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ELECTROMAGNETIC  FIELD THEORY (3-1-0) 
Module-I                                                 (12 Hours) 

The Co-ordinate Systems, Rectangular, Cylindrical, and Spherical Co-ordinate System. Co-

ordinate transformation. Gradient of a Scalar field, Divergence of a vector field and curl of a 

vector field. Their Physical interpretation. The Laplacian. Divergence Theorem, Stokes 

Theorem. Useful vector identifies. Electrostatics: The experimental law of Coulomb, Electric 

field intensity. Field due to a line charge, Sheetcharge and continuous volume charge 

distribution. Electric Flux and flux density; Gauss‘s law. Application of Gauss‘s law. Energy and 

Potential. The Potential Gradient. The Electric dipole. The Equipotential surfaces. Energy stored 

in an electrostatic field. Boundary conditions. Capacitors and Capacitances. Poisson‘s and 

Laplace‘s equations. Solutions of simple boundary value problems. Method of Images.  

 

Module-II                     (10 Hours) 

Steady Electric Currents: Current densities, Resistances of a Conductor; The equation of 

continuity. Joules law. Boundary conditions for Current densities. The EMF. Magnetostatics: 

The Biot-Savart law. Amperes Force law. Torque exerted on a current carrying loop by a 

magnetic field. Gauss‘s law for magnetic fields. Magnetic vector potential. Magnetic Field 

Intensity and Ampere‘s Circuital law. Boundary conditions. Magnetic Materials. Energy in 

magnetic field. Magnetic circuits.   

 

Module-III                                                                                                                 (12 Hours) 

Faraday‘s law of Induction; Self and Mutual Induction. Maxwall‘s Equations from Ampere‘s and 

Gauss‘s Laws. Maxwall‘s Equations in Differential and Integral forms; Equation of continuity. 

Comcept of Displacement Current. Electromagnetic Boundry Conditions, Poynting‘s Theorem, 

Time-Harmonic EM Fields. Plane Wave Propagation:  Helmholtz wave equation. Plane wavw 

solution. Plane Wave Propagation in lossless and lossy dielectric medium and conductiong 

medium. Plane wave in good conductor, Surface resistance, depth  of penetration. Polarization of 

EM wave- Linear, Circular and Elliptical polarization. Normal and Oblique incidence of linearly 

polarized wave at the plane boundry of a perfect conductor, Dielectric-Dielectric Interface. 

Reflection and Transmission Co-efficient for parallel and perpendicular polarizrtion, Brewstr 

angle.  

 

Module-IV                                                                                                                  (8 Hours) 

Radio Wave Propagation: Modes of propagation, Structure of Troposphere, Tropospheric 

Scattering, Ionosphere, Ionospheric Layers - D, E, F1, F2, regions. Sky wave propagation - 

propagation of radio waves through Ionosphere, Effect of earth‗s magnetic field, Virtual height, 

Skip Distance, MUF, Critical frequency, Space wave propagation. 

 

 

 



 
 

MODULE-I 

STATICELECTRIC FIELD: 

Electromagnetic theory is a discipline concerned with the study of charges at rest and in motion. 

Electromagnetic principles are fundamental to the study of electrical engineering and physics. 

Electromagnetic theory is also indispensable to the understanding, analysis and design of various 

electrical, electromechanical and electronic systems. Some of the branches of study where 

electromagnetic principles find application are: RF communication, Microwave Engineering, 

Antennas, Electrical Machines, Satellite Communication, Atomic and nuclear research ,Radar 

Technology, Remote sensing, EMI EMC, Quantum Electronics, VLSI .Electromagnetic theory is 

a prerequisite for a wide spectrum of studies in the field of Electrical Sciences and Physics. 

Electromagnetic theory can be thought of as generalization of circuit theory. There are certain 

situations that can be handled exclusively in terms of field theory. In electromagnetic theory, the 

quantities involved can be categorized as source quantities and field quantities. Source of 

electromagnetic field is electric charges: either at rest or in motion. However an electromagnetic 

field may cause a redistribution of charges that in turn change the field and hence the separation 

of cause and effect is not always visible. 

 

Sources of EMF: 

• Current carrying conductors. 

• Mobile phones. 

• Microwave oven. 

• Computer and Television screen. 

• High voltage Power lines. 

 

Effects of Electromagnetic fields: 

• Plants and Animals. 

• Humans. 

• Electrical components. 

 

 



 
 

 

Fields are classified as 

• Scalar field 

• Vector field. 

Electric charge is a fundamental property of matter. Charge exist only in positive or negative 

integral multiple of electronic charge, e= 1.60 × 10-19 coulombs. [It may be noted here that in 

1962, Murray Gell-Mann hypothesized Quarks as the basic building blocks of matters. Quarks 

were predicted to carry a fraction of electronic charge and the existence of Quarks has been 

experimentally verified.] Principle of conservation of charge states that the total charge 

(algebraic sum of positive and negative charges) of an isolated system remains unchanged, 

though the charges may redistribute under the influence of electric field. Kirchhoff's Current Law 

(KCL) is an assertion of the conservative property of charges under the implicit assumption that 

there is no accumulation of charge at the junction. Electromagnetic theory deals directly with the 

electric and magnetic field vectors where as circuit theory deals with the voltages and currents. 

Voltages and currents are integrated effects of electric and magnetic fields respectively. 

Electromagnetic field problems involve three space variables along with the time variable and 

hence the solution tends to become correspondingly complex. Vector analysis is a mathematical 

tool with which electromagnetic concepts are more conveniently expressed and best 

comprehended. Since use of vector analysis in the study of electromagnetic field theory results in 

real economy of time and thought, we first introduce the concept of vector analysis. 

Vector Analysis: 

The quantities that we deal in electromagnetic theory may be either scalar or vectors. There is 

other class of physical quantities called Tensors: where magnitude and direction vary with 

coordinate axes]. Scalars are quantities characterized by magnitude only and algebraic sign. A 

quantity that has direction as well as magnitude is called a vector. Both scalar and vector 

quantities are function of time and position. A field is a function that specifies a particular 

quantity everywhere in a region. Depending upon the nature of the quantity under consideration, 

the field may be a vector or a scalar field. Example of scalar field is the electric potential in a 

region while electric or magnetic fields at any point is the example of vector field. 

 



 
 

A vector can be written as, where, is the magnitude and is the unit vector which has unit 

magnitude and same direction as that of .Two vector and are added together to give another 

vector . We have       Let us see the animations in the next pages for the addition of 

two vectors, which has two1.parallelagram law, 2. Head &Tail rule 

 

 

   

 

 

 

 

 



 
 

 

 

 

 

 



 
 

 

 

 

Scaling of a vector is defined as, where is scaled version of vector and is a scalar. 

Some important laws of vector algebra are: commutative Law Associative Law Distributive Law  

 

The position vector of a point P is the directed distance from the origin (O) to P. 

 

 

 Fig 1.3Distance Vector 



 
 

 

PRODUCT OF VECTOR: 

 

When two vectors and are multiplied, the result is either a scalar or a vector depending how the 

two vectors were multiplied. The two types of vector multiplication are: 

Scalar product (or dot product) gives a scalar. 

Vector product (or cross product) gives a vector. 

The dot product between two vectors is defined as = |A||B|cosθAB       

 

 

 

 



 
 

 

Fig 1.5 

 

 



 
 

 

 

Co-ordinate Systems 

In order to describe the spatial variations of the quantities, we require using appropriate co-

ordinate system. A point or vector can be represented in a curvilinear coordinate system that may 

be orthogonal or non-orthogonal .An orthogonal system is one in which the co-ordinates are 

mutually perpendicular. No orthogonal co-ordinate systems are also possible, but their usage is 

very limited in practice .Let u = constant, v = constant and w = constant represent surfaces in a 

coordinate system, the surfaces may be curved surfaces in general. Further, let , and be the unit 

vectors in the three coordinate directions(base vectors). In general right handed orthogonal 

curvilinear systems, the vectors satisfy the following relations: 

 

 

 

 

In the following sections we discuss three most commonly used orthogonal coordinate Systems. 

1. Cartesian (or rectangular) co-ordinate system 

2. Cylindrical co-ordinate system 

3. Spherical polar co-ordinate system 



 
 

 

Cartesian Co-ordinate System: 

In Cartesian co-ordinate system, we have, (u, v, w) = (x,y,z). A point P(x0, y0, z0) in 

Cartesian co-ordinate system is represented as intersection of three planes x = x0, y = y0 

andz = z0. The unit vectors satisfy the following relation: 

Fig 1.7: Cartesian Co-ordinate System  

 

 



 
 

 

Cylindrical Co-ordinate System: 

 

 



 
 

 

 



 
 

 

 

 



 
 



 
 

 

                                                        Fig 1.10 

Thus we see that a vector in one coordinate system is transformed to another coordinate system 

through two-step process: Finding the component vectors and then variable transformation. 

 

 

 

 

 

 

 



 
 

Spherical Polar Coordinates: 

 

 



 
 

 

 



 
 

 

Coordinate transformation between rectangular and spherical polar: 

We can write 



 
 

 

 



 
 

 



 
 

 

 

Fig 1.15: Closed Line Integral 



 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

The Del Operator: 

The vector differential operator was introduced by Sir W. R. Hamilton and later on developed by 

P. G. Tait. Mathematically the vector differential operator can be written in the general form as

 

 

                                          Fig 1.17: Gradient of a scalar function 



 
 

 

Divergence of a Vector Field: 

In study of vector fields, directed line segments, also called flux lines or streamlines,represent 

field variations graphically. The intensity of the field is proportional to thedensity of lines. For 

example, the number of flux lines passing through a unit surface Snormal to the vector measures 

the vector field strength. 

 

 

   Fig 1.18: Flux Lines 

 



 
 



 
 

 

 

 



 
 

Curl of a vector field: 

We have defined the circulation of a vector field A around a closed path as. Curl of a vector field 

is a measure of the vector field's tendency to rotate about a point. Curl is also defined as a vector 

whose magnitude is maximum of the net circulation per unit area when the area tends to zero and 

its direction is the normal direction to the area when the area is oriented in such a way so as to 

make the circulation maximum. Therefore, we can write: 

 

 

Fig 1.19.a 

 



 
 

 



 
 



 
 

 

Stake‘s theorem: 

It states that the circulation of a vector field around a closed path is equal to the integral of over 

the surface bounded by this path. It may be noted that this equality holds provided and are 

continuous on the surface. 

 

 

 

 

 

 

 

 



 
 

Coulomb's Law: 

Coulomb's Law states that the force between two point charges Q1and Q2 is directly 

proportional to the product of the charges and inversely proportional to the square of the distance 

between them. Point charge is a hypothetical charge located at a single point in space. It is an 

idealized model of a particle having an electric charge. 

Mathematically, where k is the proportionality constant. In SI units, Q1 and Q2 are expressed in 

Coulombs(C) and R is in meters. 

Where  

 

 

                                             Fig 1.19.b 

                                

 

Electric Field: 

The electric field intensity or the electric field strength at a point is defined as the force per unit 

charge. That is 



 
 

 

The electric field intensity E at a point r (observation point) due a point charge Q located at r 

(source point) is given by: 

 

Electric flux density: 

 

As stated earlier electric field intensity or simply ‗Electric field' gives the strength of the field at 

a particular point. The electric field depends on the material media in which the field is being 

considered. The flux density vector is defined to be independent of the material media(as we'll 

see that it relates to the charge that is producing it).For a linear isotropic medium under 

consideration; the flux density vector is  

We define flux as 

 

Gauss's Law: 

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total 

electric flux through a closed surface is equal to the total charge enclosed by the surface. 

 

 

     Fig 1.19.c 



 
 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant ε. The flux density at a distance r on a surface enclosing the charge is given by 

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is 

given by 

 

 

Application of Gauss's Law 

Gauss's law is particularly useful in computing or where the charge distribution has Some 

symmetry. We shall illustrate the application of Gauss's Law with some examples. 

