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SYLLABUS 
 
Module –I                                                                                        (12 hours)  
Digital Image 
 

1. Different stages of Image processing & Analysis Scheme. Components of 
Image Processing System, Multiprocessor Interconnections. 

2. A Review of various Mathematical Transforms. 
3. Image Formation: Geometric Model, Photometric Model. 
4. Image Digitization : A review of Sampling and quantization processes. A 

digital image. 
       
Module – II         (12 Hours) 
Image Processing  

5. Image Enhancement: Contrast Intensification, Smoothing, Image 
sharpening. 

6. Restoration : Minimum Mean – Square Error Restoration by Homomorphic 
Filtering.  

7. Image Compression : Schematic diagram of Data Compression Procedure,    
Lossless compression – coding. 

8. Multivalued Image Processing, Multispectral Image Processing, Processing 
of color images. 

Module –III          (8 Hours) 
Digital Speech Processing 

1. The Fundamentals of Digital Speech Processing. 
A Review of Discrete-Time Signal & Systems , the Z-transform, the DFT, 
Fundamental of Digital Filters, FIR system, IIR Systems. 

2. Time –Domain Methods for Speech Processing. 
Time-Dependent Processing of speech, short-time energy and Average 
Magnitude, Short time Average Zero- Crossing Rate. 

3. Digital  Representation of speech Waveform 
Sampling speech signals,statistical model,Instantaneous quantization, 
Instantaneous companding, quantization for optimum SNR,Adaptive 
quantization,Feed-forward Feedback adaptions. 

Module –IV         (8 Hours)  
Linear Predictive Coding of Speech 

Block diagram of Simplified Model for Speech Production. Basic Principles of 
Linear Predictive Analysis- The Auto Correlation Method. The Prediction Error 
Signal. Digital Speech Processing for Man-Machine  Communication by voice. 
Speaker Recognition Systems- Speaker verification and Speaker Identification 
Systems. 
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MODULE-1 
 
DIGITAL IMAGE 
 

INTRODUCTION 
 

The  digital  image  processing  deals  with  developing  a  digital  system  that  
performs operations on a digital image. 
An image is nothing more than a two dimensional signal. It is defined by the 
mathematical function f(x,y) where x and y are the two co-ordinates horizontally and 
vertically and the amplitude of f at any pair of coordinate (x, y) is called the 
intensity or gray level of the image at that point. 
When x, y and the amplitude values of f are all finite discrete quantities, we call the 
image a digital image. The field of image digital image processing refers to the 
processing of digital image by means of a digital computer. 
A digital image is composed of a finite number of elements, each of which has a 
particular location and values of these elements are referred to as picture elements, 
image elements and pixels. 

 
Motivation and Perspective 

 
Digital  image  processing  deals  with  manipulation  of  digital  images  through  a  
digital computer. It is a subfield of signals and systems but focus particularly on 
images. DIP focuses on developing a computer system that is able to perform 
processing on an image. The input of that system is a digital image and the system 
process that image using efficient algorithms, and gives an image as an output. The 
most common example is Adobe Photoshop. It is one of the widely used 
applications for processing digital images. 

 
Applications 

 
Some of the major fields in which digital image processing is widely used are  
1. Gamma Ray Imaging- Nuclear medicine and astronomical observations.  
2. X-Ray imaging – X-rays of body. 
3. Ultraviolet Band –Lithography, industrial inspection, microscopy, lasers. 
4. Visual And Infrared Band – Remote sensing. 
5. Microwave Band – Radar imaging. 



Components of Image Processing System 
 

 
 

i)   Image Sensors 
With reference to sensing, two elements are required to acquire digital 
image. The first is a physical device that is sensitive to the energy 
radiated by the object we wish to image and second is specialized 
image processing hardware.  

ii)  Specialize image processing hardware – 
It consists of the digitizer just mentioned, plus hardware that performs other 
primitive operations such as an arithmetic logic unit, which performs 
arithmetic such addition and subtraction and logical operations in parallel on 
images. 

iii) Computer 
It  is  a  general  purpose  computer  and  can  range  from  a  PC  to  a  
supercomputer depending on the application. In dedicated applications, 
sometimes specially designed computer are used to achieve a required level of 
performance 

iv)  Software 
It consist of specialized modules that perform specific tasks a well designed 
package also  includes  capability  for  the  user  to  write  code,  as  a  minimum,  
utilizes  the specialized  module.  More sophisticated software packages allow 
the integration of these modules. 

v)  Mass storage  
This capability  is a must in image processing  applications.  An image of size 
1024 x1024 pixels, in which the intensity of each pixel is an 8- bit quantity 
requires one megabytes  of  storage  space  if  the  image  is  not  compressed.  
Image  processing applications falls into three principal categories of storage 
i)         Short term storage for use during processing  
ii)        On line storage for relatively fast retrieval 
iii)       Archival storage such as magnetic tapes and disks 



vi)  Image displays 
Image displays in use today are mainly color TV monitors. These monitors are 
driven by  the  outputs  of  image  and  graphics  displays  cards  that  are  an  
integral  part  of computer system 

vii)         Hardcopy devices  
The devices for recording image includes laser printers, film cameras, heat 
sensitive devices inkjet units and digital units such as optical and CD ROM disk. 
Films provide the highest possible resolution, but paper is the obvious medium 
of choice for written applications. 

viii)    Networking 
It is almost a default function in any computer system in use today because of 
the large amount of data inherent in image processing applications.  The key 
consideration  in image transmission bandwidth. 

 
Elements of Visual Perception 
 
 Structure of the human Eye 
 
The  eye  is  nearly  a  sphere  with  average  approximately  20  mm  diameter.  The  eye  is 
enclosed with three membranes 
 
a)  The cornea  and sclera: it is a tough,  transparent  tissue  that covers  the anterior 

surface of the eye. Rest of the optic globe is covered by the sclera 
b)        The choroid: It contains a network of blood vessels that serve as the major source 
         of nutrition to the eyes. It helps to reduce extraneous light entering in the eye 

It has two parts 
(1) Iris Diaphragms- it contracts or expands to control the amount  of light that 

enters the eyes. 
(2) Ciliary body 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c)       Retina – it is innermost membrane of the eye. When the eye is properly focused, light 

from an object outside the eye is imaged on the retina. There are various light 
receptors over the surface of the retina 
The two major classes of the receptors are- 
1)        cones- it is in the number about 6 to 7 million. These are located in the 

central portion of the retina called the fovea. These are highly sensitive to 
color. Human can resolve fine details with these cones because each one is 
connected to its own nerve end. Cone vision is called photopic or bright 
light vision 



 
2)       Rods – these are very much in number from 75 to 150 million  and are 

distributed over the entire retinal surface. The large area of distribution and 
the fact that several roads are connected to a single nerve give a general overall 
picture of the field of view.They are not involved in the color vision and 
are sensitive to low level of illumination. Rod vision is called is scotopic or 
dim light vision. 

The absent of reciprocators is called blind spot 

 
 
Image Formation in the Eye 
 
The major difference between the lens of the eye and an ordinary optical lens in that the 
former is flexible. 
 
The shape of the lens of the eye is controlled by tension in the fiber of the ciliary body. To 
focus on the distant object the controlling muscles allow the lens to become thicker in order 
to focus on object near the eye it becomes relatively flattened. 
 
