
UNIX Commands

To Create a File:

Syntax: $ cat [option] > <filename>
Ex: $ cat > file1
Hello..
This is my first File
Have a Nice Day
Bye
Ctrl+d (Save)

Ctrl+d – Possible Completer
Ctrl+c – Cancel foreground Job
Ctrl+z – Stop (interrupted) a foreground Job

To View a already existing File:

Syntax: $ cat <filename>
Ex: $ cat file1

To append data to an existing file

Syntax: $ cat >> <filename>
Ex: $ cat >> file1

To Create a Multiple file with help of cat command

Syntax: $ cat <filename1 filename2 ...filename (n) >
Ex: $ cat >f1 >f2 >f3 >f4
Hello....
This is file number f4
We create multiple files
^d (Save)

Display the record number to the particular file

Syntax: $ cat [option] <filename>
Ex: $ cat -n file1

To ignore the blank Records

Syntax: $ cat [option] <filename>
Ex: $ cat -b file1

Vijay Kumar E R – 98486 11007

1

Create a Hidden file

Syntax: $ cat [option] <filename>
Ex: $ cat >.file1
Create a Directory

Syntax: $ mkdir [option] <Directory name>
Ex: $mkdir raju

Create Multiple Directories

Syntax: $ mkdir [option] <Directory names>
Ex: $ mkdir d1 d2 d3 d4 d5

Create Multi – level Directories

Syntax: $ mkdir [option] <Directory names>
Ex: $ mkdir –p /d5/d51/d52/d53

Create Multiple Sub directories

Syntax: $ mkdir [option] <Directory names>
Ex: $ mkdir –p d3/d31 d4/d41

To Display present working Directory

Syntax: $ pwd
Ex: $ pwd

To Change the Directory
Syntax: $ cd <Directory name>
Ex: $ cd raju

To change the directory forward
Syntax: $ cd..
Ex: $ cd..

To Move parent Directory (root)
Syntax: $ cd /
Ex: $ cd /

To Create a Hidden Directory

Syntax: $ mkdir [option] <Directory name>
Ex: $ mkdir .venkat

Vijay Kumar E R – 98486 11007

2

REMOVE COMMANDS:

To Remove a file

Syntax; $ rm [option] <filename>
Ex: $ rm kiran

To Remove Multiple Files

Syntax: $ rm [option] <filenames >
Ex: $ rm f1 f2 f3 f4

To remove files Forcibly

Syntax: $ rm [option] <filename>
Ex: $ rm -f kiran

To Remove Interactive Mode

Syntax: $ rm [option] <filename>
Ex: $ rm -i kiran

To Remove Directory

Syntax: $ rm [option] <Directory Name>
Ex: $ rm sagar

To Remove all Directories and subdirectories

Syntax: $ rm [option] <Directory Name>
Ex: $ rm -r sagar

To Remove Directories Forcibly

Syntax; $ rm [option] <Directory Name>
Ex: $ rm -rf sagar
Ex: $ rm -rf sagar pavan amar

To Remove Directories Interactively

Syntax; $ rm [option] <Directory Name>
Ex: $ rm -i sagar
Ex: $ rm -i sagar pavan amar

Vijay Kumar E R – 98486 11007

3

LIST COMMANDS

$ ls : It is a command to list the files and directories in
 the present working Directory

$ ls - a : It is a command to display all files and
 Directories including hidden files and Directories

$ls * : List information about the Files (the current
 directory by default). Sort entries alphabetically

$ls ~ : It list the all Backup files

$ls @ : It list the all linked files and Directories

$ls -d : It Displays the present working Directory.

$ls -i : It Displays the inode numbers of files and
 Directories

$ls -s : It Displays the sizes in blocks (Files &
 Directories)

$ls -l : It Displays the long listing files and
 directories in present working directory

Listing directory contents:

$ ls list a directory
$ ls -l list a directory in long (detailed) format

for example:

$ ls -l
drwxr-xr-x 4 vijay user 1024 Jun 18 09:40 WAITRON_EARNINGS
-rw-r--r-- 1 kiran user 767392 Jun 6 14:28 scanlib.tar.gz
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | | | | |
| | | | | owner group size date time name
| | | | number of links to file or directory contents
| | | permissions for world(others)
| | permissions for members of group
| permissions for owner of file: r = read, w = write, x = execute -=no
permission

Vijay Kumar E R – 98486 11007

4

type of file: - = normal file, d=directory, l = symbolic
link, and others...

ls -ld * List all the file and directory names in the
current directory using long format. Without the "d" option,
ls would list the contents of any sub-directory of the
current. With the "d" option, ls just lists them like regular
files.

$ ls -al : It Displays including hidden and log
 listing files and Directories

$ ls -m : It Displays all files and Directories with
 separated by comma (,)

$ ls -ls : It Displays all long listing Directories

$ ls --full-time : It Displays files and Directories
 with total information date and time

$ ls -nl : It Displays the long listing files and
 Directories according to modification Time

$ ls -rtl : It Displays the file and Directories
 with reverse order

$ ls -R : It Displays the all files and Directories
 Regressively (order by order)

$ ls -l : It Displays the files and Directories in a
 single column (vertical)

$ ls -x : It Displays the files and Directories with
 multiple columns

COPY COMMANDS

Syntax: $cp [option] <source file> <Destination file>

1. File to a File
2. File to a Dictionary
3. Directory to Directory

File to File

Vijay Kumar E R – 98486 11007

5

Syntax : $cp <source file> <Destination file>
Ex : $cp venkat amar
..... New file

Ex : $cp venkat john
 Existing file
Note: The content of john file overwrite with venkat

Ex ; $cp -f venkat kumar
Note : It is copy the file forcibly venkat to kumar without any permission

Ex : $cp -i venkat gandhi
Note : It is copy the file interactive mode venkat to kumar with permissions

