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VLSI ENGINEERING (3-1-0) 

 

MODULE 1: 

Issues and Challenges in VLSI Design: 

Integration density and performance of integrated circuits have gone through an astounding revolution in the last 
couple of decades. In the 1960s, Gordon Moore, then with Fairchild Corporation and later cofounder of Intel, 
predicted that the number of transistors that can be integrated on a single die would grow exponentially with time. 
This prediction, later called Moore’s law, has proven to be amazingly visionary. Its validity is best illustrated with 
the aid of a set of graphs. Figure 1 plots the integration density of both logic IC’s and memory as a function of time. 
As can be observed, integration complexity doubles approximately every 1 to 2 years. As a result, memory density 
has increased by more than a thousand fold since 1970. 
 

 
Figure 1: Evolution of integration complexity of logic ICs and memories as a function of time. 

 
 
 

Typically used abstraction levels in digital circuit design are, in order of increasing abstraction, the device, circuit, 
gate, functional module (e.g., adder) and system levels (e.g., processor), as illustrated in Figure 2. A semiconductor 
device is an entity with a very complex behavior. 
 
 
 

 
 
 

Figure 2 Design abstraction levels in digital circuits. 

 
 



VLSI Design Flow: 

 
 

VLSI Fabrication Technology: 
 
The CMOS process requires a large number of steps, each of which consists of a sequence of basic operations. A 
number of these steps and/or operations are executed very repetitively in the course of the manufacturing process. 
 
The Silicon Wafer 
 
The base material for the manufacturing process comes in the form of a single-crystalline, lightly doped wafer. 
These wafers have typical diameters between 4 and 12 inches (10 and 30 cm, respectively) and a thickness of at 
most 1 mm, and are obtained by cutting a single crystal ingot into thin slices. 
 
Photolithography: 
 
In each processing step, a certain area on the chip is masked out using the appropriate optical mask so that a desired 
processing step can be selectively applied to the remaining regions. The processing step can be any of a wide range 
of tasks including oxidation, etching, metal and polysilicon deposition, and ion implantation. The technique to 
accomplish this selective masking, called photolithography, is applied throughout the manufacturing process. Figure 
3 gives a graphical overview of the different operations involved in a typical photolithographic process. The 
following steps can be identified: 

 
 

Figure 3: Graphical Overview 

 
1. Oxidation layering — this optional step deposits a thin layer of SiO2 over the complete wafer by exposing 

it to a mixture of high-purity oxygen and hydrogen at approximately 1000°C. The oxide is used as an 
insulation layer and also forms transistor gates. 

2. Photoresist coating — a light-sensitive polymer (similar to latex) is evenly applied while spinning the wafer 
to a thickness of approximately 1 mm. This material is originally soluble in an organic solvent, but has the 
property that the polymers crossoxidation link when exposed to light, making the affected regions 
insoluble. A photoresist of this type is called negative. A positive photoresist has the opposite properties; 



originally insoluble, but soluble after exposure. By using both positive and negative resists, a single mask 
can sometimes be used for two steps, making complementary regions available for processing. Since the 
cost of a mask is increasing quite rapidly with the scaling of technology, a reduction of the number of 
masks is surely of high priority. 

3. Stepper exposure — a glass mask (or reticle), containing the patterns that we want to transfer to the silicon, 
is brought in close proximity to the wafer. The mask is opaque in the regions that we want to process, and 
transparent in the others (assuming a negative photo resist). The glass mask can be thought of as the 
negative of one layer of the microcircuit. The combination of mask and wafer is now exposed to ultra-
violet light. Where the mask is transparent, the photo resist becomes insoluble. 

4. Photoresist development and bake — the wafers are developed in either an acid or base solution to remove 
the non-exposed areas of photoresist. Once the exposed photoresist is removed, the wafer is “soft-baked” at 
a low temperature to harden the remaining photoresist. 

5. Acid Etching — material is selectively removed from areas of the wafer that are not covered by photoresist. 
This is accomplished through the use of many different types of acid, base and caustic solutions as a 
function of the material that is to be removed. Much of the work with chemicals takes place at large wet 
benches where special solutions are prepared for specific tasks. Because of the dangerous nature of some of 
these solvents, safety and environmental impact is a primary concern. 

6. Spin, rinse, and dry — a special tool (called SRD) cleans the wafer with deionized water and dries it with 
nitrogen. The microscopic scale of modern semiconductor devices means that even the smallest particle of 
dust or dirt can destroy the circuitry. To prevent this from happening, the processing steps are performed in 
ultra-clean rooms where the number of dust particles per cubic foot of air ranges between 1 and 10. 
Automatic wafer handling and robotics are used whenever possible. This explains why the cost of a state-
of-the-art fabrication facility easily ranges in the multiple billions of dollars. Even then, the wafers must be 
constantly cleaned to avoid contamination, and to remove the left-over of the previous process steps. 

7. Photoresist removal (or ashing) — a high-temperature plasma is used to selectively remove the remaining  
photoresist without damaging device layers. 

 
CMOS Process Flow: 
The process starts with the definition of the active regions; this is the regions where transistors will be constructed. 
All other areas of the die will be covered with a thick layer of silicon dioxide (SiO2), called the field oxide. This 
oxide acts as the insulator between neighboring devices, and is either grown (as in the process of Figure 2.1), or 
deposited in etched trenches (Figure 2.2) — hence the name trench insulation. Further insulation is provided by the 
addition of a reverse-biased np-diode, formed by adding an extra p+ region, called the channel-stop implant (or field 
implant) underneath the field oxide. Next, lightly doped p- and n-wells are formed through ion implantation.  
To construct an NMOS transistor in a p-well, heavily doped n-type source and drain regions are implanted (or 
diffused) into the lightly doped p-type substrate. A thin layer of SiO2, called the gate oxide, separates the region 
between the source and drain, and is itself covered by conductive polycrystalline silicon (or polysilicon, for short). 
 

 
 

Figure 4: Simplified process sequence for the manufacturing of a ndual-well CMOS circuit. 
 



 

 

 

 



 
Figure 5: Process flow for the fabrication of an NMOS and a PMOS transistor in a dual-well CMOS process. 

 
Design Rules: 
 
The goal of defining a set of design rules is to allow for a ready translation of a circuit concept into an actual 
geometry in silicon. The design rules act as the interface or even the contract between the circuit designer and the 
process engineer. Circuit designers in general want tighter, smaller designs, which lead to higher performance and 
higher circuit density. The process engineer, on the other hand, wants a reproducible and high-yield process. Design 
rules are, consequently, a compromise that attempts to satisfy both sides. The design rules provide a set of guidelines 
for constructing the various masks needed in the patterning process. They consist of minimum-width and minimum-
spacing constraints and requirements between objects on the same or on different layers. 
 
The fundamental unity in the definition of a set of design rules is the minimum line width. It stands for the minimum 
mask dimension that can be safely transferred to the semiconductor material. In general, the minimum line width is 
set by the resolution of the patterning process, which is most commonly based on optical lithography. 
 
Mead and Conway [Mead80], defines all rules as a function of a single parameter, most often called λ based rule. 
The rules are chosen so that a design is easily ported over a cross section of industrial processes. Scaling of the 
minimum dimension is accomplished by simply changing the value of λ. This results in a linear scaling of all 
dimensions. For a given process, λ is set to a specific value, and all design dimensions are consequently translated 
into absolute numbers. 
This approach, while attractive, suffers from some disadvantages 
 

 Linear scaling is only possible over a limited range of dimensions (for instance, between 0.25 mm and 0.18 
mm). When scaling over larger ranges, the relations between the different layers tend to vary in a nonlinear 
way that cannot be adequately covered by the linear scaling rules. 

 
As circuit density is a prime goal in industrial designs, most semiconductor companies tend to use micron rules, 
which express the design rules in absolute dimensions and can therefore exploit the features of a given process to a 
maximum degree. Scaling and porting designs between technologies under these rules is more demanding and has to 
be performed either manually or using advanced CAD tools. 

Layout Design: 
 
The layer concept translates the intractable set of masks currently used in CMOS into a simple set of conceptual 
layout levels that are easier to visualize by the circuit designer. From a designer’s viewpoint, all CMOS designs are 
based on the following entities: 

1. Substrates and/or wells, being p-type (for NMOS devices) and n-type (for PMOS) 
2.  Diffusion regions (n+ and p+) defining the areas where transistors can be formed.These regions are often 

called the active areas. Diffusions of an inverse type are needed to implement contacts to the wells or to the 
substrate. These are called select regions. 



3.  One or more polysilicon layers, which are used to form the gate electrodes of the transistors (but serve as 
interconnect layers as well). 

4.  A number of metal interconnect layers. 
5.  Contact and via layers to provide interlayer connections. 

A layout consists of a combination of polygons, each of which is attached to a certain layer. The functionality of the 
circuit is determined by the choice of the layers, as well as the interplay between objects on different layers. For 
instance, an MOS transistor is formed by the cross section of the diffusion layer and the polysilicon layer. An 
interconnection between two metal layers is formed by a cross section between the two metal layers and an 
additional contact layer. To visualize these relations, each layer is assigned a standard color (or stipple pattern for a 
black-and-white representation). 

Layout Exmple: 
 

 
Figure 6 A detailed layout examples, including vertical process cross section and circuit diagram. 

 

Module-II 
 
CMOS Inverter: 
 
The inverter is truly the nucleus of all digital designs. Once its operation and properties are clearly understood, 
designing more intricate structures such as NAND gates, adders, multipliers, and microprocessors is greatly 
simplified. The electrical behavior of these complex circuits can be almost completely derived by extrapolating the 
results obtained for inverters. The analysis of inverters can be extended to explain the behavior of more complex 
gates such as NAND, NOR, or XOR, which in turn form the building blocks for modules such as multipliers and 
processors. 
 
The Static CMOS Inverter — An Intuitive Perspective 
Figure 7 shows the circuit diagram of a static CMOS inverter. Its operation is readily understood with the aid of the 
simple switch model of the MOS transistor, the transistor is nothing more than a switch with an infinite off 
resistance (for |VGS| < |VT|), and a finite on-resistance (for |VGS| > |VT|). This leads to the following interpretation of 
the inverter. When Vin is high and equal to VDD, the NMOS transistor is on, while the PMOS is off. This yields the 
equivalent circuit of Figure 8. A direct path exists between Vout and the ground node, resulting in a steady-state value 
of 0 V. On the other hand, when the input voltage is low (0 V), NMOS and PMOS transistors are off and on, 
respectively. The equivalent circuit of Figure 9 shows that a path exists between VDD and Vout, yielding a high 
output voltage. The gate clearly functions as an inverter. 



 
Figure 7.Switch models of CMOS inverter. 

 

A number of other important properties of static CMOS can be derived from this switch level view: 
 The high and low output levels equal VDD and GND, respectively; in other words, the voltage swing is 

equal to the supply voltage. This results in high noise margins. 
  The logic levels are not dependent upon the relative device sizes, so that the transistors can be minimum 

size. Gates with this property are called ratioless. This is in contrast with ratioed logic, where logic levels 
are determined by the relative dimensions of the composing transistors. 

  In steady state, there always exists a path with finite resistance between the output and either VDD or 
GND. A well-designed CMOS inverter, therefore, has a low output impedance, which makes it less 
sensitive to noise and disturbances. Typical values of the output resistance are in kW range. 

  The input resistance of the CMOS inverter is extremely high, as the gate of an MOS transistor is a 
virtually perfect insulator and draws no dc input current. Since the input node of the inverter only connects 
to transistor gates, the steady-state input current is nearly zero. A single inverter can theoretically drive an 
infinite number of gates (or have an infinite fan-out) and still be functionally operational; however, 
increasing the fan-out also increases the propagation delay, as will become clear below. So, although fan-
out does not have any effect on the steady-state behavior, it degrades the transient response. 

  No direct path exists between the supply and ground rails under steady-state operating conditions (this is, 
when the input and outputs remain constant). The absence of current flow (ignoring leakage currents) 
means that the gate does not consume anystatic power. 

 

 
MOS Device Model with Sub-micron Effects: 
 
The complexity of the behavior of the short-channel MOS transistor and its many parasitic effects has led to the 
development of a wealth of models for varying degrees of accuracy and computing efficiency. In general, more 
accuracy also means more complexity and, hence, an increased run time. In this section, we briefly discuss the 
characteristics of the more popular MOSFET models, and describe how to instantiate a MOS transistor in a circuit 
description. 
 
SPICE Models: 
 
SPICE has three built-in MOSFET models, selected by the LEVEL parameter in the model card. Unfortunately, all 
these models have been rendered obsolete by the progression to short-channel devices. They should only be used for 
first-order analysis, and we therefore limit ourselves to a short discussion of their main properties. 

 The LEVEL 1 SPICE model implements the Shichman-Hodges model, which is based on the square law 
long-channel expressions, derived earlier in this chapter. It does not handle short-channel effects. 

  The LEVEL 2 model is a geometry-based model, which uses detailed device physics to define its 
equations. It handles effects such as velocity saturation, mobility degradation, and drain-induced barrier 
lowering. Unfortunately, including all 3D-effects of an advanced submicron process in a pure physics-
based model becomes complex and inaccurate.  

 LEVEL 3 is a semi-empirical model. It relies on a mixture of analytical and empirical expressions, and uses 
measured device data to determine its main parameters. It works quite well for channel lengths down to 1 
µm. 

In response to the inadequacy of the built-in models, SPICE vendors and semi-conductor manufacturers have 
introduced a wide range of accurate, but proprietary models.  