The distance between the center of the lens and the retina is called the focal length and it 
varies from 17mm to 14mm as the refractive power of the lens increases from its minimum to 
its maximum. 
 
When the eye focuses on an object farther away than about 3m.the lens exhibits its lowest 
refractive  power.  When the eye focuses  on a nearly object.  The lens is most strongly 
refractive. 
 
The retinal image is reflected primarily in the area of the fovea. Perception then takes 
place  by the relative  excitation  of light receptors,  which  transform  radiant energy into 
electrical impulses that are ultimately decoded by the brain. 



  
Brightness Adaption and Discrimination 
 
Digital image are displayed  as a discrete set of intensities.  The range of light intensity 
levels to which the human visual system can adopt is enormous-  on the order of 1010 
from scotopic threshold to the glare limit. Experimental evidences indicate that subjective 
brightness is a logarithmic function of the light intensity incident on the eye. 
 

 
 
The curve represents the range of intensities to which the visual system can adopt. But the 
visual  system  cannot  operate  over such  a dynamic  range  simultaneously.  Rather,  it is 
accomplished by change in its overcall sensitivity called brightness adaptation. 
 
For any given set of conditions, the current sensitivity level to which of the visual system 
is  called  brightness  adoption  level  ,  Ba   in  the  curve.    The  small  intersecting  curve 
represents the range of subjective brightness that the eye can perceive when adapted to this 
level. It is restricted at level Bb , at and below which all stimuli are perceived as 
indistinguishable  blacks. The upper portion of the curve is not actually restricted. whole 
simply raise the adaptation level higher than Ba . 
 
The ability of the eye to discriminate  between change in light intensity at any specific 
adaptation level is also of considerable interest. 
 
 
 
 
 
 



Take a flat, uniformly illuminated area large enough to occupy the entire field of view of 
the subject. It may be a diffuser such as an opaque glass, that is illuminated from behind 
by a light source whose intensity, I can be varied. To this field is added an increment of 
illumination ∆I in the form of a short duration flash that appears as circle in the center of 
the uniformly illuminated field. If ∆I is not bright enough, the subject cannot see any 
perceivable changes. 
 

 
I+∆I  

 
 
 
 
 
 
 
 
As ∆I gets stronger the subject may indicate of a perceived change. ∆Ic is the increment of 
illumination discernible 50% of the time with background illumination I. Now, ∆Ic /I is 
called the Weber ratio. 
 
Small value means that small percentage  change in intensity is discernible  representing 
“good” brightness discrimination. 
 
Large  value  of  Weber  ratio  means  large  percentage  change  in  intensity  is  required 
representing “poor brightness discrimination”. 
 
Optical illusion 
 
In  this  the  eye  fills  the  non  existing  information  or  wrongly  pervious  geometrical 
properties of objects. 
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Fundamental Steps in Digital Image Processing 
 
There are two categories of the steps involved in the image processing 
1. Methods whose outputs are input are images. 
2. Methods whose outputs are attributes extracted from those images. 
 
 
 
 
 
 
 
 
 

Fundamental Steps in DIP 
i)   Image acquisition 
It could be as simple as being given an image that is already in digital form. Generally the 
image acquisition stage involves processing such as scaling. 
 
ii)  Image Enhancement 
It is among the simplest and most appealing areas of digital image processing. The idea 
behind  this is to bring  out  details  that are obscured  or simply  to highlight  certain 
features of interest in image. Image enhancement is a very subjective area of image 
processing. 

  
 
iii) Image Restoration  
It deals with improving the appearance of an image.  It is an objective approach, in the 
sense that restoration  techniques  tend to be based on mathematical  or probabilistic 
models  of  image  processing.  Enhancement,  on  the  other  hand  is based  on  human 
subjective preferences regarding what constitutes a “good” enhancement result 
 

  



iv) Color image processing  
It is an area that is been gaining importance because of the use of digital images over the 
internet. Color image processing deals with basically color models and their implementation 
in image processing applications.  
v)  Wavelets and Multiresolution Processing 
These are the foundation for representing image in various degrees of resolution 

 
 
vi) Compression  
It  deals  with  techniques  reducing  the  storage  required  to  save  an  image,  or  the 
bandwidth required to transmit it over the network. It has to major approaches: 
a) Lossless Compression 
b) Lossy Compression 
 

 
 
vii) Morphological processing 
It deals with tools for extracting image components that are useful in the representation and 
description  of shape and boundary of objects.   It is majorly used in automated inspection 
applications. 
 
viii)  Representation and Description 
It always follows the output of segmentation step that is,  raw pixel data, constituting either 
the boundary of an image or points in the region itself. In either case converting the data to 
a form suitable for computer processing is necessary. 
ix) Recognition 
It is the process that assigns label to an object based on its descriptors. It is the last step of 
image processing which use artificial intelligence software. 
 
Knowledge base 
Knowledge about a problem domain is coded into an image processing system in the form 
of a knowledge base. This knowledge may be as simple as detailing regions of an image 
where the information of the interest in known to be located. Thus limiting search that has 
to be conducted in seeking the information. The knowledge base also can be quite complex  
such  interrelated  list  of  all  major  possible  defects  in  a  materials  inspection problems or 
an image database containing high resolution satellite images of a region in connection with 
change detection application 
 
 



A Simple Image Model 
 
An image is denoted by a two dimensional  function of the form f{x, y}. The value or 
amplitude  of f at spatial coordinates  {x,y} is a positive scalar quantity whose physical 
meaning is determined by the source of the image. When an image is generated by a 
physical process, its values are proportional to energy radiated by a physical source. As a 
consequence, f(x,y) must be nonzero and finite; that is 0 <f(x,y) <∞ 
 
The function f(x,y) may be characterized by two components- 
 
• The amount of the source illumination incident on the scene being viewed. 
• The amount of the source illumination reflected back by the objects in the scene 
 
These are called illumination and reflectance components and are denoted by i(x,y) and         
r(x,y) respectively. The functions combine as a product to form f(x,y) 
We call the intensity of a monochrome image at any coordinate (x,y) the gray level (l) of 
the image at that point l= f (x, y) , Lmin ≤  l ≤ Lmax 
Lmin  is to be positive and Lmax must be finite  
Lmin = imin   rmin  
Lmax = imax  rmax 
The interval [Lmin, Lmax] is called gray scale. Common practice is to shift this interval 
numerically to the interval [0, L-l] where l=0 is considered black and l= L-1 is considered 
white on the gray scale. All intermediate values are shades of gray varying from black to 
white. 
 
 Image Digitization 
 
To create a digital image, we need to convert the continuous sensed data into digital from. 
This involves two processes – sampling and quantization. An image may be continuous 
with respect to the x and y coordinates and also in amplitude. To convert it into digital 
form we have to sample the function in both coordinates and in amplitudes. 
Digitalizing the coordinate values is called sampling 
Digitalizing the amplitude values is called quantization 
There is a continuous image along the line segment AB. 
To sample this function, we take equally spaced samples along line AB. The location of 
each samples is given by a vertical tick back (mark) in the bottom part. The samples are 
shown as block squares superimposed on function the set of these discrete locations gives 
the sampled function. 

 



In order to form a digital image, the gray level values must also be converted (quantized) into 
discrete quantities. So we divide the gray level scale into eight discrete levels ranging from 
black to white. The vertical tick mark assign the specific value assigned to each of the 
eight level values. 
 
