various constraints on a an existing
table.

Syntax:

The basic syntax of ALTER TABLE to add a new column in an existing table is as follows:

ALTER TABLE table_name ADD column_name datatype;

The basic syntax of ALTER TABLE to DROP COLUMN in an existing table is as follows:

ALTER TABLE table_name DROP COLUMN column_name;

The basic syntax of ALTER TABLE to change the DATA TYPE of a column in a table is as
follows:

ALTER TABLE table_name MODIFY COLUMN column_name datatype;

The basic syntax of ALTER TABLE to add a NOT NULL constraint to a column in a table is as
follows:

ALTER TABLE table_name MODIFY column_name datatype NOT NULL;

The basic syntax of ALTER TABLE to ADD UNIQUE CONSTRAINT to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT MyUniqueConstraint UNIQUE(column1, column2...);

The basic syntax of ALTER TABLE to ADD CHECK CONSTRAINT to a table is as follows:

118

ALTER TABLE table_name
ADD CONSTRAINT MyUniqueConstraint CHECK (CONDITION);

The basic syntax of ALTER TABLE to ADD PRIMARY KEY constraint to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT MyPrimaryKey PRIMARY KEY (column1, column2...);

The basic syntax of ALTER TABLE to DROP CONSTRAINT from a table is as follows:

ALTER TABLE table_name
DROP CONSTRAINT MyUniqueConstraint;

If you're using MySQL, the code is as follows:

ALTER TABLE table_name
DROP INDEX MyUniqueConstraint;

The basic syntax of ALTER TABLE to DROP PRIMARY KEY constraint from a table is as
follows:

ALTER TABLE table_name
DROP CONSTRAINT MyPrimaryKey;

If you're using MySQL, the code is as follows:

ALTER TABLE table_name
DROP PRIMARY KEY;

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

119

Following is the example to ADD a new column in an existing table:

ALTER TABLE CUSTOMERS ADD SEX char(1);

Now CUSTOMERS table is changed and following would be output from SELECT statement:

+----+---------+-----+-----------+----------+------+
| ID | NAME | AGE | ADDRESS | SALARY | SEX |
+----+---------+-----+-----------+----------+------+
1	Ramesh	32	Ahmedabad	2000.00	NULL
2	Ramesh	25	Delhi	1500.00	NULL
3	kaushik	23	Kota	2000.00	NULL
4	kaushik	25	Mumbai	6500.00	NULL
5	Hardik	27	Bhopal	8500.00	NULL
6	Komal	22	MP	4500.00	NULL
7	Muffy	24	Indore	10000.00	NULL
+----+---------+-----+-----------+----------+------+

Following is the example to DROP sex column from existing table:

ALTER TABLE CUSTOMERS DROP SEX;

Now CUSTOMERS table is changed and following would be output from SELECT statement:

+----+---------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+---------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Ramesh	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	kaushik	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+---------+-----+-----------+----------+

23. TRUNCATE TABLE

The SQL TRUNCATE TABLE command is used to delete complete data from an existing table.

You can also use DROP TABLE command to delete complete table but it would remove complete
table structure form the database and you would need to re-create this table once again if you wish
you store some data.

120

Syntax:

The basic syntax of TRUNCATE TABLE is as follows:

TRUNCATE TABLE table_name;

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is the example to turncate:

SQL > TRUNCATE TABLE CUSTOMERS;

Now CUSTOMERS table is truncated and following would be output from SELECT statement:

SQL> SELECT * FROM CUSTOMERS;
Empty set (0.00 sec)

The HAVING clause enables you to specify conditions that filter which group results appear in the
final results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause places
conditions on groups created by the GROUP BY clause.

Syntax:

The following is the position of the HAVING clause in a query:

SELECT
FROM
WHERE

121

GROUP BY
HAVING
ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also precede the
ORDER BY clause if used. The following is the syntax of the SELECT statement, including the
HAVING clause:

SELECT column1, column2
FROM table1, table2
WHERE [conditions]
GROUP BY column1, column2
HAVING [conditions]
ORDER BY column1, column2

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Following is the example which would display record for which similar age count would be more
than or equal to 2:

SQL > SELECT *
FROM CUSTOMERS
GROUP BY age
HAVING COUNT(age) >= 2;

This would produce following result:

+----+--------+-----+---------+---------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+--------+-----+---------+---------+
| 2 | Khilan | 25 | Delhi | 1500.00 |
+----+--------+-----+---------+---------+

122

24. DATE FUNCTIONS

Following is the list of all important Date and Time related functions available through SQL. There
are various other functions supported by your RDBMS. Given list is based on MySQL RDBMS.

Name Description

ADDDATE() Add dates

ADDTIME() Add time

CONVERT_TZ() Convert from one timezone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURTIME() Return the current time

DATE_ADD() Add two dates

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract two dates

DATE() Extract the date part of a date or datetime expression

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (1-31)

DAYOFWEEK() Return the weekday index of the argument

123

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format date as a UNIX timestamp

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME MAKETIME()

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() When invoked with three arguments a synonym for DATE_SUB()

124

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME() Extract the time portion of the expression passed

TIMEDIFF() Subtract time

TIMESTAMP()

With a single argument, this function returns the date or datetime
expression. With two arguments, the sum of the arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

UNIX_TIMESTAMP() Return a UNIX timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

125

Examples of SQL Commands in Different Tables:

ITEMS table

This table stores information about all the items that are offered by compnay. The structure of the
table is as follows:

Column Datatype Meaning

Itemno Number(5) A unique number assigned to each item.

ItemName Varchar2(20) Name of the item.

Rate Number(8,2) Rate of the item.

taxrate Number(4,2) Sales tax rate for this item.

The following are the constraints related to ITEMS table:

• ITEMNO is primary key
• RATE and TAXRATE must be >= 0
• Default value for TAXRATE is 0

create table ITEMS
(
 itemno number(5) constraint items_pk primary key,
 itemname varchar2(20),
 rate number(8,2) constraint items_rate_chk check(rate >= 0),
 taxrate number(4,2) default 0 constraint items_rate_chk check(rate >= 0)
);

insert into items values(1,'Samsung 14" monitor',7000,10.5);
insert into items values(2,'TVS Gold Keyboard',1000,10);
insert into items values(3,'Segate HDD 20GB',6500,12.5);
insert into items values(4,'PIII processor',8000,8);
insert into items values(5,'Logitech Mouse',500,5);
insert into items values(6,'Creative MMK',4500,11.5);

CUSTOMERS Table

This table contains information about customers who have placed one or more orders. The following
is the structure of the table.

Column Datatype Meaning

126

Custno Number(5) A unique number assigned to each customer.

CustName Varchar2(20) Complete name of the customer.

Address1 varchar2(50) First line of address.

Address2 varchar2(50) Second line of address.

City varchar2(30) Name of the city where customer lives.

state varchar2(30) Name of the state where customer lives.

PinCode varchar2(10) Pincode of the city.

Phone varchar2(30) One or more phone numbers separated using comma(,).

The following are the constraint related to CUSTOMERS table.

• CUSTNO is primary key
• CUSTNAME is not null column

create table CUSTOMERS
(
 custno number(5) constraint customers_pk primary key,
 custname varchar2(20) constraint customers_custname_nn not null,
 address1 varchar2(50),
 address2 varchar2(50),
 city varchar2(30),
 state varchar2(30),
 pin varchar2(10),
 phone varchar2(30)
);

insert into customers values(101,'Raul','12-22-29','Dwarakanagar',
 'Vizag','AP','530016','453343,634333');
insert into customers values(102,'Denilson','43-22-22','CBM Compound',
 'Vizag','AP','530012','744545');
insert into customers values(103,'Mendiator','45-45-52','Abid Nagar',
 'Vizag','AP','530016','567434');
insert into customers values(104,'Figo','33-34-56','Muralinagar',
 'Vizag','AP','530021','875655,876563,872222');
insert into customers values(105,'Zidane','23-22-56','LB Colony',
 'Vizag','AP','530013','765533');

127

ORDERS Table

Contains information about all orders placed by customers. Contains one row for each order. The
details of items ordered in an order will be found in LINEITEMS table. The following is the
structure of the table.

Column Datatype Meaning

OrdNo Number(5) A unique number assigned to each order.

OrdDate Date Date on which order is placed.

ShipDate Date Date on which goods are to be shipped to customer.

Address1 varchar2(50) First line of shipping address.

Address2 varchar2(50) Second line of shipping address.

City varchar2(30) City name in shipping address.

state varchar2(30) State name in shipping address.

PinCode varchar2(10) Pincode of the city in shipping address.

Phone varchar2(30) One or more phone numbers separated using comma(,) of shipping place.

The following are the constraint related to ORDERS table.

• ORDNO is primary key
• CUSTNO is foreign key referencing CUSTNO of CUSTOMERS table.
• SHIPDATE must be >= ORDDATE.

create table ORDERS
(
 ordno number(5) constraint orders_pk primary key,
 orddate date,
 shipdate date,
 custno number(5) constraint orders_custno_pk references customers,
 address1 varchar2(50),
 address2 varchar2(50),
 city varchar2(30),
 state varchar2(30),
 pin varchar2(10),

128

 phone varchar2(30),
 constraint order_dates_chk check(orddate <= shipdate)
);

insert into orders values(1001,'15-May-2001','10-jun-2001',102,
 '43-22-22','CBM Compound','Vizag','AP','530012','744545');

insert into orders values(1002,'15-May-2001','5-jun-2001',101,
 '12-22-29','Dwarakanagar','Vizag','AP','530016','453343,634333');

insert into orders values(1003,'17-May-2001','7-jun-2001',101,
 '12-22-29','Dwarakanagar','Vizag','AP','530016','453343,634333');

insert into orders values(1004,'18-May-2001','17-jun-2001',103,
 '45-45-52','Abid Nagar', 'Vizag','AP','530016','567434');

insert into orders values(1005,'20-May-2001','3-jun-2001',104,
'33-34-56','Muralinagar','Vizag','AP','530021','875655,876563,872222');

insert into orders values(1006,'23-May-2001','11-jun-2001',104,
'54-22-12','MVP Colony','Vizag','AP','530024',null);

LINEITEMS Table

Contains details of items ordered in each order. For each item in each order this table contains one
row. The following is the structure of the table.

Column Datatype Meaning

OrdNo Number(5) Refers to the order number of the order.

Itemno Number(5) Refers to the item number of the item.

qty number(3) Howmany units of this item arerequired in this order.

price Number(8,2) Selling price of the item for this order.

DisRate Number(4,2) Discount Rate for this item in this order.

The following are the constraint related to ORDERS table.

• Primary key is ORDNO and ITEMNO.
• ORDNO is a foreign key referencing ORDNO of ORDERS table.
• ITEMNO is a foreign key referencing ITEMNO of ITEMS table.

129

• Default DISRATE is 0
• QTY must be >= 1
• DISRATE must be >= 0

create table LINEITEMS
(
 ordno number(5) constraint LINEITEMS_ORDNO_FK references ORDERS,
 itemno number(5) constraint LINEITEMS_itemno_FK references ITEMS,
 qty number(3) constraint LINEITEMS_qty_CHK CHECK(qty >= 1),
 price number(8,2),
 disrate number(4,2) default 0
 constraint LINEITEMS_DISRATE_CHK CHECK(disrate >= 0),
 constraint lineitems_pk primary key (ordno,itemno)
);

insert into lineitems values(1001,2,3,1000,10.0);
insert into lineitems values(1001,1,3,7000,15.0);
insert into lineitems values(1001,4,2,8000,10.0);
insert into lineitems values(1001,6,1,4500,10.0);

insert into lineitems values(1002,6,4,4500,20.0);
insert into lineitems values(1002,4,2,8000,15.0);
insert into lineitems values(1002,5,2,600,10.0);

insert into lineitems values(1003,5,10,500,0.0);
insert into lineitems values(1003,6,2,4750,5.0);

insert into lineitems values(1004,1,1,7000,10.0);
insert into lineitems values(1004,3,2,6500,10.0);
insert into lineitems values(1004,4,1,8000,20.0);

insert into lineitems values(1005,6,1,4600,10.0);
insert into lineitems values(1005,2,2,900,10.0);

insert into lineitems values(1006,2,10,950,20.0);
insert into lineitems values(1006,4,5,7800,10.0);
insert into lineitems values(1006,3,5,6600,15.0);

Procedure to create tables and data

130

You can download and run sql scripts used to create these tables and data using the following
procedure.

1. First download tables.sql.
2. Get into SQL*PLUS and run it by using START filename. Where filename is complete path

of the tables.sql file in your system. For example, if you downloaded the file into
c:\downloads then the command will be
SQL>START C:\DOWNLOADS\TABLES.SQL
This will create all four tables with required constraints.

3. Download data.sql
4. Follow the same procedure as above to run it using START command in SQL*PLUS.

Queries

DISPLAY DETAILS OF ITEMS WHERE ITEMNAME CONTAINS LETTER 'O' TWICE

SELECT * FROM ITEMS
WHERE ITEMNAME LIKE '%O%O%';

DISPLAY ITEMNO,NAME,PRICE AND SELLING PRICE(PRICE+TAX) ROUND SELLING
PRICE TO 100

SELECT ITEMNO, ITEMNAME, RATE, ROUND(RATE + RATE * TAXRATE /100) "SPRICE"
FROM ITEMS;

DISPLAY DETAILS OF ITEMS BY PADDING ITEMNAME TO 20 CHARACTERS WITH '.'
AND IN UPPERCASE

SELECT ITEMNO, UPPER(RPAD(ITEMNAME,20,'.')) ITEMNAME, RATE, TAXRATE
FROM ITEMS;

DISPLAY CUSTNO,NAME AND ADDRESS

COLUMN ADDRESS FORMAT A40
COLUMN PHONE FORMAT A15
SELECT CUSTNO, CUSTNAME, TRIM(ADDRESS1 || ',' || ADDRESS2 || ',' || CITY ||
 ',' || STATE || ',' || PIN) ADDRESS , PHONE
FROM CUSTOMERS;

DISPLAY ORDERDATE,APPROXIMATE SHIPDATE, WHICH WILL BE COMMING
MONDAY AFTER 7 DAYS FROM ORDERDATE

SELECT ORDNO,ORDDATE, NEXT_DAY(ORDDATE+7,'MON') SHIPDATE
FROM ORDERS;

131

DISPLAY ALL THE ORDERS THAT ARE PLACED IN THE CURRENT MONTH

SELECT * FROM ORDERS
WHERE TO_CHAR(ORDDATE,'MMYY') = TO_CHAR(SYSDATE,'MMYY');

DISPLAY THE ORDERS THAT WERE PLACED IN THE LASTWEEK OF PREVIOUS MONTH

SELECT * FROM ORDERS
WHERE ORDDATE BETWEEN LAST_DAY(ADD_MONTHS(SYSDATE,-1)) - 7
 AND LAST_DAY(ADD_MONTHS(SYSDATE,-1));

DISPLAY ORDERNO,ORDERDATE IN DD-MM HH24:MI FORMAT,SHIPDATE IF NOT
AVAILABLE TAKE IT AS 15 DAYS FROM THE DAY OF ORDER

SELECT ORDNO, TO_CHAR(ORDDATE,'DD-MM HH24:MI') ORDDATE,
NVL(SHIPDATE,ORDDATE + 15) SHIPDATE
FROM ORDERS;

DISPALY TOTAL NO OF ORDERS

SELECT COUNT(*) "TOTAL NO. ORDERS"
FROM ORDERS;

DISPLY ORDERNO,NO.OF ITEMS IN AN ORDER AND AVG RATE OF ORDERS

SELECT ORDNO, COUNT(*) "NO ITEMS", ROUND(AVG(PRICE),2) "AVERAGE RATE"
FROM LINEITEMS
GROUP BY ORDNO;

DISPLAY ORDERNO FOR ORDERS WHERE ATLEAST ONE PRODUCT IS HAVING RATE
MORE THAN 5000 AND TOTAL NO.OF UNITS IS MORE THAN 10

SELECT ORDNO
FROM LINEITEMS
GROUP BY ORDNO
HAVING MAX(PRICE) > 5000 AND SUM(QTY) > 10;

DISPLAY MONTH NAME AND NO.OF ORDERS RECEIVED IN THE MONTH

SELECT TO_CHAR(ORDDATE,'MONTH') MONTH, COUNT(*) "NO. ORDERS"
FROM ORDERS
GROUP BY TO_CHAR(ORDDATE,'MONTH');

DISPLAY CUSTNO WHO HAVE PLACED MORE THAN 2 ORDERS IN THE LAST 3
MONTHS

132

SELECT CUSTNO
FROM ORDERS
WHERE ORDDATE > ADD_MONTHS(SYSDATE,-3)
GROUP BY CUSTNO
HAVING COUNT(*) > 2;

DISPLAY CUSTNO,NO.OF ORDERS ,DATE OF MOST RECENT ORDER

SELECT CUSTNO, COUNT(*) "NO. ORDERS", MAX(ORDDATE) "RECENT ORDER ON"
FROM ORDERS
GROUP BY CUSTNO;

DISPLAY CUSTNO,DATE ON WHICH FIRST ORDER WAS PLACED AND THE GAP
BETWEEN FIRST ORDER AND LAST ORDER IN DAYS

SELECT CUSTNO, MIN(ORDDATE) "FIRST ORDER", MAX(ORDDATE) - MIN(ORDDATE)
"GAP IN DAYS"
FROM ORDERS
GROUP BY CUSTNO;

DISPLAY ORDERNO,MAX PRICE IN THE ORDER FOR THE ORDERS WHERE THE
AMOUNT OF ITEMS IS MORE THAN 10000

SELECT ORDNO, MAX(PRICE) "MAX PRICE"
FROM LINEITEMS
GROUP BY ORDNO
HAVING SUM(PRICE * QTY) > 10000;

DISPLAY ITEMNO,TOTAL NO.OF UNITS SOLD,MAXPRICE,MINPRICE

SELECT ITEMNO, SUM(QTY) "TOTAL NO. UNITS", MAX(PRICE), MIN(PRICE)
FROM LINEITEMS
GROUP BY ITEMNO;

DISPLAY CUSTNO,DATE,NO.OF ORDERS PLACED

SELECT CUSTNO, ORDDATE, COUNT(*) "NO. ORDRES"
FROM ORDERS
GROUP BY CUSTNO, ORDDATE;

DISPLAY ORDERNO,CUSTNAME,ORDERDATE,NO.OF DATE BETWEEN SHIPDATE AND
ORDERDATE FOR ORDERS THAT HAVE BEEN SHIPPED

SELECT ORDNO, CUSTNAME, ORDDATE, SHIPDATE - ORDDATE "DAYS"

133

FROM ORDERS O, CUSTOMERS C
WHERE SHIPDATE IS NOT NULL AND O.CUSTNO = C.CUSTNO;

DISPLAY ORDERNO,ORDERDATE,CUSTNO,NAME FOR ALL THE ORDERS WHERE THE
ORDER CONTAINS ORDER FOR ITEMNO 5.