2. File to Directory

Syntax ; $ cp <source file> <Destination Directory>
Ex ; $ cp venkat ajay
.... ajay is Directory

Ex : $ cp -b venkat satya
Note : It copys the venkat file to Satya Directory with backup

Ex : $ cp -bf venkat kiran
Note ; It copys the venkat file to Kiran Directory with forcibly backup

Ex : $ cp -ibf venkat yusuf
Note : It copys the venkat file to Yusuf Directory with backup interactively and forcibly

Ex : $ cp file1 file2 file3 Directory
Note : It copies the no of file to Directory

3. Directory to Directory

Syntax : $ cp <Source Directory> <Destination Directory>
Ex : $ cp Dravid Ganguly

Ex : $ cp -r Mody Venkat
Note : It copies the Directory to Directory (including all files and Directories)

Ex : $ cp -ir <Directory 1> <Directory 2>

Vijay Kumar E R – 98486 11007

6

Note : It copies the Directory to Directory (including with all files and directories with
interactive mode)

Ex : $ cp -rf <Dir 1 > <Dir 2> <Dir 3> <Destination
 Directory>
Note : It copies the multiple Directories with forcibly and recessively mode

MOVE COMMANDS

This command is used to move the files and directories one place to another place

Syntax: $ mv [option] <Source file/Directory> <Target file/Directory>

These are basically 3 types
1. File to File
2. File to Directory
3. Directory to Directory

1. File to File

Syntax: $ mv [option] <Source file> <Target file>
Ex: $ mv file1 file2

Ex: $mv -b file1 file2
Note: The file1 move to file2 with backup

Ex: $ mv -f file1 file2
Note: The file1 move to file2 with forcibly

Ex: $ mv -if file1 file2
Note: The file1 move to file2 with interactive and forcibly mode

2. File to Directory

Syntax: $ mv [option] <Source file> <Target Directory>
Ex: $ mv file1 Dir1
Note: The file1 moves to Directory (Dir1)

Ex: $ mv -b file1 Dir1
Note: The file1 move to Dir1 with backup mode

Ex: $mv -f file1 Dir1
Note: The file1 move to Dir1 with forcibly mode

Vijay Kumar E R – 98486 11007

7

Ex: $mv -if file1 Dir1
Note: The file1 move to Dir1 with interactive and forcibly mode.

3. Directory to Directory

Syntax: $ mv [option] <Source Directory> <Target Directory>
Ex: $ mv Dir1 Dir2
Note: The content of Dir1 moves to Dir2

Ex: $ mv -b Dir1 Dir2
Note: The contents of Dir1 move to Dir2 with backup

Ex: $ mv -f Dir1 Dir2
Note: The contents of Dir1 moves to Dir2 with forcibly

Ex: $ mv -if Dir1 Dir2
Note: The contents of Dir1 moves to Dir2 with interactive and forcibly mode.

PATH IN UNIX

1. Absolute path
2. Relative path

1. Absolute path: It is an independent on present working directory
2. Relative path: It is a path mention from root directory

Absolute path Example:

Ex: $ cd /b1/b2/b3/b4/b5
 : $ cp /usr/paramesh/a1/a2/a3/file <Directory>

Relative Path Example:

Ex: $cd /b1/b2/b3/b4/b5
 : $mv ../../../../../c1/c2/c3/c4/c5

FILE ACCESS PERMISSIONS (FAP)

-rwx------
drwxr--r--
-rwx-w--w-

Vijay Kumar E R – 98486 11007

8

d - Directory
w - Wrire
r - Read
x - Executable
Note: Without write permissions we can’t copy, remove, modify, move, crate

drwxrwxrwx
7 7 7

Directory – 777
File – 666
Default Directory Permissions – 755
Default File Permissions – 644

Read – 4
Write – 2
Executable – 1

Total Permissions 7

TO CHANGE AND MODIFY THE PERMISSIONS

1. Numeric Method
2. Symbolic Method

1. Numeric Method:

Syntax: $ chmod [permissions] <file/Directory>
Ex: $ chmod 700 Dir2
 $ chmod 640 file1

To check the changed permission use the command: ls - l

To change the permissions and check the permission using following command
Ex: $ chmod -c 750 Dir2

To change the permission with Directories and subdirectories with regressively
Ex: $ chmod -R 755 Dir2

To Change the present working Directory Permissions
Ex: $ chmod - R 750

Note : Plz don’t' try this command on the system

Vijay Kumar E R – 98486 11007

9

2. Symbolic Method

User – u
Group – g
Others – o
All – a
Read – r
Write – w
Execute – x

Syntax: $ chmod [options] <File/Directory>

To Add Write permission to Group and Others
Ex: $ chmod g+w, o+w Dir1

To Remove the Write Permission to User
Ex: $ chmod u-w Dir1

To Remove the Write and execute permissions to Group and Others
Ex: $chmod g-r, g-x, o-r, o-x Dir1

Append the Write permissions to all
Ex: $chmod u+w, g+w, o+w Dir1
 (or)
 $chmod a+w Dir1

UMASK (User File Creation Mask)
- cuting, remove, hidden
By Default umask value is 022

Directory File

777 666
022 022
755 644

WILD CARDS

^ - Carrot or Cap
? - Single Character
* - Multiple Characters
[] - Range of Characters

Ex: ls ? - This command is used list with single character
 files

Vijay Kumar E R – 98486 11007

10

ls ?? - This command is used to list with double character
 files

ls ? [0-9] – This command is used to list the files starting
 with alphabetically and with numeric

ls * - This command is used to display the all the files and
 directories and files Subdirectories

ls a* - This command is used to display the files with
 starting letter with 'a' Character

Remove Commands

Syntax: rm [option] <file/directory name>
Ex: rm * - This command is used to delete all the files in
current directories
Note: plz don't use this command without permission

Ex: rm ? - To delete single character files
Ex: rm ?? - To delete double character files
Ex: rm a* - To delete the files starting with
 character 'a'