The continuous  gray levels are quantized simply by assigning one of the eight discrete 
gray levels to each sample. The assignment it made depending on the vertical proximity of a 
simple to a vertical tick mark. 

 
 
Starting at the top of the image and covering out this procedure line by line produces a two 
dimensional digital image. 
 
Digital Image Definition 
 
A  digital  image  f[m,n] described  in  a  2D  discrete  space  is  derived  from  an  analog 

image f(x,y) in  a  2D  continuous  space  through  a sampling process  that  is  frequently 

referred to as digitization. Some basic definitions associated with the digital image are 

described.  

The 2D continuous image f(x,y) is divided into N rows and M columns. The intersection of   a   
row   and   a   column   is   termed   a pixel. The   value   assigned   to   the   integer 
coordinates [m,n] with {m=0,1,2,..., M-1}and{n=0,1,2,...,N-1}is f[m,n]. In fact, in most cases               
f(x,y) is actually  a function  of many  variables  including  depth (d), color(µ) and time (t).       

 
 
 
 
 
 
 

 



There are three types of computerized processes in the processing of image 
 

1)  Low level process- these involve primitive operations such as image processing to reduce 
noise,   contrast   enhancement   and   image   sharpening.   These   kind   of   processes   are 
characterized by fact the both inputs and output are images. 
 

2)  Mid level image processing -    it  involves  tasks  like  segmentation,  description  of  those 
objects to reduce them to a form suitable  for computer  processing,  and classification  of 
individual objects. The inputs to the process are generally images but outputs are attributes 
extracted from images. 
 

3)  High level processing – It involves “making sense” of an ensemble of recognized objects, 
as in image analysis, and performing the cognitive functions normally associated with 
vision. 
 
Representing Digital Images 
 
The result of sampling and quantization is matrix of real numbers. Assume that an image 
f(x,y) is sampled  so that the  resulting  digital  image  has M  rows  and  N Columns.  The  
values  of the coordinates  (x,y)  now  become  discrete  quantities  thus  the  value  of  the  
coordinates  at  origin become ( x,y) =(0,0) The next Coordinates value along the first 
signify the image along the first row. It does not mean that these are the actual values of 
physical coordinates when the image was sampled. Thus the right side of the matrix 
represents a digital element, pixel or pel. The matrix can be represented in the following 
form as well. 
 

  
The sampling process may be viewed as partitioning the x-y plane into a grid with the 
coordinates of the center of each grid being a pair of elements from the Cartesian 
products Z2   which is the set of all ordered pair of elements (Zi, Zj) with Zi and Zj being 
integers from Z. 

 
Hence f(x,y) is a digital image if gray level (that is, a real number from  the set of real 
number R) to each distinct pair of coordinates (x,y). This functional assignment is the 
quantization process. If the gray levels are also integers, Z replaces R, and a digital 
image become a 2D function whose coordinates and the amplitude value are integers. 
Due to processing  storage  and hardware  consideration,  the number  of gray levels 
typically is an integer power of 2. L=2K 

Then, the number b, of bits required to store a digital image is 
B=M *N* K 

When M=N The equation become b=N2*K 
When an image can have 2k gray levels, it is referred to as “k- bit” .  An image with 256 
possible gray levels is called an “8-bit image (because 256=28).



   Spatial and Gray Level Resolution 
 

Spatial  resolution  is  the  smallest  discernible  details  are  an  image.  Suppose  a  chart  
can  be constructed with vertical lines of width w with the space between the also having 
width W, so a line pair consists of one such line and its adjacent space thus. The width of 
the line pair is 2w and there is 1/2w line pair per unit distance resolution is simply the 
smallest number of discernible line pair unit distance. 

                                        
 

Gray levels resolution refers to smallest discernible change in gray levels. 
Measuring discernible change in gray levels is a highly subjective process reducing the 
number of bits R while repairing the spatial resolution constant creates the  problem of false 
contouring .it is caused by the use of an insufficient number of gray levels on the 
smooth areas of the   digital image . It is called so because the rides resemble top 
graphics contours in a map. It is generally quite visible in image displayed using 16 or 
less uniformly spaced gray levels. 

 



Iso Preference Curves 
 

To see the effect of varying N and R simultaneously. There picture are taken having 
little, mid level and high level of details. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Different image were generated by varying N and k and observers were then asked to 
rank the results  according  to  their  subjective  quality.  Results  were  summarized  in  the  
form  of  iso-preference curve in the N-k plane. 

 

 
 

The iso-preference curve tends to shift right and upward but their shapes in each of the 
three image categories are shown in the figure. A shift up and right in the curve simply 
means large values for N and k which implies better picture quality 

 
The result shows that iso-preference curve tends to become more vertical as the detail in the 
image increases. The result suggests that for image with a large amount of details only a 
few gray levels may be needed. For a fixed value of N, the perceived quality for this type 
of image is nearly independent of the number of gray levels used. 



Pixel Relationships 
 
Neighbors of a pixel 
 
A pixel p at coordinate (x,y) has four horizontal and vertical neighbor whose coordinate 
can be given by 
 
(x+1, y) (x-1,y) (x ,y + 1) (x, y-1) 
 
This set of pixel is called the 4-neighbours of p and is denoted by  n4(p), Each pixel is at a 
unit distance from (x,y) and some of the neighbors of P lie outside the digital image or (x,y) 
is on the border of the image . 
The four diagonal neighbor of P have coordinates 
(x+1,y+1),(x+1,y+1),(x-1,y+1),(x-1,y-1) 

And  are denoted  by nd(p) these  points,  together  with  the  4-neighbours  are  called  8 – 
neighbors of P denoted by n8(p) 
 
Adjacency 
 
Let V be the set of gray–level values used to define adjacency in a binary image, if V={1} 
we are referencing to adjacency of pixel with value. Three types of adjacency occurs 
 
4- Adjacency – two pixel P and Q with value from V are 4–adjacency if A is in the set n4(P) 
 
8- Adjacency – two pixel P and Q with value from V are 8–adjacency if A is in the set n8(P) 

M-adjacency –two pixel P and Q with value from V are m– adjacency if 

• Q is in n4 (p) or 
• Q is in  nd (q)  and the set N4(p)È N4(q) has no pixel whose values are from V 

 
 
Distance measures 
 
For pixel  p, q and z with  coordinate  (x,y), (s,t) and (v,w)  respectively  D is a distance 
function or metric if 
D [p.q] ≥ O {D[p.q] = O iff p=q} D 
[p.q] = D [p.q] and 
D [p.q] ≥ O {D[p.q]+D(q,z) 
 
The Eucledean Distance between p and is defined as 
De (p,q) = Iy – t I 
 
The D4 Education Distance between p and is defined as 
De (p,q) = Iy – t I 
 
 
 
 
 
 

UNIT -2 
 



 
 
 
 

   IMAGE ENHENCEMENT IN SPATIAL DOMAIN 
 
  Introduction 

 
The principal objective of enhancement is to process an image so that the result is more suitable 
than the original image for a specific application. Image enhancement approaches fall into two 
board categories 

 
ð Spatial domain methods 
ð Frequency domain methods 

 
The term spatial domain refers to the image plane itself and approaches  in this categories are 
based on direct manipulation of pixel in an image. 
Spatial domain process are denoted by the expression 
 

   g(x,y)=T[f(x,y)] 
 
   f(x,y)- input image     T- operator on f, defined over some neighborhood of f(x,y) 
   g(x,y)-processed image 
 

The neighborhood of a point (x,y) can be explain by using as square or rectangular sub image area 
centered at (x,y). 
     