SELECT O.ORDNO, ORDDATE, O.CUSTNO, CUSTNAME
FROM ORDERS O, CUSTOMERS C, LINEITEMS L
WHERE ITEMNO = 5 AND L.ORDNO = O.ORDNO AND O.CUSTNO = C.CUSTNO;

The above query can also be written as follows.

SELECT ORDNO, ORDDATE, O.CUSTNO, CUSTNAME

FROM ORDERS O, CUSTOMERS C

WHERE O.CUSTNO = C.CUSTNO

 AND ORDNO IN

 (SELECT ORDNO FROM LINEITEMS WHERE ITEMNO = 5);

DISPLAY ITEMNO,NAME,ORDERNO,CUSTNAME AND AMOUNT.

SELECT I.ITEMNO, ITEMNAME, O.ORDNO, CUSTNAME, PRICE * QTY "AMOUNT"
FROM CUSTOMERS C, ORDERS O, LINEITEMS L, ITEMS I
WHERE O.CUSTNO = C.CUSTNO AND O.ORDNO = L.ORDNO
 AND I.ITEMNO = L.ITEMNO

DISPLAY DETAILS OF ORDEERS IN WHICH ORDERDATE IS AS MONDAY AND
CUSTOMER RESIDES IN VSP

SELECT * FROM ORDERS
WHERE TO_CHAR(ORDDATE,'fmDAY') = 'MONDAY'
 AND CUSTNO IN (SELECT CUSTNO FROM CUSTOMERS WHERE CITY LIKE '%VIS%');

DISPLAY DETAILS OF CUSTOMERS WHO PLACED ANY ORDERS WORTH MORE THAN
30000

134

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN
 (SELECT CUSTNO
 FROM ORDERS
 WHERE ORDNO IN
 (SELECT ORDNO
 FROM LINEITEMS
 GROUP BY ORDNO
 HAVING SUM(QTY*PRICE) > 30000)
);

DISPLAY DETAILS OF ITEMS FOR WHICH THERE IS AN ORDER IN THE CURRENT
MONTH

SELECT * FROM ITEMS
WHERE ITEMNO IN
 (SELECT ITEMNO
 FROM LINEITEMS
 WHERE ORDNO IN
 (SELECT ORDNO
 FROM ORDERS
 WHERE TO_CHAR(ORDDATE,'MMYY') = TO_CHAR(SYSDATE,'MMYY')
)
);

DISPLAY DETAILS OF ORDER IN WHICH WE SOLD ITEM 3 FOR MAX PRICE

 SELECT * FROM ORDERS
 WHERE ORDNO IN
 (
 SELECT ORDNO
 FROM LINEITEMS
 WHERE PRICE =
 (SELECT MAX(PRICE) FROM LINEITEMS
 WHERE ITEMNO = 3)
 AND ITEMNO = 3
);

DISPLAY DETAILS OF ITEMS FOR WHICH THERE IS AN ORDER IN THE LAST 7 DAYS
OR TOTAL NO.OF UNITS ORDERED IS MORE THAN 10.

SELECT * FROM ITEMS
WHERE ITEMNO IN
 (SELECT ITEMNO

135

 FROM LINEITEMS
 WHERE ORDNO IN
 (SELECT ORDNO FROM ORDERS WHERE SYSDATE-ORDDATE <= 7)
)
 OR ITEMNO IN
 (SELECT ITEMNO
 FROM LINEITEMS
 GROUP BY ITEMNO
 HAVING SUM(QTY) > 10
);

DISPLAY ALL THE LINEITEMS IN WHICH THE RATE OF THE ITEM IS MORE THAN AVG
RATE OF THE ITEMS

SELECT * FROM LINEITEMS L
WHERE PRICE >
 (SELECT AVG(PRICE)
 FROM LINEITEMS
 WHERE ITEMNO = L.ITEMNO);

DISPLAY DETAILS OF CUSTOMER WHO HAS PLACED MAX NO OF ORDERS

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN
 (SELECT CUSTNO
 FROM ORDERS
 GROUP BY CUSTNO
 HAVING COUNT(*) =
 (
 SELECT MAX(COUNT(*))
 FROM ORDERS
 GROUP BY CUSTNO
)
);

DISPLAY DETAILS OF ORDERS IN WHICH ATLEAST ONE ITEM IS SOLD FOR HIGHER
RATE THAN ACTUAL RATE

SELECT * FROM ORDERS
WHERE ORDNO IN
 (SELECT ORDNO
 FROM LINEITEMS L, ITEMS I

136

 WHERE L.ITEMNO = I.ITEMNO
 AND PRICE > RATE);

DETAILS OF CUSTOMERS WHO HAVE NOT PLACED ANY ORDER FOR THE LAST 15
DAYS

SELECT * FROM CUSTOMERS
WHERE CUSTNO NOT IN
 (SELECT CUSTNO
 FROM ORDERS
 WHERE SYSDATE - ORDDATE <= 15);

DISPLAY DETAILS OF ITEMS FOR WHICH THERE WAS NO ORDER IN THE PREVIOUS
MONTH

SELECT * FROM ITEMS
WHERE ITEMNO NOT IN
 (
 SELECT ITEMNO
 FROM LINEITEMS
 WHERE ORDNO IN
 (SELECT ORDNO
 FROM ORDERS
 WHERE TO_CHAR(ORDDATE,'MMYY') = TO_CHAR(ADD_MONTHS(SYSDATE,-
1),'MMYY')
)
);

DISPLAY ORDERS WHERE ORDDATE IS IN THE CURRENT MONTH OR AFTER ORDER
1004.

SELECT O1.*
FROM ORDERS O1, ORDERS O2
WHERE TO_CHAR(O1.ORDDATE,'MMYY') = TO_CHAR(SYSDATE,'MMYY')
 OR (O2.ORDNO = 1004 AND O1.ORDDATE > O2.ORDDATE);

DISPLAY DETAILS OF ITEMS THAT ARE PURCHASED BY CUSTOMER 102

SELECT * FROM ITEMS
WHERE ITEMNO IN
 (SELECT ITEMNO
 FROM LINEITEMS
 WHERE ORDNO IN
 (SELECT ORDNO

137

 FROM ORDERS
 WHERE CUSTNO = 102
)
);

DISPLAY DETAILS OF ITEMS THAT ARE PURCHASED BY CUSTOMER 102

SELECT * FROM ITEMS
WHERE ITEMNO IN
 (SELECT ITEMNO
 FROM LINEITEMS
 WHERE ORDNO IN
 (SELECT ORDNO
 FROM ORDERS
 WHERE CUSTNO = 102
)
);

CHANGE SHIPDATE OF ORDER 1004 TO THE ORDER DATE OF MOST RECENT ORDER

UPDATE ORDERS
 SET SHIPDATE = (SELECT MAX(ORDDATE)
 FROM ORDERS)
WHERE ORDNO = 1004;

DISPLAY THE DETAILS OF ITEMS WHERE ITEMNAME CONTAINS LETTER O OR M

SELECT * FROM ITEMS
WHERE ITEMNAME LIKE '%O%' OR ITEMNAME LIKE '%M%';

DISPLAY DETAILS OF ORDERS THAT WERE PLACED IN THE MONTH OF JUNE 2000.

SELECT * FROM ORDERS
WHERE ORDDATE BETWEEN '01-JUN-2000' AND '30-JUN-2000';

DISPLAY ORDERNO,ORDERDATE AND APPROXIMATE SHIPDATE(15 DAYS FROM
ORDDATE) FOR ALL ORDERS THAT ARE NOT SHIPPED.

138

SELECT ORDNO, ORDDATE, ORDDATE + 15 "SHIPDATE"
FROM ORDER WHERE SHIPDATE IS NULL;

DISPLAY ITEMNO,ORDERNO AND TOTAL AMOUNT AFTER ROUNDING THE VALUE TO
100’S FOR ALL THE ITEMS WHERE THE QUANTITY IS MORE THAN 5 UNITS OR PRICE
IS LESS THAN 5000.

SELECT ITEMNO, ORDNO, ROUND(QTY*PRICE,-2) "TOTAL"
FROM LINEITEMS
WHERE QTY > 5 OR PRICE < 5000;

DISPLAY ITEMNO,ITEMNAME,PRICE AND TAX FOR ITEMS THAT ARE TAXABLE.

SELECT ITEMNO, ITEMNAME, PRICE , PRICE * TAX /100 "TAX"
FROM ITEMS
WHERE TAXRATE IS NOT NULL;

DISPLAY ORDERNO,CUSTMERNO,ORDERDATE,NO. OF DAYS BETWEEN DAYS
ORDERDATE AND SYSTEM DATE AND DATE ON WHICH THE AMOUNT SHOULD BE
COLLECTED, WHICH IS 5TH OF NEXT MONTH OF THE MONTH IN WHICH ITEMS ARE
DELIVERED.
 SELECT ORDNO, CUSTNO, ORDDATE, SYSDATE - ORDDATE "NODAYS" ,
LAST_DAY(SHIPDATE) + 5 "COLLDATE"
FROM ORDERS
WHERE SHIPDATE IS NOT NULL;

DISPLAY THE DETAILS OF ORDERS THAT PLACED IN THE LAST 20 DAYS AND
DELIVERED.

SELECT * FROM ORDERS
WHERE SYSDATE - ORDDATE <= 20 AND SHIPDATE IS NOT NULL;

CHANGE THE RATE OF ITEMS IN ORDER 1003 SO THAT 10% DISCOUNT IS GIVEN TO
ALL ITEMS.

UPDATE LINEITEMS SET PRICE = PRICE * 0.90
WHERE ORDNO = 1003;

DISPLAY THE ITEMS WHERE ITEMNAME CONTAINS MORE THAN 10 CHARACTERS.

SELECT * FROM ITEMS

139

WHERE LENGTH(ITEMNAME) > 10;

DISPLAY ITEMS WHERE ITEMNAME CONTAINS LETTER ‘O’ AFTER 5TH POSITION.

SELECT * FROM ITEMS
WHERE INSTR(ITEMNAME,'0') > 5;

DISPLAY FIRST NAME OF THE CUSTOMER.

SELECT SUBSTR(ITEMNAME,1, INSTR(ITEMNAME,' ') -1) "FIRST NAME"
FROM CUSTOMERS;

DISPLAY ITEMNO,ITEMNAME IN UPPER CASE FOR ALL ITEMS WHERE THE LETTER
‘M’ IS EXISTING IN ANY CASE.

SELECT ITEMNO, UPPER(ITEMNAME)
FROM ITEMS
WHERE UPPER(ITEMNAME) LIKE '%M%';

DISPLAY THE ORDERS THAT ARE PLACED IN THE CURRENT MONTH.

SELECT * FROM ORDERS
WHERE TO_CHAR(ORDDATE,'YYMM') = TO_CHAR(SYSDATE,'YYMM');

INSERT INTO A NEW ORDER WITH THE FOLLOWING: ORDERNO-1010,CUSTOMERNO-
105,ORDERDATE-13-JULY-2001 AT 4:45 PM,SHIPDATE-NULL, SHIPADDRESS-NULL.

INSERT INTO ORDERS VALUES(1010,TO_DATE('13-07-2001 16:45','DD-MM-YYYY
HH24:MI'),NULL,105,
 NULL,NULL,NULL,NULL,NULL,NULL);

DISPLAY ORDERNO,CUSTOMERNO,THE NO. OF DAYS BETWEEN SHIPDATE AND
ORDERDATE.IF SHIPDATE IS-NOT AVAILABLE, TAKE IT AS SYSTEM DATE.

SELECT ORDNO,CUSTNO, NVL(SHIPDATE,SYSDATE)-ORDDATE
FROM ORDERS;

DISPLAY ITEMNO,PRICE,QUANTITY,DISCOUNT RATE FOR ITEMS WHERE THE
DISCOUNT RATE IS NON-ZERO. DISCOUNT-RATE IS CALUCULATED AS 10% FOR ITEM
1,7% FOR ITEM 6 AND 8% FOR REMAINING.

140

SELECT ITEMNO, PRICE, QTY, DECODE(ITEMNO,1,10,6,7,10) "DISRATE"
FROM LINEITEMS
WHERE DISRATE <> 0

DISPLAY TOTAL AMOUNT OF ORDERS WE RECEIVED SO FAR.

SELECT SUM(QTY*PRICE)
FROM LINEITEMS;

DISPLAY CUSTOMERNO,MONTH-NAME,NO. OF ORDERS OF THE CURRENT YEAR.

SELECT CUSTNO, TO_CHAR(ORDDATE,'MONTH'), COUNT(*)
FROM ORDERS
GROUP BY CUSTNO, TO_CHAR(ORDDATE,'MONTH');

DISPLAY DIFFERENCE BETWEEN HIGHEST PRICE AND LOWEST PRICE AT WHICH THE
ITEM WAS SOLD.

SELECT MAX(PRICE) - MIN(PRICE)
FROM LINEITEMS
GROUP BY ITEMNO;

DISPLAY HOW MANY ORDERS ARE STILL PENDING.

SELECT COUNT(*)
FROM ORDERS
WHERE SHIPDATE IS NULL;

DISPLAY ORDERNO,AVERAGE OF PRICE BY TAKING INTO ORDERS THAT WERE
PLACED IN THE LAST 15 DAYS.

SELECT O.ORDNO, AVG(PRICE)
FROM ORDERS O, LINEITEMS L
WHERE O.ORDNO = L.ORDNO AND SYSDATE - ORDDATE <= 15
GROUP BY O.ORDNO;

DISPLAY YEAR,NO.OF ORDERS IN WHICH THE DIFFERENCE BETWEEN SHIPDATE
AND ORDERDATE IS LESS THAN 10 DAYS.

141

SELECT TO_CHAR(ORDDATE,'YYYY'), COUNT(*)
FROM ORDERS
WHERE SHIPDATE - ORDDATE <=10
GROUP BY TO_CHAR(ORDDATE,'YYYY');

DISPLAY STATE,NO.OF CUSTOMERS IN THE STATE WHERE THE CUSTOMER NAME
CONTAINS THE WORD ‘NIKE’.

SELECT STATE, COUNT(*)
FROM CUSTOMERS
WHERE CUSTNAME LIKE '%NIKE%'
GROUP BY STATE;

DISPLAY CUSTOMER WHO HAS PLACED MORE THAN 2 ORDERS IN A SINGLE MONTH.

SELECT CUSTNO
FROM ORDERS
GROUP BY CUSTNO, TO_CHAR(ORDDATE,'MMYY')
HAVING COUNT(*) > 2;

DISPLAY HIGHEST NO.OF ORDERS PLACED BY A SINGLE CUSTOMER.

SELECT MAX(COUNT(*))
FROM ORDERS
GROUP BY CUSTNO;

DISPLAY CUSTOMERNO,NO.OF COMPLETED ORDERS AND NO.OF INCOMPLETE
ORDERS.

SELECT CUSTNO, SUM(DECODE(SHIPDATE,NULL,1,0)) "INCOMP ORDERS", SUM(
DECODE(SHIPDATE,NULL,0,1)) "COMP ORDERS"
FROM ORDERS
GROUP BY CUSTNO;

DISPLAY ORDERNO,ITEMNO,ITEMNAME,PRICE AT WHICH ITEM IS SOLD AND
CURRENT PRICE OF THE ITEM.

SELECT ORDNO, L.ITEMNO, ITEMNAME, PRICE,RATE
FROM LINEITEMS L , ITEMS I
WHERE L.ITEMNO = I.ITEMNO;

142

DISPLAY ORDERNO,ITEMNO,AMOUNT FOR ITEMS WHERE THE PRICE OF THE ITEM IS
MORE THAN THE CURRENT PRICE OF THE ITEM.

SELECT ORDNO, L.ITEMNO, QTY * PRICE
FROM LINEITEMS L, ITEMS I
WHERE PRICE > RATE
 AND L.ITEMNO = I.ITEMNO;

DISPLAY ITEMNO,ITEMNAME,ORDERNO,DIFFERENCE BETWEEN CURRENT PRICE
AND SELLING PRICE FOR THE ITEMS WHERE THERE IS A DIFFERENCE BETWEEN
CURRENT PRICE AND SELLING PRICE.