Links

Call the link function to create a link to a file.
Call the link function to create a link named FILE2 to an existing FILE1

1. Hard link
2. Soft Link

1. Hard Link : Hard link can be build single file system
Hard link can recognized it links same permissions and same size, same inon
number
If the data is source loss we got from hard link
inon number is given space allocated
inon numbers can recognized different logical names

Syntax : ln <source file> <target file>

Ex : ln -f vankat kumar (f – forcibly)
Ex : ln -i venkat kumar (i – interactively)

Vijay Kumar E R – 98486 11007

11

2. Soft Link : It can be built across the file system
It the source file is delete we can't retrieve from target file

Syntax : ln -s <source file> <target file>

Ex : ln sd Dir1 Dir2 (d – Directories)
Ex : ln -sf File1 File2 (f – forcibly)
Ex : ln -si File1 File2 (s – inode number)

FIND COMMANDS

It search for files in a directory hierarchy

Syntax: find [path...] [expression]
/ - root
~ - Home Directory
. - Present working directory

Ex: $ find /bin –type f
It searches the files and directories absolute path of the
root.

Ex: $ find ~ -type d
It searches the directories and subdirectories in the Home
directory

Ex: $ find ~ -type l
It searches the linked files

Ex: $ find ~ -type f -name “file1”
It searches the absolute path of the filename

Ex: $ find ~ -type d -name “raj”
It searches the absolute path of the Directories

Ex: $ find ~ -type f -name “file1” exce cat{}\;
It searches the absolute path of the filename and displays
the contents of file.

Ex: $ find ~ -type f -name “file1” exce cat {}\ exce rm{}\;
It searches the absolute path of the filename and displays
the content of file, and removes at the same time.

Ex: $ find ~ -type f -perm 644

Vijay Kumar E R – 98486 11007

12

It searches the file under with 644 permission

Ex: $ find ~ -type f -perm 644 -exce chmod 640 {}\;
It searches the filename under with permission 644 and change
the file permissions to 640.

Ex: $ find ~ -type f size 0;
It Searches the Zero byte files

Linux: 512 bytes – 1 block

Ex: $ find ~ -type f size 100c (Exactly 100 bytes file)
 $ find ~ -type f size +100c (above 100 bytes file)
 $ find ~ -type f size -100c (below 100 bytes file)

Ex: $ find ~ -type d size 8b
It searches the 8bytes Directories

Ex: $ find ~ -type f -i num “1098”
It searches the file with inode number

Ex: $ find ~ type d – inum “1024”
It searches the directories with inode number

Time
-a – Access
-c – Changed
-m – Modified

Ex: $ find ~ -type f –a min 30
It searches the file before 30 min access

Ex: $ find ~ -type f –a time –n/n/+n
It searches the file before few days

Vi Editor (Visual Editor)

Vi is a text editor that is upwards compatible to Vi. It can be used to edit all kinds of plain
text. It is especially useful for editing programs.

1. Esc mode
2. Insert mode
3. Colon mode

A, a

Vijay Kumar E R – 98486 11007

13

I, i
O, o
S With the help of these keys move esc mode to inert mode

Shift: with the help of shift: move to Esc mode to colon mode

Esc Mode Commands k h l j

By press
'L' - The cursor moves right direction
'h' - The cursor moves one character left
'k' - The cursor moves one character up
'j' - The cursor moves one character down

'w' - The cursor moves next line first
5w - The cursor moves 5 words forward
nw - The cursor moves n words forward
b - The cursor moves previous word
5b - The cursor moves 5 words before
nb - The cursor moves n words before

e - The cursor moves next word last character
$ - The cursor moves the end of the record
^ - The cursor moves the starting of the record

gg - The cursor moves the first record
15gg - The cursor moves the 15th record of the file
ngg - The cursor moves the nth record of the file

G - The cursor moves the last record of the file
5G - The cursor moves the 5th record of the file

H - The cursor moves the starting record of the
 file(window)
L - The cursor moves the last record of the file

 (window)
M - The cursor moves the middle record of the
 file(window)

Ctrl + f - To scroll the page forward
Ctrl + b - To scroll the page backward
Ctrl + d - To scroll the half page forward
Ctrl + u - To scroll the half page backward

Esc Mode (Delete Command)

Vijay Kumar E R – 98486 11007

14

x - To delete present cursor position character
X - To delete previous character
dd - To delete a record
ndd - To delete 'n' records
dw - To delete a word
5dw - To delete 5 words
db - To delete a previous word
5db - To delete a 5 previous words
ndb - To delete a n previous words
d$ - To delete present cursor to the end of the record
d^ - To delete present cursor position to starting
 of the record

Yanking Commands (copying)

y - To yank a single character
y^ - To yank present cursor position to starting of
 the record
y$ - To yank present cursor position to ending of
 the record
dgg - To yank present cursor position to starting of
 the record
 Ex : (1 – 20) if cursor in 10th position

yy - To yank the record (copy)
5yy - To yank 5 records present cursor position
nyy - To yank n records present cursor position
ngg - To yank present cursor position to the first position
yG - To yank present cursor position to the last position
yw - To yank the work
5yw - To yank 5 words
yb - To yank previous word
5yb - To yank previous 5 words
nyb - To yank previous n words

Paste Commands

p - Paste the right side of the cursor position
P - Paste the left side of the cursor position

p - Paste below the cursor position
P - Paste above the cursor position

Replace Commands

Vijay Kumar E R – 98486 11007

15

r - To replace present cursor position character
R - To replace the entire record
cc - To recreate the Record
cw - To replace the word
cv - To replace the previous word

Special Commands

u - To undo the previous action
. - To redo the previous action
J - To join the records
~ - To change to lowercase to upper case letter upper case
 to lowercase letters

Search Command

/ <pattren> - To search for particular pattern (word)
Ex : /unix

n - cursor moves to the next accurance
N - cursor moves to the previous accurance