1. An infinite line charge 

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density ρLC/m. Let us 

consider a line charge positioned along the z-axis. Since the line charge is assumed to be 

infinitely long, the electric field will be of the form as shown If we consider a close cylindrical 

surface as shown in Fig. 2.4(a), using Gauss's theorem we can write, 

 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we 

can write, 

 



 
 

Infinite Sheet of Charge 

It may be noted that the electric field strength is independent of distance. This is true for the 

infinite plane of charge; electric lines of force on either side of the charge will be perpendicular 

to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives 

the strength of the field, the field becomes independent of distance. For a finite charge sheet, the 

field will be a function of distance. 

 

 



 
 

Uniformly Charged Sphere 

Let us consider a sphere of radius r0 having a uniform volume charge density ofdetermine 

everywhere, inside and outside the sphere, we construct Gaussian surfaces for the infinite surface 

charge, if we consider a placed symmetrically as shown in figure, we can write:  

Fig 1.20.a 



 
 

 



 
 

 

Electrostatic Potential and Equipotential Surfaces: 

Let us suppose that we wish to move a positive test charge from a point P to another point Q as 

shown in the Fig. below The force at any point along its path would cause the particle to 

accelerate and move it out of the region if unconstrained. Since we are dealing with an 

electrostatic case, a force equal to the negative of that acting on the charge is to be applied while 

moves from P to Q. The work done by this external agent in moving the charge by a distance is 

given by: 

 

       Fig 1.22 Moment of Test Charge 

 



 
 

The negative sign accounts for the fact that work is done on the system by the external agent. 

 

The potential difference between two points P and Q ,VPQ, is defined as the work done per 

unit charge, i.e. 

 

 

 

                                                  Fig 1.23 Point Charge 

 

 



 
 

Further consider the two points A and B as shown in the Fig. 2.9. Considering the movement 

of a unit positive test charge from B to A , we can write an expression for the potential difference 

as 

 

\                     

 

The potential difference is however independent of the choice of reference 

 

 

We have mentioned that electrostatic field is a conservative field; the work done in moving a 

charge from one point to the other is independent of the path. Let us consider moving a charge 

from point P1 to P2 in one path and then from point P2 back to P1 over a different path. If the 

work done on the two paths were different, a net positive or negative amount of work would 

have been done when the body returns to its original position P1. In a conservative field there is 

no mechanism for dissipating energy corresponding to any positive work neither 



 
 

any source is present from which energy could be absorbed in the case of negative work. Hence 

the question of different works in two paths is untenable; the work must have to be independent 

of path and depends on the initial and final positions. Since the potential difference is 

independent of the paths taken, VAB = - VBA, and over a closed path, 

 

 

 

 

 

 



 
 

Electric Dipole: 

An electric dipole consists of two point charges of equal magnitude but of opposite sign and 

separated by a small distance .as shown in figure 2.11, the dipole is formed by the two point 

charges Q and -Q separated by a distance d , the charges being placed symmetrically about the 

origin. Let us consider a point P at a distance r, where we are interested to find the field 

 

 

    is the magnitude of the dipole moment. Once again we note that the electric field of 

electric dipole varies as 1/r3 where as that of a point charge varies as 1/r2. 

 

Equipotential Surfaces: 



 
 

 

        An equipotential surface refers to a surface where the potential is constant. The intersection 

of an equipotential surface with an plane surface results into a path called an equipotential line. 

No work is done in moving a charge from one point to the other along an equipotential line or 

surface. 

 

In figure , the dashes lines show the equipotential lines for a positive point charge. By symmetry, 

the equipotential surfaces are spherical surfaces and the equipotential lines are circles. The solid 

lines show the flux lines or electric lines of force. 

 

   

  

Fig : Equipotential Lines for a Positive Point Charge 

 

Michael Faraday as a way of visualizing electric fields introduced flux lines. It may be seen that 

the electric flux lines and the equipotential lines are normal to each other 

 

In order to plot the equipotential lines for an electric dipole, we observe that for a given Q and d, 

a constant V requires that    is a constant. From this we can write     to be the 

equation for an equipotential surface and a family of surfaces can be generated for various values 

of cv.When plotted in 2-D this would give equipotential lines 

 



 
 

To determine the equation for the electric field lines, we note that field lines represent the 

direction of    in space. Therefore 

   

             , k is a constant    

 

                 

For the dipole under consideration    , and therefore we can write, 

 

                       

                      

Integrating the above expression we get , which gives the equations for electric 

flux lines. The representative plot ( cv = c assumed) of equipotential lines and flux lines for a 

dipole is shown in fig . Blue lines represent equipotential, red lines represent field lines. 

 

Boundary conditions for Electrostatic fields: 

        In our discussions so far we have considered the existence of electric field in the 

homogeneous medium. Practical electromagnetic problems often involve media with different 

physical properties. Determination of electric field for such problems requires the knowledge of 

the relations of field quantities at an interface between two media. The conditions that the fields 

must satisfy at the interface of two different media are referred to as boundary conditions . 

 

      In order to discuss the boundary conditions, we first consider the field behavior in some 

common material media In general, based on the electric properties, materials can be classified 

into three categories: conductors, semiconductors and insulators (dielectrics). In conductor , 

electrons in the outermost shells of the atoms are very loosely held and they migrate easily from 

one atom to the other. Most metals belong to this group. The electrons in the atoms of insulators 

or dielectrics remain confined to their orbits and under normal circumstances they are not 

liberated under the influence of an externally applied field. The electrical properties of 



 
 

semiconductors fall between those of conductors and insulators since semiconductors have very 

few numbers of free charges. 

 

The parameter conductivity is used characterizes the macroscopic electrical property of a 

material medium. The notion of conductivity is more important in dealing with the current flow 

and hence the same will be considered in detail later on. 

 

If some free charge is introduced inside a conductor, the charges will experience a force due to 

mutual repulsion and owing to the fact that they are free to move, the charges will appear on the 

surface. The charges will redistribute themselves in such a manner that the field within the 

conductor is zero. Therefore, under steady condition, inside a conductor     

From Gauss's theorem it follows that 

 

The surface charge distribution on a conductor depends on the shape of the conductor. The 

charges on the surface of the conductor will not be in equilibrium if there is a tangential 

component of the electric field is present, which would produce movement of the charges. Hence 

under static field conditions, tangential component of the electric field on the conductor surface 

is zero. The electric field on the surface of the conductor is normal everywhere to the surface . 

Since the tangential component of electric field is zero, the conductor surface is an equipotential 

surface. As   inside the conductor, the conductor as a whole has the same potential. We 

may further note that charges require a finite time to redistribute in a conductor. However, this 

time is very small sec for good conductor like copper. 

 

                   Fig : Boundary Conditions for at the surface of a Conductor 



 
 

Let us now consider an interface between a conductor and free space as shown in the figure 

 

Let us consider the closed path pqrsp for which we can write, 

 

                                             

For and noting that   inside the conductor is zero, we can write 

               

                               =0 

Et is the tangential component of the field. Therefore we find that 

                                    Et = 0 

In order to determine the normal component En, the normal component of  , at the surface of 

the conductor, we consider a small cylindrical Gaussian surface as shown in the Fig. Le   

represent the area of the top and bottom faces and  represents the height of the cylinder. Once 

again, as , we approach the surface of the conductor. Since inside the conductor is 

zero, 

 

                                                 

                                                  

Therefore, we can summarize the boundary conditions at the surface of a conductor as: 

                                                  Et = 0 

                                                  

Behavior of dielectrics in static electric field: Polarization of dielectric: 

   Here we briefly describe the behavior of dielectrics or insulators when placed in static electric 

field. Ideal dielectrics do not contain free charges. As we know, all material media are composed 

of atoms where a positively charged nucleus (diameter ~ 10-15m) is surrounded by negatively 

charged electrons (electron cloud has radius ~ 10-10m) moving around the nucleus. Molecules of 

dielectrics are neutral macroscopically; an externally applied field causes small displacement of 



 
 

the charge particles creating small electric dipoles. These induced dipole moments modify 

electric fields both inside and outside dielectric material. 

 

 

Molecules of some dielectric materials posses permanent dipole moments even in the absence of 

an external applied field. Usually such molecules consist of two or more dissimilar atoms and are 

called polar molecules. A common example of such molecule is water molecule H2O. In polar 

molecules the atoms do not arrange themselves to make the net dipole moment zero. However, in 

the absence of an external field, the molecules arrange themselves in a random manner so that 

net dipole moment over a volume becomes zero. Under the influence of an applied electric field, 

these dipoles tend to align themselves along the field as shown in figure . There are some 

materials that can exhibit net permanent dipole moment even in the absence of applied field. 

These materials are called electrets that made by heating certain waxes or plastics in the presence 

of electric field. The applied field aligns the polarized molecules when the material is in the 

heated state and they are frozen to their new position when after the temperature is brought down 

to its normal temperatures.Permanent polarization remains without an externally applied field. 

 

As a measure of intensity of polarization, polarization vector  (in C/m2) is defined as: 

                                            

n being the number of molecules per unit volume i.e.    is the dipole moment per unit volume. 

Let us now consider a dielectric material having polarization  and compute the potential at an 

external point O due to an elementary dipole dv'. 

 



 
 

 

Fig : Potential at an External Point due to an Elementary Dipole dv'. 

 

 

With reference to the figure, we can write:                       

                             

Therefore, 

                          

                         

Where  x,y,z  represent the coordinates of the external point O and  x',y',z' are the coordinates of 

the source point. 

From the expression of R, we can verify that 

                                                                      

                                                                     

Using the vector identity, ,where f is a scalar quantity , we have, 

                                                     

Converting the first volume integral of the above expression to surface integral, we can write 



 
 

                                    

Where ɑ   is the outward normal from the surface element ds' of the dielectric. From the above 

expression we find that the electric potential of a polarized dielectric may be found from the 

contribution of volume and surface charge distributions having densities 

 

 

These are referred to as polarisation or bound charge densities. Therefore we may replace a 

polarized dielectric by an equivalent polarization surface charge density and a polarization 

volume charge density. We recall that bound charges are those charges that are not free to move 

within the dielectric material, such charges are result of displacement that occurs on a molecular 

scale during polarization. The total bound charge on the surface is 

 

                                                                    

The charge that remains inside the surface is 

                                             

                                                                      

The total charge in the dielectric material is zero as 

 

               

If we now consider that the dielectric region containing charge density    the total volume 

charge density becomes  

                                             

Since we have taken into account the effect of the bound charge density, we can write 

                                                         

 Using the definition of    we have  



 
 

                                                          

Therefore the electric flux density 

                                                         

When the dielectric properties of the medium are linear and isotropic, polarisation is directly 

proportional to the applied field strength and  

                                                             

is the electric susceptibility of the dielectric. Therefore, 

                                                    

   is called relative permeability or the dielectric constant of the medium.             

is called the absolute permittivity.  

A dielectric medium is said to be linear when  is independent of   and the medium is 

homogeneous if     is also independent of space coordinates. A linear homogeneous and 

isotropic medium is called a simple medium and for such medium the relative permittivity is a 

constant. 

 

 Dielectric constant      may be a function of space coordinates. For anistropic materials, the 

dielectric constant is different in different directions of the electric field, D and E are related by a 

permittivity tensor which may be written as: 

 

                                               
 

For crystals, the reference coordinates can be chosen along the principal axes, which make off 

diagonal elements of the permittivity matrix zero. Therefore, we have 

 

                                                
 

Media exhibiting such characteristics are called biaxial. Further, if   then the medium is 

called uniaxial. It may be noted that for isotropic media,  

 

Lossy dielectric materials are represented by a complex dielectric constant, the imaginary part of 

which provides the power loss in the medium and this is in general dependant on frequency. 

 



 
 

 

Another phenomenon is of importance is dielectric breakdown. We observed that the applied 

electric field causes small displacement of bound charges in a dielectric material that results into 

polarization. Strong field can pull electrons completely out of the molecules. These electrons 

being accelerated under influence of electric field will collide with molecular lattice structure 

causing damage or distortion of material. For very strong fields, avalanche breakdown may also 

occur. The dielectric under such condition will become conducting. 

 

The maximum electric field intensity a dielectric can withstand without breakdown is referred 

to as the dielectric strength of the material. 