                               
The center of sub image is moved from pixel to pixel starting at the top left corner. The operator T 
is applied to each location (x,y) to find the output g at that location . The process utilizes only the 
pixel in the area of the image spanned by the neighborhood. 
 

  Basic Gray Level Transformation Functions 
It is the simplest form of the transformations when the neighborhood is of size IXI. In this case g 
depends only on the value of f at (x,y) and T becomes a gray level transformation function of the 
forms 
 
S=T(r) 
r- Denotes the gray level of  f(x,y) 
s- Denotes the gray level of g(x,y) at any point (x,y) 



Because  enhancement  at any point  in an image  deepens  only on the gray level at that point, 
technique in this category are referred to as point processing. 

There are basically three kinds of functions in gray level transformation – 
 
Point Processing 
 
Contract stretching   - 

 
It produces an image of higher contrast than the original one. 
The operation is performed by darkening the levels below m and brightening the levels above m in 
the original image. 
 

                                        
 

In this technique the value of r below m are compressed by the transformation  function into a 
narrow range of s towards black .The opposite effect takes place for the values of r above m. 
 
Thresholding function – 
 
It is a limiting case where T(r) produces a two levels binary image. 
The values below m are transformed as black and above m are transformed as white. 
 

                                   
Basic Gray Level Transformation 
 
These are the simplest image enhancement techniques 
 Image Negative – 
The negative of in image with gray level in the range [0, l-1] is obtained by using the negative 
transformation. 
The expression of the transformation is 
 

                                    s=  L-1-r 

Reverting  the  intensity  levels  of  an  image  in  this  manner  produces  the  equivalent  of  a 
photographic negative. This type of processing is practically suited for enhancing white or gray 
details embedded in dark regions of an image especially when the black areas are dominant in 
size. 



      
 

Log transformations- 
The general form of  log transform is  
          S=c log(1+R) 

        Where    R   ≥  0 
This transformation  maps a narrow range of gray level values in the input image into a wider 
range of output gray levels. The opposite is true for higher values of input levels. We would use 
this transformations to expand the values of dark pixels in an image while compressing the higher 
level values. The opposite is true for inverse log transformation. 
 
The log transformation function has an important characteristic  that it compresses the dynamic 
range of images with large variations in pixel values. 
 Eg- 

Fourier spectrum 
       

 
 

Power law transformation 
Power law transformation has the basic function 
                  
                     S= cr^y 
 
Where c and y are positive constants. 
 
Power law curves with fractional values of y map a narrow range of dark input values into a wider 
range of output values, with the opposite being true for higher values of input gray levels. We may 
get various curves by varying values of y. 

                                     
 

A variety of devices used for image capture, printing and display respond according to a power 



law.  The  process  used  to  correct  this  power  law  response  phenomenon  is  called  gamma 
correction. 
 
      For eg-CRT devices have intensity to voltage response that is a power function  
 
Gamma  correction  is important  if displaying  an image accurately  on a computer  screen  is of 
concern. Images that are not corrected properly can look either bleached out or too dark. 
Color phenomenon also uses this concept of gamma correction. It is becoming more popular due to 
use of images over the internet. 
It is important in general purpose contract manipulation. To make an image black we use y>1 and   
y<1 for white image. 
 
Piece wise Linear transformation functions- 
 
The principal advantage of piecewise linear functions is that these functions can be arbitrarily 
complex. But their specification requires considerably more user input 
 
    Contrast Stretching- 
It is the simplest piecewise linear transformation function. 
We may have various low contrast images and that might result due to various reasons such as 
lack of illumination, problem in imaging sensor or wrong setting of lens aperture during image 
acquisition. 
The idea behind contrast stretching is to increase the dynamic range of gray levels in the image 
being processed. 

                                           
The location of points (r1,s1) and (r2,s2) control the shape of the curve 
a)   If r1=r2  and s1=s2, the transformation is a linear function that deduces no change in gray 
levels. 
 
b)  If r1=s1, s1=0   , and   s2=L-1, then the transformation become a thresholding function that 
creates a binary image 
 
c)  Intermediate values of (r1, s1) and (r2, s2) produce various degrees of spread in the gray value 
of the output image thus effecting its contract. 
 

Generally r1≤ r2 and s1 ≤ s2   so that the function is single valued and monotonically increasing 
Gray Level Slicing- 
Highlighting a specific range of gray levels in an image is often desirable 
For example when enhancing features such as masses of water in satellite image and enhancing 
flaws in x- ray images. 
 

     There are two ways of doing this- 
(1) One method is to display a high value for all gray level in the range. Of interest and a low value 
for all other gray level. 

 
 



  

 
 
 
 
 
 
 
 
(2) Second  method  is  to  brighten  the  desired  ranges  of  gray  levels  but  preserve  the 
background and gray level tonalities in the image 
Bit Plane Slicing 
Sometimes it is important to highlight the contribution  made to the total image appearance  by 
specific bits. Suppose that each pixel is represented by 8 bits. 
Imagine that an image is composed of eight 1-bit planes ranging from bit plane 0 for the least 
significant bit to bit plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains 
all the lowest order bits in the image and plane 7 contains all the high order bits 
 

 
    
 

 
 

             
  
 
 
 
 

High order bits contain the majority of visually significant  data and contribute  to more subtle 
details in the image. 
 
Separating  a digital  image  into  its bits planes  is useful  for analyzing  the  relative  importance 



 

played by each bit of the image. 
 
It helps in determining the adequacy of the number of bits used to quantize each pixel. It is also 
useful for image compression. 
 
   Histogram Processing 
The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function  of the 
form 
                                                       H(rk)=nk 
where rk is the kth gray level and nk is the number of pixels in the image having the level rk.. A  
normalized histogram is given by the equation 

p(rk)=nk/n                  for k=0,1,2,…..,L-1 
P(rk) gives the estimate of the probability of occurrence of gray level rk. The sum of all components 
of a normalized histogram is equal to 1. 
 
The histogram plots are simple plots of H(rk)=nk versus  rk. 
 

                           
 
 
In the dark image the components of the histogram are concentrated on the low (dark) side of the 
gray scale. In case of bright image the histogram components are baised towards the high side of 
the gray scale. 
The histogram of a low contrast image will be narrow and will be centered towards the middle of 
the gray scale. 
The components of the histogram in the high contrast image cover a broad range of the gray scale. 
The net effect of this will be an image that shows a great deal of gray levels details and has high 
dynamic range. 
 