SELECT L.ITEMNO, ITEMNAME, ORDNO, RATE- PRICE
FROM ITEMS I, LINEITEMS L
WHERE I.ITEMNO = L.ITEMNO AND RATE <>PRICE;

DISPLAY CUSTOMERNO,CUTOMER NAME,ORDERNO, ORDERDATE FOR ORDERS
WHERE THE SHIPADDRESS AND CUSTOMER ADDRESS ARE SAME.

SELECT O.CUSTNO, CUSTNAME, ORDNO, ORDDATE
FROM ORDERS O, CUSTOMERS C
WHERE O.ADDRESS1 = C.ADDRESS1 AND O.ADDRESS2= C.ADDRESS2 AND C.CITY =
O.CITY
AND C.STATE = O.STATE AND C.PIN = O.PIN;

DISPLAY ITEMNO,ITEMNAME,ORDERNO,QUANTITY REQUIRED FOR ALL ITEMS
(THAT ARE NOT EVEN ORDERED FOR).

SELECT I.ITEMNO, ITEMNAME, ORDNO, QTY
FROM LINEITEMS L , ITEMS I
WHERE I.ITEMNO = L.ITEMNO(+);

DISPLAY NO.OF ORDERS PLACED BY CUSTOMERS RESIDING IN VIZAG.

SELECT O.CUSTNO, COUNT(*)
FROM ORDERS O, CUSTOMERS C
WHERE O.CUSTNO = C.CUSTNO AND C.CITY = 'VIZAG'
GROUP BY O.CUSTNO;

143

DISPLAY ORDERNO,CUSTOMER NAME,DIFFERENCE BETWEEN SYSTEM DATE AND
ORDERDATE FOR ORDERS THAT HAVE NOT BEEN SHIPPED AND OLDER THAN 10
DAYS.

SELECT ORDNO, CUSTNAME, SYSDATE - ORDDATE
FROM ORDERS O, CUSTOMERS C
WHERE O.CUSTNO = C.CUSTNO AND SYSDATE - ORDDATE > 10 AND SHIPDATE IS
NULL;

DISPLAY CUSTOMER NAME AND TOTAL AMOUNT OF ITEMS PURCHASED BY
CUSTOMER.

SELECT CUSTNAME, SUM(QTY * PRICE)
FROM LINEITEMS L, ORDERS O, CUSTOMERS C
WHERE L.ORDNO = O.ORDNO AND O.CUSTNO = C.CUSTNO
GROUP BY CUSTNAME;

DISPLAY THE DETAILS OF ITEM THAT HAS HIGHEST PRICE.

 SELECT * FROM ITEMS
 WHERE RATE = (SELECT MAX(RATE) FROM ITEMS);

DISPLAY DETAILS OF CUSTOMERS WHO PLACED MORE THAN 5 ORDERS.

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN (SELECT CUSTNO FROM ORDERS GROUP BY CUSTNO HAVING
COUNT(*) > 5);

DISPLAY DETAILS OF CUTOMERS WHO HAVE NOT PLACED ANY ORDER.

SELECT * FROM CUSTOMERS
WHERE CUSTNO NOT IN (SELECT CUSTNO FROM ORDERS);

DISPLAY DETAILS OF CUTOMERS WHO HAVE PLACED AN ORDER IN THE LAST 6
MONTHS.

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN (SELECT CUSTNO FROM ORDERS WHERE
MONTHS_BETWEEN(SYSDATE,ORDDATE) <= 6);

144

DISPLAY THE ITEMS FOR WHICH WE HAVE SOLD MORE THAN 50 UNITS BY TAKING
INTO ORDERS WHERE THE PRICE IS MORE THAN 5000.

SELECT * FROM ITEMS
WHERE ITEMNO IN (SELECT ITEMNO FROM LINEITEMS WHERE PRICE > 5000 GROUP
BY ITEMNO
 HAVING SUM(QTY) > 50);

DISPLAY THE DETAILS OF ORDERS THAT WERE PLACED BY A CUSTOMER WITH
PHONE NUMBER STARTING WITH 541 OR THE ORDERS IN WHICH WE HAVE MORE
THAN 5 ITEMS.

SELECT * FROM ORDERS
WHERE CUSTNO IN (SELECT CUSTNO FROM CUSTOMERS WHERE PHONE LIKE '541%')
 OR ORDNO IN (SELECT ORDNO FROM LINEITEMS GROUP BY ORDNO HAVING
COUNT(*) > 5);

CHANGE THE RATE OF ITEMNO 1 IN ITEMS TABLE TO THE HIGHEST RATE OF
LINEITEMS TABLE OF THAT ITEM.

UPDATE ITEMS SET RATE = (SELECT MAX(PRICE) FROM LINEITEMS WHERE
ITEMNO = 1)
WHERE ITEMNO = 1;

DELETE CUSTOMERS WHO HAVE NOT PLACED ANY ORDER.

DELETE FROM CUSTOMERS WHERE CUSTNO NOT IN (SELECT CUSTNO FROM
ORDERS);

RENAME COLUMN RATE IN ITEMS TO PRICE

STEP1: CREATE TABLE NEWITEMS AS SELECT ITEMNO, ITEMNAME, RATE PRICE,
TAXRATE
 FROM ITEMS;

STEP2: DROP TABLE ITEMS;

STEP3: RENAME NEWITEMS TO ITEMS;

DISPLAY DETAILS OF CUSTOMERS WHO HAVE PLACED MAXIMUM NUMBER OF
ORDERS.

SELECT * FROM CUSTOMERS
WHERE CUSTNO IN (SELECT CUSTNO FROM ORDERS

145

 GROUP BY CUSTNO HAVING COUNT(*) =
 (SELECT MAX(COUNT(*))
 FROM ORDERS
 GROUP BY CUSTNO));

DISPLAY DETAILS OF CUSTOMERS WHO HAVEN’T PLACED ANY ORDER IN THAT
CURRENT MONTH.

SELECT * FROM CUSTOMERS
WHERE CUSTNO NOT IN (SELECT CUSTNO FROM ORDERS WHERE
TO_CHAR(ORDDATE,'MMYY') =
 TO_CHAR(SYSDATE,'MMYY'));

DISPLAY DETAILS OF ITEMS FOR WHICH THERE WAS NO ORDER IN THE CURRENT
MONTH BUT THERE WAS AN ORDER IN THE PREVIOUS MONTH.

SELECT * FROM ITEMS
WHERE ITEMNO IN (SELECT ITEMNO FROM LINEITEMS L, ORDERS O
 WHERE L.ORDNO = O.ORDNO AND
 TO_CHAR(ADD_MONTHS(SYSDATE,-1),'MMYY') =
TO_CHAR(ORDDATE,'MMYY'))
AND ITEMNO NOT IN (SELECT ITEMNO FROM LINEITEMS L, ORDERS O
 WHERE L.ORDNO = O.ORDNO AND
 TO_CHAR(SYSDATE,'MMYY') = TO_CHAR(ORDDATE,'MMYY'));

DISPLAY DETAILS OF ITEMS THAT WERE PURCHASED BY CUSTOMER WHO HAS
PLACED MORE THAN 3 ORDERS.

SELECT * FROM ITEMS
WHERE ITEMNO IN (SELECT ITEMNO FROM LINEITEMS
 WHERE ORDNO IN (SELECT ORDNO FROM ORDERS
 WHERE CUSTNO IN (
 SELECT CUSTNO
 FROM ORDERS
 GROUP BY CUSTNO
 HAVING COUNT(*) > 1
)
)
);

146

DISPLAY THE ORDERS IN WHICH THE GAP BETWEEN SHIPDATE AND ORDERDATE IS
MORE THAN THE AVERAGE GAP FOR INDIVIDUAL CUSTOMERS.

SELECT * FROM ORDERS O
WHERE SHIPDATE - ORDDATE >
 (SELECT AVG(SHIPDATE - ORDDATE)
 FROM ORDERS
 WHERE CUSTNO = O.CUSTNO);

DISPLAY THE DETAILS OF ITEMS IN WHICH THE CURRENT PRICE IS MORE THAN THE
MAXIMUM PRICE AT WHICH WE SOLD IT.

SELECT * FROM ITEMS I
WHERE RATE >
 (SELECT MAX(PRICE)
 FROM LINEITEMS
 WHERE ITEMNO = I.ITEMNO);

CREATE A NEW TABLE ‘COMPORDERS’ WITH ORDNO, CUSTOMER-
NAME,ORDERDATE,SHIPDATE,DIFFERENCE BETWEEN SHIPDATE AND ORDERDATE.

CREATE TABLE COMPORDERS AS SELECT ORDNO, CUSTNAME,ORDDATE,
SHIPDATE, SHIPDATE-ORDDATE "NODAYS"
FROM ORDERS O, CUSTOMERS C
WHERE O.CUSTNO= C.CUSTNO AND SHIPDATE IS NOT NULL;

DISPLAY THE ITEMS THAT HAVE TOP 3 HIGHEST PRICES.

SELECT * FROM ITEMS I
WHERE 2 >= (SELECT COUNT(*) FROM ITEMS WHERE RATE > I.RATE)
ORDER BY RATE DESC;

DISPLAY DETAILS OF ITEM THAT HAS SECOND LOWEST PRICE.

SELECT * FROM ITEMS I
WHERE 1 = (SELECT COUNT(*) FROM ITEMS WHERE RATE < I.RATE)

<
ADD A NEW ITEM TO THE LAST ORDER PLACED BY CUSTOMER 106 WITH THE
FOLLOWING DETAILS- ITEMNO-3,QUANTITY-2,PRICE AS THE CURRENT RATE OF THE
ITEM,DISCOUNT-8%.

147

DECLARE
 V_ORDNO ORDERS.ORDNO%TYPE;
 V_RATE ITEMS.RATE%TYPE;

BEGIN
 SELECT MAX(ORDNO) INTO V_ORDNO
 FROM ORDERS WHERE CUSTNO = 106;

 SELECT RATE INTO V_RATE
 FROM ITEMS WHERE ITEMNO = 3;

 INSERT INTO LINEITEMS VALUES (V_ORDNO,3,2,V_RATE,8);

END;

CHANGE RATE OF ITEM 5 TO EITHER AVERAGE RATE OF ITEM 5 OR CURRENT RATE
WHICHEVER IS HIGHER.

DECLARE
 V_APRICE LINEITEMS.PRICE%TYPE;
 V_RATE ITEMS.RATE%TYPE;

BEGIN
 SELECT AVG(PRICE) INTO V_APRICE
 FROM LINEITEMS WHERE ITEMNO = 5;

 SELECT RATE INTO V_RATE
 FROM ITEMS WHERE ITEMNO = 5;

 UPDATE ITEMS SET RATE = GREATEST(V_APRICE, V_RATE)
 WHERE ITEMNO = 5;
END;

INSERT A NEW ROW INTO LINEITEMS WITH THE FOLLOWING DETAILS. ORDERNO IS
THE LAST ORDER PLACED BY CUSTOMERNO 102,ITEMNO IS THE ITEM OF P3
PROCESSOR, RATE IS LOWEST RATE OF THAT ITEM,QUANTITY IS 2,DISCOUNT IS 10%
IF ITEM’S CURRENT RATE IS MORE THAN THE LEAST RATE OTHERWISE NO
DISCOUNT.

DECLARE
 V_ORDNO ORDERS.ORDNO%TYPE;
 V_PRICE LINEITEMS.PRICE%TYPE;

148

 V_DIS NUMBER(2);
 V_RATE ITEMS.RATE%TYPE;
 V_ITEMNO ITEMS.ITEMNO%TYPE;

BEGIN
 SELECT MAX(ORDNO) INTO V_ORDNO
 FROM ORDERS WHERE CUSTNO = 102;

 SELECT ITEMNO, RATE INTO V_ITEMNO , V_RATE
 FROM ITEMS WHERE UPPER(ITEMNAME) = 'PIII PROCESSOR';

 -- GET LOWEST RATE OF THE ITEM

 SELECT MIN(PRICE) INTO V_PRICE
 FROM LINEITEMS
 WHERE ITEMNO = V_ITEMNO;

 IF V_RATE > V_PRICE THEN
 V_DIS := 10;
 ELSE
 V_DIS := 0;
 END IF;

 INSERT INTO LINEITEMS VALUES (V_ORDNO, V_ITEMNO, 2, V_PRICE, V_DIS);

END;

DISPLAY THE HIGHEST OF THE MISSING ORDERNOS.

DECLARE

 V_MAXORDNO ORDERS.ORDNO%TYPE;
 V_MINORDNO ORDERS.ORDNO%TYPE;
 V_CNT NUMBER(2);

BEGIN
 SELECT MAX(ORDNO), MIN(ORDNO) INTO V_MAXORDNO, V_MINORDNO
 FROM ORDERS;

 FOR I IN REVERSE V_MINORDNO..V_MAXORDNO
 LOOP
 SELECT COUNT(*) INTO V_CNT
 FROM ORDERS WHERE ORDNO = I;

149

 IF V_CNT = 0 THEN
 DBMS_OUTPUT.PUT_LINE(I);
 EXIT;
 END IF;
 END LOOP;

END;

DISPLAY CUSTOMER NAMES OF THE CUSTOMERS WHO HAVE PLACED MORE THAN 3
ORDERS WHERE THE TOTAL AMOUNT OF THE ORDER IS MORE THAN 10,000.

 SELECT CUSTNAME
 FROM CUSTOMERS
 WHERE CUSTNO IN (SELECT CUSTNO
 FROM ORDERS
 WHERE ORDNO IN (SELECT ORDNO
 FROM LINEITEMS
 GROUP BY ORDNO
 HAVING SUM(QTY*PRICE) > 10000)
 GROUP BY CUSTNO
 HAVING COUNT(*) > 1);

CHANGE THE RATE OF EACH ITEM AS FOLLOWS (1) INCREASE THE RATE BY 10% IF
THE ITEM WAS SOLD IN MORE THAN 5 ITEMS. (2) INCREASE THE RATE BY 2% IF
AVERAGE PRICE IS GREATER THAN CURRENT PRICE, OTHERWISE DECREASE THE
PRICE BY 3%.

DECLARE
 CURSOR CITEMS IS
 SELECT ITEMNO,COUNT(*) CNT, AVG(PRICE) APRICE FROM LINEITEMS
 GROUP BY ITEMNO;

 V_PER NUMBER(5,2);
 V_RATE ITEMS.RATE%TYPE;

BEGIN
 FOR REC IN CITEMS
 LOOP

 IF REC.CNT > 5 THEN
 V_PER := 0.90;
 ELSE

150

 -- GET CURRENT RATE
 SELECT RATE INTO V_RATE
 FROM ITEMS WHERE ITEMNO = REC.ITEMNO;

 IF REC.APRICE > V_RATE THEN
 V_PER := 1.02;
 ELSE
 V_PER := 0.97;
 END IF;
 END IF;

 UPDATE ITEMS SET RATE = RATE * V_PER
 WHERE ITEMNO = REC.ITEMNO;

 END LOOP;

END;

CREATE A NEW TABLE CALLED CUSTSUM AND STORE THE FOLLOWING DATA INTO
THE TABLE - CUSTOMERNO,CUSTOMER NAME,NO.OF ORDERS PLACED, DATE OF
MOST RECENT ORDER AND TOTAL AMOUNT OF ALL THE ORDERS.

BEFORE THIS PROGRAM IS RUN, YOU HAVE TO CREATE TABLE AS FOLLOWS:

CREATE TABLE CUSTSUM
(CUSTNO NUMBER(5),
 CUSTNAME VARCHAR2(20),
 NOORD NUMBER(5),
 RORDDATE DATE,
 TOTAMT NUMBER(10)
);

DECLARE
 CURSOR CUSTCUR IS
 SELECT CUSTNO, CUSTNAME FROM CUSTOMERS;
 V_ORDCNT NUMBER(5);
 V_MORDDATE DATE;
 V_TOTAMT NUMBER(10);

BEGIN

151

 FOR REC IN CUSTCUR
 LOOP
 -- GET DETAILS OF CUSTOMER
 SELECT COUNT(*), MAX(ORDDATE), SUM(QTY*PRICE) INTO V_ORDCNT,
V_MORDDATE, V_TOTAMT
 FROM ORDERS O, LINEITEMS L
 WHERE O.ORDNO = L.ORDNO AND CUSTNO = REC.CUSTNO;

 INSERT INTO CUSTSUM VALUES (REC.CUSTNO, REC.CUSTNAME, V_ORDCNT,
V_MORDDATE,V_TOTAMT);
 END LOOP;

END;

DISPLAY ITEMNAMES OF ITEMS FOR WHICH THE CURRENT PRICE IS LESS THAN THE
AVERAGE PRICE OR TOTAL QUANTITY SOLD IS LESS THAN 10 UNITS.

SELECT ITEMNAME
FROM ITEMS
WHERE ITEMNO IN
 (SELECT ITEMNO
 FROM ITEMS I
 WHERE RATE < (SELECT AVG(PRICE) FROM LINEITEMS WHERE ITEMNO =
I.ITEMNO)
)
OR ITEMNO IN
 (SELECT ITEMNO
 FROM LINEITEMS
 GROUP BY ITEMNO
 HAVING SUM(QTY) > 10);

CREATE A PROCEDURE THAT TAKES ORDERNO,ITEMNO AND INSERTS A ROW INTO
LINEITEMS, PRICE-RATE OF THE ITEM, QTY-1,DISCOUNT-10%.