 

 

Boundary Conditions for Electrostatic Fields: 

 

Let us consider the relationship among the field components that exist at the interface between 

two dielectrics as shown in the figure . The permittivity of the medium 1 and medium 2 are    

and    respectively and the interface may also have a net charge density 

 

 
 

Fig : Boundary Conditions at the interface between two dielectrics 

We can express the electric field in terms of the tangential and normal components 

                             

Where Et and En are the tangential and normal components of the electric field respectively. 

 

Let us assume that the closed path is very small so that over the elemental path length the 

variation of E can be neglected. Moreover very near to the interface ,                  

Therefore 

 



 
 

                           

Thus, we have,    or  i.e. the tangential component of an electric field is 

continuous across the interface. 

For relating the flux density vectors on two sides of the interface we apply Gauss‘s law to a small 

pillbox volume as shown in the figure. Once again as ,   we can write  

 

                                

 

                               i.e,   

                                             

Thus we find that the normal component of the flux density vector D is discontinuous across an 

interface by an amount of discontinuity equal to the surface charge density at the interface. 

 

Example 

 

Two further illustrate these points; let us consider an example, which involves the refraction 

of  D or E at a charge free dielectric interface as shown in the figure 

  

Using the relationships we have just derived, we can write 

 

                  
 

                                 
 

In terms of flux density vectors, 

 

                                            
                          

                                              
 

                           Therefore,   

 

 



 
 

 
Fig : Refraction of D or E at a Charge Free Dielectric Interface 

 

 

Capacitance and Capacitors: 

 

We have already stated that a conductor in an electrostatic field is an Equipotential body and any 

charge given to such conductor will distribute themselves in such a manner that electric field 

inside the conductor vanishes. If an additional amount of charge is supplied to an isolated 

conductor at a given potential, this additional charge will increase the surface charge density.   

Since the potential of the conductor is given by  , the potential of the conductor 

will also increase maintaining the ratio    same. Thus we can write   where the constant 

of proportionality C is called the capacitance of the isolated conductor. SI unit of capacitance is 

Coulomb/ Volt also called Farad denoted by F. It can It can be seen that if V=1, C = Q. Thus 

capacity of an isolated conductor can also be defined as the amount of charge in Coulomb 

required to raise the potential of the conductor by 1 Volt. 

 

Of considerable interest in practice is a capacitor that consists of two (or more) conductors 

carrying equal and opposite charges and separated by some dielectric media or free space. The 

conductors may have arbitrary shapes. A two-conductor capacitor is shown in figure 

 

 

 



 
 

                                                    Fig : Capacitance and Capacitors 

 

When a d-c voltage source is connected between the conductors, a charge transfer occurs which 

results into a positive charge on one conductor and negative charge on the other conductor. The 

conductors are equipotential surfaces and the field lines are perpendicular to the conductor 

surface. If V is the mean potential difference between the conductors, the capacitance is given by   

  . Capacitance of a capacitor depends on the geometry of the conductor and the permittivity 

of the medium between them and does not depend on the charge or potential difference between 

conductors. The capacitance can be computed by assuming Q(at the same time -Q on the other 

conductor), first determining   using Gauss‘s theorem and then determining .                        

We illustrate this procedure by taking the example of a parallel plate capacitor. 

 

 

 

 

 

 

 

 

 

Example: Parallel plate capacitor 
 

                                             
                                                 Fig : Parallel Plate Capacitor 

 

For the parallel plate capacitor shown in the figure 2.20, let each plate has area A and a distance 

h separates the plates. A dielectric of permittivity fills the region between the plates. The electric 

field lines are confined between the plates. We ignore the flux fringing at the edges of the plates 

and charges are assumed to be uniformly distributed over the 

conducting plates with densities     and –  ,    

 

 



 
 

By Gauss‘s theorem we can write,  

 

As we have assumed      to be uniform and fringing of field is neglected, we see that E is 

constant in the region between the plates and therefore, we can write . Thus, 

 

for a parallel plate capacitor we have,   

 

Series and parallel Connection of  capacitors : 

 

Capacitors are connected in various manners in electrical circuits; series and parallel connections 

are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such 

connections. 

 

Series Case: Series connection of two capacitors is shown in the figure. For this case we can 

write,  

                                            
 

   

   
                        Fig : Series Connection of Capacitors  
 

 



 
 

                  
          

                       Fig : Parallel Connection of Capacitors 

 

The same approach may be extended to more than two capacitors connected in series. 

 

Parallel Case: For the parallel case, the voltages across the capacitors are the same. 

 

The total charge  

 

Therefore,            

                                
 

Electrostatic Energy and Energy Density : 

 

We have stated that the electric potential at a point in an electric field is the amount of work 

required to bring a unit positive charge from infinity (reference of zero potential) to that point. 

To determine the energy that is present in an assembly of charges, let us first determine the 

amount of work required to assemble them. Let us consider a number of discrete chargesQ1, 

Q2,......., QN are brought from infinity to their present position one by one. Since initially there is 

no field present, the amount of work done in bring Q1 is zero. Q2 is brought in the presence of 

the field of Q1, the work done W1= Q2V21 where V21 is the potential at the location of Q2 due 

to Q1. Proceeding in this manner, we can write, the total work done    

  

            
 

Had the charges been brought in the reverse order,   

 

            

 
 

Therefore, 

 



 
 

 
 

Here VIJ represent voltage at the Ith charge location due to Jth charge. Therefore, 

 

                                            
 

                                        Or,         

 

If instead of discrete charges, we now have a distribution of charges over a volume v then we 

can write, 

 

                         
 

Where    is the volume charge density and V represents the potential function. 

Since,  , we can write  

    

                                                      
Using the vector identity,  

 

 , we can write  

 

                                             
 

In the expression   for point charges, since V varies as        and D varies as         

,the term V  varies as     while the area varies as . Hence the integral term varies at least 

as     and the as surface becomes large (i.e.   ) the integral term tends to zero. 

Thus the equation for W reduces to 

 

 



 
 

 

 

 , is called the energy density in the electrostatic field.  

 

 

Poisson‘s and Laplace‘s Equations: 

 

For electrostatic field, we have seen that  

 

         
 

Form the above two equations we can write 

 

                    
 

Using vector identity we can write,   

 

For a simple homogeneous medium,      is constant and    . Therefore, 

 

                                       
This equation is known as Poisson’s equation. Here we have introduced a new operator, 

( del square), called the Laplacian operator. In Cartesian coordinates, 

 

 
 

Therefore, in Cartesian coordinates, Poisson equation can be written as:  

 

 

 
 

In cylindrical coordinates,  

 

 
In spherical polar coordinate system,  



 
 

 
 

At points in simple media, where no free charge is present, Poisson‘s equation reduces to  

 

                                                         
which is known as Laplace‘s equation.  

 

Laplace‘s and Poisson‘s equation are very useful for solving many practical electrostatic field 

problems where only the electrostatic conditions (potential and charge) at some boundaries are 

known and solution of electric field and potential is to be found throughout the volume. We shall 

consider such applications in the section where we deal with boundary value problems. 

 

Method of Images: 

      The uniqueness theorem for Poission‘s or Laplace‘s equations, which we studied in the last 

couple of lectures, has some interesting consequences. Frequently, it is not easy to obtain an 

analytic solution to either of these equations. Even when it is possible to do so, it may require 

rigorous mathematical tools. Occasionally, however, one can guess a solution to a problem, by 

some intuitive method. When this becomes feasible, the uniqueness theorem tells us that the 

solution must be the one we are looking for. One such intuitive method is the ―method of 

images‖ a terminology borrowed from optics. In this lecture, we illustrate this method by some 

examples. 

 

                        



 
 

Consider an infinite, grounded conducting plane occupying which occupies the x-y plane. A 

charge q is located at a distance d from this plane, the location of the charge is taken along the z 

axis. We are required to obtain an expression for the potential everywhere in the region z > 0 , 

excepting of course, at the location of the charge itself. Let us look at the potential at the point P 

which is at a distance   from the charge q (indicated by a red circle in the figure). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

MODULE-II 

A definite link between electric and magnetic fields was established by Oersted in 1820. As we 

have noticed, an electrostatic field is produced by static or stationary charges. If the charges are 

moving with constant velocity, a static magnetic (or magneto static) field is produced. A 

magneto static field is produced by a constant current flow (or direct current). This current flow 

may be due to magnetization currents as in permanent magnets, electron-beam currents as in 

vacuum tubes, or conduction currents as in current-carrying wires. In this chapter, we consider 

magnetic fields in free space due to direct current. 

Analogy between Electric and Magnetic Fields.

 



 
 

 

 

Biot-Savart's law states that the magnetic field intensity dH produced at a point P, as shown in 

Figure below, by the differential current element Idl is proportional to the product dl and the sine 

of the angle a between the clement and the line joining P to the element and is inversely 

proportional to the square of the distance R between P and the element. 

That is        Fig 2.2.1 

 

 

Wherek is the constant of proportionality. In SI units, k = l/4𝜋, so the above equation becomes 

    

From the definition of cross product in above equation it is easy to notice that the above equation 

is better put in vector form as 

 



 
 

 

WhereR = |R| and aR = R/R. Thus the direction of dHcan be determined by the right-hand rule 

with the right-hand thumb pointing in the direction of the current, the right-hand fingers 

encircling the wire in the direction of dHas shown in Figure2.21. Alternatively, we can use the 

right-handed screw rule to determine the direction of dH: with the screw placed along the wire 

and pointed in the direction of current flow, the direction of advance of the screw is the direction 

of dHas in Figure 2.2.1 

Determining the direction of dHusing (a) the right-hand rule, or (b) the right-handed screw rule. 

 

It is customary to represent the direction of the magnetic field intensity H by a small circle with a 

dot or cross sign depending on whether H (or I) is out of, or into, Just as we can have different 

charge configurations, we can have different current distributions: line current, surface current, 

and volume current. If we define K as the surface current density (in amperes/meter) and J as the 

volume current density (in amperes/meter square), the source elements are related as 

   

Thus in terms of the distributed current sources, the Biot-Savartlaw becomes 



 
 

 

As an example, let us apply above equation to determine the field due to a straight current 

carrying filamentary conductor of finite length AB. We assume that the conductor is along the z-

axis with its upper and lower ends respectively subtending anglesα1 and α2at P, the point at 

which H is to be determined. Particular note should be taken of this assumption as the formula to 

be derived will have to be applied accordingly. If we consider the contribution dHat P due to an 

element dl at (0, 0, z), 

Fig 2.2.2 



 
 

 

 

 

This expression is generally applicable for any straight filamentary conductor of finite length. 

Notice from the above equation that H is always along the unit vector aф (i.e., along concentric 

circular paths) irrespective of the length of the wire or the point of interest P. As special case, 

when the conductor is semi-infinite(with respect to P) so that point A is now at O(0, 0, 0) while B 

is at (0, 0, °°); α1= 90°, α2= 0°, 

 

       

Another special case is when the conductor is infinite in length. For this case, point A is at(0, 0, -

oo) while B is at (0, 0, °°); α1= 180°, α2= 0°,so the above equation becomes 



 
 

       

Ampere's Circuital Law: 

Ampere's circuital law states that the line integral of the magnetic field H (circulation of H) 

Around a closed path is the net current enclosed by this path. Mathematically, 

 

The total current Ienc can be written as 

 

By applying Stoke‘s theorem, we can write 

 

Which is the Ampere‘s law in the point form. 

Applications of Ampere's law: 

We illustrate the application of Ampere's Law with some examples. 

We compute magnetic field due to an infinitely long thin current carrying conductor as shown in 

Fig below Using Ampere's Law, we consider the close path to be acircle of radius ρ as shown in 

the Fig.below 

If we consider a small current element is perpendicular to the plane 

Containing bothdland therefore only component of H that will be present isHф 



 
 

By applying Ampere's law we can write, 

 

Therefore, this is same as equation. 