 
Table 1: Some SPICE transistor parameters 

VTC Parameters (DC Characteristics): 

 
Figure 8: Static CMOS inverter 

 

 
 
The Voltage-Transfer Characteristic: 
 
Assume now that a logical variable in serves as the input to an inverting gate that produces the variable out. The 
electrical function of a gate is best expressed by its voltage-transfer characteristic (VTC) (sometimes called the DC 
transfer characteristic), which plots the output voltage as a function of the input voltage Vout = f(Vin). An example of 
an inverter VTC is shown in Figure 9. The high and low nominal voltages, VOH and VOL, can readily be identified—
VOH = f(VOL) and VOL = f(VOH). Another point of interest of the VTC is the gate or switching threshold voltage VM 
(not to be confused with the threshold voltage of a transistor), that is defined as VM = f(VM). VM can also be found 
graphically at the intersection of the VTC curve and the line given by Vout = Vin. The gate threshold voltage presents 
the midpoint of the switching characteristics, which is obtained when the output of a gate is short-circuited to the 
input. This point will prove to be of particular interest when studying circuits with feedback (also called sequential 
circuits). 

 
Figure 9:Inverter Voltage Transfer Characteristics(VTC) 

 



Even if an ideal nominal value is applied at the input of a gate, the output signal often deviates from the expected 
nominal value. These deviations can be caused by noise or by the loading on the output of the gate (i.e., by the 
number of gates connected to the output signal). Figure 10(a) illustrates how a logic level is represented in reality by 
a range of acceptable voltages, separated by a region of uncertainty, rather than by nominal levels alone. The regions 
of acceptable high and low voltages are delimited by the VIH and VIL voltage levels, respectively. These represent by 
definition the points where the gain (= dVout / dVin) of the VTC equals 1 as shown in Figure 10(b). The region 
between VIH and VIL is called the undefined region (sometimes also referred to as transition width, or TW). Steady-
state signals should avoid this region if proper circuit operation is to be ensured. 
 

 
Figure 10: Mapping logic levels to the voltage domain. 

 

Noise Margins: 
 
For a gate to be robust and insensitive to noise disturbances, it is essential that the “0” and “1” intervals be as large 
as possible. A measure of the sensitivity of a gate to noise is given by the noise margins NML (noise margin low) and 
NMH (noise margin high), which quantize the size of the legal “0” and “1”, respectively, and set a fixed maximum 
threshold on the noise value: 

NML = VIL – VOL 

NMH = VOH – VIH 

 

The noise margins represent the levels of noise that can be sustained when gates are cascaded as illustrated in Figure 
11. It is obvious that the margins should be larger than 0 for a digital circuit to be functional and by preference 
should be as large as possible. 

 
Figure 11: Mapping logic levels to the voltage domain. 

CMOS Propagation Delay: 
 
The input and output voltage waveforms of a typical inverter circuit are shown in Figure 12. The propagation delay 
times γPHL and γpLH determine the input-to-output signal delay during the high-to-low and low-to-high transitions of 
the output, respectively. By definition, γPHL is the time delay between the V50%-transition of the rising input voltage 
and the V50% -transition of the falling output voltage. Similarly, γpLH is defined as the time delay between the V50% 
transition of the falling input voltage and the V50% transition of the rising output voltage. 
 



 
Figure 12: Input and output voltage waveforms of a typical inverter 

 

Thus, the propagation delay times γPHL and γPLH are 
γPHL =t3 - to 
γPLH = t3-t2 

Calculation of parasitic capacitances: 
 

 
Figure 13: Cascaded CMOS inverter stages. 

 
 

The problem of analyzing the output voltage waveform is fairly complicated, even for this relatively 
simple circuit, because a number of nonlinear, voltage-dependent capacitances are involved. To simplify 
the problem, we first combine the capacitancesseen in Fig. 6.1 into an equivalent lumped linear 
capacitance, connected between theoutput node of the inverter and the ground. This combined 
capacitance at the output node will be called the load capacitance, Cload. 

Cload = Cgd,. + Cgdp + Cdb,,n + Cdbp + Cint + Cg 

 
Layout of an Inverter: 
 

 
Figure 14: Complete mask layout of the CMOS inverter. 

 



Switching Power Dissipation of CMOS Inverters: 
 
The static power dissipation of the CMOS inverter is quite negligible. During switching events where the output 
load capacitance is alternatingly charged up and charged down, on the other hand, the CMOS inverter inevitably 
dissipates power. In the following section, we will derive the expressions for the dynamic power consumption of the 
CMOS inverter.Consider the simple CMOS inverter circuit shown in Fig. 15. We will assume that the input voltage 
is an ideal step waveform with negligible rise and fall times.  
 
Typical input and output voltage waveforms and the expected load capacitor current waveform are shown in Fig. 16. 
When the input voltage switches from low to high, the pMOS transistor in the circuit is turned off, and the nMOS 
transistor starts conducting. During this phase, the output load capacitance Cload is being discharged through the 
nMOS transistor.  
 
Thus, the capacitor current equals the instantaneous drain current of the nMOS transistor. When the input voltage 
switches from high to low, the nMOS transistor in the circuit is turned off, and the pMOS transistor starts 
conducting. During this phase, the output load capacitance Cload is being charged up through the pMOS transistor; 
therefore, the capacitor current equals the instantaneous drain current of the pMOS transistor. 

 
Figure 15: CMOS inverter used in the dynamic power-dissipation analysis. 

 
 

Figure 16: Typical input and output voltage waveforms and the capacitor current waveform during switching 
 

Assuming periodic input and output waveforms, the average power dissipated by any device over one period can be 
found as follows: 

0

1
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Since during switching, the nMOS transistor and the pMOS transistor in a CMOS inverter conduct current for one-
half period each, the average power dissipation of the CMOS inverter can be calculated as the power required to 
charge up and charge down the output load capacitance. 
By solving we get                                                     Pavg=Cload VDD

2f 

 



Estimation of Interconnect Parasitics: 
 
The classical approach for determining the switching speed of a logic gate is based on the assumption that the loads 
are mainly capacitive and lumped. We have examined the relatively simple delay models for inverters with purely 
capacitive load at the output node, which can be used to estimate the transient behavior of the circuit once the load is 
determined. The conventional delay estimation approaches seek to classify three main components of the output 
load, all of which are assumed to be purely capacitive, as: (i) internal parasitic capacitances of the transistors, (ii) 
interconnect (line) capacitances, and (iii) input capacitances of the fan-out gates. Of these three components, the 
load conditions imposed by the interconnection lines present serious problems, especially in submicron circuits. 
 
Figure 17 shows a simple situation where an inverter is driving three other inverters, linked by interconnection lines 
of different length and geometry. If the load from each interconnection line can be approximated by a lumped 
capacitance, then the total load seen by the primary inverter is simply the sum of all capacitive components 
described above. In most cases, however, the load conditions imposed by the interconnection line are far from being 
simple. The line, itself a three-dimensional structure in metal and/or polysilicon, usually has a non-negligible 
resistance in addition to its capacitance. The (length/width) ratio of the wire usually dictates that the parameters are 
distributed, making the interconnect a true transmission line. Also, an interconnect is rarely isolated from other 
influences. In realistic conditions, the interconnection line is in very close proximity to a number of other lines, 
either on the same level or on different levels. The capacitive/inductive coupling and the signal interference between 
neighboring lines should also be taken into consideration for an accurate estimation of delay. 
 

 
Figure 17: An inverter driving three other inverters over interconnection lines. 

 
In general, if the time of flight across the interconnection line (as determined by the speed of light) is much shorter 
than the signal rise/fall times, then the wire can be modeled as a capacitive load, or as a lumped or distributed RC 
network. If the interconnection lines are sufficiently long and the rise times of the signal waveforms are comparable 
to the time of flight across the line, then the inductance also becomes important, and the interconnection lines must 
be modeled as transmission lines. The following is a simple rule of thumb which can be used to determine when to 
use transmission-line models. 

γrise(γfall)<2.5x(L/V)   => Transmission line modeling 
2.5x(L/V)   < γrise(γfall) < 5x(L/V) Either transmission line or lumped modeling 

γrise(γfall)> 5x(L/V) 
 

Here, L is the interconnect line length, and V is the propagation speed. Note that transmission line analysis always 
gives the correct result irrespective of the rise/fall time and the interconnect length; yet the same result can be 
obtained with the same accuracy using lumped approximation when rise/fall times are sufficiently large.  
 
The transmission-line effects have not been a serious concern in CMOS VLSI chips until recently, since the gate 
delays due to capacitive load components dominated the line delay in most cases. But as the fabrication technologies 
move to finer submicron design rules, the intrinsic gate delays tend to decrease significantly. By contrast, the overall 
chip size and the worst-case line length on a chip tend to increase mainly due to increasing chip complexity, thus, 
the importance of interconnect delay increases in submicron technologies. In addition, as the widths of metal lines 
shrink, the transmission line effects and signal coupling between neighboring lines become even more pronounced. 



 
This fact is illustrated in Figure 18, where typical intrinsic gate delay and interconnect delay are plotted 
qualitatively, for different technologies. It can be seen that for submicron technologies, the interconnect delay starts 
to dominate the gate delay. In order to deal with the implications and to optimize a system for speed, chip designers 
must have reliable and efficient means for (i) estimating the interconnect parasitics in a large chip, and (ii) 
simulating the transient effects. 

 
Figure 18: Interconnect delay dominates gate delay in submicron CMOS technologies. 

Interconnect Capacitance Estimation: 
 
In a large-scale integrated circuit, the parasitic interconnect capacitances are among the most difficult parameters to 
estimate accurately. Each interconnection line (wire) is a three-dimensional structure in metal and/or polysilicon, 
with significant variations of shape, thickness, and vertical distance from the ground plane (substrate). Also, each 
interconnect line is typically surrounded by a number of other lines, either on the same level or on different levels. 
Figure 19 shows a simplified view of six interconnections on three different levels, running in close proximity of 
each other. The accurate estimation of the parasitic capacitances of these wires with respect to the ground plane, as-
well as with respect to each other, is a complicated task. 
 

 
 

Figure 19: An example of six interconnect lines running on three different levels. 
 

 
 

First, consider the section of a single interconnect which is shown in Figure 20. It is assumed that this wire segment 
has a length of (1) in the current direction, a width of (w) and a thickness of (t). Moreover, we assume that the 
interconnect segment runs parallel to the chip surface and is separated from the ground plane by a dielectric (oxide) 
layer of height (h). Now, the correct estimation of the parasitic capacitance with respect to ground is an important 
issue. Using the basic geometry given in Figure 20, one can calculate the parallel-plate capacitance Cpp of the 
interconnect segment. However, in interconnect lines where the wire thickness (t) is comparable in magnitude to the 
ground-plane distance (h), fringing electric fields significantly increase the total parasitic capacitance (figure 21). 
 



 
Figure 20: Interconnect segment running parallel to the surface, which is used for parasitic resistance and capacitance estimations. 

 

 
Figure 21: Influence of fringing electric fields upon the parasitic wire capacitance. 

 

 
Table 2: Thickness values of different layers in a typical 0.8 micron CMOS process. 

 

 
For the estimation of interconnect capacitances in a complicated three-dimensional structure, the exact geometry 
must be taken into account for every portion of the wire. Yet this requires an excessive amount of computation in a 
large circuit, even if simple formulas are applied for the calculation of capacitances. Usually, chip manufacturers 
supply the area capacitance (parallel-plate capacitance) and the perimeter capacitance (fringing-field capacitance) 
figures for each layer, which are backed up by measurement of capacitance test structures. These figures can be used 
to extract the parasitic capacitance from the mask layout.  
 
It is often prudent to include test structures on chip that enable the designer to independently calibrate a process to a 
set of design tools. In some cases where the entire chip performance is influenced by the parasitic capacitance or 
coupling of a specific line, accurate 3-D simulation of interconnect parasitic effects is the only reliable solution. 



 
Table 3: Parasitic capacitance values between various layers, for atypical double-metal 0.8 micron CMOS technology. 

 

Interconnect Resistance Estimation: 
 
The parasitic resistance of a metal or polysilicon line can also have a significant influence on the signal propagation 
delay over that line. The resistance of a line depends on the type of material used (e.g., polysilicon, aluminum, or 
gold), the dimensions of the line and finally, the number and locations of the contacts on that line. Consider again 
the interconnection line shown in Figure 20. The total resistance in the indicated current direction can be found as 

Rwire=ρx(L/W.t)=Rsheet(L/W) 
where (ρ) represents the characteristic resistivity of the interconnect material, and Rsheet represents the sheet 
resistivity of the line, in (Ω/square). 

Rsheet= ρ/t 

Calculation of Interconnect Delay: Two models are introduced here for calculation of 
interconnected delay. 

 RC Delay Models 
 The Elmore Delay 

RC Delay Models 
 
As we have already discussed in the previous Section, an interconnect line can be modeled as a lumped RC network 
if the time of flight across the interconnection line is significantly shorter than the signal rise/fall times. This is 
usually the case in most on-chip interconnects, thus, we will mainly concentrate on the calculation of delay in RC 
networks, in the following. The simplest model which can be used to represent the resistive and capacitive parasitics 
of the interconnect line consists of one lumped resistance and one lumped capacitance (Figure 22). Assuming that 
the capacitance is discharged initially, and assuming that the input signal is a rising step pulse at time t = 0, the 
output voltage waveform of this simple RC circuit is found as 
 
 

 
And the propagation delay for the simple lumped RC network is found as τ = 0.69 RC 
 



 
Figure 22: Simple lumped RC model of an interconnect line, where R and C represent the total line resistance and capacitance, respectively 

 

The Elmore Delay: 
 
Consider a general RC tree network, as shown in Figure 23. Note that (i) there are no resistor loops in this circuit, 
(ii) all of the capacitors in an RC tree are connected between a node and the ground, and (iii) there is one input node 
in the circuit. Also notice that there is a unique resistive path, from the input node to any other node in the circuit. 
Inspecting the general topology of this RC tree network, we can make the following path definitions: 

 

 
Figure 23. A general RC tree network consisting of several branches. 