Insert Mode Commands

A - Append the letter end of the line
a - Append the letter after the cursor
i - Append the letter before the cursor
I - Append the letter beginning of the line
o - open a line below the cursor
O - open a line above the cursor
s - Delete the present cursor position and insert
 the character

Colon Mode Commands :

:w - To save a file
:q - To quit a file without save
:wq! - To save and quit a file forcibly
:senu - To display record numbers
:se nonu - To remove display record numbers

:/<pattern> - To search top to bottom
:?<pattern> - To search bottom to top

:se ic - It ignores the cases and search the records

Vijay Kumar E R – 98486 11007

16

:se noic - It disable particular above action
:se ai - It sets a new line (auto indent)
:se noai - It disables particular action

:d$ - To delete a last record
:%d - To delete all the records in the file

:10,20w <new filename> - Copy to another new file
:10,25w! <target file> - Copy to target file forcibly
:25,30w >> <filename> - Append existing file
:10 co 50 - Copy 10th record after the 50th Record
:10 mo 50 - Move 10th record to 50th record
:5,15 mo 50 - Move 5, 15 records after 50th record

:s/unix/linux - All records replace
$vi <file1> <file2> <file3> - Multiple file Editor
:n<file3> - to switch file3
:n - instead of file1 to file3
:N - switching from backward file

Redirection

Ex: $ cat < file1 >file2
It redirects the file1 to file2

Ex: $ cat > file1 <file2
It redirects the file2 to file1

Ex: $ cat >file1 <file2 file3
file2 file3 redirects to file1

Ex: $ cat file1 file2 file3 2>>error

FILTERS

Filter is a command or program, which takes the input from the standard input and then
process data to give required output

Simple Filters Advance Filters

Vijay Kumar E R – 98486 11007

17

More 1. grep
less 2. sed
pg 3. awk
head
tail
wc
tee
tr
sort
cut
uniq

1. More : More is a filter to display the paging through text page by page

Syntax: $ more <filename>
f - To move next page
b - To move previous page
Spacebar – To scroll the page
Enter Key – To scroll the page line by line
q - Quit

Ex: $ cat Imorz | more

2. less : Less is a program similar to more (1), but which allows backward movement in the
file as well as forward movement. Also, less does not have to read the entire input file
before starting, so with large input files it starts up faster than text editors like vi

Syntax: $ less <filename>
f - To move next page
b - To move previous page
Spacebar – To scroll the page
Enter Key – To scroll the page line by line
q – Quit

Ex: $ cat file1 | less
Note: This command works on Linux only

3. Pg: It displays page by page
Syntax: $ pg <filename>

f - To move next page
b - To move previous page
Spacebar – To scroll the page
Enter Key – To scroll the page line by line

Vijay Kumar E R – 98486 11007

18

q – Quit

Ex: cat venkat | pg
Note: This command don't works in Linux

4. head : It displays the first 10 lines of the file (page) – default

Syntax: $ head <filename>

Ex: $ head -15 venkat
Ex: $ cat <filename> | head 20 - It display first 20 lines

5. tail : It displays last 10 records of the file

Syntax: tail <filename>
 : tail -20 <filename>

Ex: cat <filename> | tail -20
Ex: tail +25 <filename> - It displays last 25 records

In-between records

Records from 15 to 20

Ex: $ head -10 <filename> | tail -5 (Records 15 to 20)
Ex: $ tail +30 <filename> | head -5 (Records 30 to 35)

If u want to redirect to permanent

Ex: $ head -20 <filename> |tail -5 > file1 (file1 is newfile)
Ex: $ tail +30 <filename> |head -5 > file1 (file1 is newfile)

6. wc : This filter is used to word count

Syntax: $ wc <filename>
Ex: $ wc kiran

no of records to display
Ex: $ wc -l <filename>

no. of words to display
Ex: $ wc -w <filename>

no. of characters to display

Vijay Kumar E R – 98486 11007

19

Ex: $ wc -c <filename>

max – length – characters to disply in a file
Ex: $ wc -L <filename>

7. tee : It displays and redirects the same time
read from standard input and write to standard output and files

Ex: $ ls -l <filename>
 $ ls -l | tee <filename>
 $ ls --full-time | tee -a <filename> - appending
 existing file
Note: without | (pipe symbol) tee filter don’t works

8. tr : Translate characters by characters
Translate or delete characters

Syntax: $ tr [option] <filename>
Ex: $ tr “*”, “#” <filename

Ex: $ tr “ abcd”, “xyz” <filename

Duplicate characters avoid with sequential order
Ex: $ tr -s “r” < filename

Delete the characters

Ex: $ tr -d “r” < filename

9. Sort: sort lines of text files according to the first character

Syntax: sort [option] <filename>
Ex : sort student

student filename

01 vijay 60 90
12 anil 70 75
32 sujan 65 40
04 hari 70 45
22 raju 85 50

Sorting priority

Vijay Kumar E R – 98486 11007

20

1. Blank space
2. Special character
3. Numeric
4. Uppercase
5. Lowercase

Numeric:

Ex: $ sort -n <filename>
 $ Sort -nr <filename> - Numeric and reverse

If u want permanent
Ex: $ sort -nr <filename> > new file

$ sort -t “:” - field separator

According to the second fields

$ Sort -dt “:” -k2 - directory sorting

$ ls -l | sort -b – k5 - it takes the blank about Field
 separator

10. Cut: Remove sections from each line of files.

1. Character cutting

Ex: $ cut -c <filename>
First character of the all lines

Ex: $ cut -c1 <filename>
To cut the first Character Of the all records

Ex: $ cut -c8 <filename>
To cut the 8th character in each line

Ex: $ cut -c4, 8 <filename>
To cut 4th and 8th Character In each line

Ex: $ cut -c4 -8 <filename>
To cut 4th to 8th Characters range

2. Field cutting

Vijay Kumar E R – 98486 11007

21

-d field separator

Ex: $ cut -d “:” -f2 <filename>
Cut 2nd field in all records

Ex: $ cut -d “:” -f2, 5 <filename>
Cut 2nd and 5th records

Ex: $ cut -d “:” -f2, -5 <filename>
Cut 2nd to 5th records

Ex: $ ls -l | tr -s “ “
Sequence space

Ex: $ ls -l | tr -s “ “ | cut -d “ “ -f5
Sequence and cut

11. Uniq: Remove duplicate lines from a sorted file

Syntax: $ uniq [option] <filename>
Ex: $ uniq -d <filename >
Displays only the Duplicate records