 

Magnetic field due to an infinite thin current carrying conductor 

We consider the cross section of an infinitely long coaxial conductor, the inner conductor 

carrying a current I and outer conductor carrying current - I as shown in above figure We 

compute the magnetic field as a functionρ of as follows 

In the region 0<ρ<R1 

 



 
 

 

In the region R1<ρ<R2 

 

 

 

Similarly if we consider the field/flux lines of a current carrying conductor as shown above 

figure (b), we find that these lines are closed lines, that is, if we consider a closed surface, the 

number of flux lines that would leave the surface would be same as the number of flux lines that 

would enter the surface. From our discussions above, it is evident that for magnetic field, 

 

 



 
 

Hence                                                 

This is the Gauss‘s law for the magnetic field in point form. 

MAGNETIC FORCES, MATERIALS, AND DEVICES 

INTRODUCTION 

Having considered the basic laws and techniques commonly used in calculating magnetic field B 

due to current-carrying elements, we are prepared to study the force a magnetic field exerts on 

charged particles, current elements, and loops. Such a study is important to problems on 

electrical devices such as ammeters, voltmeters, galvanometers, cyclotrons, plasmas, motors, and 

magneto hydrodynamic generators. The precise definition of the magnetic field, deliberately 

sidestepped in the previous chapter, will be given here. The concepts of magnetic moments and 

dipole will also be considered. Furthermore, we will consider magnetic fields in material media, 

as opposed to the magnetic fields in vacuum or free space examined in the previous chapter. The 

results of the preceding chapter need only some modification to account for the presence of 

materials in a magnetic field. Further discussions will cover inductors, inductances, magnetic 

energy, and magnetic circuits. 

Magnetic Scalar and Vector Potentials: 

In studying electric field problems, we introduced the concept of electric potential that simplified 

the computation of electric fields for certain types of problems. In the same manner let us relate 

the magnetic field intensity to a scalar magnetic potential and write 

 

From Ampere's law, we know that   

Therefore        

But using vector identity 

 



 
 

Boundary Condition for Magnetic Fields: 

Similar to the boundary conditions in the electro static fields, here we willconsider thebehavior 

of and  at the interface of two different media. In particular, we determine how the tangential 

and normal components of magnetic fields behave at the boundary of two regions having 

different permeability.The figure  shows the interface between two media having permeabities  

and  , being the normal vector from medium 2 to medium 1. 

 

 

 
 
Figure: Interface between two magnetic media 
 

To determine the condition for the normal component of the flux density vector  , we 

Consider a small pill box P with vanishingly small thickness h and having an elementary area 

 

 

 
Since h --> 0, we can neglect the flux through the sidewall of the pill box. 

 

 

 

 

where             



 
 

 

 
 

 
Or,              

 
That is, the normal component of the magnetic flux density vector is continuous across the 

interface. 

 

In vector form, 

 

 
To determine the condition for the tangential component for the magnetic field, we consider a 

closed path C as shown in figure . By applying Ampere's law we can write 

 

 
 

Since h -->0, 

 

 
 

We have shown in figure , a set of three unit vectors  ,  and  such that they satisfy

(R.H. rule). Here is tangential to the interface and  is the 

vectorperpendicular to the surface enclosed by C at the interface 

 

The above equation can be written as 

 
 

Or, 

 
i.e., tangential component of magnetic field component is discontinuous across the 

interfacewhere a free surface current exists. 



 
 

 

 

If Js = 0, the tangential magnetic field is also continuous. If one of the medium is a 

perfectconductor Js exists on the surface of the perfect conductor. 

 

In vector form we can write, 

 
Therefore, 

 
 

Magnetic forces and materials: 
 

In our study of static fields so far, we have observed that static electric fields are produced by 

electric charges, static magnetic fields are produced by charges in motion or by steadycurrent. 

Further, static electric field is a conservative field and has no curl, the staticmagnetic field is 

continuous and its divergence is zero. The fundamental relationships forstatic electric fields 

among the field quantities can be summarized as: 

 

 
 

 
For a linear and isotropic medium, 

 

 
Similarly for the magnetostatic case 

 

 
 

 
 

 
It can be seen that for static case, the electric field vectors and and magnetic fieldvectors and 

form separate pairs. 

 



 
 

MODULE-III 

INDUCTION: 

In electromagnetism and electronics, inductance is the property of a conductor by which a 

change in current flowing through it induces (creates) a voltage (electromotive force) in both the 

conductor itself (self-inductance) and in any nearby conductors (mutual inductance).  

These effects are derived from two fundamental observations of physics: First, that a steady 

current creates a steady magnetic field (Oersted's law), and second, that a time-varying magnetic 

field induces voltage in nearby conductors (Faraday's law of induction). According to Lenz's 

law, a changing electric current through a circuit that contains inductance induces a proportional 

voltage, which opposes the change in current (self-inductance). The varying field in this circuit 

may also induce an e.m.f. in neighbouring circuits (mutual inductance).  

 

Faraday‘s law of Induction: 

Faraday's law of induction is a basic law of electromagnetism predicting how a magnetic 

field will interact with an electric circuit to produce an electromotive force (EMF)-a 

phenomenon called electromagnetic induction. It is the fundamental operating principle 

of transformers, inductors, and many types of electrical motors, generators and solenoids.  

The most widespread version of Faraday's law states: 

The induced electromotive force in any closed circuit is equal to the negative of the time rate of 

change of the magnetic flux enclosed by the circuit. 

Faraday's law of induction makes use of the magnetic flux ΦB through a hypothetical surface Σ 

whose boundary is a wire loop. Since the wire loop may be moving, we write Σ(t) for the surface. 

The magnetic flux is defined by a surface integral: 

 

 

where dA is an element of surface area of the moving surface Σ(t), B is the magnetic field (also 

called "magnetic flux density"), and B·dA is a vector dot product (the infinitesimal amount of 

magnetic flux). In more visual terms, the magnetic flux through the wire loop is proportional to 

the number of magnetic flux lines that pass through the loop.  

When the flux changes—because B changes, or because the wire loop is moved or deformed, or 

both—Faraday's law of induction says that the wire loop acquires an EMF,   , defined as the 

energy available from a unit charge that has travelled once around the wire loop. Equivalently, it 

is the voltage that would be measured by cutting the wire to create an open circuit, and attaching 

a voltmeter to the leads. 

Faraday's law states that the EMF is also given by the rate of change of the magnetic flux: 

, 
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Where   is the electromotive force (EMF) and ΦB is the magnetic flux. The direction of the 

electromotive force is given by Lenz's law. 

For a tightly wound coil of wire, composed of N identical turns, each with the same ΦB, 

Faraday's law of induction states that  

 

 where N is the number of turns of wire and ΦB is the magnetic flux through a single loop. 

Self Inductance: 

We do not necessarily need two circuits in order to have inductive effects. Consider a single 

conducting circuit around which a current I is flowing. This current generates a magnetic 

field B which gives rise to a magnetic flux Φ linking the circuit. We expect the flux Φ to be 

directly proportional to the current I, given the linear nature of the laws of magnetostatics, and 

the definition of magnetic flux. Thus, we can write  

                                                       Φ=LI 

 

where the constant of proportionality L is called the self inductance of the circuit. Like mutual 

inductance, the self inductance of a circuit is measured in units of henries, and is a purely 

geometric quantity, depending only on the shape of the circuit and number of turns in the circuit. 

If the current flowing around the circuit changes by an amount dI in a time interval dt then the 

magnetic flux linking the circuit changes by an amount dΦ=LdI  in the same time interval. 

According to Faraday's law, an emf  

                                                              
d

dt


    

is generated around the circuit. Since dΦ=LdI   , this emf can also be written  

dI
L

dt
     

 

Thus, the emf generated around the circuit due to its own current is directly proportional to the 

rate at which the current changes. Lenz's law, and common sense, demand that if the current is 

increasing then the emf should always act to reduce the current, and vice versa. This is easily 

appreciated, since if the emf acted to increase the current when the current was increasing then 

we would clearly get an unphysical positive feedback effect in which the current continued to 

increase without limit. It follows, from the above, that the self inductance L of a circuit is 

necessarily a positive number. This is not the case for mutual inductances, which can be either 

positive or negative. 

Consider a solenoid of length l   and cross-sectional area A. Suppose that the solenoid 

has N turns. When a current I flows in the solenoid, a uniform axial field of magnitude  

B= 0NI

l


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is generated in the core of the solenoid. The field-strength outside the core is negligible. The 

magnetic flux linking a single turn of the solenoid is Φ=BA. Thus, the magnetic flux linking 

all N turns of the solenoid is  

                                                                              Φ=NBA=
2

0N AI

l


 

the self inductance of the solenoid is given by,  which reduces to L
I


   

       L=
2

0N A

l


 

 

Note that L  is positive. Furthermore, L  is a geometric quantity depending only on the 

dimensions of the solenoid, and the number of turns in the solenoid. 

Engineers like to reduce all pieces of electrical apparatus, no matter how complicated, to 

an equivalent circuit consisting of a network of just four different types of component. These 

four basic components are emfs, resistors, capacitors, and inductors. An inductor is simply a 

pure self inductance, and is usually represented a little solenoid in circuit diagrams. In practice, 

inductors generally consist of short air-cored solenoids wound from enamelled copper wire. 

Mutual Inductance 

 

Two inductively coupled circuits. 

Consider two arbitrary conducting circuits, labelled 1 and 2. Suppose that I1 is the instantaneous 

current flowing around circuit 1. This current generates a magnetic field B1 which links the 

second circuit, giving rise to a magnetic flux Φ1 through that circuit. If the current I2 doubles, 

then the magnetic field B2 doubles in strength at all points in space, so the magnetic 

flux Φ2 through the second circuit also doubles. This conclusion follows from the linearity of the 

laws of magneto statics, plus the definition of magnetic flux. Furthermore, it is obvious that the 

flux through the second circuit is zero whenever the current flowing around the first circuit is 

zero. It follows that the flux Φ2 through the second circuit is directly proportional to the 

current I1 flowing around the first circuit. Hence, we can write  

2 21 1M I    
 

where the constant of proportionality M21 is called the mutual inductance of circuit 2 with 

respect to circuit 1. Similarly, the flux Φ1 through the first circuit due to the instantaneous 

current I2 flowing around the second circuit is directly proportional to that current, so we can 

write  



 
 

                                                                 1 12 2M I   

where M12 is the mutual inductance of circuit 1 with respect to circuit 2. It is possible to 

demonstrate mathematically that M12=M21. In other words, the flux linking circuit 2 when a 

certain current flows around circuit 1 is exactly the same as the flux linking circuit 1 when the 

same current flows around circuit 2. This is true irrespective of the size, number of turns, relative 

position, and relative orientation of the two circuits. Because of this, we can write  

12 21M M M    
 

where M  is termed the mutual inductance of the two circuits. Note that M  is a purely 

geometric quantity, depending only on the size, number of turns, relative position, and relative 

orientation of the two circuits. The SI units of mutual inductance are called Henries (H). One 

henry is equivalent to a volt-second per ampere  
 

 
It turns out that a henry is a rather unwieldy unit. The mutual inductances of the circuits typically 

encountered in laboratory experiments are measured in milli-henries.Suppose that the current 

flowing around circuit 1 changes by an amount dI1 in a time interval dt. The flux linking circuit 2  

                                                            2 1d MdI   

 changes by an amount  in the same time interval. According to Faraday's law, an emf  

                                                                      2
2

d

dt


     

 

is generated around the second circuit due to the changing magnetic flux linking that circuit. 

Since, dΦ2=MdI1 , this emf can also be written  

1
2

dI
M

dt
    

 

Thus, the emf generated around the second circuit due to the current flowing around the first 

circuit is directly proportional to the rate at which that current changes.  

Likewise, if the current I2 flowing around the second circuit changes by an amount dI2 in a time 

interval dt then the emf generated around the first circuit is  

                                                               2
1

dI
M

dt
    

Note that there is no direct physical coupling between the two circuits. The coupling is due 

entirely to the magnetic field generated by the currents flowing around the circuits. 