CREATE OR REPLACE PROCEDURE NEWITEM(P_ORDNO NUMBER, P_ITEMNO
NUMBER)
AS
 V_RATE ORDERS.ORDNO%TYPE;
BEGIN
 SELECT RATE INTO V_RATE
 FROM ITEMS WHERE ITEMNO = P_ITEMNO;

152

 INSERT INTO LINEITEMS VALUES (P_ORDNO, P_ITEMNO, V_RATE, 1, 10);

END;

CREATE A FUNCTION THAT RETURNSTHE FIRST MISSING ORDERNO.

CREATE OR REPLACE FUNCTION FIRSTMISORDNO RETURN NUMBER
AS
 V_MAXORDNO ORDERS.ORDNO%TYPE;
 V_MINORDNO ORDERS.ORDNO%TYPE;
 V_CNT NUMBER(2);

BEGIN
 SELECT MAX(ORDNO), MIN(ORDNO) INTO V_MAXORDNO, V_MINORDNO
 FROM ORDERS;

 FOR I IN V_MINORDNO..V_MAXORDNO
 LOOP
 SELECT COUNT(*) INTO V_CNT
 FROM ORDERS WHERE ORDNO = I;

 IF V_CNT = 0 THEN
 RETURN I;
 END IF;
 END LOOP;

 -- NO MISSING ORDNO
 RETURN NULL;
END;

CREATE A FUNCTION THAT TAKES ORDERNO AND RETURNS CUSTOMER NAME OF
THAT ORDER.

CREATE OR REPLACE FUNCTION GETCUSTNAME (P_ORDNO NUMBER) RETURN
VARCHAR2
IS
 V_CUSTNAME VARCHAR2(30);
BEGIN
 SELECT CUSTNAME INTO V_CUSTNAME
 FROM CUSTOMERS
 WHERE CUSTNO = (SELECT CUSTNO FROM ORDERS WHERE ORDNO = P_ORDNO);

153

 RETURN V_CUSTNAME;
END;

CREATE A PROCEDURE THAT INSERTS A NEW ROW INTO LINEITEMS WITH GIVEN
ITEMNO,PRICE,QUANTITY, ORDERNO IS THE MOST RECENT ORDER. CHECK
WHETHER PRICE IS MORE THAN THE CURRENT RATE OF THE ITEM, CHECK
WHETHER ITEM IS ALREADY EXISTING IN THE ORDER AND CHECK WHETHER THE
TOTAL AMOUNT OF THE ORDER INCLUDING THE NEW ITEM HAS EXCEEDED 50,000.

CREATE OR REPLACE PROCEDURE NEWITEMS(P_ITEMNO NUMBER, P_PRICE
NUMBER, P_QTY NUMBER)
IS
 V_CNT NUMBER(2);
 V_RATE ITEMS.RATE%TYPE;
 V_TOTAMT NUMBER(10);
 V_ORDNO ORDERS.ORDNO%TYPE;
BEGIN
 SELECT MAX(ORDNO) INTO V_ORDNO FROM ORDERS;

 -- CHECK CONDITIONS

 SELECT RATE INTO V_RATE FROM ITEMS WHERE ITEMNO = P_ITEMNO;

 IF P_PRICE > V_RATE THEN
 RAISE_APPLICATION_ERROR(-20001,'PRICE IS MORE THAN CURRENT PRICE');
 END IF;

 SELECT COUNT(*) INTO V_CNT
 FROM LINEITEMS
 WHERE ORDNO = V_ORDNO AND ITEMNO = P_ITEMNO;

 IF V_CNT = 1 THEN
 RAISE_APPLICATION_ERROR(-20002,'ITEM IS ALREADY EXISTING');
 END IF;

 -- GET TOTAL AMOUNT

 SELECT SUM(QTY * PRICE) INTO V_TOTAMT
 FROM LINEITEMS WHERE ORDNO = V_ORDNO;

 IF V_TOTAMT + P_PRICE * P_QTY > 50000 THEN

154

 RAISE_APPLICATION_ERROR(-20003,'TOTAL AMOUNT EXCEEDED 50000');
 END IF;

 INSERT INTO LINEITEMS VALUES (V_ORDNO, P_ITEMNO, P_PRICE,P_QTY,0);

END;

MAKE SURE AN ORDER IS NOT CONTAINING MORE THAN 5 ITEMS.

CREATE OR REPLACE TRIGGER CHECKITEMCOUNT
BEFORE INSERT
ON LINEITEMS
FOR EACH ROW
DECLARE
 V_CNT NUMBER(5);
BEGIN

 SELECT COUNT(*) INTO V_CNT
 FROM LINEITEMS WHERE ORDNO = :NEW.ORDNO;

 IF V_CNT >= 5 THEN
 RAISE_APPLICATION_ERROR(-20010,'CANNOT HAVE MORE THAN 5 ITEMS IN AN
ORDER');
 END IF;
END;

DO NOT ALLOW ANY CHANGES TO ITEMS TABLE AFTER 9PM BEFORE 9AM.

CREATE OR REPLACE TRIGGER CHECKTIME
BEFORE INSERT OR DELETE OR UPDATE
ON ITEMS
BEGIN
 IF TO_CHAR(SYSDATE,'HH24') < 9 OR TO_CHAR(SYSDATE,'HH24') > 21 THEN
 RAISE_APPLICATION_ERROR(-200011,'NO CHANGES CAN BE MADE BEFORE 9
A.M AND AFTER 9 P.M');
 END IF;
END;

DO NOT ALLOW ANY CHANGE TO ITEM RATE IN SUCH A WAY DIFFERENCE IS MORE
THAN 25% OF THE EXISTING RATE.

CREATE OR REPLACE TRIGGER TRGDIFFRATE

155

BEFORE UPDATE
ON ITEMS
FOR EACH ROW
DECLARE
 V_DIFF NUMBER(5);
BEGIN
 V_DIFF := ABS(:NEW.RATE - :OLD.RATE);

 IF V_DIFF > :OLD.RATE * 0.25 THEN
 RAISE_APPLICATION_ERROR(-20014,'INVALID RATE FOR AMOUNT. CHANGE IS
TOO BIG');
 END IF;

END;

DATABASE DEVELOPMENT LIFE CYCLE (DDLC)

The database development life cycle (DDLC) is a process of designing, implementing and
maintaining a database system to meet strategic or operational information needs of an organization
or enterprise such as:

• Improved customer support and customer satisfaction.
• Better production management.
• Better inventory management.
• More accurate sales forecasting.

PHASES OF DDLC

The software development is the group of actions needed to transform the user’s need into an
effectual software solution. Software development procedure consist the activities needed for
building the software systems and integrating the techniques and practices to be accepted. It also
includes the planning of project, tracking development and managing the complications of building
software.

This different database related activities can be grouped into below phases (more commonly known
as DDLC – Database Development Life Cycle):

Requirements Analysis Database Design Evaluation and Selection Logical Database Design Physical
Database Design Implementation Data Loading Testing and Performance Tuning Operation
Maintenance

156

• Requirements Analysis

The most important step n implementing a database system is to find out what is needed — What
type of a database is required for the business organization, daily volume of the data, how much data
needs to be stored in the master files etc. In order to collect all this required information, a database
analyst need to spend a lot of time within the business organization talking to people, end users and
get acquainted with day-to-day process.

• Database Design

In this stage the database designers will make a decision on the database model that is perfectly
suited for the organization’s requirements. The database designers will study the documents
prepared by the analysts in the requirements analysis stage and then start developing a system that
fulfills the needs.

• Evaluation and Selection

Once the data model is designed, tested and demonstrated, the next phase is to evaluate the diverse
database management systems and choose the one that is perfectly suited for the requirements of the
organization. In order to identify best performing database for the organization, end user should be
involved in this phase.

• Logical Database Design

Once the evaluation and selection phase is completed successfully, the next step n the database
development life cycle is logical database design. The conceptual design is translated into internal
model in the logical design phase. This includes the mapping of all objects i.e. tables design,
indexes, views, transactions, access privileges etc.

• Physical Database Design

Physical database design is the procedure of selecting and characterizing the data storage and data
access of the database. The data storage depends on the type of devices supported by the hardware,
the data access methods and the DBMS.

Physical design is mainly significant for older database models like hierarchical and network
models. Physical design is very vital in database development life cycle and has great significance as
a bad design can result in deprived performance.

• Implementation

157

In most databases a new database implementation needs the formation of special storage related
constructs to house the end user tables. These constructs typically comprise storage group, table
spaces, data files, tables etc.

• Data Loading

Once the database has been created, the data must be loaded into the database. The data required to
be converting and migrating to the new database, if the loaded data is currently stored n a different
system or in a different format.

• Testing and Performance Tuning

The next phase is testing and performance tuning, this phase starts soon the data is loaded into the
database. In this phase, database is tested and fine-tuned for performance, integrity, access and
security constraints. It is very important that the database administrators and application
programmers work together during this phase, because testing and performance tuning happens in
parallel.

• Operation

Once the data is loaded into the database and it s fully tested, the database is than released into
production.

In operation phase, the database is accessed by the end users and application programs. This stage
includes adding of new data, modifying existing data and deletion of obsolete data. The database
administrators perform the administrative tasks periodically such as performance tuning, expanding
storage space, database backup etc. This is the crucial phase as it provides useful information and
helps management to make a business decision, thus making the smooth and well-organized
functioning of the organization.

• Maintenance

Database maintenance phase is very important and it is one of the ongoing phases in DDLC. Factors
such as new business needs, new information requirements, acquisition of new data etc will make it
essential to formulate ongoing changes and improvements to the existing design. The major tasks in
this phase include: database backup and recovery, performance tuning, design modifications, access
management and audits, usage monitoring, hardware maintenance, upgradation etc.

Functional Dependencies
FD's are constraints on well-formed relations and represent a formalism on the infrastructure of relation.

158

Definition: A functional dependency (FD) on a relation schema R is a constraint X → Y, where X
and Y are subsets of attributes of R. An FD is a relationship between an attribute "Y" and a
determinant (1 or more other attributes) "X" such that for a given value of a determinant the value of
the attribute is uniquely defined.

• X is a determinant
• X determines Y
• Y is functionally dependent on X
• X → Y
• X →Y is trivial if Y Í X

Example:

Let R be
NewStudent(stuId, lastName, major, credits, status, socSecNo)

FDs in R include

• {stuId}→{lastName}, but not the reverse
• {stuId} →{lastName, major, credits, status, socSecNo, stuId}
• {socSecNo} →{stuId, lastName, major, credits, status, socSecNo}
• {credits}→{status}, but not {status}→{credits}

ZipCode→AddressCity

ArtistName→BirthYear

Autobrand→Manufacturer, Engine type

Author, Title→PublDate

TRIVIAL FUNCTIONAL DEPENDENCY

A functional dependency is trivial if Y is a subset of X. In a table with attributes of employee name
and Social Security number (SSN), employee name is functionally dependant on SSN because the
SSN is unique for individual names. An SSN identifies the employee specifically, but an employee
name cannot distinguish the SSN because more than one employee could have the same name.
Functional dependency defines Boyce-Codd normal form and third normal form. This preserves
dependency between attributes, eliminating the repetition of information. Functional dependency is
related to a candidate key, which uniquely identifies a tuple and determines the value of all other
attributes in the relation. In some cases, functionally dependant sets are irreducible if: The right-hand

159

set of functional dependency holds only one attribute. The left-hand set of functional dependency
cannot be reduced, since this may change the entire content of the set. Reducing any of the existing
functional dependency might change the content of the set. An important property of a functional
dependency is Armstrong’s axiom, which is used in database normalization. In a relation, R, with
three attributes (X, Y, Z) Armstrong’s axiom holds strong if the following conditions are satisfied:
Axiom of Transivity: If X->Y and Y->Z then, X->Z. Axiom of Reflexivity (Subset Property): If Y is
a subset of X then X->Y. Axiom of Augmentation: If X->Y then XZ->YZ.

Dependency Preservation

1. Another desirable property in database design is dependency preservation.
o We would like to check easily that updates to the database do not result in illegal relations

being created.
o It would be nice if our design allowed us to check updates without having to compute natural

joins.
o To know whether joins must be computed, we need to determine what functional

dependencies may be tested by checking each relation individually.
o Let F be a set of functional dependencies on schema R.

o Let be a decomposition of R.

o The restriction of F to is the set of all functional dependencies in that include only

attributes of .
o Functional dependencies in a restriction can be tested in one relation, as they involve

attributes in one relation schema.

o The set of restrictions is the set of dependencies that can be checked
efficiently.

o We need to know whether testing only the restrictions is sufficient.

o Let .

o F' is a set of functional dependencies on schema R, but in general, .
o However, it may be that .
o If this is so, then every functional dependency in F is implied by F', and if F' is satisfied, then

F must also be satisfied.
o A decomposition having the property that is a dependency-preserving

decomposition.

MULTIVALUED DEPENDENCIES

Multivalued dependencies occur when the presence of one or more rows in a table implies the presence of
one or more other rows in that same table.

Examples:

160

For example, imagine a car company that manufactures many models of car, but always makes both
red and blue colors of each model. If you have a table that contains the model name, color and year
of each car the company manufactures, there is a multivalued dependency in that table. If there is a
row for a certain model name and year in blue, there must also be a similar row corresponding to the
red version of that same car.

NORMALIZATION

Normalization is a process of reducing redundancies of data in a database. Quite often we come across tables
having a lot of bulk data with many columns. All these data might not be necessary all the time whenever we
use those tables. So, a better option is to split up the bulk table into small parts and use only those tables
which suit the actual purpose at a given instance of time. In this way, redundancy is reduced. To make the
long story short, we can simply say that normalization is a process of dividing a big table into smaller ones in
order to reduce redundancy.

ANAMOLIES IN DBMS:

Insertion Anomaly
It is a failure to place information about a new database entry into all the places in the database
where information about the new entry needs to be stored. In a properly normalized database,
information about a new entry needs to be inserted into only one place in the database, in an
inadequatly normalized database, information about a new entry may need to be inserted into more
than one place, and human fallibility being what it is, some of the needed additional insertions may
be missed.

Deletion anomaly
It is a failure to remove information about an existing database entry when it is time to remove that
entry. In a properly normalized database, information about an old, to-be-gotten-rid-of entry needs to
be deleted from only one place in the database, in an inadequatly normalized database, information
about that old entry may need to be deleted from more than one place.

Update Anomaly
An update of a database involves modifications that may be additions, deletions, or both. Thus
“update anomalies” can be either of the kinds discussed above.

All three kinds of anomalies are highly undesirable, since thier occurence constitutes corruption of
the database. Properly normalized database are much less susceptible to corruption than are un-
normalized databases.

Normalization Avoids

• Duplication of Data – The same data is listed in multiple lines of the database
• Insert Anomaly – A record about an entity cannot be inserted into the table without first inserting

information about another entity – Cannot enter a customer without a sales order

161

• Delete Anomaly – A record cannot be deleted without deleting a record about a related entity.
Cannot delete a sales order without deleting all of the customer’s information.

• Update Anomaly – Cannot update information without changing information in many places. To
update customer information, it must be updated for each sales order the customer has placed

Process of normalization:
Before getting to know the normalization techniques in detail, let us define a few building blocks
which are used to define normal form.

1. Determinant : Attribute X can be defined as determinant if it uniquely defines the value Y in
a given relationship or entity .To qualify as determinant attribute need NOT be a key attribute
.Usually dependency of attribute is represented as X->Y ,which means attribute X decides
attribute Y.

Example: In RESULT relation, Marks attribute may decide the grade attribute .This is represented as
Marks->grade and read as Marks decides Grade.
Marks -> Grade
In the result relation, Marks attribute is not a key attribute .Hence it can be concluded that key
attributes are determinants but not all the determinants are key attributes.

2. Functional Dependency: Yes functional dependency has definition but let’s not care about
that. Let’s try to understand the concept by example. Consider the following relation :

REPORT(Student#,Course#,CourseName,IName,Room#,Marks,Grade)
Where:

• Student#-Student Number
• Course#-Course Number
• CourseName -CourseName
• IName- Name of the instructor who delivered the course
• Room#-Room number which is assigned to respective instructor
• Marks- Scored in Course Course# by student Student #
• Grade –Obtained by student Student# in course Course #
• Student#,Course# together (called composite attribute) defines EXACTLY ONE value of

marks .This can be symbolically represented as

 Student#Course# Marks
This type of dependency is called functional dependency. In above example Marks is functionally
dependent on Student#Course#.
Other Functional dependencies in above examples are:

• Course# -> CourseName
• Course#-> IName(Assuming one course is taught by one and only one instructor)
• IName -> Room# (Assuming each instructor has his /her own and non shared room)
• Marks ->Grade

162

Formally we can define functional dependency as: In a given relation R, X and Y are attributes.
Attribute Y is functional dependent on attribute X if each value of X determines exactly one value of
Y. This is represented as :
 X->Y
However X may be composite in nature.

3. Full functional dependency: In above example Marks is fully functional dependent on
student#Course# and not on the sub set of Student#Course# .This means marks cannot be
determined either by student # or Course# alone .It can be determined by using Student# and
Course# together. Hence Marks is fully functional dependent on student#course#.

CourseName is not fully functionally dependent on student#course# because one of the subset
course# determines the course name and Student# does not having role in deciding Course name
.Hence CourseName is not fully functional dependent on student #Course#.

Student#
 Marks
Course#
Formal Definition of full functional dependency : In a given relation R ,X and Y are attributes. Y is
fully functionally dependent on attribute X only if it is not functionally dependent on sub-set of
X.However X may be composite in nature.