Ex: $ uniq -D <filename>
Print all duplicate Records and demeliting is done with blank
lines

Ex: $ uniq –c <filename>
Prefix lines by the Number of occurrences

Advance Filters

1. Grep

The grep utilities are a family of Unix tools, including grep, egrep, and fgrep, that perform
repetitive searching tasks. The tools in the grep family are very similar, and all are used for
searching the contents of files for information that matches particular criteria. For most
purposes, you'll want to use fgrep, since it's generally the fastest

The general syntax of the grep commands is:

Syntax: grep [-options] pattern [filename]

Vijay Kumar E R – 98486 11007

22

You can use fgrep to find all the lines of a file that contain a particular word. For example,
to list all the lines of a file named my file in the current directory that contain the word
"dog", enter at the Unix prompt:

Ex: fgrep dog myfile

This will also return lines where "dog" is embedded in larger words, such as "dogma" or
"dogged". You can use the -w option with the grep command to return only lines where
"dog" is included as a separate word:

 Ex: grep -w dog myfile

To search for several words separated by spaces, enclose the whole search string in quotes,
for example:

 Ex: fgrep "dog named Checkers" myfile

The fgrep command is case sensitive; specifying "dog" will not match "Dog" or "DOG".
You can use the -i option with the grep command to match both upper- and lowercase
letters:

 Ex: grep -i dog myfile

To list the lines of myfile that do not contain "dog", use the -v option:

 Ex: fgrep -v dog myfile

If you want to search for lines that contain any of several different words, you can create a
second file (named second file in the following example) that contains those words, and
then use the -f option:

Ex: fgrep -f second file my file

You can also use wildcards to instruct fgrep to search any files that match a particular
pattern. For example, if you wanted to find lines containing "dog" in any of the files in your
directory with names beginning with "my", you could enter:

Ex: fgrep dog my*

This command would search files with names such as my file, my.hw1, and my stuff in the
current directory. Each line returned would be prefaced with the name of the file where the
match was found.

By using pipes and/or redirection, you can use the output from any of these commands with
other Unix tools, such as more, sort, and cut. For example, to print the fifth word of every

Vijay Kumar E R – 98486 11007

23

line of my file containing "dog", sort the words alphabetically, and then filter the output
through the more command for easy reading, you would enter at the Unix prompt:

Ex: fgrep dog myfile | cut -f5 -d" " | sort | more

If you want to save the output in a file in the current directory named new file, enter:

Ex: fgrep dog my file | cut -f5 -d" " | sort > new file

$ grep –n <file> - To display record number

$ grep -i<file> - To ignore record

$ grep –c <file> - To count in how many records expression

$ grep –E <file> - To search for multiple expression

$ grep –L <file> - It give the file name and which the
 regular expression

$ grep –r <file> - To search regressively and present working
 directory

$ grep –w <file> - To search for the exact match for the word

$ grep –s <file> - To suppress errors

$ grep “jai” <file> - It prints the expressive record which
 have got the “jai”

$ grep –n “jai” <file> - It display the record number and
 expression what we give “jai”

$ grep –in “jay” <file> - It ignore and prints the record
 “Jay”

$ grep –E “jay prem” <file> - It search for multiple
 expressions and prints the record

$ grep –l “jay”* - It displays the filename which the
 “Jay” expression is

2. SED

Vijay Kumar E R – 98486 11007

24

Sed is a stream editor. A stream editor is used to perform basic text transformations on an
input stream (a file or input from a pipeline). While in some ways similar to an editor which
permits scripted edits (such as ed), sed works by making only one pass over the input(s),
and is consequently more efficient. But it is sed's ability to filter text in a pipeline, which
particularly distinguishes it from other types of editors.

 Sed works as follows: it reads from the standard input, one line at a time. for each line, it
executes a series of editing commands, then the line is written to STDOUT. An example
that shows how it works: we use the s command. s means "substitute" or search and
replace. The format is

s/regular-expression/replacement text/{flags}

We won't discuss all the flags yet. The one we use below is g, which means, "replace all
matches"

>cat file
I have three dogs and two cats
>sed -e 's/dog/cat/g' -e 's/cat/elephant/g' file
I have three elephants and two elephants
>

OK. So what happened? Firstly, sed read in the line of the file and executed

s/dog/cat/g

Which produced the following text:

I have three cats and two cats

and then the second command was performed on the edited line and the result was

I have three elephants and two elephants

We actually have a name for the "current text": it is called the pattern space. So a precise
definition of what sed does is as follows:

sed reads the standard input into the pattern space, performs a sequence of editing
commands on the pattern space, then writes the pattern space to STDOUT.

Syntax: sed [OPTION]... {Script-only-if-no-other-script} [Input-file]...

OR
Syntax: sed [option] ‘address/action’ <file>

Vijay Kumar E R – 98486 11007

25

Options: -n To suppress input/output
-e Multiple Expressions
-d Delete
-p Print
-s Substitute

Firstly, the way you usually use sed is as follows:

>sed -e 'command1' -e 'command2' -e 'command3' file
>{shell command}|sed -e 'command1' -e 'command2'
>sed -f sedscript.sed file
>{shell command}|sed -f sedscript.sed

so sed can read from a file or STDIN, and the commands can be specified in a file or on the
command line. Note the following:

That if the commands are read from a file, trailing white space can be fatal, in
particular, it will cause scripts to fail for no apparent reason. I recommend editing
sed scripts with an editor such as vim, which can show end of line characters so that
you can "see" trailing white space at the end of line.