As a simple example, suppose that two insulated wires are wound on the same cylindrical 

former, so as to form two solenoids sharing a common air-filled core. Let l  be the length of the 

core, A the cross-sectional area of the core, N1 the number of times the first wire is wound 

around the core, and N2 the number of times the second wire is wound around the core. If a 

current I1 flows around the first wire then a uniform axial magnetic field of strength B1=μ0N1I1/ l
 is generated in the core. The magnetic field in the region outside the core is of negligible 

magnitude.  



 
 

The flux linking a single turn of the second wire is B1A. Thus, the flux linking all N2 turns of the 

second wire is.  

                                                                       Φ=N2B1A= 0 1 2 1N N AI

l


 

The mutual inductance of the second wire with respect to the first is  

                                                            0 1 22
21

1

N N A
M

I l


   

Now, the flux linking the second wire when a current I2 flows in the first wire is Φ1=N1B2A, 

where B2=μ0N2I2/ l   is the associated magnetic field generated in the core. It follows that the 

mutual inductance of the first wire with respect to the second is  

                                                           0 1 21
12

2

N N A
M

I l


   

Thus, the mutual inductance of the two wires is given by  

0 1 2N N A
M

l


  

As described previously, M is a geometric quantity depending on the dimensions of the core, and 

the manner in which the two wires are wound around the core, but not on the actual currents 

flowing through the wires. 

Maxwell’s Equations 

 

                                          Symbols Used 

E = Electric field ρ = charge density 
i = electric 

current 

B = Magnetic field ε0 = permittivity 
J = current 

density 

D = Electric 

displacement 
μ0 = permeability 

c = speed of 

light 

H = Magnetic field 

strength 

M 

= Magnetization 
P = Polarization 
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Name Integral equations Differential equations 

Gauss's law 

 

 

Gauss's law 

for 

magnetism 

 

 

Maxwell–

Faraday 

equation 

(Faraday's 

law of 

induction) 

 

 

Ampère's 

circuital 

law (with 

Maxwell's 

addition) 

 

 

where the universal constants appearing in the equations are 

 the permittivity of free space ε0 and 

 the permeability of free space μ0. 

In the differential equations, a local description of the fields, 

 the nabla symbol ∇ denotes the three-dimensional gradient operator, and from it 

 the divergence operator is ∇· 

 the curl operator is ∇×. 

The sources are taken to be 

 the electric charge density (charge per unit volume) ρ and 

 the electric current density (current per unit area) J. 

In the integral equations; a description of the fields within a region of space, 

 Ω is any fixed volume with boundary surface ∂Ω, and 
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 Σ is any fixed open surface with boundary curve ∂Σ, 

  is a surface integral over the surface ∂Ω (the oval indicates the surface is closed 

and not open), 

  is a volume integral over the volume Ω, 

  is a surface integral over the surface Σ, 

  is a line integral around the curve ∂Σ (the circle indicates the curve is closed). 

Here "fixed" means the volume or surface do not change in time. Although it is possible to 

formulate Maxwell's equations with time-dependent surfaces and volumes, this is not 

actually necessary: the equations are correct and complete with time-independent surfaces. 

The sources are correspondingly the total amounts of charge and current within these 

volumes and surfaces, found by integration. 

 The volume integral of the total charge density ρ over any fixed volume Ω is 

the total electric charge contained in Ω: 

 
    where dV is the differential volume element, and 

 the net electrical current is the surface integral of the electric current density J, 

passing through any open fixed surface Σ: 

 
where dS denotes the differential vector element of surface area S normal to surface Σ. (Vector 

area is also denoted by A rather than S, but this conflicts with the magnetic potential, a separate 

vector field). 

The "total charge or current" refers to including free and bound charges, or free and bound 

currents.  

Gauss's law 

Gauss's law describes the relationship between a static electric field and the electric charges that 

cause it: The static electric field points away from positive charges and towards negative 

charges. In the field line description, electric field lines begin only at positive electric charges 

and end only at negative electric charges. 'Counting' the number of field lines passing though 

a closed surface, therefore, yields the total charge (including bound charge due to polarization of 

material) enclosed by that surface divided by dielectricity of free space (the vacuum 

permittivity). More technically, it relates the electric flux through any 

hypothetical closed "Gaussian surface" to the enclosed electric charge. 
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Gauss's law for magnetism: magnetic field lines never begin nor end but form loops or extend to 

infinity as shown here with the magnetic field due to a ring of current. 

Gauss's law for magnetism 

Gauss's law for magnetism states that there are no "magnetic charges" (also called magnetic 

monopoles), analogous to electric charges.
[3]

 Instead, the magnetic field due to materials is 

generated by a configuration called a dipole. Magnetic dipoles are best represented as loops of 

current but resemble positive and negative 'magnetic charges', inseparably bound together, 

having no net 'magnetic charge'. In terms of field lines, this equation states that magnetic field 

lines neither begin nor end but make loops or extend to infinity and back. In other words, any 

magnetic field line that enters a given volume must somewhere exit that volume. Equivalent 

technical statements are that the sum total magnetic flux through any Gaussian surface is zero, or 

that the magnetic field is a solenoidal vector field. 

Faraday's law 

The Maxwell-Faraday's equation version of Faraday's law describes how a time varyingmagnetic 

field creates ("induces") an electric field.
[3]

 This dynamically induced electric field has closed 

field lines just as the magnetic field, if not superposed by a static (charge induced) electric field. 

This aspect of electromagnetic induction is the operating principle behind many electric 

generators: for example, a rotating bar magnet creates a changing magnetic field, which in turn 

generates an electric field in a nearby wire. 

Ampère's law with Maxwell's addition 

Ampère's law with Maxwell's addition states that magnetic fields can be generated in two ways: 

by electrical current (this was the original "Ampère's law") and by changing electric fields (this 

was "Maxwell's addition"). 

Maxwell's addition to Ampère's law is particularly important: it shows that not only does a 

changing magnetic field induce an electric field, but also a changing electric field induces a 

magnetic field.
[3][4]

 Therefore, these equations allow self-sustaining "electromagnetic waves" to 

travel through empty space (see electromagnetic wave equation). 

The speed calculated for electromagnetic waves, which could be predicted from experiments on 

charges and currents,
[note 2]

 exactly matches the speed of light; indeed, light is one form 
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of electromagnetic radiation (as are X-rays, radio waves, and others). Maxwell understood the 

connection between electromagnetic waves and light in 1861, thereby unifying the theories 

of electromagnetism and optics. 

 

Equation of continuity. 

The continuity equation can be derived by taking the divergence of  

                                                               
D

H J
t


  




 

  

Where H  is the magnetic field, in amperes per meter (A/m) and D  is the electric flux density, in 

coulombs per meter squared (Coul/m
2
). 

 And also using, D   , we get  

                                                                           0J
t


   


   

This equation states that charge is conserved, or that current is continuous, since ∇ · J. represents 

the outflow of current at a point, and 
t




 represents the charge build up with time at the same 

point. It is this result that led Maxwell to the conclusion that the displacement current density 

D

t




  was necessary in (1.1b), which 

can be seen by taking the divergence of this equation. 

 

Comcept of Displacement Current. 

 

In electromagnetism, displacement current is a quantity appearing in Maxwell's equations that is 

defined in terms of the rate of change of electric displacement field. Displacement current has the 

units of electric current density, and it has an associated magnetic field just as actual currents do. 

However it is not an electric current of moving charges, but a time-varying electric field. In 

materials, there is also a contribution from the slight motion of charges bound in 

atoms, dielectric polarization. 

 

The electric displacement field is defined as: 

                                                                         0D E P    

Where: 

ε0 is the permittivity of free space 

E is the electric field intensity 

P is the polarization of the medium 

Differentiating this equation with respect to time defines the displacement current density, which 

therefore has two components in a dielectric: 
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The first term on the right hand side is present in material media and in free space. It doesn't 

necessarily come from any actual movement of charge, but it does have an associated magnetic 

field, just as does a current due to charge motion. Some authors apply the name displacement 

current to the first term by itself.   

The second term on the right hand side comes from the change in polarization of the individual 

molecules of the dielectric material. Polarization results when the charges in molecules have 

moved from a position of exact cancellation under the influence of an applied electric field. The 

positive and negative charges in molecules separate, causing an increase in the state of 

polarization P. A changing state of polarization corresponds to charge movement and so is 

equivalent to a current. 

This polarization is the displacement current as it was originally conceived by Maxwell. 

Maxwell made no special treatment of the vacuum, treating it as a material medium. For 

Maxwell, the effect of P was simply to change the relative permittivity εr in the 

relation D = εrε0 E. 

The modern justification of displacement current is explained below. 

Isotropic dielectric case 

In the case of a very simple dielectric material the constitutive relation holds: 

                                                                    D E   

                                                            where the permittivity ε = ε0 εr, 

 εr is the relative permittivity of the dielectric and 

 ε0 is the electric constant. 

 

In this equation the use of ε accounts for the polarization of the dielectric. 

The scalar value of displacement current may also be expressed in terms of electric flux: 

                                                                        E
DI

t






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The forms in terms of ε are correct only for linear isotropic materials. More generally ε may be 

replaced by a tensor, may depend upon the electric field itself, and may exhibit frequency 

dependence (dispersion). 

For a linear isotropic dielectric, the polarization P is given by: 

                                                                        0 0( 1)Ee rP E        

Where  e  is known as the electric susceptibility of the dielectric. Note that: 

                                                                         0 0(1 )r e         
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Electromagnetic Boundary Conditions: 

1. Gauss‘ Continuity Condition                                              
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2. Continuity of Tangential E  
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3. Normal H   
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4. Tangential H  
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5. Conservation of Charge Boundary Condition  

 

   

[J J ] 0

S V

a b S

d
J da dV

dt

n
t

 


    



 
  

 

Poynting’s Theorem: 

The Poynting theorem is one of the most important results in EM theory. It tells us the power 

flowing in an electromagnetic field. 



 
 

John Henry Poynting  was the developer and eponym of the Poynting vector, which describes the 

direction and magnitude of electromagnetic energy flow and is used in the Poynting theorem, a 

statement about energy conservation for electric and magnetic fields. This work was first 

published in 1884. He performed a measurement of Newton's gravitational constant by 

innovative means during 1893. In 1903 he was the first to realize that the Sun's radiation can 

draw in small particles towards it. This was later coined the Poynting-Robertson effect. 
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 From these we obtain 
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Subtract, and use the following vector identity: 

                                                       H ( E)-E ( H)= (E H)       

We then have: 
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Next, assume that Ohm's law applies for the electric current: 
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From calculus (chain rule), we have that 
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Hence we have 
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This may be written as 
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Final differential (point) form of the Poynting theorem: 
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Time-Harmonic EM Fields: 

In linear media the time-harmonic dependence of the sources gives rise to fields which, once 

having reached the steady state, also vary sinusoidally in time. However, time-harmonic analysis 

is important not only because many electromagnetic systems operate with signals that are 

practically harmonic, but also because arbitrary periodic time functions can be expanded into 

Fourier series of harmonic sinusoidal components while transient nonperiodic functions can be 

expressed as Fourier integrals. Thus, since the Maxwell‘s equations are linear differential 

equations, the total fields can be synthesized from its Fourier components. 

Analytically, the time-harmonic variation is expressed using the complex exponential notation 

based on Euler‘s formula, where it is understood that the physical fields are obtained by taking 

the real part, whereas their imaginary part is discarded. For example, an electric field with time-

harmonic dependence given by cos(ωt + ϕ), where ω is the angular frequency, is expressed as  

                                    *

0

1
Re ( ( ) ) cos( )

2

j t j t j tE Ee Ee Ee E t        
    

 

where E


 is the complex phasor, 

                                                   0

jE E e 
 

 

of amplitude E0 and phase ϕ, which will in general be a function of the angular frequency and 

coordinates. The asterisk * indicates the complex conjugate, and Re {} represents the real part of 

what is in curly brackets. 

 

Maxwell‘s equations for time-harmonic fields: 

Assuming ejωt time dependence, we can get the phasor form or time-harmonic form of 

Maxwell‘s equations simply by changing the operator ∂/∂t to the factor jω in and eliminating the 

factor ejωt. Maxwell‘s equations in differential and integral forms for time-harmonic fields are 

given below. 