4. Partial Dependency: In the above relationship CourseName,IName,Room# are partially
dependent on composite attribute Student#Course# because Course# alone can defines the
coursename, IName,Room#.

Room#
IName
CourseName
Course#
Student#
Formal Definition of Partial dependency: In a given relation R, X and Y are attributes .Attribute Y is
partially dependent on the attribute X only if it is dependent on subset attribute X .However X may
be composite in nature.

5. Transitive Dependency: In above example , Room# depends on IName and in turn depends
on Course# .Here Room# transitively depends on Course#.

IName
Room#
Course#
Similarly Grade depends on Marks,in turn Marks depends on Student# Course# hence Grade

163

Fully transitively depends on Student# Course#.

6. Key attributes : In a given relationship R ,if the attribute X uniquely defines all other
attributes ,then the attribute X is a key attribute which is nothing but the candidate key.

Ex: Student#Course# together is a composite key attribute which determines all attributes in
relationship REPORT(student#,Course#,CourseName,IName,Room#,Marks,Grade)uniquely.Hence
Student# and Course# are key attributes.

Un-Normalized Form (UNF)

If a table contains non-atomic values at each row, it is said to be in UNF. An atomic value is
something that can not be further decomposed. A non-atomic value, as the name suggests, can be
further decomposed and simplified. Consider the following table:

Emp-Id Emp-Name Month Sales Bank-Id Bank-Name
E01 AA Jan 1000 B01 SBI

 Feb 1200
 Mar 850

E02 BB Jan 2200 B02 UTI
 Feb 2500

E03 CC Jan 1700 B01 SBI
 Feb 1800
 Mar 1850
 Apr 1725

In the sample table above, there are multiple occurrences of rows under each key Emp-Id. Although
considered to be the primary key, Emp-Id cannot give us the unique identification facility for any
single row. Further, each primary key points to a variable length record (3 for E01, 2 for E02 and 4
for E03).

First Normal Form (1NF)

A relation is said to be in 1NF if it contains no non-atomic values and each row can provide a unique
combination of values. The above table in UNF can be processed to create the following table in
1NF.

Emp-Id

Emp-Name Month Sales Bank-Id Bank-Name

E01 AA Jan 1000 B01 SBI

164

E01 AA Feb 1200 B01 SBI
E01 AA Mar 850 B01 SBI
E02 BB Jan 2200 B02 UTI
E02 BB Feb 2500 B02 UTI
E03 CC Jan 1700 B01 SBI
E03 CC Feb 1800 B01 SBI
E03 CC Mar 1850 B01 SBI
E03 CC Apr 1725 B01 SBI

As you can see now, each row contains unique combination of values. Unlike in UNF, this relation
contains only atomic values, i.e. the rows can not be further decomposed, so the relation is now in
1NF.

Second Normal Form (2NF)

A relation is said to be in 2NF f if it is already in 1NF and each and every attribute fully depends on
the primary key of the relation. Speaking inversely, if a table has some attributes which is not
dependant on the primary key of that table, then it is not in 2NF.

Let us explain. Emp-Id is the primary key of the above relation. Emp-Name, Month, Sales and Bank-
Name all depend upon Emp-Id. But the attribute Bank-Name depends on Bank-Id, which is not the
primary key of the table. So the table is in 1NF, but not in 2NF. If this position can be removed into
another related relation, it would come to 2NF.

Emp-Id Emp-NameMonth SalesBank-Id
E01 AA JAN 1000 B01
E01 AA FEB 1200 B01
E01 AA MAR 850 B01
E02 BB JAN 2200 B02
E02 BB FEB 2500 B02
E03 CC JAN 1700 B01
E03 CC FEB 1800 B01
E03 CC MAR 1850 B01
E03 CC APR 1726 B01

Bank-Id Bank-Name
B01 SBI
B02 UTI

After removing the portion into another relation we store lesser amount of data in two relations
without any loss information. There is also a significant reduction in redundancy.

165

Third Normal Form (3NF)

A relation is said to be in 3NF, if it is already in 2NF and there exists no transitive dependency in
that relation. Speaking inversely, if a table contains transitive dependency, then it is not in 3NF, and
the table must be split to bring it into 3NF.

What is a transitive dependency? Within a relation if we see
A → B [B depends on A]
And
B → C [C depends on B]
Then we may derive
A → C[C depends on A]

Such derived dependencies hold well in most of the situations. For example if we have
Roll → Marks
And
Marks → Grade
Then we may safely derive
Roll → Grade.

This third dependency was not originally specified but we have derived it.

The derived dependency is called a transitive dependency when such dependency becomes
improbable. For example we have been given
Roll → City
And
City → STDCode

If we try to derive Roll → STDCode it becomes a transitive dependency, because obviously the
STDCode of a city cannot depend on the roll number issued by a school or college. In such a case
the relation should be broken into two, each containing one of these two dependencies:
Roll → City
And
City → STD code

Boyce-Code Normal Form (BCNF)

A relationship is said to be in BCNF if it is already in 3NF and the left hand side of every
dependency is a candidate key. A relation which is in 3NF is almost always in BCNF. These could
be same situation when a 3NF relation may not be in BCNF the following conditions are found true.

1. The candidate keys are composite.
2. There are more than one candidate keys in the relation.
3. There are some common attributes in the relation.

166

Professor CodeDepartmentHead of Dept.Percent Time
P1 Physics Ghosh 50
P1 MathematicsKrishnan 50
P2 Chemistry Rao 25
P2 Physics Ghosh 75
P3 MathematicsKrishnan 100

Consider, as an example, the above relation. It is assumed that:

1. A professor can work in more than one department
2. The percentage of the time he spends in each department is given.
3. Each department has only one Head of Department.

The relation diagram for the above relation is given as the following:

The given relation is in 3NF. Observe, however, that the names of Dept. and Head of Dept. are
duplicated. Further, if Professor P2 resigns, rows 3 and 4 are deleted. We lose the information that
Rao is the Head of Department of Chemistry.

The normalization of the relation is done by creating a new relation for Dept. and Head of Dept. and
deleting Head of Dept. form the given relation. The normalized relations are shown in the following.

Professor CodeDepartmentPercent Time
P1 Physics 50
P1 Mathematics 50
P2 Chemistry 25

167

P2 Physics 75
P3 Mathematics 100

Department

Head of Dept.

Physics Ghosh
MathematicsKrishnan
Chemistry Rao

See the dependency diagrams for these new relations.

Fourth Normal Form (4NF)

When attributes in a relation have multi-valued dependency, further Normalization to 4NF and 5NF
are required. Let us first find out what multi-valued dependency is.

A multi-valued dependency is a typical kind of dependency in which each and every attribute
within a relation depends upon the other, yet none of them is a unique primary key.

We will illustrate this with an example. Consider a vendor supplying many items to many projects in
an organization. The following are the assumptions:

1. A vendor is capable of supplying many items.
2. A project uses many items.
3. A vendor supplies to many projects.
4. An item may be supplied by many vendors.

A multi valued dependency exists here because all the attributes depend upon the other and yet none
of them is a primary key having unique value.

Vendor Code Item Code Project No.
V1 I1 P1
V1 I2 P1
V1 I1 P3

168

V1 I2 P3
V2 I2 P1
V2 I3 P1
V3 I1 P2
V3 I1 P3

The given relation has a number of problems. For example:

1. If vendor V1 has to supply to project P2, but the item is not yet decided, then a row with a blank for
item code has to be introduced.

2. The information about item I1 is stored twice for vendor V3.

Observe that the relation given is in 3NF and also in BCNF. It still has the problem mentioned
above. The problem is reduced by expressing this relation as two relations in the Fourth Normal
Form (4NF). A relation is in 4NF if it has no more than one independent multi valued dependency or
one independent multi valued dependency with a functional dependency.

The table can be expressed as the two 4NF relations given as following. The fact that vendors are
capable of supplying certain items and that they are assigned to supply for some projects in
independently specified in the 4NF relation.

Vendor-Supply

Vendor Code

Item Code

V1 I1
V1 I2
V2 I2
V2 I3
V3 I1
Vendor-Project

Vendor Code

Project No.

V1 P1
V1 P3
V2 P1
V3 P2

Fifth Normal Form (5NF)

169

These relations still have a problem. While defining the 4NF we mentioned that all the attributes
depend upon each other. While creating the two tables in the 4NF, although we have preserved the
dependencies between Vendor Code and Item code in the first table and Vendor Code and Item code
in the second table, we have lost the relationship between Item Code and Project No. If there were a
primary key then this loss of dependency would not have occurred. In order to revive this
relationship we must add a new table like the following. Please note that during the entire process of
normalization, this is the only step where a new table is created by joining two attributes, rather than
splitting them into separate tables.

Project No. Item Code
P1 11
P1 12
P2 11
P3 11
P3 13

QUERY PROCESSING

Query processing includes translation of high-level queries into low-level expressions that can be used at the
physical level of the file system, query optimization and actual execution of the query to get the result. It is a
three-step process that consists of parsing and translation, optimization and execution of the query submitted
by the user.

A query is processed in four general steps:

170

1. Scanning and Parsing
2. Query Optimization or planning the execution strategy
3. Query Code Generator (interpreted or compiled)
4. Execution in the runtime database processor

1. Scanning and Parsing

• When a query is first submitted (via an applications program), it must be scanned and parsed to
determine if the query consists of appropriate syntax.

• Scanning is the process of converting the query text into a tokenized representation.
• The tokenized representation is more compact and is suitable for processing by the parser.
• This representation may be in a tree form.
• The Parser checks the tokenized representation for correct syntax.
• In this stage, checks are made to determine if columns and tables identified in the query exist in the

database and if the query has been formed correctly with the appropriate keywords and structure.
• If the query passes the parsing checks, then it is passed on to the Query Optimizer.

2. Query Optimization or Planning the Execution Strategy

• For any given query, there may be a number of different ways to execute it.
• Each operation in the query (SELECT, JOIN, etc.) can be implemented using one or more different

Access Routines.
• For example, an access routine that employs an index to retrieve some rows would be more efficient

that an access routine that performs a full table scan.
• The goal of the query optimizer is to find a reasonably efficient strategy for executing the query (not

quite what the name implies) using the access routines.
• Optimization typically takes one of two forms: Heuristic Optimization or Cost Based Optimization
• In Heuristic Optimization , the query execution is refined based on heuristic rules for reordering the

individual operations.
• With Cost Based Optimization, the overall cost of executing the query is systematically reduced by

estimating the costs of executing several different execution plans.

3. Query Code Generator (interpreted or compiled)

• Once the query optimizer has determined the execution plan (the specific ordering of access routines),
the code generator writes out the actual access routines to be executed.

• With an interactive session, the query code is interpreted and passed directly to the runtime database
processor for execution.

• It is also possible to compile the access routines and store them for later execution.

4. Execution in the runtime database processor

• At this point, the query has been scanned, parsed, planned and (possibly) compiled.
• The runtime database processor then executes the access routines against the database.
• The results are returned to the application that made the query in the first place.
• Any runtime errors are also returned.

171

Query Optimization

• To enable the system to achieve (or improve) acceptable performance by choosing a better (if not the
best) strategy during the process of a query. One of the great strengths to the relational database.

Automatic Optimization vs. Human Programmer

1. A good automatic optimizer will have a wealth of information available to it that human
programmers typically do not have.

2. An automatic optimizer can easily reprocess the original relational request when the
organization of the database is changed. For a human programmer, reorganization would
involve rewriting the program.

3. The optimizer is a program, and therefore is capable of considering literally hundreds of
different implementation strategies for a given request, which is much more than a human
programmer can.

4. The optimizer is available to a wide range of users, in an efficient and cost-effective manner.

The Optimization Process

1. Cast the query into some internal representation, such as a query tree structure.
2. Convert the internal representation to canonical form.

*A subset (say C) of a set of queries (say Q) is said to be a set of canonical forms for Q if and only if
every query Q is equivalent to just one query in C.

During this step, some optimization is already achieved by transforming the internal representation
to a better canonical form.

Possible improvements

a. Doing the restrictions (selects) before the join.
b. Reduce the amount of comparisons by converting a restriction condition to an equivalent

condition in conjunctive normal form- that is, a condition consisting of a set of restrictions
that are ANDed together, where each restriction in turn consists of a set of simple comparisons
connected only by OR's.

c. A sequence of restrictions (selects) before the join.
d. In a sequence of projections, all but the last can be ignored.
e. A restriction of projection is equivalent to a projection of a restriction.
f. Others
3. Choose candidate low-level procedures by evaluate the transformed query.

*Access path selection: Consider the query expression as a series of basic operations (join,
restriction, etc.), then the optimizer choose from a set of pre-defined, low-level
implementation procedures. These procedures may involve the user of primary key, foreign
key or indexes and other information about the database.

172

4. Generate query plans and choose the cheapest by constructing a set of candidate query plans
first, then choose the best plan. To pick the best plan can be achieved by assigning cost to
each given plan. The costs is computed according to the number of disk I/O's involved.

MODULE 3

Database security

Database security concerns the use of a broad range of information security controls to protect
databases (potentially including the data, the database applications or stored functions, the database
systems, the database servers and the associated network links) against compromises of their
confidentiality, integrity and availability. It involves various types or categories of controls, such as
technical, procedural/administrative and physical. Database security is a specialist topic within the
broader realms of computer security, information security and risk management.

Security risks to database systems include, for example:

• Unauthorized or unintended activity or misuse by authorized database users, database
administrators, or network/systems managers, or by unauthorized users or hackers (e.g.
inappropriate access to sensitive data, metadata or functions within databases, or
inappropriate changes to the database programs, structures or security configurations);

• Malware infections causing incidents such as unauthorized access, leakage or disclosure of
personal or proprietary data, deletion of or damage to the data or programs, interruption or
denial of authorized access to the database, attacks on other systems and the unanticipated
failure of database services;

• Overloads, performance constraints and capacity issues resulting in the inability of
authorized users to use databases as intended;

• Physical damage to database servers caused by computer room fires or floods, overheating,
lightning, accidental liquid spills, static discharge, electronic breakdowns/equipment failures
and obsolescence;

• Design flaws and programming bugs in databases and the associated programs and systems,
creating various security vulnerabilities (e.g. unauthorized privilege escalation), data
loss/corruption, performance degradation etc.;

• Data corruption and/or loss caused by the entry of invalid data or commands, mistakes in
database or system administration processes, sabotage/criminal damage etc.

Many layers and types of information security control are appropriate to databases, including:

• Access control
• Auditing
• Authentication
• Encryption
• Integrity controls
• Backups
• Application security

173

Traditionally databases have been largely secured against hackers through network security
measures such as firewalls, and network-based intrusion detection systems. While network security
controls remain valuable in this regard, securing the database systems themselves, and the
programs/functions and data within them, has arguably become more critical as networks are
increasingly opened to wider access, in particular access from the Internet. Furthermore, system,
program, function and data access controls, along with the associated user identification,
authentication and rights management functions, have always been important to limit and in some
cases log the activities of authorized users and administrators. In other words, these are
complementary approaches to database security, working from both the outside-in and the inside-out
as it were.

Many organizations develop their own "baseline" security standards and designs detailing basic
security control measures for their database systems. These may reflect general information security
requirements or obligations imposed by corporate information security policies and applicable laws
and regulations (e.g. concerning privacy, financial management and reporting systems), along with
generally-accepted good database security practices (such as appropriate hardening of the underlying
systems) and perhaps security recommendations from the relevant database system and software
vendors. The security designs for specific database systems typically specify further security
administration and management functions (such as administration and reporting of user access
rights, log management and analysis, database replication/synchronization and backups) along with
various business-driven information security controls within the database programs and functions
(e.g. data entry validation and audit trails). Furthermore, various security-related activities (manual
controls) are normally incorporated into the procedures, guidelines etc. relating to the design,
development, configuration, use, management and maintenance of databases.

Database security cannot be seen as an isolated problem because it is effected by other components
of a computerized system as well. The security requirements of a system are specified by means of a
security policy which is then enforced by various security mechanisms. For databases, requirements
on the security can be classified into the following categories:
�Identification, Authentication
Usually before getting access to a database each user has to identify himself to the computer system.
Authentication is the way to verify the identity of a user at log-on time. Most common authentication
methods are passwords but more advanced techniques like badge readers, biometric recognition
techniques, or signature analysis devices are also available.
�Authorization, Access Controls
Authorization is the specification of a set of rules that specify who has which type of access to what
information. Authorization policies therefore govern the disclosure and modification of information.
Access controls are procedures that are designed to control authorizations. They are responsible to
limit access to stored data to authorized users only.
�Integrity, Consistency
An integrity policy states a set of rules (i. e. semantic integrity constraints) that define the correct
states of the database during database operation and therefore can protect against malicious or
accidental modification of information. Closely related issues to integrity and consistency are
concurrency control and recovery. Concurrency control policies protect the integrity of the database
in the presence of concurrent transactions. If these transactions do not terminate normally due to

174

system crashes or security violations recovery techniques are used to reconstruct correct or valid
database states.
�Auditing
The requirement to keep records of all security relevant actions issued by a user is called auditing.
Resulting audit records are the basis for further reviews and examinations in order to test the
adequacy of system controls and to recommend any changes in the security policy.