Substitute

The format for the substitute command is as follows:

[address1[,address2]]s/pattern/replacement/[flags]

The flags can be any of the following

n replace nth instance of pattern with replacement

p write pattern space to STDOUT if a successful substitution takes place

w file Write the pattern space to file if a successful substitution takes place

Delete

The delete command is very simple in its syntax: it goes like this

[address1[, address2]]d

And it deletes the content of the pattern space. All following commands are skipped
(after all, there's very little you can do with an empty pattern space), and a new line
is read into the pattern space.

Vijay Kumar E R – 98486 11007

26

http://www.vim.org/

Example 1

>cat file

http://www.foo.com/mypage.html

>sed -e 's@http://www.foo.com@http://www.bar.net@'
file

http://www.bar.net/mypage.html

Note that we used a different delimiter, @ for the substitution command. Sed permits
several delimiters for the s command including @%,;: these alternative delimiters are good
for substitutions which include strings such as filenames, as it makes your sed code much
more readable.

Example 2

>cat file

the black cat was chased by the brown dog

>sed -e 's/black/white/g' file

the white cat was chased by the brown dog

That was pretty straightforward. Now we move on to something more interesting.

Example 3

>cat file

the black cat was chased by the brown dog.
the black cat was not chased by the brown dog

>sed -e '/not/s/black/white/g' file

the black cat was chased by the brown dog.
the white cat was not chased by the brown dog.

In this instance, the substitution is only applied to lines matching the regular expression
not. Hence it is not applied to the first line.

Vijay Kumar E R – 98486 11007

27

Example 4

>cat file

line 1 (one)
line 2 (two)
line 3 (three)

Example 4a

>sed -e '1,2d' file
line 3 (three)

Example 4b

>sed -e '3d' file
line 1 (one)
line 2 (two)

Example 4c

>sed -e '1,2s/line/LINE/' file

LINE 1 (one)
LINE 2 (two)
line 3 (three)

Example 4d

>sed -e '/^line.*one/s/line/LINE/' -e '/line/d'
file

LINE 1 (one)

3a : This was pretty simple: we just deleted lines 1 to 2.
3b : This was also pretty simple. We deleted line 3.
3c : In this example, we performed a substitution on lines 1-2.
3d : now this is more interesting, and deserves some explanation. Firstly, it is clear that line
2 and 3 get deleted. But let's look closely at what happens to line 1.
First, line 1 is read into the pattern space. It matches the regular expression ^line.*one
So the substitution is carried out, and the resulting pattern space looks like this:

LINE 1 (one)

So now the second command is executed, but since the pattern space does not match the
regular expression line, the delete command is not executed.

Vijay Kumar E R – 98486 11007

28

Example 5

>cat file

hello
this text is wiped out
Wiped out
hello (also wiped out)
WiPed out TOO!
goodbye
(1) This text is not deleted
(2) neither is this ... (goodbye)
(3) neither is this
hello
but this is
and so is this
and unless we find another g**dbye
every line to the end of the file gets deleted

>sed -e '/hello/,/goodbye/d' file

(1) This text is not deleted
(2) neither is this ... (goodbye)
(3) neither is this

This illustrates how the addressing works when two pattern addresses are specified. sed
finds the first match of the expression "hello", deleting every line read into the pattern
space until it gets to the first line after the expression "goodbye". It doesn't apply the delete
command to any more addresses until it comes across the expression "hello" again. Since
the expression "goodbye" is not on any subsequent line, the delete command is applied to
all remaining lines.

AWK

AWK is a simple and elegant pattern scanning and processing language
AWK is also the most portable scripting language

It was created in late 70th of the last century. The name was composed from the initial
letters of three original authors Alfred V. Aho, Brian W. Kernighan, and Peter J.
Weinberger. It is commonly used as a command-line filter in pipes to reformat the output
of other commands. It's the precursor and the main inspiration of Perl. Although originated
in Unix it is available and widely used in Windows environment too.

Vijay Kumar E R – 98486 11007

29

AWK takes two inputs: data file and command file. The command file can be absent and
necessary commands can be passed as augments. As Ronald P. Loui aptly noted awk is very
under appreciated language:

The main advantage of AWK is that unlike Perl and other "scripting monsters" that it is
very slim without feature creep so characteristic of Perl and thus it can be very efficiently
used with pipes. Also it has rather simple, clean syntax and like much heavier TCL can be
used with C for "dual-language" implementations.

awk's favor compared to perl:

 - awk is simpler (especially important if deciding which to learn first)
- awk syntax is far more regular (another advantage for the
 beginner, even without considering syntax-highlighting editors)
 - you may already know awk well enough for the task at hand
- you may have only awk installed
 - awk can be smaller, thus much quicker to execute for small programs
 - awk variables don't have `$' in front of them :-)
 - clear perl code is better than unclear awk code; but NOTHING comes
 close to unclear perl code

The basic function of awk is to search files for lines (or other units of text) that contain
certain patterns. When a line matches one of the patterns, awk performs specified actions
on that line. awk keeps processing input lines in this way until it reaches the end of the
input files

Syntax : awk [option] ‘selection criteria {action}’ <file>

Options : -F - To specify the field separator
 -f - To invoke the source code

 {action} - Only the print action

predefined variables in awk

all predefined variables are in upper cases

FS - Input field separator
OFS - Ouput field separator
NF - Number of fields
NR - Record numbers or No. of records
$ - Fields in awk

Comparation Operator in awk

> - Grater than

Vijay Kumar E R – 98486 11007

30

>= - Grater than equal
< - Less than
<= - Less than equal
== - Equal to
!= - Not equal
~ - Matching
!~ - not matching