  

Differential form of Maxwell‘s equations for time-harmonic fields 

∇ · D


 = ρ (Gauss‘ law) 

∇ · D


 = ρ (Gauss‘ law)  

∇ · B


 = 0(Gauss‘ law for magnetic fields)  

∇× E


= −jω B


 (Faraday‘s law)  

∇× H


= J


 + jω D


 (Generalized Ampère‘s law) 

 

Integral form of Maxwell‘s equations for time harmonic fields: 

T
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   (Gauss‘ Law) 

0
S
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   (Gauss‘ Law for magnetic field) 
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 (Generalised Ampere‘s Law) 



 
 

Plane Wave Propagation & Plane wave solution. 

In the physics of wave propagation, a plane wave (also spelled planewave) is a constant-

frequency wave whose wavefronts(surfaces of constant phase) are infinite parallel planes of 

constant peak-to-peak amplitude normal to the phase velocityvector. 

It is not possible in practice to have a true plane wave; only a plane wave of infinite extent will 

propagate as a plane wave. However, many waves are approximately plane waves in a localized 

region of space. For example, a localized source such as an antenna produces a field that is 

approximately a plane wave far from the antenna in its far-field region. Similarly, if thelength 

scales are much longer than the wave‘s wavelength, as is often the case for light in the field 

of optics, one can treat the waves as light rays which correspond locally to plane waves. 

Mathematical formalisms: 

Two functions that meet the above criteria of having a constant frequency and constant 

amplitude are the sine and cosinefunctions. One of the simplest ways to use such 

a sinusoid involves defining it along the direction of the x-axis. The equation below, which is 

illustrated toward the right, uses the cosine function to represent a plane wave travelling in the 

positive x direction. 

  

 

  

     

 

In the above equation: 

 (x, t)A   is the magnitude or disturbance of the wave at a given point in space and time. An 

example would be to let (x, t)A  represent the variation of air pressure relative to the norm in 

the case of a sound wave. 

 0A   is the amplitude of the wave which is the peak magnitude of the oscillation. 

 k   is the wave‘s wave number or more specifically the angular wave number and 

equals 2π/λ, where λ is the wavelength of the wave.  

 k  has the units ofradians per unit distance and is a measure of how rapidly the disturbance 

changes over a given distance at a particular point in time. 

 x   is a point along the x-axis. y   and z   are not part of the equation because the wave's 

magnitude and phase are the same at every point on any giveny-z plane. This equation 

defines what that magnitude and phase are. 

    is the wave‘s angular frequency which equals 2π/T, where T is the period of the wave. 
 has the units of radians per unit time and is a measure of how rapidly the disturbance 

changes over a given length of time at a particular point in space. 

 t   is a given point in time 

    is the phase shift of the wave and has the units of radians. Note that a positive phase shift, 

at a given moment of time, shifts the wave in the negative x-axis direction. A phase shift 

of 2π radians shifts it exactly one wavelength. 

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Wave_propagation
http://en.wikipedia.org/wiki/Wavefront
http://en.wikipedia.org/wiki/Phase_(waves)
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Phase_velocity
http://en.wikipedia.org/wiki/Waves
http://en.wikipedia.org/wiki/Antenna_(electronics)
http://en.wikipedia.org/wiki/Far-field_region
http://en.wikipedia.org/wiki/Length_scale
http://en.wikipedia.org/wiki/Length_scale
http://en.wikipedia.org/wiki/Length_scale
http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Geometrical_optics
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Cosine
http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Air_pressure
http://en.wikipedia.org/wiki/Sound_wave
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Wave_number
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Plane_(geometry)
http://en.wikipedia.org/wiki/Angular_frequency
http://en.wikipedia.org/wiki/Period_(physics)
http://en.wikipedia.org/wiki/Phase_shift


 
 

Other formalisms which directly use the wave‘s wavelength   , period T  , frequency f  

 and velocity c   are below. 

                                          0 cos[2 ( ) ]A A x t T       

                                        0 cos[2 ( ) ]A A x ft      

                                       0 cos[(2 )( ) ]A A x ct      

To appreciate the equivalence of the above set of equations note that 1f
T

   and c
T k

     

Arbitrary direction 

A more generalized form is used to describe a plane wave traveling in an arbitrary direction. It 

uses vectors in combination with the vector dot product. 

                                                   0(r, t) A cos(k r t )A        

here: 

 k  is the wave vector which only differs from a wave number in that it has a 

direction as well as a magnitude. This means that, 2k k     . The 

direction of the wave vector is ordinarily the direction that the plane wave is 

travelling, but it can differ slightly in an anisotropic medium.  

   is the vector dot product. 

 r  is the position vector which defines a point in three-dimensional space. 

Complex exponential form 

Many choose to use a more mathematically versatile formulation that utilizes the complex 

number plane. It requires the use of the natural exponent e   and the imaginary number i  . 

                                            (k r t )

0u(r, t) A ie      

To appreciate this equation‘s relationship to the earlier ones, below is this same equation 

expressed using sines and cosines. Observe that the first term equals the real form of the plane 

wave just discussed. 

                           0 0u(r, t) A cos(k r t ) sin(k r t )iA            

                           0u(r, t) A(r, t) sin(k r t )iA        

The introduced complex form of the plane wave can be simplified by using a complex-valued 

amplitude 0U   substitute the real valued amplitude 0A . 

Specifically, since the complex form… 

                                (k r t )

0u(r, t) A ie      

equals 

                                 (k r t)

0u(r, t) A i ie e    
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one can absorb the phase factor ie   into a complex amplitude by letting 
0 0

iU A e   , resulting in 

the more compact equation 

                                                (k r t)

0U(r, t) iU e    

While the complex form has an imaginary component, after the necessary calculations are 

performed in the complex plane, its real value can be extracted giving a real valued equation 

representing an actual plane wave. 

                              0Re[U(r, t)] A(r, t) A cos(k r t )        

The main reason one would choose to work with complex exponential form of plane waves is 

that complex exponentials are often algebraically easier to handle than the trigonometric sines 

and cosines. Specifically, the angle-addition rules are extremely simple for exponentials. 

Additionally, when using Fourier analysis techniques for waves in a lossy medium, the 

resulting attenuation is easier to deal with using complex Fourier coefficients. It should be noted 

however that if a wave is traveling through a lossy medium, the amplitude of the wave is no 

longer constant, and therefore the wave is strictly speaking no longer a true plane wave. 

In quantum mechanics the solutions of the Schrödinger wave equation are by their very nature 

complex and in the simplest instance take a form identical to the complex plane wave 

representation above. The imaginary component in that instance however has not been 

introduced for the purpose of mathematical expediency but is in fact an inherent part of the 

―wave‖. 

Helmholtz wave equation. 

In a source-less dielectric medium, 
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Taking curl  gives                            
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Similarly, it can be proved that  

                                                    
2 2

S SH E   
 

 

Finally, Let‘s Analyze the Helmholtz Wave Equation 

Let‘s compare general wave equation (8) and Helmholtz wave equation  
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
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
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From the above comparison, we get,  

                                                                       

But, we already knew that  

                                                               v



  

So, from the above equations, we get 

                                                   
1 1

r r

v c
  

   

where c is the light velocity.  

 

 

Plane Wave Propagation in lossless medium: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plane Wave Propagation in lossy dielectric medium: 

 

 

 

 

 

 

 

 

 

                     A lossy dielectric is a medium in which an EM wave loses power as it propagates 

due to poor conduction. 

 

In other words, a lossy dielectric is a partially conducting medium (imperfect dielectric or 

imperfect conductor) with a ¥= 0, as distinct from a lossless dielectric (perfect or good 

dielectric) in which a = 0. Consider a linear, isotropic, homogeneous, lossy dielectric medium 

that is charge free (pv = 0). Assuming and suppressing the time factor ej"', Maxwell's equations 

become  



 
 

                                                       

0

0

( )

S

S

S S

S S

E

H

E j H

H j E



 

 

 

  

  

  

 

Taking the curl of both sides of eq 

                                  

 

 

 

Applying the vector identity  

                                  

 

 

 

From the above equation we get that... 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

and gama is called the propagation constant (in per meter) of the medium. By a similar 

procedure, it can be shown that for the H field,         

                           

 

 

     

 

We will obtain a and /3 from eqs. by noting that  

     

 

 

 

 



 
 

 

 

From the above equations , we obtain. 

 

 

 

 

 

 

 

 

 

Without loss of generality, if we assume that the wave propagates along +az and that Es has only 

an x- component, then 

 

 

Substituting this into eq.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a scalar wave equation, a linear homogeneous differential equation, with solution  

 

 

 

where Eo and E'o are constants. The fact that the field must be finite at infinity requires that E'o 

= 0. Alternatively, because eiz denotes a wave traveling along —az whereas we assume wave 

propagation along az, E'o = 0. Whichever way we look at it, E'o = 0. Inserting the time factor 

ejo" into eq. above, we obtain 

 

 

 

 

 

 



 
 

 

A sketch of |E| at times t = 0 and t = At is portrayed in Figure 10.5, where it is evident that E has 

only an x-component and it is traveling along the +z-direction. Having obtained E(z, t), we 

obtain H(z, t) either by taking similar steps to solve eq. or by using eq. in conjunction with 

Maxwell's equations, We will eventually arrive at 

 

 

 

 

 

 

 

 

PLANE WAVES IN GOOD CONDUCTORS 

A perfect, or good conductor, is one in which    so that /     

 

 

 

Without loss of generality, if we assume that the wave propagates along +az and that Es has only 

an x-component, then 

 

 

 

Substituting this  

 

 

 

 

 

 

 

 

 

 

 

DEPTH OF PENETRATION: 

Penetration depth is a measure of how deep light or any electromagnetic radiation can penetrate 

into a material. It is defined as the depth at which the intensity of the radiation inside the material 

falls to 1/e (about 37%) of its original value at (or more properly, just beneath) the surface. 

When electromagnetic radiation is incident on the surface of a material, it may be (partly) 

reflected from that surface and there will be a field containing energy transmitted into the 

material. This electromagnetic field interacts with the atoms and electrons inside the material. 

Depending on the nature of the material, the electromagnetic field might travel very far into the 

material, or may die out very quickly. For a given material, penetration depth will generally be a 

function of wavelength. 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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According to Beer-Lambert law, the intensity of an electromagnetic wave inside a material falls 

off exponentially from the surface as 

 

If  denotes the penetration depth, we have 

 

"Penetration depth" is but one term that describes the decay of electromagnetic waves inside a 

material. The above definition refers to the depth  at which the intensity or power of the field 

decays to 1/e of its surface value. In many contexts one is concentrating on the field quantities 

themselves: the electric and magnetic fields in the case of electromagnetic waves. Since the 

power of a wave in a particular medium is proportional to the square of a field quantity, one may 

speak of a penetration depth at which the magnitude of the electric (or magnetic) field has 

decayed to 1/e of its surface value, and at which point the power of the wave has thereby 

decreased to  or about 13% of its surface value: 

 

Note that  is identical to the skin depth, the latter term usually applying to metals in reference 

to the decay of electrical currents (which follow the decay in the electric or magnetic field due to 

a plane wave incident on a bulk conductor). The attenuation constant  is also identical to the 

(negative) real part of the propagation constant, which may also be referred to as  using a 

notation inconsistent with the above use. When referencing a source one must always be careful 

to note whether a number such as  or refers to the decay of the field itself, or of the intensity 

(power) associated with that field. It can also be ambiguous as to whether a positive number 

describes attenuation(reduction of the field) or gain; this is usually obvious from the context. 

The attenuation constant for an electromagnetic wave at normal incidence on a material is also 

proportional to the imaginary part of the material's refractive index n. Using the above definition 

of  (based on intensity) the following relationship holds: 

 

where  denotes the complex index of refraction,  is the radian frequency of the radiation, 

and c is the speed of light in vacuum. Note that  is very much a function of frequency, as is 

its imaginary part which is often not mentioned (it is essentially zero for transparent dielectrics). 