Assuming that the input signal is a step pulse at time t = 0, the Elmore delay at node i of this RC tree is given by the 
following expression. 

 
Calculation of the Elmore delay is equivalent to deriving the first-order time constant (first moment of the impulse 
response) of this circuit. Note that although this delay is still an approximation for the actual signal propagation 
delay from the input node to node i, it provides a fairly simple and accurate means of predicting the behavior of the 
RC line. The procedure to calculate the delay at any node in the circuit is very straightforward. For example, the 
Elmore delay at node 7 can be found according to the above equation. 
 

 
as in Elmore Delay model is τ = 0.50 RC 
 



Module 3 

Combinational Logic Circuits 

Combinational logic circuits, or gates, which perform Boolean operations on multiple input variables and determine 
the outputs as Boolean functions of the inputs, are the basic building blocks of all digital systems.In this chapter, we 
will examine the static and dynamic characteristics of various combinational MOS logic circuits. 

The first major class of combinational logic circuits to be presented in this chapter is the nMOS depletion-load gates. 
Our purpose for including nMOS depletion-load circuits here is mainly pedagogical, to emphasize the load concept, 
which is still being widely used in many areas in digital circuit design. We will examine simple circuit 
configurations such as two-input NAND and NOR gates and then expand our analysis to more general cases of 
multiple-input circuit structures. Next, the CMOS logic circuits will be presented in a similar fashion. We will stress 
the similarities and differences between the nMOS depletion-load logic  and CMOS logic circuits and point out the 
advantages of CMOS gates with examples. The design of complex logic gates, which allows the realization  of 
complex Boolean functions of multiple variables, will be examined in detail. Finally, we will devote the last section 
to CMOS transmission gates and to transmission gate (TG) logic circuits. 

In its most general form, a combinational logic circuit, or gate, performing a Boolean function can be represented as 
a multiple-input single-output system. 

 

Figure 24: Generic combinational logic circuit (gate). 

All input variables are represented by node voltages, referenced to the ground potential.Using  positive logic 
convention, the Boolean(or logic) value of  “1” can be represented by a high voltage of  VDD, and  the Boolean(or 
logic) value of  “0” can be represented by a low voltage of  0. The output node is loaded with capacitance CL, which 
represents the combined parasitic device capacitances in the circuit and the interconnect capacitance components 
seen by the output node. This output load capacitance certainly plays a very significant role in the dynamic operation 
of the logic gate. 

As in the  simple inverter  case, the  voltage transfer  characteristic  (VTC)  of a combinational logic gate provides 
valuable information  on the DC operating performance of the circuit. Critical voltage points such as VOL or Vth 
are considered to be important design parameters for combinational logic circuits. Other design parameters and 
concerns include the dynamic (transient) response characteristics of the circuit, the silicon area occupied by the  
circuit, and the amount of static and dynamic power dissipation. 



 

Static CMOS  Logic  Circuits: 

Complementary CMOS 

Introduction- Complementary Static CMOS design offers low noise sensitivity, speed and low power consumption. 
Static CMOS design means that at any time, the output of the gate is directly connected to VSS or VDD. In 
comparison, Dynamic CMOS gates depend upon the device capacitance to temporarily hold charge at the output. 

 

Figure 25: Pull up and Pull down networks 

 

 

Properties of Complementary Static CMOS 

            1)   Contains a pull up network (PUP) and pull down network (PDN)  
            2)    PUP networks consist of PMOS transistors  
            3)    PDN networks consist of NMOS transistors  
            4)    Each network is the dual of the other network  
            5)    The output of the complementary gate is inverted. 

 

PDN Design - Any function is first designed by the Pull Down network. The Pull Up network can be designed by 
simply taking the dual of the Pull Down network, once it is found.An NMOS gate will pass current between source 
and drain when 5 volts is presented at the gate. 



1) All functions are composed of either  and'ed or or'ed sub-functions.  
        2) The And function is composed of NMOS transistors in series. 
        3) The Or function is composed of NMOS transistors in parallel. 

 

CMOS Logic Circuits 

CMOS NOR2 (Two-Input NOR) Gate 

 

 

Figure 26:  A CMOS NOR2 gate and its complementary operation: Either the nMOS network is on and the pMOS 
network is off, or the pMOS network is on and the nMOS network is off. 

 

The circuit consists of a parallel-connected n-net and a series-connected complementary pnet. The input voltages 
VA and VB are applied to the gates of one nMOS and one pMOS transistor. 

The complementary nature of the operation can be summarized as follows: When either one or both inputs are high, 
i.e., when the n-net creates a conducting path between the output node and the ground, the p-net is cut-off. On the 
other hand, if both input voltages are low, i.e., the n-net is cut-off, then the p-net creates a conducting path between 
the output node and the supply voltage VDD. Thus, the dual or complementary circuit structure allows that, for any 
given input combination, the output is connected either to VDD or to ground via a low-resistance path. A DC current 
path between the VDD and ground is not established for any of the input combinations. 

The output voltage of the CMOS NOR2 gate will attain a logic-low voltage of VOL= 0 and a logic-high voltage of 
VOH = VDD. For circuit design purposes, the switching threshold voltage Vth of the CMOS gate emerges as an 
important design criterion. We start our analysis of the switching threshold by assuming that both input voltages 
switch simultaneously, i.e.VA =VB. Furthermore, it is assumed that the device sizes in each block are identical, 
(W/L)n,A = (W/L)n,B and (W/L)p,A = (W/L)p,B  and the substrate-bias effect for the pMOS transistors is neglected 
for simplicity. 
 



By definition, the output voltage is equal to the input voltage at the  switching threshold. 

 

It is obvious that the two parallel nMOS transistors are saturated at this point, because VGS=VDS. The combined 
drain current of the two nMOS transistors is 

 

Thus, we obtain the first equation for the switching threshold Vth 

 

Examination of the p-net shows that the pMOS transistor M3 operates in the linear region, while the other pMOS 
transistor, M4, is in saturation for Vth=Vout.Thus, 

 

 

The drain currents of  bothpMOS  transistors are identical, i.e.,  ID3=ID4=ID. Thus, 

 

This yields the second equation of the switching threshold voltage Vth 

 



If kn = kp and V T,n  = |VT,p|,  the switching threshold of the CMOS inverter is equal to VDD/2. Using the same 
parameters, the switching threshold of the NOR2 gate is 

 

which is not equal to VDD/2. For example, when VDD = 5 V and VT,n =|VT,p| = 1 V, the switching threshold 
voltages of the NOR2 gate and the inverter are 

 

 

The switching threshold voltage of the NOR2 gate can also be obtained by using the equivalent-inverter approach. 
When both inputs are identical, the parallel-connected nMOS transistors can be represented by a single nMOS 
transistor with 2kb.  Similarly, the series-connected pMOS transistors are represented by a single pMOS transistor 
with Kp/2. 

 
Figure 27: A CMOS NOR2 gate and its inverter equivalent. 
 
 
CMOS NAND2 (Two-Input NAND) Gate 
 
The operating principle of this circuit is the exact dual of the CMOS NOR2 operation examined earlier. The n-net 
consisting of two series-connected nMOS transistors creates a conducting path between the output node and the 
ground only if both input voltages are logic-high, i.e., are equal 



to VOH In this case, both of the parallel-connected pMOS transistors in the p-net will be off. For all other input 
combinations, either one or both of the pMOS transistors will be turned on, while the n-net is cut-off, thus creating a 
current path between the output node and the power supply voltage. 
 

Using an analysis similar to the one developed for the NOR2 gate, we can easily calculate the switching 
threshold for the CMOS NAND2 gate. Again, we will assume that the device sizes in each block are identical, with 
(W/L)n,A  = (W/L)n,B  and (W/L)p,A  = (W/L)p,B. The switching threshold for this gate is then found as 

 

 

 

 

Figure 28: A CMOS NAND2 gate and its inverter equivalent. 

 

 

Ratioed  Logic 

It is one method to reduce the circuit complexity of static CMOS. Here, the logic function is built in the PDN and 
used in combination with a simple load  device 

Comparison of Logic Families 



Complementary CMOS 
 

Ratioed Logic 
 

Full Swing Reduced Swing 
(smaller noise margin) 

No Static Power 
 

Static Power 

tpHL= tpLH 
if sized correctly 

tpLH>tpHL 

Large PMOS 
parasitic capactiances 

much smaller 
parasitic capactiances 

 

 

DC characteristics: 

ƒ VOH= VDD 

ƒ VOL depends on PMOS to NMOS ratio 

Let's assume the load can be represented as linearized resistors. When the PDN is on, the output voltage is 
determined by: 

 

This logic style is called ratioed because care must be taken in scaling the impedances  properly. Note that full 
complementary CMOS is ratioless, since the output signals do not  depend on the size of the transistors. In order to 
keep the noise margins high, RL >>  RPDN 

However, RL must be able to provide as much current as possible to minimize delay. 



 

 

These are conflicting requirements: 

RL large: Noise margins. 

RL small: performance and power dissipation. 

 

Pseudo-NMOS VTC 

 

Pass-Transistor Logic 

Introduction 

Realizing boolean functions using transistors as a  switch, this is typically known as pass transistor logic circuits. 

Characteristics of an ideal switch 

 It has zero on resistance (Vin=Vout) 

 Infinite(very very high) OFF resistance (Vout=0 v), previous value retained in case of capacitive load. 



 Relay is an ideal switch. In relay logic, presence of high voltage level is considered to be “1”. Absence of 
high voltage level is considered to be “0”. 

 Pass transitor logic is different from relay logic. 

 

 

 N inputs, N transistors 

 No static power consumption (ideally) 

 

Pass transistor logic Design rules 

 One must not drive the gate of a pass transistor by the output of another pass transistor. 

 It is essential to provide both charging and discharging path for the load capacitance. 

 When a signal is steered through several stages of pass transistors, the delay can be considerable. 

Example: AND Gate 

 



When B is “1”, top device turns on and copies the input  A to output F. When B is low, bottom device turns on  and 
passes a “0”. 

The presence of the switch driven by B is essential to  ensure that the gate is static – a low-impedance path  must 
exist to supply rails. 

Advantage: 

Fewer devices to implement some functions. 

Example: AND2 requires 4 devices (including inverter to  invert B) vs. 6 for complementary CMOS (lower total  
capacitance). 

NMOS is effective at passing a 0, but poor at pulling a node to  Vdd. When the pass transistor a node high, the 
output only charges up to  Vdd- Vtn. This becomes worse due to the body effect. The node will be charged up to  
Vdd– Vtn(Vs) 

Complementary Pass Transistor Logic 

The complexity of full-CMOS pass-gate logic circuits can be reduced dramatically by adopting another circuit 
concept, called Complementary Pass-transistor Logic (CPL). The main idea behind CPL is to use a purely nMOS 
pass-transistor network for the logic operations, instead of a CMOS TG network. All inputs are applied in 
complementary form, i.e., every input signal and its inverse must be provided; the circuit also produces 
complementary outputs, to be used by subsequent CPL stages. Thus, the CPL circuit essentially consists of 
complementary inputs, an nMOS pass transistor logic network to generate complementary outputs, and CMOS 
output inverters  to restore  the output signals. 

 

Figure 29: Circuit diagram of (a) CPL NAND2 gate and (b) CPL NOR2 gate 

The elimination of pMOStransistors  from the pass-gate network significantly reduces the parasitic capacitances 
associated with each node in the circuit, thus, the operation speed is typically  higher compared to a full-CMOS  
counterpart.  But the improvement in transient characteristics comes at a price of increased process complexity. In 
CPL circuits, the threshold voltages of the nMOStransistors  in the pass-gate network must be reduced to about 0 V 



through threshold-adjustment  implants, in order to eliminate the threshold-voltage drop. This, on the other hand, 
reduces the overall noise immunity and makes the transistors more susceptible to subthreshold conduction in the off-
mode. Also note that the CPL design style is highly modular, a wide range of functions can be realized by using the 
same basic pass-transistor structures. 

Transmission Gate Logic 

The CMOS transmission gate consists of one nMOS and one pMOS transistor, connected in parallel. The gate 
voltages applied to these two transistors are also set to be complementary signals. As such, the CMOS TG operates 
as a bidirectional switch between the nodes A and B which is controlled by signal C. 

 

Figure 30: Four different representation of CMOS transmission gate(TG) 

If the control signal C is logic-high, i.e., equal to VDD, then both transistors are turned on and provide a low-
resistance current path between the nodes A and B. If, on the other hand, the control signal C is low, then both 
transistors will be off, and the path between the nodes A and B will be an open circuit. This condition is also called 
the high-impedance state. 

 

 

 

Charecteristics 

 NMOS passes a strong “0” 
 PMOS passes a strong “1” 
 Transmission gates enable rail-to-rail swing 
 These gates are particularly efficient in  implementing MUXs 



 
Two-input multiplexor circuit implemented using two CMOS TGs. 
 

DCVS (Differential Cascode Voltage Switch Logic) Logic 

It requires mainly N-channel MOSFET transistors to implement the logic using true and complementary input 
signals, and also needs two P-channel transistors at the top to pull one of the outputs high. 

Static logic—consumes no dynamic or static power. 

Uses latch to compute output quickly. 

Requires true/complement inputs, produces true/complement outputs. 

The cascode (sometimes verbified to cascoding) is a universal technique for improving analog circuit performance, 
applicable to both vacuum tubes and transistors. The word was first used in an article by F.V. Hunt and R.W. 
Hickman in 1939, in a discussion for application in low-voltage stabilizers. They proposed a cascade of two triodes 
(first one with common cathode, the second one with common grid) as a replacement of a pentode. 

DCVS structure 

 



DCVS operation 

 Exactly one of true/complement pulldown networks will complete a path to the power supply. 
 Pulldown network will lower output voltage, turning on other p-type, which also turns off p-type for node 

which is going down. 