Logical Operator

&& - AND
|| - OR

awk has got 3 sections

1. BIGIN
2. MIDDLE
3. END

Begin is keyword for the begin section the variable can be assign in begin section

All the operator in the middle sections, Middle is not keyword for the middle section

What ever u print every thing in the section, End is the keyword for the end section

$ awk ‘/ajay/{print}’<file>
It prints the all the records

$ awk ‘/ajay|ramu/{print}’<file>
To search for multiple expressions and print

$ awk ‘NR==4{print}’ <file>
To print specific record

$ awk ‘NR==3,NR==7{print}’<file>
To print range of records

$ awk ‘NR>4{print}’ <file>
To print all the records which are >4

$ awk ‘NR>={print}’ <file>

$ awk ‘NR<4{print}’ <file>
To print all the records which are <4

$ awk ‘NR<=4{print}’ <file>

Vijay Kumar E R – 98486 11007

31

if u want print only specific fields

$ awk –F “:” ‘NR==4 {print $1, $3, $4}’ <file>
simple awk program emulates the cat utility; it copies whatever you type on the
keyboard to its standard output (why this works is explained shortly).

 $ awk '{ print }'
 Now is the time for all good men
 -| Now is the time for all good men
 to come to the aid of their country.
 -| to come to the aid of their country.
 Four score and seven years ago, ...
 -| Four score and seven years ago, ...
 What, me worry?
 -| What, me worry?
 Ctrl-d

• Print the length of the longest input line:

awk '{if(length($0)> max)max = length($0) }
 END { print max }' data

• Print every line that is longer than 80 characters:

awk 'length($0) > 80' data

The sole rule has a relational expression as its pattern and it has no action—so the
default action, printing the record, is used.

• Print the length of the longest line in data:

expand data | awk '{if x < length()) x =length()}
 END {print "maximum line length is " x}'

The input is processed by the expand utility to change tabs into spaces, so the
widths compared are actually the right-margin columns.

• Print every line that has at least one field:

awk 'NF > 0' data

Vijay Kumar E R – 98486 11007

32

This is an easy way to delete blank lines from a file (or rather, to create a new file
similar to the old file but from which the blank lines have been removed).

• Print seven random numbers from 0 to 100, inclusive:

awk 'BEGIN {for(i=1;i<=7;i++)print int(101*rand())}'

• Print the total number of bytes used by files:

ls -l files | awk '{ x += $5 }
 END { print "total bytes: " x }'

• Print the total number of kilobytes used by files:

ls -l files | awk '{ x += $5 }
 END { print "total K-bytes: " x + 1023)/1024 }'

• Print a sorted list of the login names of all users:

 awk -F: '{ print $1 }' /etc/passwd | sort

• Count the lines in a file:

 awk 'END { print NR }' data

• Print the even-numbered lines in the data file:

 awk 'NR % 2 == 0' data

If you use the expression `NR % 2 == 1' instead, the program would print the odd-
numbered lines

EXAMPLES

is the comment character for awk. 'field' means
'column'

Print first two fields in opposite order:
 awk '{ print $2, $1 }' file

Print lines longer than 72 characters:

Vijay Kumar E R – 98486 11007

33

 awk 'length > 72' file

Print length of string in 2nd column
 awk '{print length($2)}' file

Add up first column, print sum and average:

 { s += $1 }
 END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

awk '{for i = NF; i > 0; --i)print $i }' file

Print the last line
 {line = $0}
 END {print line}

Print the total number of lines that
 contain the word Pat

 /Pat/ {nlines = nlines + 1}
 END {print nlines}

Print all lines between start/stop pairs:
 awk '/start/, /stop/' file

Print all lines whose first field is
 different from previous one:

 awk '$1 != prev { print; prev = $1 }' file

Print column 3 if column 1 > column 2:
 awk '$1 > $2 {print $3}' file

Print line if column 3 > column 2:
 awk '$3 > $2' file

Vijay Kumar E R – 98486 11007

34

Count number of lines where col3 >col 1
 awk '$3 > $1 {print i + "1"; i++}' file

Print sequence number and then column 1 of file:
 awk '{print NR, $1}' file

Print every line after erasing the 2nd field
 awk '{$2 = ""; print}' file

Print hi 28 times
 yes | head -28 | awk '{ print "hi" }'

Print hi.0010 to hi.0099 (NOTE IRAF USERS!)
 yes | head -90 | awk '{printf("hi00%2.0f \n",
 NR+9)}'

Replace every field by its absolute value
 { for (i = 1; i <= NF; i=i+1) if ($i < 0)
 $i = -$i print}

If you have another character that delimits
fields, use the -F option
For example, to print out the phone number for
Jones in the following file,
000902|Beavis|Theodore|333-242-2222|149092
000901|Jones|Bill|532-382-0342|234023
...
type
 awk -F"|" '$2=="Jones"{print $4}' filename

Some looping for printouts
 BEGIN{

for (i=875;i>833;i--){
printf "lprm -Plw %d\n", i

} exit
 }

Formatted printouts are of the form printf(
"format\n", value1, value2, ... valueN)

Vijay Kumar E R – 98486 11007

35

e.g. printf("howdy %-8s What it is bro.
%.2f\n", $1, $2*$3)

%s = string
%-8s = 8 character string left justified

 %.2f = number with 2 places after .
%6.2f = field 6 chars with 2 chars after .
\n is newline
\t is a tab

Print frequency histogram of column of numbers
$2 <= 0.1 {na=na+1}
($2 > 0.1) && ($2 <= 0.2) {nb = nb+1}
($2 > 0.2) && ($2 <= 0.3) {nc = nc+1}
($2 > 0.3) && ($2 <= 0.4) {nd = nd+1}
($2 > 0.4) && ($2 <= 0.5) {ne = ne+1}
($2 > 0.5) && ($2 <= 0.6) {nf = nf+1}
($2 > 0.6) && ($2 <= 0.7) {ng = ng+1}
($2 > 0.7) && ($2 <= 0.8) {nh = nh+1}
($2 > 0.8) && ($2 <= 0.9) {ni = ni+1}
($2 > 0.9) {nj = nj+1}
END {print na, nb, nc, nd, ne, nf, ng, nh, ni, nj,
NR}