Locking

Locking is a mechanism commonly used by systems to control access to shared resources by
concurrently running users. In the context of a DBMS, these shared resources are data objects, and
the users are transactions.
Locking is typically implemented using a lock manager, which records which objects are locked, by
whom, and in what mode. When a transaction wishes to use a particular
object (to read or write), it must request a lock from the lock manager. After it is done with the
object, it releases the lock by again notifying the lock manager. In certain cases, the lock manager is
not able to immediately grant a lock when it is requested (e.g., if it is held by another transaction). In
this case, the lock manager maintains a queue of transactions waiting for the lock.
It is important to also recognize that some data items can be shared simultaneously between
transactions (e.g., transactions T1 and T2 both want to read object X), but in other cases it is
necessary for a transaction to have an exclusive lock (e.g., T1 wants to write to X). This motivates
the need for multiple lock modes. In this case, the idea is that, if a transaction requests a lock on an
object in a mode that is incompatible with an existing lock on that object, then it must wait on the
lock queue until the existing lock is released.
In a DBMS, the goal is to develop a locking protocol that guarantees a schedule with desirable
properties (e.g., serializability, recoverability, avoid cascading aborts). Two common protocols are
two-phase locking (2PL) and strict two-phase locking (Strict 2PL).
Strict Two-Phase Locking (Strict 2PL)
1. If a transaction T wants to read object X, it requests a shared lock on X. If it wants to write X, it
requests an exclusive lock.
2. All locks requested by a transaction are held until the transaction is completed (commits or
aborts), at which point the locks are released. It can be shown that Strict 2PL guarantees schedules
that are serializable, recoverable, and that avoid cascading aborts.
Two-Phase Locking (2PL)
2PL relaxes Strict 2PL slightly. A transaction need not hold all locks until completion, but once it
has released a lock, it may not request any more locks. 2PL is guaranteed to produce schedules that
are serializable.

Shared and Exclusive Locks

A lock is a system object associated with a shared resource such as a data item of an elementary
type, a row in a database, or a page of memory. In a database, a lock on a database object (a data-
access lock) may need to be acquired by a transaction before accessing the object. Correct use of
locks prevents undesired, incorrect or inconsistent operations on shared resources by other
concurrent transactions. When a database object with an existing lock acquired by one transaction
needs to be accessed by another transaction, the existing lock for the object and the type of the

175

intended access are checked by the system. If the existing lock type does not allow this specific
attempted concurrent access type, the transaction attempting access is blocked (according to a
predefined agreement/scheme). In practice a lock on an object does not directly block a transaction's
operation upon the object, but rather blocks that transaction from acquiring another lock on the same
object, needed to be held/owned by the transaction before performing this operation. Thus, with a
locking mechanism, needed operation blocking is controlled by a proper lock blocking scheme,
which indicates which lock type blocks which lock type.

Two major types of locks are utilized:

• Write-lock (exclusive lock) is associated with a database object by a transaction
(Terminology: "the transaction locks the object," or "acquires lock for it") before writing
(inserting/modifying/deleting) this object.

• Read-lock (shared lock) is associated with a database object by a transaction before reading
(retrieving the state of) this object.

The common interactions between these lock types are defined by blocking behavior as follows:

• An existing write-lock on a database object blocks an intended write upon the same object
(already requested/issued) by another transaction by blocking a respective write-lock from
being acquired by the other transaction. The second write-lock will be acquired and the
requested write of the object will take place (materialize) after the existing write-lock is
released.

• A write-lock blocks an intended (already requested/issued) read by another transaction by
blocking the respective read-lock .

• A read-lock blocks an intended write by another transaction by blocking the respective write-
lock .

• A read-lock does not block an intended read by another transaction. The respective read-lock
for the intended read is acquired (shared with the previous read) immediately after the
intended read is requested, and then the intended read itself takes place.

TRANSCATION

A transaction is a set of changes that must all be made together. It is a program unit whose execution
mayor may not change the contents of a database. Transaction is executed as a single unit. If the
database was in consistent state before a transaction, then after execution of the transaction also, the
database must be in a consistent state. For example, a transfer of money from one bank account to
another requires two changes to the database both must succeed or fail together.

Example:

You are working on a system for a bank. A customer goes to the ATM and instructs it to transfer Rs.
1000 from savings to a checking account. This simple transaction requires two steps:

176

• Subtracting the money from the savings account balance.

• Adding the money to the checking account balance.

The code to create this transaction will require two updates to the database. For example, there will
be two SQL statements: one UPDATE command to decrease the balance in savings and a second
UPDATE command to increase the balance in the checking account.

You have to consider what would happen if a machine crashed between these two operations. The
money has already been subtracted from the savings account will not be added to the checking
account. It is lost. You might consider performing the addition to checking first, but then the
customer ends up with extra money, and the bank loses. The point is that both changes must be made
successfully. Thus, a transaction is defined as a set of changes that must be made together

States of Transaction

A transaction must be in one of the following states:

• Active: the initial state, the transaction stays in this state while it is executing.
• Partially committed: after the final statement has been executed.
• Failed: when the normal execution can no longer proceed.
• Aborted: after the transaction has been rolled back and the database has been restored to its state

prior to the start of the transaction.
• Committed: after successful completion.

We say that a transaction has committed only if it has entered the committed state. Similarly, we say
that a transaction has aborted only if it has entered the aborted state. A transaction is said to have
terminated if has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters the partially
committed state. At this point, the transaction has completed its execution, but it is still possible that

177

it may have to be aborted, since the actual output may still be temporarily hiding in main memory
and thus a hardware failure may preclude its successful completion

The database system then writes out enough information to disk that, even in the event of a failure,
the updates performed by the transaction can be recreated when the system restarts after the failure.
When the last of this information is written out, the transaction enters the committed state.

ACID Properties of Transactions

Most of what we’re calling transactional locking relates to the ability of a database management
system (DBMS) to ensure reliable transactions that adhere to these ACID properties. ACID is an
acronym that stands for Atomicity, Consistency, Isolation, and Durability. Each of these properties is
described in more detail below. However, all of these properties are related and must be considered
together. They are more like different views of the same object than independent things.
Atomicity
Atomicity means all or nothing. Transactions often contain multiple separate actions. For example, a
transaction may insert data into one table, delete from another table, and update a third table.
Atomicity ensures that either all of these actions occur or none at all.
Consistency
Consistency means that transactions always take the database from one consistent state to another.
So, if a transaction violates the databases consistency rules, then the entire transaction will be rolled
back.
Isolation
Isolation means that concurrent transactions, and the changes made within them, are not visible to
each other until they complete. This avoids many problems, including those that could lead to
violation of other properties. The implementation of isolation is quite different in different DBMS’.
This is also the property most often related to locking problems.
Durability
Durability means that committed transactions will not be lost, even in the event of abnormal
termination. That is, once a user or program has been notified that a transaction was committed, they
can be certain that the data will not be lost.

Timestamp Ordering Protocol

A timestamp is a tag that can be attached to any transaction or any data item, which denotes a
specific time on which the transaction or data item had been activated in any way. We, who use
computers, must all be familiar with the concepts of “Date Created” or “Last Modified” properties of
files and folders. Well, timestamps are things like that.

A timestamp can be implemented in two ways. The simplest one is to directly assign the current
value of the clock to the transaction or the data item. The other policy is to attach the value of a
logical counter that keeps incrementing as new timestamps are required.
The timestamp of a transaction denotes the time when it was first activated. The timestamp of a data
item can be of the following two types:

178

W-timestamp (Q): This means the latest time when the data item Q has been written into.
R-timestamp (Q): This means the latest time when the data item Q has been read from.

These two timestamps are updated each time a successful read/write operation is performed on the
data item Q.

How should timestamps be used?

The timestamp ordering protocol ensures that any pair of conflicting read/write operations will be
executed in their respective timestamp order. This is an alternative solution to using locks.

For Read operations:

1. If TS (T) < W-timestamp (Q), then the transaction T is trying to read a value of data item Q
which has already been overwritten by some other transaction. Hence the value which T
wanted to read from Q does not exist there anymore, and T would be rolled back.

2. If TS (T) >= W-timestamp (Q), then the transaction T is trying to read a value of data item Q
which has been written and committed by some other transaction earlier. Hence T will be
allowed to read the value of Q, and the R-timestamp of Q should be updated to TS (T).

For Write operations:

1. If TS (T) < R-timestamp (Q), then it means that the system has waited too long for
transaction T to write its value, and the delay has become so great that it has allowed another
transaction to read the old value of data item Q. In such a case T has lost its relevance and
will be rolled back.

2. Else if TS (T) < W-timestamp (Q), then transaction T has delayed so much that the system
has allowed another transaction to write into the data item Q. in such a case too, T has lost its
relevance and will be rolled back.

3. Otherwise the system executes transaction T and updates the W-timestamp of Q to TS (T).

Causes of DBMS Failure
There are many causes of DBMS failure. When a DBMS fails, it falls into an incorrect state and will
likely contain erroneous data. Typical causes of DBMS failures include errors in the application
program, an error by the terminal user, an operator error, loss of data validity and consistency, a
hardware error, media failures, an error introduced by the environment, and errors caused by
mischief or catastrophe.
Typically, the three major types of failure that result from a major hardware or software malfunction
are transaction, system, and media. These failures may be caused by a natural disaster, computer
crime, or user, designer, developer, or operator error. Each type of failure is described in the
following paragraphs.
Transaction Failure.
Transaction failures occur when the transaction is not processed and the processing steps are rolled
back to a specific point in the processing cycle. In a distributed data base environment, a single
logical data base may be spread across several physical data bases.

179

Transaction failure can occur when some, but not all, physical data bases are updated at the
same time.
System Failure.
System failure can be caused by bugs in the data base, operating system, or hardware. In each case,
the Transaction processing is terminated without control of the application. Data in the memory is
lost; however, disk storage remains stable. The system must recover in the amount of time it takes to
complete all interrupted transactions. At one transaction per second, the system should recover in a
few seconds. System failures may occur as often as several times a week.
Media Failure.
Disk crashes or controller failures can occur because of disk-write bugs in the operating system
release, hardware errors in the channel or controller, head crashes, or media degradation. These
failures are rare but costly.
By identifying the type of DBMS failure, an organization can define the state of activity to return to
after recovery. To design the data base recovery procedures, the potential failures must be identified
and the reliability of the hardware and software must be determined. the following is a summary of
four such recovery actions:
· TRANSACTION UNDO. a transaction that aborts itself or must be aborted by the system during
routine execution.
· GLOBAL REDO. When recovering from a system failure, the effects of all incomplete transaction
must be rolled back.
· PARTIAL UNDO. While a system is recovering from failure, the results of completed transactions
may not yet be reflected in the data base because execution has been terminated in an uncontrolled
manner. Therefore, they must be repeated, if necessary, by the recovery component.
· GLOBAL UNDO. If the data base is totally destroyed, a copy of the entire data base must be reloaded
from a backup source. A supplemental copy of the transaction is necessary to roll up the state of the
data base to the present.
Techniques for Reviewing DBMS Recovery
The review of a DBMS recovery must ensure that employees with specific responsibilities perform
their functions in accordance with operational policy and procedure. There are several useful DBMS
recovery review techniques.
There are two ways to make the system operate again. First, all transactions that have occurred since
the last backup can be reapplied, which would bring the data base up to date.
Second, the current contents of the data base can be taken and all transactions can be backed out
until the integrity and validity of the data are restored. Whichever method is selected, it should be
documented and a checklist of specific tasks and responsibilities identified.
The DBMS typically provides exhaustive review trails so that the system can know its exact state at
any time. These review tails should be complete enough to reconstruct transactions and aid in
recovery procedures. A data base administrator should know how to use these review trails in
recovery to fully understand the inner workings of the DBMS.
A data base that has been backed up regularly helps the system recover from a failure and begin
operating again as soon as possible. Daily backups are sufficient in most organizations. Those
organizations that must always have current data must sometimes perform hourly backups. Each
backup should be well documented to provide further insight into the review process.

180

Review techniques should examine application design, security procedures, and personnel control to
ensure that managers can meet emergencies and have effective contingencies in place. These three
areas are extremely critical review points for the auditor, management, users, and IS personnel.

Application Design
It is important to build sound recovery procedures and processes into an application during the
design phase. The design of an application should take into consideration the data base control issues
that affect backup and recovery processes. Possible weaknesses in controls include:
· Inaccurate or incomplete data in the data base.
· An inadequate audit trail.
· An inadequate service level.
· Failure of the DBMS to function as specified.
· Inadequate documentation.
· Lack of processing continuity.
· Lack of management support.
· Fraud or embezzlement.
The data base administrator should be responsible for examining the backup and recovery controls
being considered by the user and developer when reviewing application design. The user and the
developer of the application must assess the risks of not having appropriate controls in place to aid in
recovery. Some key controls that should be adopted are:
· Review trails. A method of chronologically recording system activities that allows the
reconstruction, review, and examination of each event in a transaction from inception to
the final results.
· Recovery procedures. Automated or manual tools and techniques for recovering the integrity of a
data base.
· Application system failure procedures. Procedures for users to follow in the event that their
applications cannot operate.
· Checkpoint data bases. Copies of the data base and transaction files that are made at specific point
in time for recovery purposes.
At a minimum, these controls should be tested during the module and integration testing phases of
development. In terms of a new system review before implementation, these controls are most
effective if thoroughly validated and approved by the user and developer before the system is placed
into operation. One important issue to be considered in application design is data integrity.

Maintaining Data Integrity.
Data integrity concerns the accuracy of the contents of the data base. The integrity of the data can be
compromised because of failures(i.e., events at which the system fails to provide normal operation or
correct data). Failures are caused primarily by errors, which may originate in programs, interactions
between these programs, or the system. A transaction is a sequence of actions. It should be designed
and executed so that it either is successfully completed or has no effect on the data base. A
transaction can fail to be completed for the following reasons:
· An action violates a security or integrity constraint.
· The user cancels the transaction.
· An unrecoverable I/O error occurs.

181

· The system backs out the transaction to resolve a deadlock.
· The application program fails.
· The system crashes.
Semantic Integrity.
This refers to the accuracy of the data base despite the fact that users or applications programs try to
modify it incorrectly. Assuming that the data base security system prevents unauthorized access, and
hence malicious attempts to corrupt data, most potential errors will be caused by incorrect input,
incorrect programs, or lack of user understanding.
Traditionally, most integrity checking has been performed by the applications programs and by
periodic auditing of the data base. The following are some problems that occur when relying on
application programs for integrity checking:
· Checking is likely to be incomplete because the applications programmer may not be aware of the
semantics of the complete data base.
· Each application program relies on other programs that can modify the data base, and a problem in
one program could corrupt the whole data base.
· Code that enforces the same integrity constraints occurs in several programs. This leads to
unnecessary duplication of the programming effort and exposes the system to potential
inconsistencies.
· The criteria for integrity are buried within procedures and are therefore difficult to understand and
control.
· Maintenance operations performed by users of high-level query language cannot be controlled.
Most of these errors could be detected through auditing, although the time lag in detecting errors by
auditing can cause problems, such as difficulty in tracing the source of an error and hence correcting
it as well as incorrect data used in various ways, causing errors to propagate through the data base
and into the environment.
The semantics, or meaning, of a data base is partly drawn from a shared understanding among the
users, partly implied by the data structures used, and partly expressed as integrity constraints. These
constraints are explicitly stated by the individuals responsible for data control. Data bases can also
be classified as:
· A single record or set.
· Static or transitional.
· General or selective.
· Immediate or deferred.
· Unconditional or conditional.
A system of concurrent transactions must be correctly synchronized—that is, the processing of these
transactions must reach the same final state and produce the same output. Three forms of
inconsistency result from concurrence: lost updates, an incorrect read, and an unrepeatable read. Lost
updates can also result from backing up or undoing a transaction.
Correcting Inconsistency Problems.
The most commonly used approach to eliminate consistency problems is locking. The DBMS can
use the locking facilities that the operating system provides so that multiple processes can
synchronize their concurrent access of shared resources. A lock can be granted to multiple processes,
but a given object cannot be locked in shared and exclusive mode at the same time. Shared and
exclusive modes conflict because they are incompatible. The operating system usually provides lock
and unlock commands for requesting and releasing locks. If a lock request cannot be granted, the

182

process is suspended until the request can be granted. If transactions do not follow restrictive locking
rules, Deadlock can occur. Deadlock can cause the loss of an entire file; therefore, it is critical to
have a recovery system in place to alleviate this problem.
The Deadlock problem can be solved either by preventing Deadlock or by detecting them after they
occur and taking steps to resolve them. Deadlock can be prevented by placing restrictions on the way
locks are requested. They can be detected by examining the status of locks. After they are detected,
the Deadlock can be resolved by aborting a transaction and rescheduling it. Methods for selecting the
best transaction to abort have also been developed.
A synchronization problem can occur in a distributed data base environment, such as a client/server
network. Data bases can become out of sync when data from one data base fails to be updated on
other data bases. When updates fail to occur, users at some locations may use data that is not current
with data at other locations. Distributed data bases provide different types of updating mechanisms.
In a two-phase commit update process, network nodes must be online and receive data
simultaneously before updates can occur. A newer update method called data replication enables
updates to be stored until nodes are online and ready to receive. Update methods must ensure
currency in all network data bases.
Security Procedures
A data base usually contains information that is vital to an organization's survival. A secure data
base environment, with physical and logical security controls, is essential during recover procedures.
Physical Security.
In some distributed environments, many physical security controls, such as the use of security
badges and cipher locks, are not feasible and the organization must rely more heavily on logical
security measures. In these cases, many organizational members may have data processing needs
that do not involve a data base but require the use of computer peripherals.
Logical Security.
Logical security prevents unauthorized users from invoking DBMS functions. The primary means of
implementing this type of security is the use of passwords to prevent access to files, records, data
elements, and DBMS utilities. Passwords should be checked to ensure that they are designated in an
intelligent, logical manner.
Security Logs.
Each time an unauthorized user attempts to access the data base, it should be recorded in a security
log. Entries in this log should consist of user ID, terminal or port number, time, date, and type of
infraction. With this information, it is possible to investigate any serious breaches of security. From
the data base administrator's standpoint, evidence that the DBMS is detecting security violations and
that a consistent procedure is used to follow them up should be sufficient.
Personnel Control
Data base recovery involves ensuring that only authorized users are allowed access and that no
subsequent misuse of information occurs. These controls are usually reestablished when a system
becomes operational. When operations cease or problems occur, however, controls often become
inoperative.
The three primary classes of data base users are data base administrator, applications and systems
programmers, and end users--and each has a unique view of the data. The DBMS must be flexible
enough to present data appropriately to each class of user and maintain the proper controls to inhibit
abuse of the system, especially during recovery, when controls may not be fully operational.