DCVS example 

 

Dynamic CMOS Logic Circuits 

 Output not permanently connected to Vdd or Vss 

 Output value partly relies on storage of signal values on the capacitance of high impedance circuit nodes. 

 Input only active when clockis active 

 Requires N+2 transistors for N inputs 
 

 

 



Two phase operation 

Precharge (CLK = 0) – Me is off => no static power 

Evaluate (CLK = 1)  –Mp is off 

 

Conditions on Output 

 Once the output of a dynamic gate is discharged, it cannot be charged  again until the next precharge 
operation. 

 Inputs to the gate can make  at most one transition during evaluation. 

 Output can be in the high impedance state during and after evaluation  (PDN off), state is stored on CL 
(fundamentally different than static gates) 

Properties of Dynamic Gates 

 Logic function is implemented by the PDN only(number of transistors is N + 2 (versus 2N for static 
complementary CMOS) 

 Full swing outputs (VOL= GND and VOH= VDD) 

 Non-ratioed - sizing of the devices does not affect the logic levels-Sizing the PMOS doesn’t impact correct 
functionality. Sizing it up improves the low- to-high transition time (not too critical), but trades- off 
increase in clock -power dissipation. 

 Faster switching speeds 
 reduced load capacitance due to  lower input capacitance (Cin) 
 reduced load capacitance due to smaller output loading ( Cout) 
 no Isc, so all the current provided by PDN goes into discharging CL 

 Overall power dissipation usually higher than static CMOS 
 no static current path ever exists between VDD and GND (including Psc) 
 higher transition probabilities 
 extra load on  Clock -> higher dynamic power consumption 

 Needs a precharge /evaluate clock 

 

 

 

 

 

 

 

 

 



 

Domino Logic 

 

 

The inverter: 

(a) ensures that all inputs are set to  “0” at the end of the precharge phase 

(b) has a low impedance output, which increases the noise immunity. 

(c) Can be used to drive a keeper device to combat leakage and charge redistribution. 

Why Domino? 

 Since each dynamic gate has a static inverter, only non -inverting logic can be  implemented (there are 
ways to deal with this) 

 Very high speed 
 Input capacitance reduced 

 

 

Sequential Logic Circuits 

Introduction: 

Combinational logic circuits that were described earlier have the property that the output of a logic block is only a 
function of the current input values, assuming that enough time has elapsed for the logic gates to settle. Yet virtually 
all useful systems require storage of state information, leading to another class of circuits called sequential logic 
circuits. In these circuits, the output not only depends upon the current values of the inputs, but also upon preceding 
input values. In other words, a sequential circuit remembers some of the past history of the system—it has memory. 



 

Figure 31:Block diagram of a finite state machine using positive edge-triggered registers 

Above figure shows a block diagram of a generic finite state machine(FSM) that consists of combinational logic and 
registers that hold the system state. The system depicted here belongs to the class of synchronous sequential 
systems, in which all registers are under control of a single global clock. The outputs of the FSM are a function of 
the current Input sand the Current State. The Next State is determined based on the Current State and the current 
Input sand is fed to the inputs of registers. On the rising edge of the clock, the Next State bits are copied to the 
outputs of the registers (after some propagation delay), and a new cycle begins. The register then ignores changes in 
the input signals until the next rising edge. In general, registers can be positive edge-triggered(where the input data 
is copied on the positive edge) or negative edge triggered (where the input data is copied on the negative edge of the 
clock, as is indicated by a small circle at the clock input). 

This chapter discusses the CMOS implementation of the most important sequential building blocks. A variety of 
choices in sequential primitives and clocking methodologies exist; making the correct selection is getting 
increasingly important in modern digital circuits, and can have a great impact on performance, power, and/or design 
complexity. Before embarking on a detailed discussion on the various design options, a revision of the design 
metrics, and a classification of the sequential elements is necessary. 

 

Static  Latches  and  Registers 

The Bistability Principle 

Static memories use positive feedback to create abistable circuit —a circuit having two stable states that represent 0 
and 1. The basic idea is two inverters connected in cascade along with a voltage-transfer characteristic typical of 
such a circuit. 



 

 

Also plotted are the VTCs of the first inverter, that is Vo1 versusVi1and the second inverter (Vo2 versusVo1). The 
latter plot is rotated to accentuate that Vi2 =Vo1 Assume now that the output of the second inverterVo2 is connected 
to the input of the first Vi1. The resulting circuit has only three possible operation points (A, B and C), as 
demonstrated on the combined VTC. The following important conjecture is easily proven to be valid: 

Under the condition that the gain of the inverter in the transient region is larger than 1, only A and B are stable 
operation points, and C is a metastable operation point. 

Suppose that the cross-coupled inverter pair is biased at point C. A small deviation from this bias point, possibly 
caused by noise, is amplified and regenerated around the circuit loop. This is a consequence of the gain around the 
loop being larger than 1.A small deviation δ is applied toVi1(biased in C). This deviation is amplified by the gain of 
the inverter. The enlarged divergence is applied to the second inverter and amplified once more. The bias point 
moves away from C until one of the operation points A or B is reached. In conclusion, C is an unstable operation 
point. Every deviation (even the smallest one) causes the operation point to run away from its original bias. The 



chance is indeed very small that the cross-coupled inverter pair is biased at C and stays there. Operation points with 
this property are termed metastable. 

 

On the other hand, A and B are stable operation points. In these points, the loop gain is much smaller than unity. 
Even a rather large deviation from the operation point is reduced in size and disappears.Hence the cross-coupling of 
two inverters results in a bistable circuit, that is, a circuit with two stable states, each corresponding to a logic state. 
The circuit serves as a memory, storing either a 1 or a 0 (corresponding to positions A and B). 

In order to change the stored value, we must be able to bring the circuit from state A to Band vice-versa. Since the 
precondition for stability is that the loop gain G is smaller than unity, we can achieve this by making A (or B) 
temporarily unstable by increasing G to a value larger than 1. This is generally done by applying a trigger pulse 
atVi1 or Vi2. For instance, assume that the system is in position A(Vi1 =0,Vi2 =1).ForcingVi1 to 1 causes both 
inverters to be on simultaneously for a short time and the loop gain G to be larger than 1. The positive feedback 
regenerates the effect of the trigger pulse, and the circuit moves to the other state (Bin this case). The width of the 
trigger pulse need be only a little larger than the total propagation delay around the circuit loop, which is twice the 
average propagation delay of the inverters. 

SR Flip-Flops 

The cross-coupled inverter pair shown in the previous section provides an approach to store a binary variable in a 
stable way. However, extra circuitry must be added to enable control of the memory states. The simplest incarnation 
accomplishing this is the well knowSR —or set-reset— flip-flop. 
This circuit is similar to the cross-coupled inverter pair with NOR gates replacing the inverters. The second input of 
the NOR gates is connected to the trigger inputs (S and R), that make it possible to force the outputs Q and Qbarto a 
given state. These outputs are complimentary (except for theSR= 11 state). When both S andRare 0, the flip-flop is 
in a quiescent state and both outputs retain their value (a NOR gate with one of its input being 0 looks like an 
inverter, and the structure looks like a cross coupled inverter). If a positive (or 1) pulse is applied to theSinput, 
theQoutput is forced into the 1 state (withQbar going to 0). Vice versa, a 1 pulse onRresets the flip-flop and 
theQoutput goes to 0. 



 

(a) Schematic diagram     (b) Logic symbol 

 

These results are summarized in the characteristic table of the flip-flop. The characteristic table is the truth table of 
the gate and lists the output states as functions of all possible input conditions. When both S and R are high, both Q 
and Qbar are forced to zero. Since this does not correspond with our constraint that Q and Qbar must be 
complementary, this input mode is considered to be forbidden. An additional problem with this condition is that 
when the input triggers return to their zero levels, the resulting state of the latch is unpredictable and depends on 
whatever input is last to go low. 

Multiplexer Based Latches 

There are many approaches for constructing latches. One very common technique involves the use of transmission 
gate multiplexers. Multiplexer based latches can provide similar functionality to the SR latch, but has the important 
added advantage that the sizing of devices only affects performance and is not critical to the functionality. 



 

Negative and positive latches based on multiplexers. 

 

For a negative latch, when the clock signal is low, the input 0 of the multiplexer is selected, and the D input is 
passed to the output. When the clock signal is high, the input 1 of the multiplexer, which connects to the output of 
the latch, is selected. The feedback holds the output stable while the clock signal is high. Similarly in the positive 
latch, the D input is selected when clock is high, and the output is held (using feedback) when clock is low. 

A transistor level implementation of a positive latch based on multiplexers is shown below.When CLK is high, the 
bottom transmission gate is on and the latch is transparent-that is, the D input is copied to the Q output. During this 
phase, the feedback loop is open since the top transmission gate is off. Unlike the SRFF, the feedback does not have 
to be overridden to write the memory and hence sizing of transistors is not critical for realizing correct functionality. 
The number of transistors that the clock touches is important since it has an activity factor of 1. This particular latch 
implementation is not particularly efficient from this metric as it presents a load of 4 transistors to the CLK signal. 

 

Figure 32: Transistor level implementation ofa positive latch built using transmission gates. 

It is possible to reduce the clock load to two transistors by using implement multiplexers using NMOS only pass 
transistor as shown in Figure 7.13. The advantage of this approach is the reduced clock load of only two NMOS 



devices. When CLK is high, the latch samples the D input, while a low clock-signal enables the feedback-loop, and 
puts the latch in the hold mode. While attractive for its simplicity, the use of NMOS only pass transistors results in 
the passing of a degraded high voltage of VDD-VTn to the input of the first inverter. This impacts both noise margin 
and the switching performance, especially in the case of low values of VDD and high values of VTn. It also causes 
static power dissipation in first inverter, as already pointed out in Chapter 6. Since the maximum input-voltage to the 
inverter equals VDD-VTn, the PMOS device of the inverter is never turned off, resulting is a static current flow. 

.  

(a) Schematic diagram       (b) Non overlapping clocks 

Fig: Multiplexer based NMOS latch using NMOS only pass transistors for multiplexers 

 

Master-Slave Based Edge Triggered Register 

The most common approach for constructing an edge-triggered register is to use a master-slave configuration. The 
register consists of cascading a negative latch (master stage) with a positive latch (slave stage). A multiplexer based 
latch is used in this particular implementation, though any latch can be used to realize the master and slave stages. 
On the low phase of the clock, the master stage is transparent and the D input is passed to the master stage output, 
QM. During this period, the slave stage is in the hold mode, keeping its previous value using feedback. On the rising 
edge of the clock, the master slave stops sampling the input, and the slave stage starts sampling. During the high 
phase of the clock, the slave stage samples the output of the master stage (QM), while the master stage remains in a 
hold mode. Since QM is constant during the high phase of the clock, the output Q makes only one transition per 
cycle. The value of Q is the value of D right before the rising edge of the clock, achieving the positive edge-
triggered effect. A negative edge-triggered register can be constructed using the same principle by simply switching 
the order of the positive and negative latch (i.e., placing the positive latch first). 



 

Fig: Positive edge-triggered register based on a master-slave configuration. 

A complete transistor level implementation of a the master-slave positive edge-triggered register is shown. The 
multiplexer is implemented using transmission gates as discussed in the previous section. When clock is low 
(CLK=0).T1 is on and T2 is off, and the D input is sampled onto node QM. During this period, T3 is off and T4 is 
on and the cross-coupled inverters (I5, I6) holds the state of the slave latch. When the clock goes high, the master 
stage stops sampling the input and goes into aholdmode.T1 is off and T2 is on, and the cross coupled inverters I3 
and I4 holds the state of QM. Also, T3 is on and T4 is off, and QM is copied to the output Q. 

 

Figure 33: Transistor-level implementation of a master-slave postive edge-triggered register using multiplexers. 

 

DYNAMIC LATCHES AND REGISTERS 

Storage in a static sequential circuit relies on the concept that a cross-coupled inverter pair produces a bistable 
element and can thus be used to memorize binary values. This approach has the useful property that a stored value 
remains valid as long as the supply voltage is applied to the circuit, hence the name static. The major disadvantage 
of the static gate, however, is its complexity. When registers are used in computational structures that are constantly 
clocked such as pipelined data path, the requirement that the memory should hold state for extended periods of time 
can be significantly relaxed. 

This results in a class of circuits based on temporary storage of charge on parasitic capacitors. The principle is 
exactly identical to the one used in dynamic logic — charge stored on a capacitor can be used to represent a logic 
signal. The absence of charge denotes a 0, while its presence stands for a stored 1. No capacitor is ideal, 



unfortunately, and some charge leakage is always present. A stored value can hence only be kept for a limited 
amount of time, typically in the range of milliseconds. If one wants to preserve signal integrity, a periodic refresh of 
its value is necessary. Hence the name dynamic storage. Reading the value of the stored signal from a capacitor 
without disrupting the charge requires the availability of a device with a high input impedance. 

Dynamic Transmission-Gate Based Edge-triggered Registers 

A fully dynamic positive edge-triggered register based on the master-slave concept is shown.When CLK= 0, the 
input data is sampled on storage node 1, which has an equivalent capacitance of C1 consisting of the gate 
capacitance of  I1 , the junction capacitance of T1, and the overlap gate capacitance of T1. During this period, the 
slave stage is in a hold mode, with node 2 in a high-impedance (floating) state. On the rising edge of clock, the 
transmission gate T2 turns on, and the value sampled on node 1 right before the rising edge propagates to the output 
Q(note that node 1 is stable during the high phase of the clock since the first transmission gate is turned off). Node 2 
now stores the inverted version of node 1. This implementation of an edge-triggered register is very efficient as it 
requires only 8 transistors. The sampling switches can be implemented using NMOS-only pass transistors, resulting 
in an even-simpler 6 transistor implementation. The reduced transistor count is attractive for high-performance and 
low-power systems. 