Find maximum and minimum values present in
 column 1
NR == 1 {m=$1 ; p=$1}
$1 >= m {m = $1}
$1 <= p {p = $1}
END { print "Max = " m, " Min = " p }

Example of defining variables, multiple
 commands on one line

NR == 1 {prev=$4; preva = $1; prevb = $2; n=0;
sum=0}
$4 != prev {print preva, prevb, prev, sum/n; n=0;
sum=0; prev = $4; preva = $1; prevb = $2}
$4 == prev {n++; sum=sum+$5/$6}
END {print preva, prevb, prev, sum/n}

Example of using substrings
substr($2,9,7) picks out characters 9 thru 15 of
column 2
{print "imarith", substr($2,1,7) " - " $3,
"out."substr($2,5,3)}

Vijay Kumar E R – 98486 11007

36

{print "imarith", substr($2,9,7) " - " $3,
"out."substr($2,13,3)}
{print "imarith", substr($2,17,7) " - " $3,
"out."substr($2,21,3)}
 print "imarith", substr($2,25,7) " - " $3,
"out."substr($2,29,3)}

1. Renaming within the name:
ls -1 *old* | awk '{print "mv "$1" "$1}' | sed
s/old/new/2 | sh
(although in some cases it will fail, as in file_old_and_old)

2. Remove only files:
ls -l * | grep -v drwx | awk '{print "rm "$9}' | sh
or with awk alone:
ls -l|awk '$1!~/^drwx/{print $9}'|xargs rm
Be careful when trying this out in your home directory. We remove files!

3. Remove only directories
ls -l | grep '^d' | awk '{print "rm -r "$9}' | sh
or
ls -p | grep /$ | wk '{print "rm -r "$1}'
or with awk alone:
ls -l|awk '$1~/^d.*x/{print $9}'|xargs rm -r
Be careful when trying this out in your home directory. We remove things!

4. Killing processes by name (in this example we kill the process called netscape):
kill `ps auxww | grep netscape | egrep -v grep | awk
'{print $2}'`

Environment Control

Vijay Kumar E R – 98486 11007

37

Command Description

cd d Change to directory d

mkdir d Create new directory d

rmdir d Remove directory d

mv f1 [f2...] d Move file f to directory d

mv d1 d2 Rename directory d1 as d2

passwd Change password

alias name1 name2 Create command alias (csh/tcsh)

alias name1="name2" Create command alias (ksh/bash)

unalias name1[na2...] Remove command alias na

ssh nd Login securely to remote node

exit End terminal session

setenv name v Set env var to value v (csh/tcsh)

export name="v" Set environment variable to value
 v(ksh/bash)

Output, Communication, & Help

Command Description

lpr -P printer f
 or
lp -d printer f Output file f to line printer

script [f] Save terminal session to f

exit Stop saving terminal session

mailx username Send mail to user
man name Unix manual entry for name

Process Control

Vijay Kumar E R – 98486 11007

38

Command Description

CTRL/c * Interrupt processes

CTRL/s * Stop screen scrolling

CTRL/q * Resume screen output

sleep n Sleep for n seconds

jobs Print list of jobs

kill % Kill job n

ps Print process status stats

kill -9 n Remove process n

CTRL/z * Suspend current process

stop %n Suspend background job n

cmmd& Run cmmd in background

bg [%n] Resume background job n

fg [%n] Resume foreground job n

exit Exit from shell

Environment Status

Command Description

ls [d] [f...] List files in directory

ls -1 [f...] List files in detail

alias [name] Display command aliases

printenv [name] Print environment values

quota Display disk quota

date Print date & time

Vijay Kumar E R – 98486 11007

39

who List logged in users

whoami Display current user

finger [username] Output user information

chfn Change finger information

pwd Print working directory

history Display recent commands

! n Submit recent command n

File Manipulation

Command Description

vi [f] Vi full screen editor

emacs [f] Emacs full screen editor

ed [f] Text editor

wc f Line, word, & char count

cat f List contents of file

more f List file contents by screen

cat f1 f2 >f3 Concatenates f1 & f2 into f3

chmod mode f Change protection mode of f

cmp f1 f2 Compare two files

cp f1 f2 Copy file f1 into f2

sort f Alphabetically sort f

split [-n] f Split f into n-line pieces

mv f1 f2 Rename file f1 as f2

rm f Delete (remove) file f

Vijay Kumar E R – 98486 11007

40

grep 'ptn' f Outputs lines that match ptn

diff f1 f2 Lists file differences

head f Output beginning of f

tail f Output end of f

Compiler

Command Description

cc [-o f1] f2 C compiler

lint f Check C code for errors

f77 [-o f1] f2 Fortran77 compiler

pc [-o f1] f2 Pascal compiler

Abbreviations used in this document

CTRL/x hold down control key and press x

d directory

env environment

f filename

n number

nd computer node

prtr printer

ptn pattern

var variable

[y/n] yes or no

Vijay Kumar E R – 98486 11007

41

	To Remove all Directories and subdirectories
	To Remove Directories Interactively
	Redirection

	According to the second fields
	Advance Filters
	2. SED
	Substitute
	Delete

	Example 1
	Example 2
	Example 3
	Example 4
	Example 4a
	Example 4b
	Example 4c
	Example 4d
	Example 5
	AWK
	Comparation Operator in awk
	Logical Operator

	Environment Control
	Output, Communication, & Help
	Process Control
	Environment Status
	File Manipulation
	Compiler
	Abbreviations used in this document