183

Data Base Administrator.
The data base administrator is responsible for ensuring that the data base retains its integrity and is
accountable if the data base becomes compromised, no matter what circumstances arise. This
individual has ultimate power over the schema that the organization has implemented. Any
modifications or additions to this schema must be approved by the data base administrator.
Permission to use subschema (i.e., logical views) is given to end users and programmers only after
their intentions are fully known and are consistent with organizational goals.
Because the data base administrator has immediate and unrestricted access to almost every piece of
valuable organizational information, an incompetent employee in this position can expose the
organization to enormous risk, especially during DBMS recovery. Therefore, an organization should
have controls in place to ensure the appointment of a qualified data base administrator.
The data base administrator must ensure that appropriate procedures are followed during DBMS
recovery. The data base administrator should also validate and verify the system once it has been
recovered before allowing user access so that if controls are not functioning or accessing problem
continue, users will not be affected.

Applications and Systems Programmers.
After recovery, programmers must access the data base to manipulate and report on data according
to some predetermined specification or to access whether data loss has occurred. Each application
should have a unique subschemas with which to work. After recovery, the data base administrator
validates the subschemas organization to ensure that it is operating properly and allowing the
application to receive only the data necessary to perform its tasks. Systems programmers must be
controlled in a slightly different manner than applications programmers. They must have the
freedom to perform their tasks but be constrained from altering production programs or system
utility programs in a fraudulent
manner.
End Users.
End users are defined as all organizational members not included in the previous categories who
need to interact with the data base through DBMS utilities or application programs. Data elements of
the data base generally originate from end users. Each data element should be assigned to an end
user. The end user is then responsible for defining the element's access and security rules. Every
other user who wishes to use this data element must confer with the responsible end user. If access is
granted, the data base administrator must implement any restrictions placed on the request through
the DBMS.
Assigning ownership of specific data elements to end users discourages the corruption of data
elements, thereby enhancing data base integrity. Reviewers should ensure that this process exists and
is appropriately reinstituted after the recovery process has been completed and operational approval
has been provided by the data base administrator.
After recovery, the data base administrator should ensure that all forms of security practices and
procedures are reinstated. These processes are a part of data base security.

Object Oriented Database (OODB)

184

Object Oriented Database (OODB) provides all the facilities associated with object oriented
paradigm. It enables us to create classes, organize objects, structure an inheritance hierarchy and call
methods of other classes. Besides these, it also provides the facilities associated with standard
database systems. However, object oriented database systems have not yet replaced the RDBMS in
commercial business applications. Following are the two different approaches for designing an
object-oriented database:

• Designed to store, retrieve and manage objects created by programs written in some object oriented
languages (OOL) such as C++ or java.

Although a relational database can be used to store and manage objects, it does not understand
objects as such. Therefore, a middle layer called object manager or object-oriented layer software is
required to translate objects into tuples of a relation .

• Designed to provide object-oriented facilities to users of non object-oriented programming
languages (OOPLs) such as C or Pascal.

The user will create classes, objects, inheritance and so on and the database system will store and
manage these objects and classes. This second approach, thus, turns non-OOPLs into OOPLs. A
translation layer is required to map the objects created by user into objects of the database system.

Advantages of OODBMS

Enriched modeling capabilities

 The object-oriented data model allows the 'real world' to be modeled more closely. The object,
which encapsulates both state and behavior, is a more natural and realistic representation of real-
world objects. An object can store all the relationships it has with other objects, including many-to-
many relationships, and objects can be formed into complex objects that the traditional data models
cannot cope with easily.

 Extensibility

 OODBMSs allow new data types to be built from existing types. The ability to factor out common
properties of several classes and form them into a superclass that can be shared with subclasses can
greatly reduce redundancy within system and, as we stated· at the start of this chapter, is regarded as
one of the main advantages of object orientation. Further, the reusability of classes promotes faster
development and easier maintenance of the database and its applications.

 Capable of handling a large variety of data types

185

 Unlike traditional databases (such as hierarchical, network or relational), the object oriented
database are capable of storing different types of data, for example, pictures, voice video, including
text, numbers and so on.

Removal of impedance mismatch

 A single language interface between the Data Manipulation Language (DML) and the programming
language overcomes the impedance mismatch. This eliminates many of the efficiencies that occur in
mapping a declarative language such as SQL to an imperative 'language such as 'C'. Most
OODBMSs provide a DML that is computationally complete compared with SQL, the 'standard
language of RDBMSs.

 More expressive query language

 Navigational access from the object is the most common form of data access in an OODBMS. This
is in contrast to the associative access of SQL (that is, declarative statements with selection based on
one or more predicates). Navigational access is more suitable for handling parts explosion, recursive
queries, and so on.

 Support for schema evolution

 The tight coupling between data and applications in an OODBMS makes schema evolution more
feasible.

 Support for long-duration, transactions

 Current relational DBMSs enforce serializability on concurrent transactions to maintain database
consistency. OODBMSs use a different protocol to handle the types of long-duration transaction that
are common in many advanced database application.

 Applicability to advanced database applications

 There are many areas where traditional DBMSs have not been particularly successful, such as,
Computer-Aided Design (CAD), Computer-Aided Software Engineering (CASE), Office
Information System(OIS), and Multimedia Systems. The enriched modeling capabilities of
OODBMSs have made them suitable for these applications.

 Improved performance

 There have been a number of benchmarks that have suggested OODBMSs provide significant
performance improvements over relational DBMSs. The results showed an average 30-fold
performance improvement for the OODBMS over the RDBMS.

186

Disadvantages of OODBMSs

There are following disadvantages of OODBMSs:

Lack of universal data model: There is no universally agreed data model for an OODBMS, and
most models lack a theoretical foundation. This .disadvantage is seen as a significant drawback, and
is comparable to pre-relational systems.

Lack of experience: In comparison to RDBMSs the use of OODBMS is still relatively limited. This
means that we do not yet have the level of experience that we have with traditional systems.
OODBMSs are still very much geared towards the programmer, rather than the naïve end-user. Also
there is a resistance to the acceptance of the technology. While the OODBMS is limited to a small
niche market, this problem will continue to exist

Lack of standards: There is a general lack of standards of OODBMSs. We have already mentioned
that there is not universally agreed data model. Similarly, there is no standard object-oriented query
language.

Competition: Perhaps one of the most significant issues that face OODBMS vendors is the
competition posed by the RDBMS and the emerging ORDBMS products. These products have an
established user base with significant experience available. SQL is an approved standard and the
relational data model has a solid theoretical formation and relational products have many supporting
tools to help .both end-users and developers.

Query optimization compromises encapsulations: Query optimization requires. An understanding
of the underlying implementation to access the database efficiently. However, this compromises the
concept of incrassation.

Locking at object level may impact performance Many OODBMSs use locking as the basis for
concurrency control protocol. However, if locking is applied at the object level, locking of an
inheritance hierarchy may be problematic, as well as impacting performance.

Complexity: The increased functionality provided by the OODBMS (such as the illusion of a single-
level storage model, pointer sizzling, long-duration transactions, version management, and schema
evolution--makes the system more complex than that of traditional DBMSs. In complexity leads to
products that are more expensive and more difficult to use.

Lack of support for views: Currently, most OODBMSs do not provide a view mechanism, which,
as we have seen previously, provides many advantages such as data independence, security, reduced
complexity, and customization.

Lack of support for security: Currently, OODBMSs do not provide adequate security mechanisms.
The user cannot grant access rights on individual objects or classes.

If OODBMSs are to expand fully into the business field, these deficiencies must be rectified.

187

OBJECT RELATIONAL DBMS

Relational DBMSs are currently the dominant database technology. The OODBMS has also become the
favored system for financial and telecommunications applications. Although the OODBMS market is still
same. The OODBMS continues to find new application areas, such as the World Wide Web. Some industry
analysts expect the market for the OODBMSs to grow at over 50% per year, a rate faster than the total
database market. However, their sales are unlikely to overtake those of relational systems because of the
wealth of businesses that find RDBMSs acceptable, and because businesses have invested to much money and
resources in their development that change is prohibitive. This is the approach that has been taken by many
extended relational DBMSs, although each has implemented different combinations of features. Thus there is
no single extended relational model rather, there are a variety of these models, whose characteristics depends
upon the way and the degree to which extensions were made. However, all the models do share the same
basic relational tables and query language, all incorporate some concept of 'object, and some have the ability
to store methods (or procedures or triggers), as well as data in the database.

In a four-quadrant view of the database world, as illustrated in the figure, the lower-left quadrant are
those applications that process simple data and have no requirements for querying the data.

These types of application, for example standard text processing packages such as Word,

WordPerfect, and Frame maker, can use the underlying operating system to obtain the essential
DBMS functionality of persistence. In the lower-right quadrant are those applications that process
complex data but again have no significant requirements for querying the data. For these types of
application, for example computer-aided design packages, an OODBMS may be an appropriate
choice of DBMS.

In the top-left quadrant are those applications that process simple data and also have requirements
for complex querying. Many traditional business applications fall into this quadrant and an RDBMS
may be the most appropriate DBMS.

188

Finally, in the top-right quadrant are those applications that process completed data and have
complex querying requirements. This represents many of the advanced database applications and for
these applications an ORDBMS may be the appropriate choice of DBMS.

Advantages and Disadvantages of ORDBMSS

ORDBMSs can provide appropriate solutions for many types of advanced database applications.
However, there are also disadvantages.

Advantages of ORDBMSs

There are following advantages of ORDBMSs:

Reuse and Sharing: The main advantages of extending the Relational data model come from reuse
and sharing. Reuse comes from the ability to extend the DBMS server to perform standard
functionality centrally, rather than have it coded in each application.

Increased Productivity: ORDBMS provides increased productivity both for the developer and for
the, end user

Use of experience in developing RDBMS: Another obvious advantage is that .the extended
relational approach preserves the significant body of knowledge and experience that has gone into
developing relational applications. This is a significant advantage, as many organizations would find
it prohibitively expensive to change. If the new functionality is designed appropriately, this approach
should allow organizations to take advantage of the new extensions in an evolutionary way without
losing the benefits of current database features and functions.

Disadvantages of ORDBMSs

The ORDBMS approach has the obvious disadvantages of complexity and associated increased
costs. Further, there are the proponents of the relational approach that believe the· essential
simplicity' and purity of the .relational model are lost with these types of extension.

ORDBMS vendors are attempting to portray object models as extensions to the relational model with
some additional complexities. This potentially misses the point of object orientation, highlighting the
large semantic gap between these two technologies. Object applications are simply not as data-
centric as relational-based ones.

PARALLEL DATABASE

• A parallel database system seeks to improve performance through parallelization of various
operations, such as loading data, building indexes and evaluating queries. Although data may be
stored in a distributed fashion, the distribution is governed solely by performance considerations.
Parallel database improves processing and input/output speeds by using multiple CPUs and disks in

189

parallel. Centralized and client-server database systems are not powerful enough to handle such
applications. In parallel processing, many operations are performed simultaneously, as opposed to
serial processing, in which the computational steps are performed sequentially.

• A parallel database system seeks to improve performance through parallelization of various
operations, such as loading data, building indexes and evaluating queries.

• Although data may be stored in a distributed fashion, the distribution is governed solely by
performance considerations. Parallel databases improve processing and input/output speeds
by using multiple CPUs and disks in parallel.

• Centralized and client–server database systems are not powerful enough to handle such
applications.

• In parallel processing, many operations are performed simultaneously, as opposed to serial
processing, in which the computational steps are performed sequentially.

• Parallel databases can be roughly divided into two groups, the first group of architecture is
the multiprocessor architecture, the alternatives of which are the followings :

� Shared memory architecture, where multiple processors share the main memory space.
� Shared disk architecture, where each node has its own main memory, but all nodes share

mass storage, usually a storage area network. In practice, each node usually also has multiple
processors.

� Shared nothing architecture, where each node has its own mass storage as well as main
memory.

Distributed Database Architecture
A distributed database system allows applications to access data from local and remote databases.
In a homogenous distributed database system, each database is an Oracle Database. In
a heterogeneous distributed database system, at least one of the databases is not an Oracle
Database. Distributed databases use client/server architecture to process information requests.

It contains the following database systems:

• Homogenous Distributed Database Systems

• Heterogeneous Distributed Database Systems

• Client/Server Database Architecture

Homogenous Distributed Database Systems

A homogenous distributed database system is a network of two or more Oracle Databases that reside
on one or more machines. Below Figure illustrates a distributed system that connects three
databases: hq, mfg, and sales. An application can simultaneously access or modify the data in several
databases in a single distributed environment. For example, a single query from a Manufacturing
client on local database mfg can retrieve joined data from the products table on the local database
and the dept table on the remote hq database.

190

For a client application, the location and platform of the databases are transparent. You can also
create synonyms for remote objects in the distributed system so that users can access them with the
same syntax as local objects. For example, if you are connected to database mfg but want to access
data on database hq, creating a synonym on mfg for the remote dept table enables you to issue this
query:

SELECT * FROM dept;

 Homogeneous Distributed Database

An Oracle Database distributed database system can incorporate Oracle Databases of different
versions. All supported releases of Oracle Database can participate in a distributed database system.
Nevertheless, the applications that work with the distributed database must understand the
functionality that is available at each node in the system. A distributed database application cannot
expect an Oracle7 database to understand the SQL extensions that are only available with Oracle
Database.

Heterogeneous Distributed Database Systems

In a heterogeneous distributed database system, at least one of the databases is a non-Oracle
Database system. To the application, the heterogeneous distributed database system appears as a
single, local, Oracle Database. The local Oracle Database server hides the distribution and
heterogeneity of the data.

191

The Oracle Database server accesses the non-Oracle Database system using Oracle Heterogeneous
Services in conjunction with an agent. If you access the non-Oracle Database data store using an
Oracle Transparent Gateway, then the agent is a system-specific application. For example, if you
include a Sybase database in an Oracle Database distributed system, then you need to obtain a
Sybase-specific transparent gateway so that the Oracle Database in the system can communicate
with it.

Alternatively, you can use generic connectivity to access non-Oracle Database data stores so long
as the non-Oracle Database system supports the ODBC or OLE DB protocols.

Heterogeneous Services

Heterogeneous Services (HS) is an integrated component within the Oracle Database server and the
enabling technology for the current suite of Oracle Transparent Gateway products. HS provides the
common architecture and administration mechanisms for Oracle Database gateway products and
other heterogeneous access facilities. Also, it provides upwardly compatible functionality for users
of most of the earlier Oracle Transparent Gateway releases.

Transparent Gateway Agents

For each non-Oracle Database system that you access, Heterogeneous Services can use a transparent
gateway agent to interface with the specified non-Oracle Database system. The agent is specific to
the non-Oracle Database system, so each type of system requires a different agent.

The transparent gateway agent facilitates communication between Oracle Database and non-Oracle
Database systems and uses the Heterogeneous Services component in the Oracle Database server.
The agent executes SQL and transactional requests at the non-Oracle Database system on behalf of
the Oracle Database server.

Client/Server Database Architecture

A database server is the Oracle software managing a database, and a client is an application that
requests information from a server. Each computer in a network is a node that can host one or more
databases. Each node in a distributed database system can act as a client, a server, or both, depending
on the situation.

An Oracle Database Distributed Database System

192

A client can connect directly or indirectly to a database server. A direct connection occurs when a
client connects to a server and accesses information from a database contained on that server. For
example, if you connect to the hq database and access the dept table on this database as in below
Figure, you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessing an object on a remote database.

In contrast, an indirect connection occurs when a client connects to a server and then accesses
information contained in a database on a different server. For example, if you connect to
the hq database but access the emp table on the remote sales database as in above Figure you can
issue the following:

SELECT * FROM emp@sales;

PARALLEL VS. DISTRIBUTED DATABASE :

Parallel Database System seeks to improve performance through parallelization of various
operations, such as data loading, index building and query evaluating. Although data may be stored
in a distributed fashion in such a system, the distribution is governed solely by performance
considerations.

In Distributed Database System, data is physically stored across several sites, and each site is

193

typically managed by a DBMS capable of running independent of the other sites. In contrast to
parallel databases, the distribution of data is governed by factors such as local ownership and
increased availability.

PDB & DDB Comparison:

1. System Components
- Distributed DBMS consists of many Geo-distributed, low-bandwidth link connected,
autonomic sites.
- Parallel DBMS consists of tightly coupled, high-bandwidth link connected, non-autonomic
nodes.

2. Component Role
- Sites in Distributed DBMS can work independently to handle local transactions or work together to
handle global transactions.
- Nodes in Parallel DBMS can only work together to handle global transactions.