 

Figure 33: Dynamic edge-triggered register. 

The set-up time of this circuit is simply the delay of the transmission gate, and corresponds to the time it takes node 
1 to sample the D input. The hold time is approximately zero, since the transmission gate is turned off on the clock 
edge and further inputs changes are ignored. The propagation delay(tc-q) is equal to two inverter delays plus the 
delay of the transmission gate T2. 

One important consideration for such a dynamic register is that the storage nodes (i.e., the state) has to be refreshed 
at periodic intervals to prevent a loss due to charge leakage, due to diode leakage as well as sub-threshold currents. 
In data path circuits, the refresh rate is not an issue since the registers are periodically clocked, and the storage nodes 
are constantly updated. 

Clock overlap is an important concern for this register. Consider the clock waveforms shown. 



 

Figure 35: Impact of non-overlapping clocks. 

During the 0-0 overlap period, the NMOS of T1 and the PMOS ofT2 are simultaneously on, creating a direct path 
for data to flow from the D input of the register to the Q output. This is known as a race condition. The output Q can 
change on the falling edge if the overlap period is large — obviously an undesirable effect for a positive edge-
triggered register. The same is true for the 1-1 overlap region, where an input-output path exists through the PMOS 
of T1 and the NMOS ofT2. The latter case is taken care off by enforcing a hold time constraint. That is, the data 
must be stable during the high-high overlap period. The former situation (0-0 overlap) can be addressed by making 
sure that there is enough delay between the D input and node 2 ensuring that new data sampled by the master stage 
does not propagate through to the slave stage. Generally the built in single inverter delay should be sufficient and the 
overlap period constraint is given as: 

 

Similarly, the constraint for the 1-1 overlap is given as: 

 

C2MOS Dynamic Register: A Clock Skew Insensitive Approach 

The C2MOS Register 

The register operates in two phases. 

1. CLK =0: The first tri-state driver is turned on, and the master stage acts as an inverter sampling the inverted 
version of D on the internal node X. The master stage is in the evaluation mode. Meanwhile, the slave section is in a 
high-impedance mode, or in ahold mode. Both transistors M7 andM8 are off, decoupling the output from the input. 
The output Q retains its previous value stored on the output capacitor CL2. 



 

Figure 36: C2MOS master-slave positive edge-triggered register. 

2.The roles are reversed when CLK = 1: The master stage section is in hold mode (M3-M4 off), while the second 
section evaluates (M7-M8 on). The value stored onCL1 ropagates to the output node through the slave stage which 
acts as an inverter. 

The overall circuit operates as a positive edge-triggered master-slave register — very similar to the transmission-
gate based register presented earlier. However, there is an important difference: 

A C2MOS register with CLK-CLK clocking is insensitive to overlap, as long as the rise and fall times of the clock 
edges are sufficiently small. 

Dual-edge Triggered Registers 

It is also possible to design sequential circuits that sample the input on both edges. The advantage of this scheme is 
that a lower frequency clock (half of the original rate) is distributed for the same functional throughput, resulting in 
power savings in the clock distribution network. 



 

Figure 37: C2MOS based dual-edge triggered register 

 

This is a modification of the C2MOS register to enable sampling on both edges. It consists of two parallel master-
slavebased edge-triggered registers, whose outputs are multiplexed using the tri-state drivers. 

When clock is high, the positive latch composed of transistorsM1-M4 is sampling the inverted D input on node X. 
Node Y is held stable, since devices M9 and M10 are turned off. On the falling edge of the clock, the top slave latch 
M5-M8 turns on, and drives the inverted value of X to the Q output. During the low phase, the bottom master latch 
(M1,M4, M9, M10) is turned on, sampling the inverted D input on node Y. Note that the devices M1 and M4 are 
reused, reducing the load on the D input. On the rising edge, the bottom slave latch conducts, and drives the inverted 
version of Y on node Q. Data hence changes on both edges. Note that the slave latches operate in a complementary 
fashion — this is, only one of them is turned on during each phase of the clock. 

True Single-Phase Clocked Register (TSPCR) 

In the two-phase clocking schemes described above, care must be taken in routing the two clock signals to ensure 
that overlap is minimized. While the C2MOS provides a skew-tolerant solution, it is possible to design registers that 
only use a single phase clock. The True Single-Phase Clocked Register (TSPCR) proposed by Yuan and Svensson 
uses a single clock(without an inverse clock). 



 

Figure 38: True Single Phase Latches. 

For the positive latch, when CLK is high, the latch is in the transparent mode and corresponds to two cascaded 
inverters; the latch is non-inverting, and propagates the input to the output. On the other hand, when CLK= 0, both 
inverters are disabled, and the latch is in hold-mode. Only the pull-up networks are still active, while the pull-down 
circuits are deactivated. As a result of the dual-stage approach, no signal can ever propagate from the input of the 
latch to the output in this mode. A register can be constructed by cascading positive and negative latches. The clock 
load is similar to a conventional transmission gate register, or C2MOS register. The main advantage is the use of a 
single clock phase. The disadvantage is the slight increase in the number of transistors — 12 transistors are required. 

TSPC offers an additional advantage: the possibility of embedding logic functionality into the latches. This reduces 
the delay overhead associated with the latches. In addition to performing the latching function. While the set-up time 
of this latch has increased over the one, the overall performance of the digital circuit (that is, the clock period of a 
sequential circuit) has improved: the increase inset-up time is typically smaller than the delay of an AND gate. This 
approach of embedding logic into latches has been used extensively in the design of the EV4 DEC Alpha 
microprocessor  and many other high performance processors. 

 

PULSE BASED REGISTERS 

A fundamentally different approach for constructing a register uses pulse signals. The idea is to construct a short 
pulse around the rising (or falling) edge of the clock. This pulse acts as the clock input to a latch (e.g., a TSPC 
flavor), sampling the input only in a short window. Race conditions are thus avoided by keeping the opening time 
(i.e, the transparent period) of the latch very short. The combination of the glitch generation circuitry and the latch 
results in a positive edge-triggered register. 



 

.  

Figure 39: Glitch latch - timing generation and register. 

When CLK= 0, node X is charged up to VDD(MN is off since CLKG is low). On the rising edge of the clock, there 
is a short period of time when both inputs of the AND gate are high, causing CLKG to go high. This in turn activates 
MN, pulling X and eventually CLKG low.The length of the pulse is controlled by the delay of the AND gate and the 
two inverters. Note that there exists also a delay between the rising edges of the input clock (CLK) and the glitch 
clock (CLKG)— alsoequaltothedelayoftheANDgateandthetwoinverters.Ifeveryregisteronthechip uses the same clock 
generation mechanism, this sampling delay does not matter. However, process variations and load variations may 
cause the delays through the glitch clock circuitry to be different. 

If set-up time and hold time are measured in reference to the rising edge of the glitch clock, the set-up time is 
essentially zero, the hold time is equal to the length of the pulse (if the contamination delay is zero for the gates), 
and the propagation delay(tc-q) equals two gate delays. The advantage of the approach is the reduced clock load and 
the small number of transistors required. The glitch-generation circuitry can be amortized over multiple register bits. 
The disadvantage is a substantial increase in verification complexity. This has prevented a wide-spread use. They do 
however provide an alternate approach to conventional schemes, and have been adopted in some high performance 
processors 

 

 

 



SENSE AMPLIFIER BASED REGISTER 

 

Figure 40: Positive edge-triggered register based on sense-amplifier. 

Sense amplifier circuits accept small input signals and amplify them to generate rail-to-rail swings. As we will see, 
sense amplifier circuits are used extensively in memory cores and in low swing bus drivers to amplify small voltage 
swings present in heavily loaded wires. There are many techniques to construct these amplifiers,with the use of 
feedback (e.g., cross-coupled inverters) being one common approach. The circuit shown uses a precharged front-end 
amplifier that samples the differential input signal on the rising edge of the clock signal. The outputs of front-end are 
fed into a NAND cross-coupled SR FF that holds the data and gurantees that the differential outputs switch only 
once per clock cycle. The differential inputs in this implementation don’t have to have rail-to-rail swing and hence 
this register can be used as a receiver for a reduced swing differential bus. 

The core of the front-end consists of a cross-coupled inverter (M5-M8) whose outputs (L1andL2) are precharged 
using devices M9andM10 during the low phase of the clock. As a result, PMOS transistorsM7 andM8 to be turned 
off and the NAND FF is holding its previous state. Transistor M1is similar to an evaluate switch in dynamic circuits 
and is turned off ensuring that the differential inputs don’t affect the output during the low phase of the clock. On 
the rising edge of the clock, the evaluate transistor turns on and the differential input pair (M2andM3) is enabled, 
and the difference between the input signals is amplified on the output nodes onL1 andL2. The cross-coupled 
inverter pair flips to one of its the stable states based on the value of the inputs. For example, if IN is 1, L1 is 
pulledto0,andL2 remains at VDD. Due to the amplifying properties of the input stage, it is not necessary for the 
input to swing all the way up to VDD and enables the use of low swing signaling on the input wires. 



 

Figure 41: The need for the shorting transistor M4 

The shorting transistor,M4, is used to provide a DC leakage path from either node L3,orL4, to ground. This is 
necessary to accommodate the case where the inputs change their value after the positive edge of CLK has occurred, 
resulting in eitherL3orL4 being left in a high-impedance state with a logical low voltage level stored on the node. 
Without the leakage path that node would be susceptible to charging by leakage currents. The latch could then 
actually change state prior to the next rising edge of CLK! 

NORA-CMOS—A Logic Style for Pipelined Structures 

The latch-based pipeline circuit can also be implemented using C2MOS latches. The operation is similar to the one 
discussed above. This topology has one additional, important property: 

A C2MOS-based pipelined circuit is race-free as long as all the logic functions F(implemented using static logic) 
between the latches are noninverting. 

The reasoning for the above argument is similar to the argument made in the construction of a C2MOS register. 
During a (0-0) overlap between CLK and CLK,  al l C2MOS latches, simplify to pure pull-up networks. The only 
way a signal can race from stage to stage under this condition is when the logic function F is inverting, where F is 
replaced by a single, static CMOS inverter. Similar considerations are valid for the (1-1) overlap. 

Based on this concept, a logic circuit style called NORA-CMOS was conceived It combines C2MOS pipeline 
registers and NOR A dynamic logic function blocks. Each module consists of a block of combinational logic that 
can be a mixture of static and dynamic logic, followed by a C2MOS latch. Logic and latch are clocked in such a way 
that both are simultaneously in either evaluation, or hold (precharge) mode. A block that is in evaluation during 
CLK= 1 is called a CLK-module, while the inverse is called a CLK-module. 



 

A NORA data path consists of a chain of alternating CLK and CLK modules. While one class of modules is 
precharging with its output latch in hold mode, preserving the previous output value, the other class is evaluating. 
Data is passed in a pipelined fashion from module to module. NORA offers designers a wide range of design 
choices. Dynamic and static logic can be mixed freely, and both CLKp and CLKn dynamic blocks can be used in 
cascaded or in pipelined form. With this freedom of design, extra inverter stages, as required in DOMINO-CMOS, 
are most often avoided. 

 

Figure 42: Examples of NORA CMOS Modules 



 

 

 

 

Semiconductor  Memories: 

Semiconductor based electronics is the foundation to the information technology society  we live in today. Ever 
since the first transistor was invented way back in 1948, the  semiconductor industry has been growing at a 
tremendous pace. Semiconductor  memories and microprocessors are two major fields, which are benefited by the 
growth  in semiconductor technology. 

 

Fig: Increasing memory capacity over the years 

The technological advancement has improved performance as well as packing density of  these devices over the 
years Gordon Moore made his famous observation in 1965, just  four years after the first planar integrated circuit 
was discovered. He observed an  exponential growth in the number of transistors per integrated circuit in which the  
number of transistors nearly doubled every couple of years. This observation, popularly  known as Moore's Law, has 
been maintained and still holds true today. Keeping up  with this law, the semiconductor memory capacity also 
increases by a factor of two every year. 

Memory Classification 

Size: Depending upon the level of abstraction, different means are used to  express the size of the memory unit. A 
circuit designer usually expresses memory  in terms of bits, which are equivalent to the number of individual cells 
need to  store the data. Going up one level in the hierarchy to the chip design level, it is  common to express memory 
in terms of bytes, which is a group of 8 bits. And on  a system level, it can be expressed in terms of words or pages, 
which are in turn  collection of bytes. 



Function: Semiconductor memories are most often classified on the basis of access patterns, memory functionality 
and the nature of the storage mechanism.  Based on the access patterns, they can be classified into random access 
and serial access memories. A random access memory can be accessed for read/write in a random fashion. On the 
other hand, in serial access memories, the data can be  accessed only in a serial fashion. FIFO (First In First Out) and 
LIFO (Last In Last Out) are examples of serial memories. Most of the memories fall under the  random access types. 

Based on their functionalities, memory can be broadly classified into Read/Write memories and Read-only 
memories. As the name suggests, Read/Write memory offers both read and write operations and hence is more 
flexible. SRAM (Static RAM) and DRAM (Dynamic RAM) come under this category. A Read-only memory on 
the other hand encodes the information into the circuit topology. Since the topology is hardwired, the data cannot be 
modified; it can only be read. However ROM structures belong to the class of the nonvolatile memories. Removal 
of the  supply voltage does not result in a loss of the stored data. Examples of such structures include PROMs, 
ROMs and PLDs. The most recent entry in the filed are  memory modules that can be classified as nonvolatile, yet 
offer both read and  write functionality. Typically, their write operation takes substantially longer time than the read 
operation. An EPROM, EEPROM and Flash memory fall under this category. 