The complex refractive index of metals is also infrequently mentioned but has the same 

significance, leading to a penetration depth (or skin depth ) accurately given by 

a formula which is valid up to microwave frequencies. 

Relationships between these and other ways of specifying the decay of an electromagnetic field 

are further detailed in the article: Mathematical descriptions of opacity. 
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It should also be noted that we are only specifying the decay of the field which may be due 

to absorption of the electromagnetic energy in a lossy medium or may simply describe the 

penetration of the field in a medium where no loss occurs (or a combination of the two). For 

instance, a hypothetical substance may have a complex index of refraction . A 

wave will enter that medium without significant reflection and will be totally absorbed in the 

medium with a penetration depth (in field strength) of , where  is the vacuum 

wavelength. A different hypothetical material with a complex index of 

refraction  will also have a penetration depth of 16 wavelengths, however in this 

case the wave will be perfectly reflected from the material! No actual absorption of the radiation 

takes place, however the electric and magnetic fields extend well into the substance. In either 

case the penetration depth is found directly from the imaginary part of the material's refractive 

index as is detailed above. 

Polarization of EM wave: 

Polarization (also polarisation) is a property of waves that can oscillate with more than one 

orientation. Electromagnetic waves such aslight exhibit polarization, as do some other types of 

wave, such as gravitational waves. Sound waves in a gas or liquid do not exhibit polarization, 

since the oscillation is always in the direction the wave travels. 

In an electromagnetic wave, both the electric field and magnetic field are oscillating but in 

different directions; by convention the "polarization" of light refers to the polarization of the 

electric field. Light which can be approximated as a plane wave in free space or in 

anisotropic medium propagates as a transverse wave—both the electric and magnetic fields are 

perpendicular to the wave's direction of travel. The oscillation of these fields may be in a single 

direction (linear polarization), or the field may rotate at the optical frequency 

(circular or elliptical polarization). In that case the direction of the fields' rotation, and thus the 

specified polarization, may be either clockwise or counter clockwise; this is referred to as the 

wave's chirality or handedness. 

The most common optical materials (such as glass) are isotropic and simply preserve the 

polarization of a wave but do not differentiate between polarization states. However there are 

important classes of materials classified as birefringent or optically active in which this is not the 

case and a wave's polarization will generally be modified or will affect propagation through it. 

A polarizer is an optical filter that transmits only one polarization. 

Polarization is an important parameter in areas of science dealing with transverse wave 

propagation, such as optics, seismology, radio, and microwaves. Especially impacted are 

technologies such as lasers, wireless and optical fiber telecommunications, and radar. 

Linear polarization: 

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a 

confinement of the electric field vector or magnetic field vector to a given plane along the 

direction of propagation. See polarization for more information. 

The orientation of a linearly polarized electromagnetic wave is defined by the direction of 

the electric field vector. For example, if the electric field vector is vertical (alternately up and 

down as the wave travels) the radiation is said to be vertically polarized. 
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The classical sinusoidal plane wave solution of the electromagnetic wave equation for 

the electric and magnetic fields is (cgs units) 

 

 

for the magnetic field, where k is the wavenumber, 

 

is the angular frequency of the wave, and  is the speed of light. 

Here 

 

is the amplitude of the field and 

 

is the Jones vector in the x-y plane. 

The wave is linearly polarized when the phase angles  are equal, 

. 

This represents a wave polarized at an angle  with respect to the x axis. In that case, the Jones 

vector can be written 

. 

The state vectors for linear polarization in x or y are special cases of this state vector. 

If unit vectors are defined such that 
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and 

 

then the polarization state can written in the "x-y basis" as 

 

Circular polarization: 

 circular polarization of an electromagnetic wave is a polarization in which the electric field of 

the passing wave does not change strength but only changes direction in a rotary manner. 

In electrodynamics the strength and direction of an electric field is defined by what is called 

an electric field vector. In the case of a circularly polarized wave, as seen in the accompanying 

animation, the tip of the electric field vector, at a given point in space, describes a circle as time 

progresses. If the wave is frozen in time, the electric field vector of the wave describes a helix 

along the direction of propagation. 

Circular polarization is a limiting case of the more general condition of elliptical polarization. 

The other special case is the easier-to-understand linear polarization. 

The phenomenon of polarization arises as a consequence of the fact that light behaves as a two-

dimensional transverse wave. 

The classical sinusoidal plane wave solution of the electromagnetic wave equation for 

the electric and magnetic fields is 

 

 

where k is the wavenumber, 

 

is the angular frequency of the wave,  is an orthogonal  matrix whose 

columns span the transverse x-y plane and  is the speed of light. 

Here  is the amplitude of the field and 

 

is the Jones vector in the x-y plane. 

If  is rotated by  radians with respect to  and the x amplitude equals the y amplitude 

the wave is circularly polarized. The Jones vector is 
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where the plus sign indicates left circular polarization and the minus sign indicates right circular 

polarization. In the case of circular polarization, the electric field vector of constant magnitude 

rotates in the x-y plane. 

If basis vectors are defined such that 

 

and 

 

then the polarization state can be written in the "R-L basis" as 

 

where 

 

 

and 

 

 

Elliptical polarization: 

In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such 

that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, 

and normal to, the direction of propagation. An elliptically polarized wave may be resolved into 

two linearly polarized waves in phase quadrature, with their polarization planes at right angles to 

each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, 

elliptically polarized waves exhibit chirality. 

Other forms of polarization, such as circular and linear polarization, can be considered to be 

special cases of elliptical polarization. 

The classical sinusoidal plane wave solution of the electromagnetic wave equation for 

the electric and magnetic fields is (cgs units) 

 

 

for the magnetic field, where k is the wavenumber, 
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is the angular frequency of the wave propagating in the +z direction, and  is the speed of light. 

Here  is the amplitude of the field and 

 

is the normalized Jones vector. This is the most complete representation of polarized 

electromagnetic radiation and corresponds in general to elliptical polarization. 
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MODULE-IV 

 

RADIO WAVE PROPAGATION 

Introduction   

Radio propagation is the behavior of radio waves when they are transmitted, or propagated from 

one point on the Earth to another, or into various parts of the atmosphere. Radio signals are 

affected in many ways by objects in their path and by the media through which they travel. This 

means that radio signal propagation is of vital importance to anyone designing or operating a 

radio system. The properties of the path by which the radio signals will propagate governs the 

level and quality of the received signal. Reflection, refraction and diffraction may occur. The 

resultant signal may also be a combination of several signals that have travelled by different 

paths. These may add constructively or destructively, and in addition to this the signals travelling 

via different paths may be delayed causing distorting of the resultant signal. It is therefore very 

important to know the likely radio propagation characteristics that are likely to prevail. 

 

Mode of Propagation 

There are a number of categories into which different types of radio propagation can be placed. 

These relate to the effects of the media through which the signals propagate. 

 Free space propagation:   Here the radio signals travel in free space, or away from other 

objects which influence the way in which they travel. It is only the distance from the 

source which affects the way in which the field strength reduces. This type of radio 

propagation is encountered with signals travelling to and from satellites. 

 Ground wave propagation:   When signals travel via the ground wave they are modified 

by the ground or terrain over which they travel. They also tend to follow the earth's 

curvature. Signals heard on the medium wave band during the day use this form of 

propagation. Read more about Ground wave propagation 

 Ionospheric propagation:   Here the radio signals are modified and influenced by the 

action of the free electrons in the upper reaches of the earth's atmosphere called the 

ionosphere. This form of radio propagation is used by stations on the short wave bands 

for their signals to be heard around the globe. Read more about Ionospheric propagation 
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 Tropospheric propagation:   Here the signals are influenced by the variations of 

refractive index in the troposphere just above the earth's surface. Tropospheric radio 

propagation is often the means by which signals at VHF and above are heard over 

extended distances. Read more about Tropospheric propagation 

 

 

                       

 Sky Wave Propagation and Space Wave Propagation 

Layers of the Atmosphere 

There are two main layers that are of interest from a radio communications viewpoint. The first 

is the troposphere that tends to affect radio frequencies above 30 MHz. The second is the 

ionosphere. This is a region which crosses over the boundaries of the meteorological layers and 

extends from around 60 km up to 700 km. Here the air becomes ionised, producing ions and free 

electrons. The free electrons affect radio communications and radio signals at certain 

frequencies, typically those radio frequencies below 30 MHz, often bending them back to Earth 

so that they can be heard over vast distances around the world. 

 

http://www.radio-electronics.com/info/propagation/tropospheric/tropospheric-propagation.php


 
 

 
    Atmosphere Layers 

 

Structure of Troposphere 

The lowest of the layers of the atmosphere is the troposphere. This extends from ground level to 

an altitude of 10 km. It is within this region that the effects that govern our weather occur. To 

give an idea of the altitudes involved it is found that low clouds occur at altitudes of up to 2 km 

whereas medium level clouds extend to about 4 km. The highest clouds are found at altitudes up 

to 10 km whereas modern jet airliners fly above this at altitudes of up to 15 km. 

Within the troposphere there is generally a steady fall in temperature with height and this has a 

distinct bearing on some radio propagation modes and radio communications that occur in this 

region. The fall in temperature continues in the troposphere until the tropopause is reached. This 

is the area where the temperature gradient levels out and then the temperature starts to rise. At 

this point the temperature is around -50ᵒC. 

The refractive index of the air in the troposphere plays a dominant role in radio signal 

propagation and the radio communications applications that use tropospheric radiowave 

propagation. This depends on the temperature, pressure and humidity. When radio 

communications signals are affected this often occurs at altitudes up to 2 km. 

Tropospheric Scattering 

Tropospheric scatter (also known as troposcatter) is a method of communicating 

with microwave radio signals over considerable distances – often up to 300 km, and further 

depending on terrain and climate factors. This method of propagation uses the tropospheric 

scatter phenomenon, where radio waves at particular frequencies are randomly scattered as they 

pass through the upper layers of thetroposphere. Radio signals are transmitted in a tight beam 
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aimed at the highest point on the horizon in the direction of the receiver station. As the signals 

pass through the troposphere, some of the energy is scattered back toward the Earth, allowing the 

receiver station to pick up the signal.
[1] 

 

                                                 

 Tropospheric Scattering 

 

Normally, signals in the microwave frequency range used, around 2 GHz, travel in straight lines, 

and so are limited to line of sight applications, in which the receiver can be 'seen' by the 

transmitter. So communication distances are limited by the visual horizon to around 30-40 miles. 

Troposcatter allows microwave communication beyond the horizon. 

Because the troposphere is turbulent and has a high proportion of moisture the tropospheric 

scatter radio signals are refracted and consequently only a proportion of the radio energy is 

collected by the receiving antennas. Frequencies of transmission around 2 GHz are best suited 

for tropospheric scatter systems as at this frequency the wavelength of the signal interacts well 

with the moist, turbulent areas of the troposphere, improving signal to noise ratios. 

Ionosphere 

The ionosphere /aɪˈɒnɵˌsfɪər/ is a region of Earth's upper atmosphere, from about 85 km (53 mi) 

to 600 km (370 mi) altitude, and includes the thermosphere and parts of 

themesosphere and exosphere. It is distinguished because it is ionized by solar radiation. It plays 

an important part in atmospheric electricity and forms the inner edge of themagnetosphere. It has 

practical importance because, among other functions, it influences radio propagation to distant 

places on the Earth.  
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 Ionization Layes 

Ionospheric Layers - D, E, F1, F2  

At night the F layer is the only layer of significant ionization present, while the ionization in the 

E and D layers is extremely low. During the day, the D and E layers become much more heavily 

ionized, as does the F layer, which develops an additional, weaker region of ionisation known as 

the F1 layer. The F2 layer persists by day and night and is the region mainly responsible for the 

refraction of radio waves. 