           Histogram Equalization 
Histogram equalization is a common technique for enhancing the appearance of images. Suppose 
we have an image which is predominantly dark. Then its histogram would be skewed towards the 
lower end of the grey scale and all the image detail are compressed  into the dark end of the 
histogram. If we could ‘stretch out’ the grey levels at the dark end to produce a more uniformly 
distributed histogram then the image would become much clearer. 
Let there be a continuous function with r being gray levels of the image to be enhanced. 
The range of r is [0, 1] with r=0 repressing black and r=1 representing white. The transformation 
function is of the form. 
                                          S=T(r)           where 0<r<1 
 
It produces a level s for every pixel value r in the original image . the transformation function is 
assumed to fulfill two condition T(r)) is single valued and monotonically increasing in the interval .                                                                                                                           



 

0<T(r)<1 for 0<r<1 
The transformation function should be single valued so that the inverse transformations  should 
exist.   Monotonically increasing condition preserves the increasing order from black to white in 
the output image.The second conditions guarantee that the output gray levels will be in the same 
range as the input levels. 
The gray levels of the image may be viewed as random variables in the interval [0.1] 
The most fundamental descriptor of a random variable is its probability density function (PDF) Pr(r) 
and Ps(s) denote the probability density functions of random variables r and s respectively. Basic 
results from an elementary probability theory states that if Pr(r) and Tr are known and T-1 (s) 
satisfies conditions (a), then the probability density function Ps(s) of the transformed variable s is 
given by the formula- 

                                                
Thus the PDF of the transformed variable s is  the determined by the gray levels PDF of the input 
image and by the chosen transformations function. 

A transformation function of a particular importance in image processing 

                                         
This is the cumulative distribution function of r 
Using this definition of T we see that the derivative of s with respect to r is 
 

                                                  
Substituting it back in the expression for Ps we may get 

                                               
An important point here is that Tr depends on Pr(r) but the resulting Ps(s) always is uniform, and 
independent of the form of P(r). 
For  discrete  values  we  deal  with  probability  and  summations  instead  of  probability  density 
functions and integrals. 
 
The probability of occurrence of gray levels rk in an image as approximated  

                             Pr(r)=nk/N 
 
N is the total number of the pixels in an image.nk is the number of the pixels that have gray level rk. 
L is the total number of possible gray levels in the image. The discrete transformation function is 
given by 

                                     
Thus a processed image is obtained by mapping each pixel with levels rk in the input image into a 
corresponding pixel with level sk in the output image. 
A plot of Pr (rk) versus rk is called a histogram. The transformation function given by the above 
equation is the called histogram equalization or linearization.Given an image the process of 
histogram equalization consists simple of implementing the transformation function which is based 
information that can be extracted directly from the given image, without the need for further 
parameter specification 
                                                                                             



 
 
 
 
Equalization automatically determines a transformation function that seeks to produce an output 
image that has a uniform histogram. It is a good approach when automatic enhancement is needed. 
 
Histogram Matching (Specification 
In some cases it may be desirable to specify the shape of the histogram that we wish the processed 
image to have. 
Histogram  equalization  does not allow interactive  image enhancement  and generates  only one 
result:  an  approximation  to  a  uniform  histogram.  Sometimes  we  need  to  be  able  to  specify 
particular histogram shapes capable of highlighting certain gray-level ranges. The method use to 
generate  a  processed  image  that  has  a  specified  histogram  is  called  histogram  matching  or 
histogram specification. 
Algorithm 

1. Compute sk=Pf (k), k = 0, …, L-1, the cumulative normalized histogram of f . 
2. Compute G(k), k = 0, …, L-1, the transformation  function, from the given histogram hz 

   3. Compute G-1(sk) for each k = 0, …, L-1 using an iterative method (iterate on z), or in        
effect, directly compute G-1(Pf (k)) 
  4. Transform f using G-1(Pf (k)) 
Local Enhancement 

In earlier methods pixels were modified by a transformation function based on the gray level of an 
entire image. It is not suitable when enhancement is to be done in some small areas of the image. 
This problem can be solved by local enhancement where a transformation function is applied only 
in the neighborhood of pixels in the interested region. 
Define square or rectangular neighborhood (mask) and move the center from pixel to pixel. 
For each neighborhood 

1)  Calculate histogram of the points in the neighborhood 
2)  Obtain histogram equalization/specification function 
3)  Map gray level of pixel centered in neighborhood 
4)  The center of the neighborhood region is then moved to an adjacent pixel location and the 

procedure is repeated. 



                                                    
Enhancement Using Arithmetic/Logic Operations 
These operations are performed on a pixel by basis between two or more images excluding not 
operation which is performed on a single image. It depends on the hardware and/or software that 
the actual mechanism of implementation should be sequential, parallel or simultaneous. 
Logic operations are also generally operated on a pixel by pixel basis. 
Only AND, OR and NOT logical operators are functionally complete. Because all other operators 
can be implemented by using these operators. 
While  applying  the operations  on gray scale  images,  pixel  values  are processed  as strings  of 
binary numbers. 
The NOT logic operation performs the same function as the negative transformation. 
Image Masking is also referred to as region of Interest (Ro1) processing. This is done to highlight a 
particular area and to differentiate it from the rest of the image. 
Out of the four arithmetic  operations,  subtraction  and addition  are the most useful for image 
enhancement. 
Image Subtraction 
The difference between two images f(x,y) and h(x,y) is expressed as                           
g(x,y)= f(x,y)-h(x,y) 
It is obtained by computing the difference between all pairs of corresponding pixels from f and h. 
The key usefulness of subtraction is the enhancement of difference between images. 
This concept is used in another gray scale transformation  for enhancement  known as bit plane 
slicing The higher order bit planes of an image carry a significant amount of visually relevant 
detail while the lower planes contribute to fine details. 
It  we  subtract  the  four  least  significant  bit  planes  from  the  image  The  result  will  be  nearly 
identical but there will be a slight drop in the overall contrast due to less variability in the gray 
level values of image  

                            .  
The use of image subtraction is seen in medical imaging area named as mask mode radiography. The 
mask h (x,y) is an X-ray image of a region of a patient’s body this image is captured by using as 
intensified  TV camera  located  opposite  to the x-ray  machine  then a consistent  medium  is 
injected into the patient’s blood storm and then a series of image are taken of the region same as 
h(x,y). 
The mask is then subtracted from the series of incoming image. This subtraction will give the area 
which will be the difference between f(x,y) and h(x,y) this difference will be given as enhanced 
detail in the output image. 



                                                    
This procure  produces  a move  shoving  now  the contrast  medium  propagates  through  various 
arteries of the area being viewed. 
Most of the image in use today is 8- bit image so the values of the image lie in the range 0 to 255. 
The value in the difference image can lie from -255 to 255. For these reasons we have to do some 
sort of scaling to display the results 
There are two   methods to scale an image 

(i)  Add 255 to every pixel and then divide at by 2. 
 

This gives the surety that pixel values will be in the range 0 to 255 but it is not guaranteed 
whether it will cover the entire 8 – bit range or not. 
It is a simple method and fast to implement but will not utilize the entire gray scale range to 
display the results. 

 
(ii) Another approach is 

 
(a) Obtain the value of minimum difference 
(b) Add the negative of minimum  value to the pixels in the difference  image(this  will give a 
modified  image whose minimum value will be 0) 
(c) Perform scaling on the difference image by multiplying each pixel by the quantity 255/max. 
This approach is complicated and difficult to implement. 
 