 

 

 

Figure 44: Classification of memories 

 

Timing Parameters: The time it takes to retrieve data from the memory is called the readaccess time. This is equal 
to the delay between the read request and the moment the data is available at the output. Similarly, write-access time 
is the time elapsed between a write request and the final writing of the input data into the memory.  Finally, there is 
another important parameter, which is the cycle time (read or write), which is the minimum time required between 
two successive read or write  cycles. This time is normally greater than the access time. 



 

Memory Architecture and Building Blocks 

The straightforward way of implementing a N-word memory is to stack the words in a linear fashion and select one 
word at a time for reading or writing operation by means of  a select bit. Only one such select signal can be high at a 
time. Though this approach   is quite simple, one runs into a number of problems when trying to use it for larger 
memories. The number of interface pins in the memory module varies linearly with the size of the memory and this 
can easily run into huge values. 

 

Figure 45: Basic Memory Organization 



To overcome this problem, the address provided to the memory module is generally  encoded. A decoder is used 
internally to decode this address and  make the appropriate select line high. With 'k' address pins, 2 K number of 
select pins  can be driven and hence the number of interface pins will get reduced by a factor of  log2N. 

 

Figure 46: Memory with decoder logic 

Though this approach resolves the select problem, it does not address the issues of the memory aspect ratio. For an 
N-word memory, with a word length of M, the aspect ratio will be nearly N:M, which is very difficult to implement 
for large values of N. Also such sort of a design slows down the circuit very much. This is because,the vertical wires 
connecting the storage cells to the inputs/outputs become excessively long. To address this problem, memory arrays 
are organized so that the vertical and horizontal dimensions are of the same order of magnitude, making the aspect 
ratio close to unity.  To route the correct word to the input/output terminals, an extra circuit called column decoder is 
needed. The address word is partitioned into column address (A0 to AK-1) and row address (AK-1 to AL-1). The 
row address enables one row of the memory for read/write, while the column address picks one particular word from 
the selected row. 



 

Figure 47: Memory with row and column decoders 

Static and Dynamic RAMs 

RAMs are of two types, static and dynamic. Circuits similar to basic D flip-flop are used  to construct static RAMs 
(SRAMs) internally. A typical SRAM cell consists of six  transistors which are connected in such a way as to form a 
regenerative feedback. In  contrast to DRAM, the information stored is stable and does not require clocking or  
refresh cycles to sustain it. Compared to DRAMs, SRAMs are much faster having typical  access times in the order 
of a few nanoseconds. Hence SRAMs are used as level 2 cache  memory. 

Dynamic RAMs do not use flip-flops, but instead are an array of cells, each containing a  transistor and a tiny 
capacitor. '0's and '1's can be stored by charging or discharging the capacitors. The electric charge tends to leak out 
and hence each bit in a DRAM must be refreshed every few milliseconds to prevent loss of data. This requires 
external logic to take care of refreshing which makes interfacing of DRAMs more complex than SRAMs.  This 
disadvantage is compensated by their larger capacities. A high packing density is achieved since DRAMs require 
only one transistor and one capacitor per bit. This makes them ideal to build main memories. But DRAMs are 
slower having delays in the order tens of nanoseconds. Thus the combination of static RAM cache and a dynamic 
RAM main memory attempts to combine the good properties of each. 

 

 



Static Random Access Memory (SRAM) 

 

SRAM Basics 

The memory circuit is said to be static if the stored data can be retained indefinitely, as  long as the power supply is 
on, without any need for periodic refresh operation. The data  storage cell, i.e., the one-bit memory cell in the static 
RAM arrays, invariably consists of  a simple latch circuit with two stable operating points. Depending on the 
preserved state  of the two inverter latch circuit, the data being held in the memory cell will be  interpreted either as 
logic  '0' or as logic '1'. To access the data contained in the  memory cell via a bit line, we need atleast one switch, 
which is controlled by the  corresponding word line. 

 

Figure 48: SRAM Cell 

CMOS SRAM Cell 

A low power SRAM cell may be designed by using cross-coupled CMOS inverters. The most important advantage 
of this circuit topology is that the static power dissipation is  very small; essentially, it is limited by small leakage 
current. Other advantages of this design are high noise immunity due to larger noise margins, and the ability to 
operate at lower power supply voltage. The major disadvantage of this topology is larger cell size.  The memory cell 
consists of simple CMOS inverters connected back to back, and two access transistors. The access transistors are 
turned on whenever a word line is activated for read or write operation, connecting the cell to the complementary bit 
line columns. 



 

Figure 49: Full CMOS SRAM cell 

CMOS SRAM Cell Design 

To determine W/L ratios of the transistors, a number of design criteria must be taken into consideration. The two 
basic requirements, which dictate W/L ratios, are that the data read operation should not destroy the stored 
information in the cell. The cell should allow stored information modification during write operation. In order to 
consider operations of SRAM, we have to take into account, the relatively large parasitic column capacitance  
Cbitand  Cbitcolumn pull-up transistors 

 

Figure 50: CMOS SRAM cell with precharge transistors 



 

When none of the word lines is selected, the pass transistors M3 and M4 are turned off and the data is retained in all 
memory cells. The column capacitances are charged by the pull-up transistors P1 and P2. The voltages across  the  
column  capacitors  reach  VDD - VT. 

READ Operation 

Consider a data read operation, shown in Figure 28.41, assuming that logic '0' is stored  in the cell. The transistors 
M2 and M5 are turned off, while the transistors M1 and M6  operate in linear mode. Thus internal node voltages are 
V1 = 0 and V2 = VDD before the  cell access transistors are turned on. 

 

Read Operation 

After the pass transistors M3 and M4 are turned on by the row selection circuitry, the  voltageCBb of will not change 
any significant variation since no current flows through  M4. On the other hand M1 and M3 will conduct a nonzero 
current and the voltage level  ofCB will begin to drop slightly. The node voltage V1 will increase from its initial 
value of  '0'V. The node voltage V1 may exceed the threshold voltage of M2 during this process, forcing an 
unintended change of the stored state. Therefore voltage must not exceed the  threshold voltage of M2, so the 
transistor M2 remains turned off during read phase. 

WRITE Operation 

Consider the write '0' operation assuming that logic '1' is stored in the SRAM cell initially. Figure 28.51 shows the 
voltage levels in the CMOS SRAM cell at the beginning of the data write operation. The transistors M1 and M6 are 
turned off, while M2 and M5 are operating in the linear mode. Thus the internal node voltage V1 = VDD and V2 = 0  
before the access transistors are turned on. The column voltage Vb is forced to '0' by the write circuitry. Once M3 
and M4 are turned on, we expect the nodal voltage V2 to remain below the threshold voltage of M1, since M2 and 
M4 are designed. 



 

Figure 50: SRAM start of write '0' 

The voltage at node 2 would not be sufficient to turn on M1. To change the stored  information, i.e., to force V1 = 0 
and V2 = VDD, the node voltage V1 must be reduced  below the threshold voltage of M2, so that M2 turns off. 
When  V1=VT,n the transistor  M3 operates in linear region while M5 operates in saturation region. 

WRITE Circuit 

The principle of write circuit is to assert voltage of one of the columns to a low level.  This can be achieved by 
connecting either  BIT or  BIT’ to ground through transistor M3  and either of M2 or M1. The transistor M3 is 
driven by the column decoder selecting the  specified column. The transistor M1 is on only in the presence of the 
write enable signal and when the data bit to be written is '0'. The transistor M2 is on only in the  presence of the 
write signal W’=0  and when the data bit to be written is '1'. 



 

Figure 51: Circuit for write operation 

DYNAMIC RANDOM ACCESS MEMORY  (DRAM) 

DRAM Basics 

 

Fig: DRAM Cell 



The CS capacitor stores the charge for the cell. Transistor M1 gives the R/W access to the cell. CB is the capacitance 
of the bit line per unit length. 

Memory cells are etched onto a silicon wafer in an array of columns (bit lines) and rows  (word lines). The 
intersection of a bit line and word line constitutes the address of the  memory cell. 

DRAM works by sending a charge through the appropriate column (CAS) to activate the  transistor at each bit in the 
column. When writing, the row lines contain the state the  capacitor should take on. When reading, the sense 
amplifier determines the level of  charge in the capacitor. If it is more than 50%, it reads it as "1”; otherwise it reads 
it as  "0". The counter tracks the refresh sequence based on which rows have been accessed  in what order. The 
length of time necessary to do all this is so short that it is expressed in nanoseconds (billionths of a second). e.g. a 
memory chip rating of 70ns means that it  takes 70 nanoseconds to completely read and recharge each cell. 

The capacitor in a dynamic RAM memory cell is like a leaky bucket. Dynamic RAM has to  be dynamically 
refreshed all of the time or it forgets what it is holding. This refreshing  takes time and slows down the memory. 

 

Semiconductor ROMs 

Introduction 

Read only memories are used to store constants, control information and program  instructions in digital systems. 
They may also be thought of as components that provide  a fixed, specified binary output for every binary input. 

The read only memory can also be seen as a simple combinational Boolean network,  which produces a specified 
output value for each input combination, i.e. for each  address. Thus storing binary information at a particular 
address location can be achieved  by the presence or absence of a data path from the selected row (word line) to the  
selected column (bit line), which is equivalent to the presence or absence of a device at  that particular location. 

The two different types of implementations of ROM array are: 

•  NOR-based ROM array 

•  NAND-based ROM array 

 

 

NOR-based ROM Array 

There are two different ways to implement MOS ROM arrays. Consider the first 4-bit X 4-bit memory array as 
shown in Figure 31.21. Here, each column consists of a pseudo nMOS NOR gate driven by some of the row signals, 
i.e., the word line. 



 

Fig: NOR-based ROM array 

As we know, only one word line is activated at a time by raising tis voltage to VDD,  while all other rows are held at 
a low votlage level. If an active transistor exists at the  cross point of a column and the selected row, the column 
voltage is pulled down to the  logic LOW level by that transistor. If no active transistor exists at the cross point, the  
column voltage is pulled HIGH by the pMOS load device. Thus, a logic "1"-bit is stored  as the absence of an active 
transistor, while a logic "0"-bit is stored as the presence of  an active transistor at the cross point. 

NAND-based ROM Array 

In this types of ROM array which is shown in Figure 31.31, each bit line consists of a  depletion-load NAND gate, 
driven by some of the row signals, i.e. the word lines. In  normal operation, all word lines are held at the logic HIGH 
voltage level except for the  selected line, which is pulled down to logic LOW level. If a transistor exists at the cross  
point of a column and the selected row, that transistor is turned off and column voltage  is pulled HIGH by the load 
device. On the other hand, if no transistor exists (shorted) at  that particular cross point, the column voltage is pulled 
LOW by the other nMOS  transistors in the multi-input NAND structure. Thus, a logic "1"-bit is stored by the  
presence of a transistor that can be deactivated, while a logic "0"-bit is stored by a  shorted or normally ON 
transistor at the cross point. 



 

Figure 51: NAND-based ROM 

 

Few special Examples of Memories 

Erasable Programmable Read Only Memory (EPROM) 

An EPROM is erased by shining ultraviolet light on the cells through a transparent  window in the package. The UV 
radiation renders the oxide slightly conductive by direct  generation of electron-hole pair in the material. The erasure 
process is slow and can  take from seconds to several minutes, depending on the intensity of the UV source. 
Programming takes several (5-10) microseconds/word. Another problem with the  process is limited endurance, that 
is, the number of erase/program cycles is generally  limited to maximum of 1000, mainly as a result of UV erase 
procedure. Reliability is also  an issue. The device threshold might vary with repeated programming cycles. Most  
EPROM memories therefore contain on-chip circuitry to control the value of thresholds to  within a specified range 
during programming. Finally, the injection always entails a large  channel current, as high as 0.5mA at a control gate 
voltage of 12.5V. This causes high  power dissipation during programming. The EPROM cell is extremely simple 
and dense,  making it possible to fabricate large memories at a low cost. EPROMs were therefore  attractive in 
applications that do not require regular programming. Due to cost and  reliability issues, EPROMs have fallen out of 
favor and have been replaced by Flash Memories. 

Electrically Erasable Programmable Read Only Memory (EEPROM) 

The major disadvantage of the EPROM approach is that erasure procedure has to occur  "off system". This means 
the memory must be removed from the board and placed in  the EPROM programmer for programming. The 
EEPROM approach avoids this labor  intensive and annoying procedure by using another mechanism to inject or 
remove  charges from the floating gate viz. tunneling. procedure. 



Module 4 

Design Capture Tool 

Computer aided design (CAD) tools are essential for timely development of integrated circuits.Although CAD tools 
cannot replace the creative and inventive parts of the design activities,the majority of time consuming and 
computation intensive mechanistic parts of the design can be executed by using CAD tools.The CAD technology for 
VLSI chip design can be categorized into the following areas: 

a)High level synthesis 

b)Logic synthesis 

c)circuit optimization 

d)Layout 

e)simulation 

f)Design rule checking 

g)Formal verification 

Synthesis tools 

The high level synthesis tools using hardware description languages(HDLs) such as VHDL or Verilog address the 
automation of the design phase in the top level of the design hierarchy,With an accurate estimation of lower level 
design features such as  chip area and signal delay it can very effectively determine the types and quantities of 
modules to be included in the chip design. 

Layout tools 

The tools for circuit optimization are concerned with transistor sizing for minimization of delays and with process 
variation ,noise and reliability hazards.The layout CAD tools include floorplanning,place and route and module 
generation. 

Simulation and verification tools 

The simulation category ,which is the most mature area of VLSI CAD,includes many tools ranging from circuit 
level simulation,timimg level simulation,logic level simulation and behavirol simulation. 

 

 

Hardware Description Language: VHDL 

What is VHDL? 

• A hardware description language that can be used to model a digital system. 



• VHDL = VHSIC (Very High Speed Integrated Circuit) Hardware Description Language 

• Can describe: 

− behavior 

− structure, and 

− timing of a logic circuit. 