3. Design Purposes
= Distributed DBMS is for:
 - Sharing Data
 - Local Autonomy
 - High Availability
= Parallel DBMS is for:
 - High Performance
 - High Availability

 But both PDB&DDB need to consider the following problems:

 1. Data Distribution (Placement & Replicatioin);

2. Query Parallelization(Distributed Evaluation). And also, many parallel system consists of network
of workstation, the difference between Parallel DB & Distributed DB is becoming smaller.

DATA WAREHOUSING

A data warehouse is a collection of data marts representing historical data from different operations
in the company. This data is stored in a structure optimized for querying and data analysis as a data
warehouse. Table design, dimensions and organization should be consistent throughout a data
warehouse so that reports or queries across the data warehouse are consistent.

194

A data warehouse can also be viewed as a database for historical data from different functions
within a company. The term Data Warehouse was coined by Bill Inmon in 1990, which he defined
in the following way: "A warehouse is a subject-oriented, integrated, time-variant and non-volatile
collection of data in support of management's decision making process". He defined the terms in
the sentence as follows: Subject Oriented: Data that gives information about a particular subject
instead of about a company's ongoing operations.
Integrated: Data that is gathered into the data warehouse from a variety of sources and merged
into a coherent whole.
Time-variant: All data in the data warehouse is identified with a particular time period.
Non-volatile: Data is stable in a data warehouse. More data is added but data is never removed.
This enables management to gain a consistent picture of the business. It is a single, complete and
consistent store of data obtained from a variety of different sources made available to end users
in what they can understand and use in a business context. It can be
• Used for decision Support
• Used to manage and control business
• Used by managers and end-users to understand the business and make judgments

Benefits of data warehousing

• Data warehouses are designed to perform well with aggregate queries running on large amounts of
data.
• The structure of data warehouses is easier for end users to navigate, understand and query against
unlike the relational databases primarily designed to handle lots of transactions.
• Data warehouses enable queries that cut across different segments of a company's operation. E.g.
production data could be compared against inventory data even if they were originally stored in
different databases with different structures.
• Queries that would be complex in very normalized databases could be easier to build and maintain
in data warehouses, decreasing the workload on transaction systems.
• Data warehousing is an efficient way to manage and report on data that is from a variety of
sources, non uniform and scattered throughout a company.
• Data warehousing is an efficient way to manage demand for lots of information from lots of users.
• Data warehousing provides the capability to analyze large amounts of historical data for nuggets
of wisdom that can provide an organization with competitive advantage.

Data Warehouse Characteristics

• A data warehouse can be viewed as an information system with the following attributes:

– It is a database designed for analytical tasks

– It’s content is periodically updated

195

– It contains current and historical data to provide a historical perspective of information

Data warehouse admin and management

The management of data warehouse includes,

• Security and priority management

• Monitoring updates from multiple sources

• Data quality checks

• Managing and updating meta data

• Auditing and reporting data warehouse usage and status

• Purging data

• Replicating, sub setting and distributing data

• Backup and recovery

• Data warehouse storage management which includes capacity planning, hierarchical storage
management and purging of aged data etc..

DESIGN OF DATA WAREHOUSE

The following nine-step method is followed in the design of a data warehouse:

1. Choosing the subject matter

2. Deciding what a fact table represents

3. Identifying and conforming the dimensions

4. Choosing the facts

5. Storing pre calculations in the fact table

6. Rounding out the dimension table

7. Choosing the duration of the db

196

8. The need to track slowly changing dimensions

9. Deciding the query priorities and query models

Technical considerations

A number of technical issues are to be considered when designing a data warehouse environment.
These issues include:

• The hardware platform that would house the data warehouse

• The dbms that supports the warehouse data

• The communication infrastructure that connects data marts, operational systems and end users

• The hardware and software to support meta data repository

• The systems management framework that enables admin of the entire environment

Implementation considerations

The following logical steps needed to implement a data warehouse:

• Collect and analyze business requirements

• Create a data model and a physical design

• Define data sources

• Choose the db tech and platform

• Extract the data from operational db, transform it, clean it up and load it into the warehouse

• Choose db access and reporting tools

• Choose db connectivity software

• Choose data analysis and presentation s/w

• Update the data warehouse

Access tools

197

Data warehouse implementation relies on selecting suitable data access tools. The best way to
choose this is based on the type of data can be selected using this tool and the kind of access it

permits for a particular user. The following lists the various type of data that can be accessed:

• Simple tabular form data

• Ranking data

• Multivariable data

• Time series data

• Graphing, charting and pivoting data

• Complex textual search data

• Statistical analysis data

• Data for testing of hypothesis, trends and patterns

• Predefined repeatable queries

• Ad hoc user specified queries

• Reporting and analysis data

• Complex queries with multiple joins, multi level sub queries and sophisticated search criteria

Data extraction, clean up, transformation and migration

A proper attention must be paid to data extraction which represents a success factor for a data
warehouse architecture. When implementing data warehouse several the following selection criteria
that affect the ability to transform, consolidate, integrate and repair the data should be considered:

• Timeliness of data delivery to the warehouse

• The tool must have the ability to identify the particular data and that can be read by conversion tool

• The tool must support flat files, indexed files since corporate data is still in this type

• The tool must have the capability to merge data from multiple data stores

198

• The tool should have specification interface to indicate the data to be extracted

• The tool should have the ability to read data from data dictionary

• The code generated by the tool should be completely maintainable

• The tool should permit the user to extract the required data

• The tool must have the facility to perform data type and character set translation

• The tool must have the capability to create summarization, aggregation and derivation of records

• The data warehouse database system must be able to perform loading data directly from

these tools

Data placement strategies

– As a data warehouse grows, there are at least two options for data placement. One is to put some of
the data in the data warehouse into another storage media.

– The second option is to distribute the data in the data warehouse across multiple servers.

User levels

The users of data warehouse data can be classified on the basis of their skill level in accessing the
warehouse. There are three classes of users:Casual users: are most comfortable in retrieving info
from warehouse in pre defined formats and running pre existing queries and reports. These users do
not need tools that allow for building standard and ad hoc reports

Power Users: can use pre defined as well as user defined queries to create simple and ad hoc reports. These
users can engage in drill down operations. These users may have the experience of using reporting and query
tools.

Expert users: These users tend to create their own complex queries and perform standard analysis on the info
they retrieve. These users have the knowledge about the use of query and report tools

Benefits of data warehousing

Data warehouse usage includes,

– Locating the right info

199

– Presentation of info

– Testing of hypothesis

– Discovery of info

– Sharing the analysis

The benefits can be classified into two:

• Tangible benefits (quantified / measureable):It includes,

– Improvement in product inventory

– Decrement in production cost

– Improvement in selection of target markets

– Enhancement in asset and liability management

• Intangible benefits (not easy to quantified): It includes,

– Improvement in productivity by keeping all data in single location and eliminating

– Reduced redundant processing

– Enhanced customer relation rekeying of data

ARCHITECTURE OF DATA WAREHOUSING

The data in a data warehouse comes from operational systems of the organization as well as from other
external sources. These are collectively referred to as source systems. The data extracted from source
systems is stored in a area called data staging area, where the data is cleaned, transformed, combined,
duplicated to prepare the data for us in the data warehouse. The data staging area is generally a collection of
machines where simple activities like sorting and sequential processing takes place. The data staging area
does not provide any query or presentation services. As soon as a system provides query or presentation
services, it is categorized as a presentation server. A presentation server is the target machine on which the
data is loaded from the data staging area organized and stored for direct querying by end users, report writers
and other applications. The three different kinds of systems that are required for a data warehouse are:

1. Source Systems
2. Data Staging Area
3. Presentation servers

200

The data travels from source systems to presentation servers via the data staging area. The entire process is
popularly known as ETL (extract, transform, and load) or ETT (extract, transform, and transfer). Oracle’s
ETL tool is called Oracle Warehouse Builder (OWB) and MS SQL Server’s ETL tool is called Data
Transformation Services (DTS).

A typical architecture of a data warehouse is shown below:

Each component and the tasks performed by them are explained below:

1. OPERATIONAL DATA
The sources of data for the data warehouse is supplied from:

(i) The data from the mainframe systems in the traditional network and hierarchical format.
(ii) Data can also come from the relational DBMS like Oracle, Informix.
(iii) In addition to these internal data, operational data also includes external data obtained from

commercial databases and databases associated with supplier and customers.

2. LOAD MANAGER
The load manager performs all the operations associated with extraction and loading data into the
data warehouse. These operations include simple transformations of the data to prepare the data for
entry into the warehouse. The size and complexity of this component will vary between data
warehouses and may be constructed using a combination of vendor data loading tools and custom
built programs.

201

3. WAREHOUSE MANAGER
The warehouse manager performs all the operations associated with the management of data in the
warehouse. This component is built using vendor data management tools and custom built programs.
The operations performed by warehouse manager include:

(i) Analysis of data to ensure consistency
(ii) Transformation and merging the source data from temporary storage into data warehouse

tables
(iii) Create indexes and views on the base table.
(iv) Denormalization
(v) Generation of aggregation
(vi) Backing up and archiving of data

In certain situations, the warehouse manager also generates query profiles to determine which
indexes ands aggregations are appropriate.

4. QUERY MANAGER
The query manager performs all operations associated with management of user queries. This
component is usually constructed using vendor end-user access tools, data warehousing monitoring
tools, database facilities and custom built programs. The complexity of a query manager is
determined by facilities provided by the end-user access tools and database.

5. DETAILED DATA
This area of the warehouse stores all the detailed data in the database schema. In most cases detailed
data is not stored online but aggregated to the next level of details. However the detailed data is
added regularly to the warehouse to supplement the aggregated data.

6. LIGHTLY AND HIGHLY SUMMERIZED DATA
The area of the data warehouse stores all the predefined lightly and highly summarized (aggregated)
data generated by the warehouse manager. This area of the warehouse is transient as it will be
subject to change on an ongoing basis in order to respond to the changing query profiles. The
purpose of the summarized information is to speed up the query performance. The summarized data
is updated continuously as new data is loaded into the warehouse.

7. ARCHIVE AND BACK UP DATA
This area of the warehouse stores detailed and summarized data for the purpose of archiving and
back up. The data is transferred to storage archives such as magnetic tapes or optical disks.

8. META DATA
The data warehouse also stores all the Meta data (data about data) definitions used by all processes
in the warehouse. It is used for variety of purposed including:

(i) The extraction and loading process – Meta data is used to map data sources to a
common view of information within the warehouse.

(ii) The warehouse management process – Meta data is used to automate the production
of summary tables.

(iii) As part of Query Management process Meta data is used to direct a query to the most
appropriate data source.

202

The structure of Meta data will differ in each process, because the purpose is different. More about
Meta data will be discussed in the later Lecture Notes.

9. END-USER ACCESS TOOLS
The principal purpose of data warehouse is to provide information to the business managers for
strategic decision-making. These users interact with the warehouse using end user access tools. The
examples of some of the end user access tools can be:

(i) Reporting and Query Tools
(ii) Application Development Tools
(iii) Executive Information Systems Tools
(iv) Online Analytical Processing Tools
(v) Data Mining Tools

THE E T L (EXTRACT TRANSFORMATION LOAD) PROCESS
In this section we will discussed about the 4 major process of the data warehouse. They are extract
(data from the operational systems and bring it to the data warehouse), transform (the data into
internal format and structure of the data warehouse), cleanse (to make sure it is of sufficient quality
to be used for decision making) and load (cleanse data is put into the data warehouse).
The four processes from extraction through loading often referred collectively as Data Staging.

EXTRACT
Some of the data elements in the operational database can be reasonably be expected to be useful in the
decision making, but others are of less value for that purpose. For this reason, it is necessary to extract the
relevant data from the operational database before bringing into the data warehouse. Many commercial tools
are available to help with the extraction process. Data Junction is one of the commercial products. The user
of one of these tools typically has an easy-to-use windowed interface by which to specify the following:

(i) Which files and tables are to be accessed in the source database?
(ii) Which fields are to be extracted from them? This is often done internally by SQL Select

statement.
(iii) What are those to be called in the resulting database?
(iv) What is the target machine and database format of the output?
(v) On what schedule should the extraction process be repeated?

TRANSFORM

The operational databases developed can be based on any set of priorities, which keeps changing with the
requirements. Therefore those who develop data warehouse based on these databases are typically faced with
inconsistency among their data sources. Transformation process deals with rectifying any inconsistency (if
any).

203

One of the most common transformation issues is ‘Attribute Naming Inconsistency’. It is common for the
given data element to be referred to by different data names in different databases. Employee Name may be
EMP_NAME in one database, ENAME in the other. Thus one set of Data Names are picked and used
consistently in the data warehouse. Once all the data elements have right names, they must be converted to
common formats. The conversion may encompass the following:

(i) Characters must be converted ASCII to EBCDIC or vise versa.
(ii) Mixed Text may be converted to all uppercase for consistency.
(iii) Numerical data must be converted in to a common format.
(iv) Data Format has to be standardized.
(v) Measurement may have to convert. (Rs/ $)
(vi) Coded data (Male/ Female, M/F) must be converted into a common format.

All these transformation activities are automated and many commercial products are available to perform the
tasks. DataMAPPER from Applied Database Technologies is one such comprehensive tool.

CLEANSING
Information quality is the key consideration in determining the value of the information. The developer of the
data warehouse is not usually in a position to change the quality of its underlying historic data, though a data
warehousing project can put spotlight on the data quality issues and lead to improvements for the future. It is,
therefore, usually necessary to go through the data entered into the data warehouse and make it as error free as
possible. This process is known as Data Cleansing.

Data Cleansing must deal with many types of possible errors. These include missing data and incorrect data at
one source; inconsistent data and conflicting data when two or more source are involved. There are several
algorithms followed to clean the data, which will be discussed in the coming lecture notes.

LOADING
Loading often implies physical movement of the data from the computer(s) storing the source database(s) to
that which will store the data warehouse database, assuming it is different. This takes place immediately after
the extraction phase. The most common channel for data movement is a high-speed communication link. Ex:
Oracle Warehouse Builder is the API from Oracle, which provides the features to perform the ETL task on
Oracle Data Warehouse.

204

DATA MINING

Architecture of a Data Mining System

The architecture of a typical data mining system may have the following major components .

• Database, data warehouse, or other information repository: This is one or a set of databases, data

warehouses, spreadsheets, or other kinds of information repositories. Data cleaning and data

integration techniques may be performed on the data.

• Database or data warehouse server: The database or data warehouse server is responsible for fetching

the relevant data, based on the user’s data mining request.

• Knowledge base: This is the domain knowledge that is used to guide the search, or evaluate the

interestingness of resulting patterns. Such knowledge can include concept hierarchies, used to organize

205

attributes or attribute values into different levels of abstraction. Knowledge such as user beliefs, which

can be used to assess a pattern’s interestingness based on its unexpectedness, may also be included. Other

examples of domain knowledge are additional interestingness constraints or thresholds, and metadata

(e.g., describing data from multiple heterogeneous sources).

• Data mining engine: This is essential to the data mining system and ideally consists of a set of functional

modules for tasks such as characterization, association, classification, cluster analysis, and evolution and

deviation analysis.

• Pattern evaluation module: This component typically employs interestingness measures and interacts

with the data mining modules so as to focus the search towards interesting patterns. It may use

interestingness thresholds to filter out discovered patterns. Alternatively, the pattern evaluation module

may be integrated with the mining module, depending on the implementation of the data mining method

used. For efficient data mining, it is highly recommended to push the evaluation of pattern interestingness

as deep as possible into the mining process so as to confine the search to only the interesting patterns.

• Graphical user interface: This module communicates between users and the data mining system,

allowing the user to interact with the system by specifying a data mining query or task, providing

information to help focus the search, and performing exploratory data mining based on the intermediate

data mining results. In addition, this component allows the user to browse database and data warehouse

schemas or data structures, evaluate mined patterns, and visualize the patterns in different forms.

Functions of Data Mining

Data mining identifies facts or suggests conclusions based on sifting through the data to discover either

patterns or anomalies. Data mining has five main functions:

• Classification: infers the defining characteristics of a certain group (such as customers who have

been lost to competitors).

• Clustering: identifies groups of items that share a particular characteristic. (Clustering differs from

classification in that no predefining characteristic is given in classification.)

• Association: identifies relationships between events that occur at one time (such as the contents of a

shopping basket).

206

• Sequencing: similar to association, except that the relationship exists over a period of time (such as

repeat visits to a supermarket or use of a financial planning product).

• Forecasting: estimates future values based on patterns within large sets of data (such as demand

forecasting).

Data Mining Applications

The areas where data mining has been applied recently include:

• Science
o astronomy,
o bioinformatics,
o drug discovery, ...

• Business
o advertising,
o Customer modeling and CRM (Customer Relationship management)
o e-Commerce,
o fraud detection
o health care, ...
o investments,
o manufacturing,
o sports/entertainment,
o telecom (telephone and communications),
o targeted marketing,

• Web:
o search engines, bots, ...

• Government
o anti-terrorism efforts
o law enforcement,
o profiling tax cheaters

One of the most important and widespread business applications of data mining is Customer
Modeling, also called Predictive Analytics. This includes tasks such as

• predicting attrition or churn, i.e. find which customers are likely to terminate service
• targeted marketing:

o customer acquisition - find which prospects are likely to become customers
o cross-sell - for given customer and product, find which other product(s) they are likely to buy

• credit-risk - identify the risk that this customer will not pay back the loan or credit card
• fraud detection - is this transaction fraudulent?

The largest users of Customer Analytics are industries such as banking, telecom, retailers, where
businesses with large numbers of customers are making extensive use of these technologies.