Image subtraction is used in segmentation application also 
 
Image Averaging 
Consider a noisy image g(x,y) formed by the addition of noise n(x,y) to the original image  f(x,y) 

g(x,y) = f(x,y) + n(x,y) 
 
Assuming that at every point of coordinate (x,y) the noise is uncorrelated and has zero average 
value.The objective of image averaging is to reduce the noise content by adding a set of noise 
images, 
                   
{gi(x,y)} 
If in image formed by image averaging K different noisy images. 
As k increases the variability (noise) of the pixel value at each location (x,y) decreases 
E{g(x,y)} = f(x,y) means that g(x,y) approaches f(x,y) as the number of noisy image used in the 
averaging  processes  increases 
Image averaging is important in various applications such as in the field of astronomy where the 
images are low light levels 
Basic of Spatial Filtering 
Spatial filtering is an example of neighborhood operations, in this the operations are done on the 
values of the image pixels in the neighborhood and the corresponding value of a sub image that 
has the same dimensions as of the neighborhood 
This sub image is called a filter, mask, kernel, template or window; the values in the filter sub image 
are referred to as coefficients rather than pixel. Spatial filtering operations are performed directly on 
the pixel values (amplitude/gray scale) of the image 
The process consists of moving the filter mask from point to point in the image. At each point 
(x,y) the response  is calculated using a predefined relationship 



                                       
For linaer spatial filtering the response is given by a sum of products of the filter coefficient and 
the corresponding image pixels in the area spanned by the filter mask. 
The results R of liner filtering with the filter mask at point (x,y) in the image is 

 
The sum of products of the mask coefficient with the corresponding pixel directly under the mask. 
The coefficient w (0,0) coincides with image value f(x,y) indicating that mask it centered at (x,y) 
when the computation of sum of products takes place. 
For a mask of size MxN we assume m=2a+1 and n=2b+1, where a and b are nonnegative integers. It 
shows that all the masks are of add size. 
In the general liner filtering of an image of size f of size M*N with a filter mask of size m*m is 
given by the expression. 

           
Where a= (m-1)/2 and b = (n-1)/2 
To generate a complete filtered image this equation must be applied for x=0, 1, 2, -----M-1 and 
y=0,1,2---,N-1. Thus the mask processes all the pixels in the image. 
The process of linear filtering is similar to frequency domain concept called convolution. For this 
reason, linear spatial filtering often is referred to as convolving a mask with an image. Filter mask 
are sometimes called convolution mask. 

R= W,Z,+W2, Z2 +….+ Wmn Zmn 

 
Where w’s are mask coefficients and 
z’s are the values of the image gray levels corresponding to those coefficients. 
mn is the total number of coefficients in the mask. 
An important point in implementing neighborhood operations for spatial filtering is the issue of 
what happens when the center of the filter approaches the border of the image. 
There are several ways to handle this situation. 
 
i)  To limit the excursion of the center of the mask to be at distance of less than (n-1) /2 pixels 
form the border. The resulting filtered image will be smaller than the original but all the pixels will be 
processed with the full mask. 
 
ii)  Filter all pixels only with the section of the mask that is fully contained in the image. It 
will create bands of pixels near the border that will be processed with a partial mask. 
 
iii) Padding the image by adding rows and columns of o’s & of padding by replicating rows and 
columns. The padding is removed at the end of the process 
 
Smoothing Spatial Filters 
 



These filters are used for blurring and noise reduction blurring is used in preprocessing steps such as 
removal of small details from an image prior to object extraction and bridging of small gaps in lines 
or curves. 
 
Smoothing Linear Filters 
 
The output of a smoothing liner spatial filter is simply the average of the pixel contained in the 
neighborhood of the filter mask. These filters are also called averaging filters or low pass filters. 
 
The operation is performed by replacing the value of every pixel in the image by the average of 
the  gray  levels  in  the  neighborhood  defined  by  the  filter  mask.  This  process  reduces  sharp 
transitions in gray levels in the image 

                                  
A major application of smoothing is noise reduction but because edge are also provided using 
sharp transitions so smoothing filters have the undesirable side effect that they blur edges . It also 
removes an effect named as false contouring which is caused by using insufficient number of 
gray levels in the image. 
Irrelevant details can also be removed by these kinds of filters, irrelevant means which are not of 
our interest. 
 
A spatial averaging filter in which all coefficients are equal is sometimes referred to as a “box 
filter” 

                          
A weighted average filter is the one in which pixel are multiplied by different coefficients. 

Order Statistics Filter 
These are nonlinear spatial filter whose response is based on ordering of the pixels contained in 
the image area compressed by the filter and the replacing the value of the center pixel with value 
determined by the ranking result. 
 
The best example of this category is median filter. In this filter the values of the center pixel is 
replaced  by median of gray levels in the neighborhood  of that pixel. Median  filters are quite 
popular because, for certain types of random noise, they provide excellent noise-reduction 
capabilities, with considerably less blurring than linear smoothing filters. 
 
These filters are particularly effective in the case of impulse or salt and pepper noise. It is called 
so because of its appearance as white and black dots superimposed on an image. 
 
The median £ of a set of values is such that half the values in the set less than or equal to £ and 
half are greater than or equal to this. In order to perform median filtering at a point in an image, 



we first sort the values of the pixel in the question and its neighbors, determine their median and 
assign this value to that pixel. 
We introduce some additional order-statistics filters. Order-statistics filters are spatial filters 
whose response is based on ordering (ranking) the pixels contained in the image area 
encompassed by the filter. The response of the filter at any point is determined by the ranking 
result. 

Median filter 
The best-known order-statistics filter is the median filter, which, as its name implies, replaces 
the value of a pixel by the median of the gray levels in the neighborhood of that pixel. 

                          
The original value of the pixel is included in the computation of the median. Median filters are 
quite popular because, for certain types of random noise, they provide excellent noise-reduction 
capabilities, with considerably less blurring than linear smoothing filters of similar size. Median 
filters are particularly effective in the presence of both bipolar and unipolar impulse noise. In fact, 
the median filter yields excellent results for images corrupted by this type of noise. 
   Max and min filters 
Although the median filter is by far the order-statistics filter most used in image processing.it is by 
no means the only one. The median represents the 50th percentile of a ranked set of numbers, but 
the reader will recall from basic statis¬tics that ranking lends itself to many other possibilities. For 
example, using the 100th perccntile results in the so-called max filter given by: 

                                   
 
This filter is useful for finding the brightest points in an image. Also, because pepper noise has very 
low values, it is reduced by this filter as a result of the max selection process in the subimage area 
S. The 0th percentile filter is the Min filter. 
Sharpening Spatial Filters 
The principal objective of sharpening is to highlight fine details in an image or to enhance details 
that  have  been  blurred  either  in  error  or  as  a  natural  effect  of  particular  method  for  image 
acquisition. 
The  applications  of image  sharpening  range  from  electronic  printing  and medical  imaging  to 
industrial inspection and autonomous guidance in military systems. 
As   smoothing   can   be   achieved   by   integration,   sharpening   can   be   achieved   by   spatial 
differentiation.  The strength of response of derivative operator is proportional  to the degree of 
discontinuity   of  the  image  at  that  point  at  which  the  operator   is  applied.   Thus  image 
differentiation  enhances edges and other discontinuities  and deemphasizes  the areas with slow 
varying grey levels. 
It is a common practice to approximate the magnitude of the gradient by using absolute values 
instead of square and square roots. 
A basic definition of a first order derivative of a one dimensional function f(x) is the difference 



                                                 
Similarly we can define a second order derivative as the difference 

                                          
The LAPLACIAN 
The second order derivative is calculated using Laplacian. It is simplest isotropic filter. Isotropic 
filters are the ones whose response  is independent  of the direction of the image to which the 
operator is applied. 
The Laplacian for a two dimensional function f(x,y) is defined as 

                              
Partial second order directive in the x-direction 
And similarly in the y-direction 

 
The  digital  implementation  of  a  two-dimensional  Laplacian  obtained  by  summing  the  two 
components 

 
The equation can be represented using any one of the following masks 
 
 

                                  
Laplacian highlights gray-level discontinuities in an image and deemphasize the regions of slow 
varying gray levels. This makes the background a black image. The background texture can be 
recovered by adding the original and Laplacian images. 