 

Hardware Modelling in VHDL 

VHDL is NOT a programming language like C or Java. It is used to model the physical hardware used in digital 
systems.Therefore you must always think about the hardware you wish to implement when designing systems using 
VHDL. 

 

Data Objects 

A data object holds a value of a specified type. The data objects that can be synthesized directly in hardware are: 

1. Signal:  Represents a physical wire in a circuit. It holds a list of values which includes its current value and a set 
of possible future values. 

2. Variable:  Used to hold results of computations. It does not necessarily represent a wire in a circuit. 

3. Constant:  Contains a value that cannot be changed.  It is set before the beginning of a simulation. 

 

Predefined Data Types 

 Standard logic type:      STD_LOGIC,  

 STD_LOGIC_VECTOR 

 (Can hold 0, 1, Z, and −−.) 

 Bit type:       BIT, BIT_VECTOR 

 Integer type:                INTEGER 

 Floating−point type:      REAL 

 Physical type:       TIME 

 Enumeration type:      BOOLEAN, CHARACTER 
 

 To use the STD_LOGIC and STD_LOGIC_VECTOR types, the std_logic_1164 package must be included 
in the VHDL design file. 
 

 We can define our own data types.  This is especially useful when designing finite−state machines (FSMs). 
 



 An object declaration is used to declare an object, it type, its class, and optionally to assign it a value 
 

Object Declaration Examples 

 Signal declarations:  
SIGNAL sresetn : STD_LOGIC;  
SIGNAL address : STD_LOGIC_VECTOR(7 downto 0); 

 Variable declarations: 
VARIABLE index : INTEGER range 0 to 99 :=20; 
VARIABLE memory : BIT_MATRIX(0 to 7, 0 to 1023); 

 Constant declarations: 
CONSTANT cycle_time : TIME := 100 ns; 
CONSTANT cst : UNSIGNED(3 downto 0); 

 

 

 

Operators 

Operator Class Operator 
Miscellaneous  **, ABS, NOT 
Multiplication  *, /, MOD, REM 
Unary Arithmetic (Sign) +, − 
Addition  +, −, & 
Shift/Rotate  sll, srl, sla, sra, rol, ror 
Relational  =, /=, <, <=, >, >= 
Logical  and, or, nand, nor, xor, xnor 

 The individual operators in each class have the same precedence. 

VHDL Design Entity 

Entity Declaration 

− Specifies the interface of entity to the outside world. 

− Has a name. 

− Includes PORT statement which specifies the entity’s input and output signals (ports) 

− Ports can have different modes: IN, OUT, INOUT, BUFFER 

Architecture 

− Provides circuit details for an entity 

General form: 
ARCHITECTURE arch_name OF entity_name IS 

Signal declarations 



Constant declarations 
Type declarations 
Component declarations 

BEGIN 
Component instantiations 
Concurrent assignment statements 
Process statements 

END arch_name 
 
 
Concurrent Assignment Statements 

 A concurrent assignment statement is used to assign a value to a signal in an architecture body. 

 Used to model combinational circuits. 

 The order in which these statements occur does not affect the meaning of the code. 
 
 
 
 
 

2x4 Decoder Example 

 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
ENTITY decoder2x4 IS 
PORT (A, B, EN : IN STD_LOGIC; 
Z : OUT STD_LOGIC_VECTOR(3 downto 0)); 
END decoder2x4; 
−−this is a comment 

 
 
 
 
 
 
 



 
 
 
Architecture Body of 2x4 Decoder 

 
 
ARCHITECTURE dec_df OF decoder2x4 IS 
SIGNAL ABAR, BBAR : STD_LOGIC; 
BEGIN 
−−Order of concurrent signal assignment 
statements is not important. 
Z(3) <= not (A and B and EN); 
Z(0) <= not (ABAR and BBAR and EN); 
BBAR <= not B; 
Z(2) <= not (A and BBAR and EN); 
ABAR <= not A; 
Z(1) <= not (ABAR and B and EN); 
END dec_df; 
 

Sequential Assignment Statements 
 Sequential assignment statements assign values to signals and variables.  The order in which these 

statements appear can affect the meaning of the code. 

 Can be used to model combinational circuits and sequential circuits. 

  Require use of the PROCESS statement. 

  Include three variants:  IF statements, CASE statements, and LOOP statements. 2x4 Decoder Revisited 
 

 
 

IF and CASE Statements 
 IF and CASE statements are used to model multiplexers, decoders, encoders, and comparators. 

 Can only be used in a PROCESS. 
 

Modelling a 4−1 Multiplexer 
 
Using an IF statement: 
PROCESS (Sel, A, B, C, D) 



BEGIN 
IF (Sel = "00") THEN 
Y <= A; 
ELSIF (Sel = "01") 
THEN 
Y <= B; 
ELSIF (Sel = "10") 
THEN 
Y <= C; 
ELSE 
Y <= D; 
END IF; 
END PROCESS; 
Using a CASE statement: 
PROCESS (Sel, A, B, C, D) 
BEGIN 
CASE Sel IS 
WHEN "00" => Y <= A; 
WHEN "01" => Y <= B; 
WHEN "10" => Y <= C; 
WHEN "11" => Y <= D; 
WHEN OTHERS =>Y 
<=A; 
END CASE; 
END PROCESS; 

 Can also model multiplexers with WHEN/ELSE clause and WITH/SELECT clause.  These can only be 
used outside of a PROCESS. 
 

 
 

Behavioural vs. Structural Modelling 
 With VHDL, we can describe the behaviour of simple circuit building blocks and then use these to build up 

the structure of a more complex circuit. 

 Behavioural modelling is useful because it allows the designer to build a logic circuit without having to 
worry about the low−level details. 

 Structural modelling is useful because it tells the synthesis tools exactly how to construct a desired circuit. 
 

Behavioural Model of a D Flip−Flop 



 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
ENTITY my_dff IS 
PORT ( D : IN  STD_LOGIC; 
Q : OUT STD_LOGIC; 
Clock : IN  STD_LOGIC; 
Resetn: IN STD_LOGIC); 
END my_dff; 
ARCHITECTURE Behaviour OF my_dff IS 
BEGIN 
PROCESS(Clock, Resetn) 
BEGIN 
IF Resetn=’0’ THEN 
Q <= ’0’; 
ELSIF (Clock’EVENT AND Clock=’1’) THEN 
Q <= D; 
END IF; 
END PROCESS; 
END Behaviour; 
 
Structural Model of a 4−Bit Shift Register 

 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 



ENTITY shift_reg_struct IS 
PORT (Data_IN : IN STD_LOGIC; 
Data_OUT: OUT STD_LOGIC; 
CLK, RESN : IN STD_LOGIC); 
END shift_reg_struct; 
ARCHITECTURE Structure OF shift_reg_struct IS 
COMPONENT my_dff 
PORT ( D : IN  STD_LOGIC; 
Q : OUT STD_LOGIC; 
Clock : IN  STD_LOGIC; 
Resetn: IN STD_LOGIC); 
END COMPONENT; 
SIGNAL Q3_out, Q2_out, Q1_out : STD_LOGIC; 
BEGIN 
DFF_3 : my_dff PORT MAP (Data_IN, Q3_out, CLK, RESN); 
DFF_2 : my_dff PORT MAP (Q3_out, Q2_out, CLK, RESN); 
DFF_1 : my_dff PORT MAP (D=>Q2_out, Q=>Q1_out, 
Clock=>CLK, Resetn=>RESN); 
DFF_0 : my_dff PORT MAP (D=>Q1_out, Q=>Data_OUT, 
Clock=>CLK, Resetn=>RESN); 
END Structure; 

 
Testing and Verification: 
Defects, Errors and Faults 
Models bridge the gap between physical reality and a mathematical abstraction and allow for development of 
analytical tools. 
 
Definitions: 
• Defect: An untended difference between the implemented hardware and its intended function. 
• Error: A wrong output signal produced by a defective system. 
• Fault is a logic level abstraction of a physical defect. Used to describe the change in the logic function caused by 
the defect. Fault abstractions reduce the number of conditions that must be considered in deriving tests. 
A collection of faults, all of which are based on the same set of assumptions concerning the nature of defects, is 
called a fault model.  
For example: 
• Defect: A shorted to GND. 
• Fault: A Stuck-at logic 0. 
• Error: A=1, B=1 => C=1 
Correct output is C=0. 
Note that the error is not permanent 
For example, no error occurs if at least one input is 0.  

 

Functional Vs. Structural Testing 

Design verification may need to use exhaustive functional tests. Fortunately, for hardware testing, we can assume 
the function is correct. The focus on structure makes it possible to develop algorithms that are independent of the 
design. The algorithms are based on fault models. 

Fault models can be formulated at the various levels of design abstraction. 



• Behavioral level: Faults may not have any obvious correlation to defects. 

• RTL and Logic level: Stuck-at faults most popular, followed by bridging and delay fault models. 

• Transistor (switch) level: Technology-dependent faults. 

 

 

 

 

 

 

Design Levels from Testability Perspective: 

 

 

Fault Models 

The text describes these and other fault models: 

• Bridging fault 



• Defect-oriented fault (e.g. bridging, stuck-open, IDDQ). 

• Delay fault (transition, gate-delay, line-delay, segment-delay, path-delay). 

• Intermittent fault 

• Logical fault (often stuck-at) 

• Memory fault (single cell SA0/1, pattern sensitive, cell coupling faults). 

• Non-classical fault (stuck-open or stuck-on, transistor faults for CMOS). 

• Pattern sensitive fault 

• Pin fault (SA faults on the signal pins of all modules in the circuit). 

• Redundant fault 

• Stuck-at fault 

Single stuck-at faults (SSF) 

Assumes defects cause the signal net or line to remain at a fixed voltage level. Model includes stuck-at-0 (SA0) or 
stuck-at-1 (SA1) faults and assumes only one fault exists. 

For example, how many SSF faults can occur on an n-input NAND gate? 

 

 

 

What fault(s) does the pattern AB = 01 detect? 

What is the minimum number of tests needed to "detect" all of them? 

What are the tests? 

A dominant input value is defined as the value that determines the state of the output independent of the other 
values of the inputs. 



 

 

What is the dominant input value for the NAND? 

How many tests do you need to diagnosis the fault (hint: deduction can be used to distinguish)? 

Can you distinguish between all of the faults? An n-line circuit can have at most 2n SSF faults. 

This number can be further reduced through fault collapsing. 

Fault detection requires: 

• A test t activates or provokes the fault f. 

• t propagates the error to observation point (primary output (PO)/scan latch). 

A line that changes with f is said to be sensitized to the fault site. 

Fault propagation requires off-path inputs be set to non-dominant values. 

 01, 10, and 11do not provoke the fault 

 

Let Z(t) represent the response of a circuit N under input vector t. 

Fault f transforms the circuit to Nf and its response to Zf(t). 



 

In this example, any test in which x1 = 0 and x4 = 1 is a test for  f. 

 

 

 

The expression (x1compliment)x4 represents 4 tests (0001, 0011, 0101, 0111). 

Note that faults on fanout stems and fanout branches are not the same. This will be important later when we develop 
a method to collapse faults that are equivalent. 

In this example, we assume line g, h and i carry the same signal value. 

 

 

 

Input ab = (10) activates h SA0 and is detectable at z. This input also activates SA0 faults on g and i .However, i SA0 
is not detectable since it is blocked by f = 0. 

 

We consider faults h and i as different because the tests that detect h and i are not the same -- fault g is also different 
because both vectors detect it. 



 Fault Equivalence 

Two faults f and g are considered functionally equivalent if  Zf(x) = Zg(x).  
There is no test that can distinguish between f and g. i.e., all tests that detect f also detect g. For large circuits, 
determining this is computationally intensive. However, equivalence can be determined for simple gates and applied 
to large circuits. 
Any n-input gate has 2(n+1) SA faults. For the NAND gate, the SA0 on the inputs are equivalent to SA1 on the 
output and all three are detected by the same test pattern AB=(11). For any n-input primitive gate with n>1, only n+2 
single SA faults need to be considered. 

 
 

 

Fault Equivalence 

Equivalence fault collapsing is performed from inputs to output. 

 

Reduction is between 50-60% and is larger, in general, for fanout free circuits. 

Functional equivalence partitions the set of all faults into functional equivalence classes, from each of which only 
one fault needs to be considered. This property is useful for test generation programs. Fault equivalence reduces the 
size of the fault list. Fault equivalence is important for fault location analysis as well. A complete location test set 
can diagnose a fault to within a functional equivalence class. This represents the maximal diagnostic resolution 



achievable. Fault collapsing using this simple method cannot find all equivalencies. 

 

Therefore, the equivalence classes derived are not maximal. 

Our method will not identify faults b SA0 and f SA0 as equivalent 

 

 

Algorithms are available to solve the more general case of functional equivalence based on: SA0 Z f (x) Å Zg(x) = 
0 

The benefit of identifying these additional fault equivalences is usually not worth the effort, however. 

See text for ISCAS’85 benchmark circuit results. If fault detection is the objective (not diagnosis), then fault 
dominance can be used to further reduce the fault list. 

A fault f dominates another fault g if the set of all tests that detect g, Tg, is a subset of the test set of Tf. 

 

Therefore, any test that detects g will also detect f. 

Since g implies f, it is sufficient to include g in the fault list. 

For example, the SA1 test (g) for input A of the NAND gate also detects SA0 (f) on the output (the same is true for 
input B.) 



Therefore, Z-SA0 can be dropped from the list. 

 

 

 

Dominance fault collapsing is performed from outputs to inputs. 

 

 

7/20 = 0.3 remain 

Here, the x indicates the collapsing of the fault via dominance. 

We can also, optionally, choose to move the output fault preserved in the equivalence fault collapsing to an arbitrary 
input. 