 



 
 

 

 Ionization Layers during Day and Night 

D layer 

The D layer is the innermost layer, 60 km (37 mi) to 90 km (56 mi) above the surface of the 

Earth. Ionization here is due to Lyman series-alpha hydrogen radiation at a wavelength of 

121.5 nanometre (nm) ionizing nitric oxide (NO). In addition, with high Solar activity hard X-

rays (wavelength < 1 nm) may ionize (N2, O2). During the night cosmic rays produce a residual 

amount of ionization. Recombination is high in the D layer, so the net ionization effect is low, 

but loss of wave energy is great due to frequent collisions of the electrons (about ten collisions 

every millisecond). As a result, high-frequency (HF) radio waves are not reflected by the D layer 

but suffer loss of energy therein. This is the main reason for absorption of HF radio waves, 

particularly at 10 MHz and below, with progressively smaller absorption as the frequency gets 

higher. The absorption is small at night and greatest about midday. The D layer reduces greatly 

after sunset; a small part remains due to [galactic cosmic rays]. A common example of the D 

layer in action is the disappearance of distant AM broadcast band stations in the daytime. 

 

E layer 

The E layer is the middle layer, 90 km (56 mi) to 120 km (75 mi) above the surface of the Earth. 

Ionization is due to soft X-ray (1-10 nm) and far ultraviolet (UV) solar radiation ionization of 

molecular oxygen (O₂). Normally, at oblique incidence, this layer can only reflect radio waves 

having frequencies lower than about 10 MHz and may contribute a bit to absorption on 
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frequencies above. However, during intense Sporadic E events, the Es layer can reflect 

frequencies up to 50 MHz and higher. The vertical structure of the E layer is primarily 

determined by the competing effects of ionization and recombination. At night the E layer 

weakens because the primary source of ionization is no longer present. After sunset an increase 

in the height of the E layer maximum increases the range to which radio waves can travel by 

reflection from the layer. 

 

F layer 

The F layer or region, also known as the Appleton-Barnett layer, extends from about 200 km 

(120 mi) to more than 500 km (310 mi) above the surface of Earth. It is the densest point of the 

ionosphere, which implies signals penetrating this layer will escape into space. At higher 

altitudes, the number of oxygen ions decreases and lighter ions such as hydrogen and helium 

become dominant; this layer is the topside ionosphere. There, extreme ultraviolet (UV, 10–

100 nm) solar radiation ionizes atomic oxygen. The F layer consists of one layer at night, but 

during the day, a deformation often forms in the profile that is labeled F₁. The F₂ layer remains 

by day and night responsible for most skywavepropagation of radio waves, facilitating high 

frequency (HF, or shortwave) radio communications over long distances. 

 SKY WAVE PROPAGATION 

 Introduction  

In radio communication, skywave or skip refers to the propagation of radio 

waves reflected or refracted back toward Earth from theionosphere, an electrically charged layer 

of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave 

propagation can be used to communicate beyond the horizon, at intercontinental distances. It is 

mostly used in the shortwavefrequency bands.  
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Sky Wave Propagation 

 

 

Shortwave communication through sky wave communication 

Propagation of radio waves through Ionosphere  

As electromagnetic waves, and in this case, radio signals travel, they interact with objects and the 

media in which they travel. As they do this the radio signals can be reflected, refracted or 

diffracted. These interactions cause the radio signals to change direction, and to reach areas 

which would not be possible if the radio signals travelled in a direct line. The ionosphere is a 

particularly important region with regards to radio signal propagation and radio communications 

in general. Its properties govern the ways in which radio communications, particularly in the HF 

radio communications bands take place. 

The ionosphere is a region of the upper atmosphere where there are large concentrations of free 

ions and electrons. While the ions give the ionosphere its name, but it is the free electrons that 

affect the radio waves and radio communications. In particular the ionosphere is widely known 



 
 

for affecting signals on the short wave radio bands where it "reflects" signals enabling these 

radio communications signals to be heard over vast distances. Radio stations have long used the 

properties of the ionosphere to enable them to provide worldwide radio communications 

coverage. Although today, satellites are widely used, HF radio communications using the 

ionosphere still plays a major role in providing worldwide radio coverage. The free electrons do 

not appear over the whole of the atmosphere. Instead it is found that the number of free electrons 

starts to rise at altitudes of approximately 30 km. However it is not until altitudes of around 60 to 

90 kilometres are reached that the concentration is sufficiently high to start to have a noticeable 

effect on radio signals and hence on radio communications systems. It is at this level that the 

ionosphere can be said to start. 

The ionisation in the ionosphere is caused mainly by radiation from the Sun. In addition to this, 

the very high temperatures and the low pressure result in the gases in the upper reaches of the 

atmosphere existing mainly in a monatomic form rather than existing as molecules. At lower 

altitudes, the gases are in the normal molecular form, but as the altitude increases the monatomic 

forms are more in abundance, and at altitudes of around 150 kilometres, most of the gases are in 

a monatomic form. This is very important because it is found that the monatomic forms of the 

gases are very much easier to ionise than the molecular forms. 

 

Effect of earth‘s magnetic field   

As an ionized medium, the ionosphere plays a special role in radio wave propagation. 

The Martian ionosphere differs from Earth‘s in a number of ways. Due to the greater distance 

from the Sun at Mars than Earth, the weaker solar radiation flux generates a lower plasma 

density in the Martian ionosphere. While Earth‘s ionosphere has four layers, the Martian 

ionosphere is a single layer of ionized gas that extends from about 100 kilometers to several 

hundred kilometers above the surface, as shown in Figure 2.2-1 from Viking Lander 2 direct 

measurements. Earth‘s ionosphere is shielded from the solar wind by a strong planetary magnetic 

field. In contrast, the Mars ionosphere is directly exposed to the solar wind because Mars lacks a 

strong magnetic field. Presence of a magnetic field can influence the plasma motion within the 

ionosphere and also affect low frequency radio wave propagation. 

 



 
 

 

A Martian Ionospheric Altitude Profile of Electron Density 

Previous missions made inconclusive measurements of the Martian magnetic field. The weak 

magnetic field (< 100 nT) measured by the previous missions had been interpreted as the 

evidence for a Martian magnetic field , although argued that the measurements could be better 

explained in terms of a draped interplanetary magnetic field (IMF). Recent measurements by the 

Mars Global Surveyor (MGS) mission have confirmed that there is no intrinsic dipole magnetic 

field in Mars. The MGS magnetometer discovered that the Martian magnetic field is very weak 

compared to that of Earth‘s magnetic field, only 1/800 the strength. The weak magnetic field is 

probably generated by a diffused draping IMF. The solar wind rams into the Martian ionosphere 

and generates complicated magnetic fields. Thus, this region may have a complicated interaction 

with the Martian magnetosphere. 

Virtual height  

Since the ionosphere have different types of layers namely D,E and F layers. So when a pulse 

transmitted from transmitter it get deflected or we can say reflect by these different layers and 

reaches to the receiver. Thus the path followed by the pulse is the Actual path. 

The distance between the highest point of actual path and the earth surface is called Actual 



 
 

height. When a short pulse of energy sent vertically upward and traveling with the speed of light 

would reach taking the same two rays travel time as does the actual pulse reflected from the 

ionospheric layers. that height is known as Virtual height of an antenna. 

 

Virtual Height 

Skip Distance 

A skip distance is the distance a radio wave travels, usually including a hop in the ionosphere. A 

skip distance is a distance on the Earth's surface between the two points whereradio waves from 

a transmitter, refracted downwards by different layers of the ionosphere, fall. It also represents 

how far a radio wave has travelled per hop on the Earth's surface, for radio waves such as 

the short wave (SW) radio signals that employ continuous reflections for transmission.
 

Radio waves from a particular transmitting antenna do not all get refracted by a particular 

layer of the ionosphere; some are absorbed, some refracted while a portion escapes to the next 

layer. At this higher layer, there is a possibility of this radio wave being bent downwards to earth 

again. This bending happens because each layer of the ionosphere has a refractive index that 

varies from that of the others.
[2]

Because of the differing heights of refraction, or apparent 

reflection, the radio waves hit the earth surface at different points hence generating the skip 

distance.  
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Skip distance for space wave propagation 

        

 Critical frequency  

In telecommunication, the term critical frequency has the following meanings: 

 In radio propagation by way of the ionosphere, the limiting frequency at or below which a 

wave component is reflected by, and above which it penetrates through, an ionospheric layer. 

 At near vertical incidence, the limiting frequency at or below which incidence, the wave 

component is reflected by, and above which it penetrates through, an ionospheric layer. 

Critical Frequency changes with time of day, atmospheric conditions and angle of fire of the 

radio waves by antenna. 

The existence of the critical frequency is the result of electron limitation, i.e., the inadequacy of 

the existing number of free electrons to support reflection at higher frequencies. 

When the refractive index, n has decreased to the point where n = sinϕi, where ϕ is the angle of 

refraction f will be 90° and wave will be travelling horizontally. The higher point reached by the 

wave is free. The electron density N at the that point satisfies the relation  
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Where cf is the critical frequency 

(Maximum Usable Frequency) MUF   

In radio transmission maximum usable frequency (MUF) is the highest radio frequency that 

can be used for transmission between two points via reflection from the ionosphere( skywave or 

"skip" propagation) at a specified time, independent of transmitter power. This index is 

especially useful in regard to shortwave transmissions. In shortwave radio communication, a 

major mode of long distance propagation is for the radio waves to reflect off the ionized layers of  
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Maximum Usable Frequency 

 

the atmosphere and return diagonally back to Earth. In this way radio waves can travel beyond 

the horizon, around the curve of the Earth. However the refractive index of the ionosphere 

decreases with increasing frequency, so there is an upper limit to the frequency which can be 

used. Above this frequency the radio waves are not reflected by the ionosphere but are 

transmitted through it into space. 
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The above equation is known as secant law, it indicates that 
muff is greater than critical frequency 

by a factor of secϕ. It gives the frequency which can be used for sky wave propagation for given 

angle of incidence between two locations. 

  

http://en.wikipedia.org/wiki/Refractive_index


 
 

       

Maximum Usable Frequency at different day and night time   

       

SPACE WAVE PROPAGATION 

Introduction:  The radio waves having high frequencies are basically called as space waves. 

These waves have the ability to propagate through atmosphere, from transmitter antenna to 

receiver antenna. These waves can travel directly or can travel after reflecting from earth‘s 

surface to the troposphere surface of earth. So, it is also called as Tropospherical Propagation. In 

the diagram of medium wave propagation, c shows the space wave propagation. Basically the 

technique of space wave propagation is used in bands having very high frequencies. E.g. V.H.F. 

band, U.H.F band etc. At such higher frequencies the other wave propagation techniques like sky 

wave propagation, ground wave propagation can‘t work. Only space wave propagation is left 

which can handle frequency waves of higher frequencies. The other name of space wave 

propagation is line of sight propagation. There are some limitations of space wave propagation. 

1. These waves are limited to the curvature of the earth. 

2. These waves have line of sight propagation, means their propagation is along the line of sight 

distance. 

The line of sight distance is that exact distance at which both the sender and receiver antenna are 

in sight of each other. So, from the above line it is clear that if we want to increase the 

transmission distance then this can be done by simply extending the heights of both the sender as 

well as the receiver antenna. This type of propagation is used basically in radar and television 

communication. 



 
 

The frequency range for television signals is nearly 80 to 200MHz. These waves are not reflected 

by the ionosphere of the earth. The property of following the earth‘s curvature is also missing in 

these waves. So, for the propagation of television signal, geostationary satellites are used. The 

satellites complete the task of reflecting television signals towards earth. If we need greater 

transmission then we have to build extremely tall antennas. 

        

 

Space wave Communication 

Space Waves, also known as direct waves, are radio waves that travel directly from the 

transmitting antenna to the receiving antenna. In order for this to occur, the two antennas must be 

able to ―see‖ each other; that is there must be a line of sight path between them. The diagram on 

the next page shows a typical line of sight. The maximum line of sight distance between two 

antennas depends on the height of each antenna. 

Generally, space waves are ―line of sight‖ receivable, but those of lower frequencies will ―bend‖ 

over the horizon somewhat. Since the VOR signal at 108 to 118 MHz is a lower frequency than 

distance measuring equipment (DME) at 962 to 1213 MHz, when an aircraft is flown ―over the 

horizon‖ from a VOR/DME station, the DME will normally be the first to stop functioning. 