 



 
For example 
                              

                          
The strength of the response of a derivative operator is propositional to the degree of discontinuity 
of the image at that point at which the operator is applied. Thus image differentiation enhances 
eddies and other discontinuities and deemphasizes areas with slowly varying gray levels. 
The  derivative  of  a  digital  function  is  defined  in  terms  of  differences.Any first derivative 
definition 

(1) Must be zero in flat segments (areas of constant gray level  
values) (2) Must be nonzero at the onset of a gray level step or ramp 
(3) Must be nonzero along ramps. 

Any second derivative definition 
 

(1) Must be zero in flat areas 
(2) Must be nonzero at the onset and end of a gray level step or ramp 
(3) Must be zero along ramps of constant slope . 

 
It is common practice to approximate the magnitude of the gradient by using also lute values 
instead or squares and square roots. 

Roberts Goss gradient operators 
 

For digitally implementing the gradient operators 
Let center point, 5z denote f(x,y), Z1 denotes f(x-1,y) and so on 

                                            



But it different implement even sized mask. So the smallest filter mask is size 3x3 mask is 

                                                 
The difference between third and first row a 3x3 mask approximates the derivate in the x-direction 
and difference between the third and first column approximates the derivative in y-direction. 
These masks are called sobel operators. 
Unsharp Masking and High Boost Filtering. 
Unsharp masking means subtracting a blurred version of an image form the image itself. 
Where f(x,y) denotes the sharpened image obtained by unsharp masking and f(x,y) is a blurred 
version of (x,y) 

                      
A slight further generalization  of unsharp masking is called high boost filtering. A high boost 
filtered image is defined at any point (x,y) as 

                           
 
 
 IMAGE ENHANCEMENT IN FREQUENCY DOMAIN 
 

Fourier Transform and the Frequency Domain 
 

Any function that periodically reports itself can be expressed as a sum of sines and cosines 
of different frequencies each multiplied by a different coefficient, this sum is called Fourier 
series. Even the functions which are non periodic but whose area under the curve if finite can 
also be represented in such form; this is now called Fourier transform. 

 
A function represented in either of these forms and can be completely reconstructed via an 
inverse process with no loss of information. 

 
 1-D Fourier Transformation and its Inverse 
 

If there is a single variable, continuous function f(x)   , then Fourier transformation F (u) may 
be given as 

 

 
 

And the reverse process to recover f(x) from F(u) is 

 
 



 
Fourier transformation of a discrete function of one variable f(x), x=0, 1, 2, m-1 is given by 

 
 
 
 
 
 

to obtain f(x) from F(u) 
 

 
 

The above two equation (e) and (f) comprise of a discrete Fourier transformation 
pair. According to Euler’s formula 

 

e jx = cos x + j sin 
x 

 
Substituting these value to equation (e) 

 
F(u)=Σf(x)[cos 2πux/N+jSin 2πux/N] for u=0,1,2,……,N-
1 

 
Now each of the m terms of  F(u) is called a frequency component of transformation 

 
“The Fourier transformation  separates a function into various components,  based on 
frequency components. These components are complex quantities. 

 
 
 
 
F(u) in polar coordinates 

 
 
 2-D Fourier Transformation and its Inverse 
 

The Fourier Transform of a two dimensional continuous function f(x,y) (an image) of size  M * N 
is given by 

 
 
 
 
 

Inverse Fourier transformation is given by equation 
 
 
 



 

 

 
 

Where (u,v) are frequency variables. 
Preprocessing is done to shift the origin of F(u,v) to frequency coordinate (m/2,n/2) which  is 
the center of the M*N area occupied by the 2D-FT. It is known as frequency rectangle. 
 
It extends form u =0 to M-1 and v=0 to N-1. For this, we multiply the input image by   (-
1)x+y

 

prior to compute the transformation 
 

Ƒ{f(x,y) (-1)x+y   }= F(u-M/2, v-
N/2) 

 
Ƒ(.) denotes the Fourier transformation of the argument 
Value of transformation at (u,v)=(0,0) is 

 
F(0,0)=1/MNΣΣf(x,y
) 

 
 Discrete Fourier Transform 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Extending it to two variables



 
 
 
 

  Basis of Filtering in Frequency Domain 
 

Basic steps of filtering in frequency 
Domain 

i)   Multiply the input image by (-1) X+Y to centre the 
transform ii)  Compute F(u,v), Fourier Transform of the 
image 
iii) Multiply  f(u,v) by a filter function H(u,v) 
iv) Compute the inverse DFT of Result of 
(iii) v)  Obtain the real part of result of (iv) 
vi) Multiply the result in (v) by (-1)x=y

 

 
 

 

 

 

 

 

 

 

H(u,v) called a filter because it suppresses certain frequencies from the image while leaving 
others unchanged. 

Filters 
 
  Smoothing Frequency Domain Filters 
 



Edges and other sharp transition of the gray levels of an image contribute significantly to the high 
frequency contents of its   Fourier transformation. Hence smoothing is achieved in the frequency 
domain by attenuation a specified range of high frequency components in the transform of a given 
image. 
Basic model of filtering in the frequency domain 
is 

G(u,v) = 
H(u,v)F(u,v) 

F(u,v) -  Fourier transform of the image to be 
smoothed 

 
 
 
 
Objective  is to find out a filter function H (u,v)   that yields   G (u,v) by attenuating  the 
high frequency component of  F (u,v) 
There are three types of low pass 
filters 
1. 
Ideal 
2. 
Butterworth 
3. 
Gaussian 

 IDEAL LOW PASS FILTER  

It is the simplest of all the three filters 
It cuts of all high frequency component of the Fourier transform that are at a distance greater 
that a specified distance D0 form the origin of the transform. 
it is called a two – dimensional ideal low pass filter (ILPF) and has the transfer 
function 

 

 

Where D0  is a specified nonnegative quantity and D(u,v) is the distance from point (u,v) to 
the center of frequency rectangle 
If the size of image is M*N , filter will also be of the same size so center of the 
frequency rectangle (u,v) = (M/2, N/2) because of center transform 

 

 

ILPF is not suitable for practical usage. But they can be implemented in any computer 
system 



 

 

 

BUTTERWORTH LOW PASS FILTER It has a parameter 

called the filter order. 
For high values    of filter order it approaches the form of the ideal filter whereas for low 
filter order values it reach Gaussian filter. It may be viewed as a transition between two extremes. 
The transfer function of a Butterworth low pass filter (BLPF) of order n with cut off frequency at 
distance Do from the origin is defined as 

 

 