One such fault list may be: {A/0, A/1, B/1, C/0, C/1, D/0, E/1} 

Or another may be: {B/0, A/1, B/1, C/0, D/1, D/0, E/1} 

Note that these lists contains only faults on the PIs.Any test set that detects all SSFs on the PIs of a fanout free 
combinational circuit C detects all SSFs in C. 

 What happens in the presence of fanout? 

 



 

 

Eliminating S, reduces the circuit to a fanout free circuit. 

SAB = (010) detects C SA1, SAB = (001) detects D SA1 => both detect S SA1. 

SAB = (110) detects C SA0, SAB = (101) detects D SA0 => both detect S SA0. 

Therefore, SA faults on stem dominate SA faults on the fanout branches. 

More generally, any test set that detects all SSF on the PIs and fanout branches of C detects all SSF in C. 

The PIs and fanout branches are called checkpoints. Therefore, it is sufficient to target faults only at the 
checkpoints. 

Equivalence and dominance relations can then be used to further collapse the list of faults. 

For example, this circuit has 24 SSFs. 

But it only has 14 checkpoint faults (the 5 PIs) + g and h. 

 

 

This leaves 8 faults from the original list of 14 checkpoint faults. 

 

Undetectable Faults 



A fault is detectable if there exists a test t that defects f. It is undetectable, if no test simultaneously activates f and 
creates a sensitized path to a PO. 

Undetectable faults may appear to be harmless. 

However, a complete test set may not be sufficient if one is present in a chip with multiple faults.  

The fault b SA0 is no longer detectable by the test t = (1101) if the undetectable fault a SA1 is present.  

 

If test t is the only test in the complete test set T that detects b SA0, then T is no longer complete in the presence of a 
SA1. 

Redundancy: A combinational circuit that contains an undetectable fault is said to be redundant. 

Redundant faults cause ATPG algorithms to exhibit worst-case behavior. 

Redundancy is not always undesirable. 

 

 

Design stratergies for testing 

Design for Testability Techniques Design for testability (DFT) refers to those design techniques that make the task 
of subsequent testing easier. There is definitely no single methodology that solves all embedded system-testing 
problems. There also is no single DFT technique, which is effective for all kinds of circuits. DFT techniques can 



largely be divided into two categories, i.e., ad hoc techniques and structured (systematic) techniques. DFT methods 
for digital circuits:  

1) Ad-hoc methods  

2) Structured methods: 

 • Scan 

 • Partial Scan 

 • Built-in self-test  

• Boundary scan Ad-hoc DFT methods  

 

Ad Hoc Testable Design Techniques 

One way to increase the testability is to make nodes more accessible at some cost by physically inserting more 
access circuits to the original design. Listed below are some of the ad hoc testable design techniques. 

Partition-and-Mux Technique 

Since the sequence of many serial gates, functional blocks, or large circuits are difficult to test, such circuits can be 
partitioned and multiplexors (muxes) can be inserted such that some of the primary inputs can be fed to partitioned 
parts through multiplexers with accessible control signals. With this design technique, the number of accessible 
nodes can be increased and the number of test patterns can be reduced. A case in point would be the 32-bit counter. 
Dividing this counter into two 16-bit parts would reduce the testing time in principle by a factor  of 215. However, 
circuit partitioning and addition of multiplexers may increase the chip area and circuit delay. This practice is not 
unique and is similar to the divide-and-conquer approach to large, complex problems.  

 

Figure 51: Partition-and-mux method for large circuits. 

 

 

Initialize Sequential Circuit 

When the sequential circuit is powered up, its initial state can be a random, unknown state. In this case, it is not 
possible to start the test sequence correctly. The state of a sequential circuit can be brought to a known state through 



initialization. In many designs, the initialization can be easily done by connecting asynchronous preset or clear-input 
signals from primary or controllable inputs to flip-flops or latches. 

Disable Internal Oscillators and Clocks 

To avoid synchronization problems during testing, internal oscillators and clocks should be disabled. For example, 
rather than connecting the circuit directly to the on-chip oscillator, the clock signal can be ORed with a disabling 
signal followed by an insertion of a testing signal. 

 

Figure 51: Avoid synchronization problems-via disabling of the oscillator. 

Avoid Asynchronous Logic and Redundant Logic 

The enhancement of testability requires serious tradeoffs. The speed of an asynchronous logic circuit can be faster 
than that of the synchronous logic circuit counterpart. However, the design and test of an asynchronous logic  circuit 
are more difficult than  for a synchronous logic circuit, and its state transition times are difficult to predict. Also, the 
operation of an asynchronous logic circuit is sensitive to input test patterns, often causing race problems and hazards 
of having momentary signal values opposite to the expected values. Sometimes, designed-in logic  redundancy  is  
used to  mask a static hazard condition for reliability. However, the redundant node cannot be observed since the 
primary output value cannot be made dependent on the value of the redundant node. Hence, certain faults on the 
redundant node cannot be tested or detected. The bottom NAND2 gate is redundant and the stuck-at-  fault on its 
output line cannot be detected. If a fault is undetectable, the associated line or gate can be removed without changing 
the logic function. 

 

Figure 52: (a) A redundant logic gate example. (b) Equivalent gate with redundancy removed. 

Avoid Delay-Dependent Logic 

Chains of inverters can be used to design in delay times and use AND operation of their outputs along with inputs to 
generate pulses. 



 

Figure 53: A pulse-generation circuit using a delay chain of three inverters. 

Most automatic test pattern generation (ATPG) programs do not include logic delays to minimize the complexity of 
the program. As a result, such delay-dependent logic is viewed as redundant combinational logic, and the output of 
the reconvergent gate is always set to logic 0, which is not correct. Thus, the use of delay-dependent logic should be 
avoided in design for testability 

Scan-Based Technique 

As discussed earlier, the controllability and observability can be enhanced by providing  more accessible logic nodes 
with use of additional primary input lines and multiplexors. However, the use of additional I/O pins can be costly 
not only for chip fabrication but also for packaging. A popular alternative is to use scan registers with both shift and 
parallel load capabilities. The scan design technique is a structured approach to design sequential circuits for 
testability.  The storage cells in registers are used as observation points, control points, or both. By using the scan 
design techniques, the testing of a sequential circuit is reduced to the problem of testing a combinational circuit.  

In general, a sequential circuit consists of a combinational circuit and some storage elements. In the scan-based 
design, the storage elements are connected to form a long serial shift register, the so-called scan path, by using 
multiplexors and a mode (test/ normal) control signal. 

In the test mode, the scan-in signal is clocked into the scan path, and the output of the last stage latch is scanned out. 
In the normal mode, the scan-in path is disabled and the circuit functions as a sequential circuit. The testing 
sequence is as follows: 

 

Step 1:  Set the mode to test and, let latches accept data from scan-in input, 

Step 2:  Verify the scan path by shifting in and out the test data. 

Step 3:  Scan in (shift in) the desired state vector into the shift register. 

Step 4: Apply the test pattern to the prim ary input pins.  I :  ; 

Step 5:  Set the mode to normal and observe the primary outputs of the circuit after 

sufficient time for propagation., 

Step 6:  Assert the circuit clock, for one machine cycle to capture the outputs of the 

combinational logic into the registers. 

Step 7:  Return to test mode; scan out the contents of the registers, and at the same time 



scan in the next pattern. 

Step 8:  Repeat steps 3-7 until all test patterns are applied. 

                                 

Figure 54: The general structure of scan-based design 

The storage cells in scan design can be implemented using edge-triggered D flipflops, master-slave flip-flops, or 
level-sensitive latches controlled by complementary clock signals to ensure race-free operation. D flip-flop. In large 
high-speed circuits, optimizing a single clock signal for skews, etc., both for normal operation and for shift 
operation, is difficult. To overcome this difficulty, two separate clocks, one for normal operation and one for shift 
operation, are used. Since the shift operation does not have to be performed at the target speed, its clock is much less 
constrained. 

 An important approach among scan-based designs is the level sensitive scan design (LSSD), which incorporates 
both the level sensitivity and the scan path approach using shift registers. The level sensitivity is to ensure that the 
sequential circuit response is independent of the transient characteristics of the circuit, such as the component and 
wire delays. Thus, LSSD removes hazards and races. Its ATPG is also simplified since tests have to be generated 
only for the combinational part of the circuit. 

                      The boundary scan test method is also used for testing printed circuit boards (PCBs) and multichip 
modules (MCMs) carrying multiple chips. Shift registers are placed in each chip close to I/O pins in order to form a 
chain around the board for testing. With successful implementation of the boundary scan method, a simpler tester 
can be used for PCB testing. 



 

Figure 55: Scan-based design of an edge-triggered D flip-flop 

On the negative side, scan design uses more complex latches, flip-flops, I/O pins, and interconnect wires and, thus, 
requires more chip area.  The testing time per test pattern is also increased due to shift time in long registers. 

Built-in Self-Test (BIST)  

• Capability of a circuit to test itself 

 • On-line: – Concurrent : simultaneous with normal operation – Nonconcurrent : idle during normal operation 

 • Off-line: – Functional : diagnostic S/W or F/W – Structural : LFSR-based  

• We deal primarily with structural off-line testing 

Basic Architecture of BIST 

 
Fig: A procedure for BIST. 

 
• PRPG: Pseudo random pattern generator 
• ORA :Output response analyzer 
Built-in Self Testing 
 • Test pattern generation  

 – Exhaustive  
 – Pseudoexhaustive 
 – Pseudorandom 

 • Test response compression 
 – One’s count  



 – Transition count 
 – Parity checking 
 – Syndrome checking  
 – Signature analysis  

 
 
] 
 Test Pattern Generation for BIST 
• Exhaustive testing 
• Pseudorandom testing 

– Weighted and Adaptive TG 
• Pseudoexhaustive testing 

– Syndrome driver counter 
– Constant-weight counter 
– Combined LFSR and shift register 
– Combined LFSR and XOR 
– Cyclic LFSR 

Pseudo Random Pattern Generator 
 
To test the circuit, test patterns first have to be generated either by using a pseudo random 
pattern generator, a weighted test generator, an adaptive test generator, or other means. 
A pseudo random test generator circuit can use an LFSR. 

 
Figure 56: A pseudo-random sequence generator using LFSR 

 
 

Linear Feedback Shift Register (LFSR) as an ORA 

To reduce the chip area penalty, data compression schemes are used to compare the compacted test responses 
instead of the entire raw test data. One of the popular data compression schemes is the signature analysis, which is 
based on the concept of cyclic redundancy checking. It uses polynomial division, which divides the polynomial 
representation of the test output data by a characteristic polynomial and then finds the remainder as the signature. 
The signature is then compared with the expected signature to determine whether the device under test is faulty. It is 
known that compression can cause some loss of fault coverage. It is possible that the output of a faulty circuit can 
match the output of the fault-free  circuit; thus, the fault can go undetected in the signature analysis. Such a 
phenomenon is called aliasing. 

In its simplest form, the signature generator consists of a single-input linear feedback shift register (LFSR), all the 
latches are edge-triggered. In this case, the signature is the content of this register after the last input bit has been 
sampled. The input sequence {an)  is represented by polynomial G(x) and the output sequence by Q(x). It can be 
shown that G(x) = Q(x) P(x) + R(x), where P(x) is the characteristic polynomial of LFSR and R(x) is the remainder, 
the degree of which is lower than that of P(x).  



 

Figure 57: Polynomial division using LFSR for signature analysis. 

The characteristic polynomial is 

P(x)=1+x2+x4+x5 

 

For the 8-bit input sequence { 1 1 1 1 0 1 0 1, the corresponding input polynomial is 

G(x)=x7+x6+x5+x4+x2+1 

and the remainder term becomes R(x) = x4 + x2, which corresponds to the register contents of   {0 0 1 0 11} 

Built-In Logic Block Observer 

The built-in logic block observer (BILBO) register is a form of ORA which can be used in each cluster of 
partitioned registers. A basic BILBO circuit allows four different modes controlled by C0and Cl signals. 

 

 

 

Figure 58: 3-bit built-in logic observer (BILBO) example. 

       

     
C0 C1 Mode 

 
0 0 linear shift 
1 0 signature analysis 

 



1 1 data(complemented) latch 
0 1 reset 

 
 

The BILBO operation allows monitoring of circuit operation through  exclusive ORing into LFSR at multiple points, 
which corresponds to the signature analyzer with multiple inputs. 

 

Packaging Technology                      

Proper packaging technology is critical to the success of the chip development.Package issues have to be taken into 
consideration in early stages of chip development.Ensure sufficient design margins to accommodate the parasitics of 
the package 

Important packaging concerns: 

-Hermetic seals to prevent the penetration of moisture 

-Thermal conductivity 

-Thermal expansion coefficient 

-Pin density 

-Parasitic inductance and capacitance 

-particle protection 

-Cost 

Types of packaging technology 

Classified by the method used to solder the package on the printed PCB 

-Pin-through-hole (PTH) 

-Surface-mounted technology (SMT) 

Dual in-line packages (DIP) 

Advantage of low cost.Not applicable for high-speed operations due to the inductance of the bond wires-Maximum 
pin count is typically limited to 64  

Pin grid array (PGA) packages 

-Offers a higher pin count (several houndreds) 

-High thermal conductivity especially with a passive or active heat sink 

-Requires large PCB area 



-Cost is higher than DIP 

Chip carrier packages (CCP) 

-Leadless chip carrier:  

           -Chip mounted on PCB directly 

          -Supports higher pin count 

          -Problem with difference in thermal coefficient 

          -Leaded chip carrier:  

Quad flat packages (QFP) 

-Similar to leaded chip carrier with leads extending outward 

Multi-chip modules (MCM) 

-Used for very high performance in special applications 

-Multiple chips are assembled on a common substrate in a single package 

-A large number of critical interconnects among the chips are made within the package 

Important features: 

-Significant reduction in the overall system size 

-Reduced package lead counts 

-Faster operation allowed 

-Higher implementation cos 
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