Most appropriate value of n is 
2. 
It does not have sharp discontinuity unlike ILPF that establishes a clear cutoff between passed and 
filtered frequencies. 
Defining a cutoff frequency is a main concern in these filters. This filter gives a smooth 
transition in blurring as a function of increasing cutoff frequency. A Butterworth filter of 
order 1 has no ringing. Ringing increases as a function of filter order. (Higher order leads to 
negative values) 

 



 

 

       GAUSSIAN LOW PASS FILTER  

The transfer function of a Gaussian low pass filter is 

 

Where: 
D(u,v)- the distance of point (u,v) from the center of the transform 
σ = D0- specified cut off frequency 

 
The filter has an important characteristic that the inverse of it is also Gaussain. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SHARPENING FREQUENCY DOMAIN FILTERS 

 
Image sharpening can be achieved by a high pass filtering process, which attenuates the low- 



frequency components without disturbing high-frequency information. These are radially 
symmetric and completely specified by a cross section. 
If we have the transfer function of a low pass filter the corresponding high pass filter can be 
obtained using the equation 

Hhp (u,v)=1- Hlp 
(u,v) 
 

 

  

 

IDEAL HIGH PASS FILTER 
 

This filter is opposite of the Ideal Low Pass filter and has the transfer function of the form 
 
 
 
 
 
 
BUTTERWORTH HIGH PASS FILTER 
 

The transfer function of Butterworth High Pass filter of order n is given by the equation 
 



 
 
 
 
 
GAUSSIAN HIGH PASS FILTER 
 

The transfer function of a Gaussain High Pass Filter is given by the equation 

 



Homomorphic Filtering 
 

Homomorphic filters are widely used in image processing for compensating the effect of no 
uniform illumination in an image. Pixel intensities in an image represent the light reflected from 
the corresponding points in the objects. As per as image model, image f(z,y) may be characterized 
by two components: (1) the amount of source light incident on the scene being viewed, and (2) the 
amount of light reflected by the objects in the scene. These portions of light are called the 
illumination and reflectance components, and are denoted i ( x , y) and r ( x , y) respectively. The 
functions i ( x , y) and r ( x , y) combine multiplicatively to give the image function f ( x , y): 

f ( x , y) = i ( x , y).r(x, y)                                            (1) 
 

where 0 < i ( x , y ) < a and 0 < r( x , y ) < 1. Homomorphic filters are used in such situations 
where the image is subjected to the multiplicative interference or noise as depicted in Eq. 1. We 
cannot easily use the above product to operate separately on the frequency components of 
illumination and reflection because the Fourier transform of f ( x , y) is not separable; that is 

F[f(x,y))  not equal to F[i(x, y)].F[r(x, y)]. 
 

We can separate the two components by taking the logarithm of the two sides 

ln f(x,y)  = ln i(x, y) + ln r(x, y). 

Taking Fourier transforms on both sides we get, 
 

F[ln f(x,y)}  = F[ln i(x, y)} + F[ln r(x, y)]. 
 

that is, F(x,y) = I(x,y) + R(x,y), where F, I and R are the Fourier transforms ln f(x,y),ln i(x, y) , 
and ln r(x, y).  respectively. The function F represents the Fourier transform of the sum of two 
images: a low-frequency illumination image and a high-frequency reflectance image. If we now 
apply a filter with a transfer function that suppresses low- frequency components and enhances 
high-frequency components, then we can suppress the illumination component and enhance the 
reflectance component. Taking the inverse transform of F ( x , y) and then anti-logarithm, we 
get 

 
f’ ( x , y) = i’

 ( x , y) + r’(x, y) 



                                            IMAGE RESTORATION 
 
IMAGE RESTORATION 
Restoration  improves  image  in some  predefined  sense.  It is an objective  process.  Restoration 
attempts  to reconstruct  an image  that has been degraded  by using  a priori  knowledge  of the 
degradation  phenomenon.  These techniques  are oriented  toward modeling  the degradation  and 
then applying the inverse process in order to recover the original image. 
Image Restoration refers to a class of methods that aim to remove or reduce the degradations that 
have occurred while the digital image was being obtained. 
All natural images when displayed have gone through some sort of degradation: 

a)During display mode 
b)Acquisition mode. 
c)Processing mode. 

The degradations may be due to  

a)Sensor noise 
bBlur due to camera mis focus 
c)Relative object-camera motion 
d)Random atmospheric turbulence 
e)Others 
A Model of Image Restoration Process 
Degradation process operates on a degradation function that operates on an input image with an 
additive noise term. 
Input  image  is  represented  by  using  the  notation  f(x,y),  noise  term  can  be  represented  as 
η(x,y).These two terms when combined gives the result as g(x,y). 
If  we  are  given  g(x,y),  some  knowledge  about  the  degradation  function  H    or  J  and  some 
knowledge  about  the  additive  noise  teem  η(x,y),  the  objective  of  restoration  is  to  obtain  an 
estimate  f'(x,y) of the original image. We want the estimate  to be as close as possible  to the 
original image. The more we know about h and η , the closer f(x,y) will be to f'(x,y). 
If it is a linear position invariant process, then degraded image is given in the spatial domain by 

 
g(x,y)=f(x,y)*h(x,y)+η(x,y) 

 
h(x,y) is spatial representation of degradation function and  symbol * represents convolution. In 
frequency domain we may write this equation as 

G(u,v)=F(u,v)H(u,v)+N(u,v) 
The terms in the capital letters are the Fourier Transform of the corresponding terms in the spatial 
domain. 

The image restoration process can be achieved by inversing the image degradation process, i.e., 
 

 
 
Where 1/H(u,v)is the inverse filter, and € (u , v) is the recovered image. Although the concept is 
relatively  simple,  the  actual  implementation  is  difficult  to  achieve,  as  one  requires  prior 
knowledge or identifications of the unknown degradation function h(x,y) and the unknown noise 
source  n(x,y.) 
In the following  sections,  common  noise  models  and method  of estimating  the degradation 
function are presented 
Noise Models 
The  principal  source  of  noise  in  digital  images  arises  during  image  acquisition  and  /or 
transmission.  The performance  of imaging sensors is affected  by a variety of factors,  such as 
environmental  conditions  during image acquisition  and by the quality of the sensing elements 
themselves.  Images  are  corrupted  during  transmission  principally  due  to  interference  in  the 
channels  used  for  transmission.  Since  main  sources  of  noise  presented  in  digital  images  are 
resulted from atmospheric disturbance and image sensor circuitry, following assumptions can be 
made: 



 

1The noise model is spatial invariant, i.e., independent of spatial location. 
2The noise model is uncorrelated with the object function. 

I.      Gaussian Noise 
These  noise  models are used frequently  in practices  because  of its tractability  in both spatial 
and frequency domain. 

The PDF of Gaussian random variable, z is given by 
 
 
 
z= gray level 
µ= mean of average value of z 
σ= standard deviation 

                                                    
.2      Rayleigh Noise 

 
Unlike Gaussian distribution, the Rayleigh distribution is no symmetric. It is given by the formula. 
 

 
 
 
 

The mean and variance of this density 
 

                                                       
 
 

                                              
3      Erlang (gamma) Noise 

 
The PDF of Erlang noise is given by 

 
 

 
The mean and variance of this noise is 



                                                            

                                                      
Its shape is similar to Rayleigh disruption. 
This equation  is referred to as gamma density it is correct  only when the denominator  is the 
gamma function. 
4.      Exponential Noise 
 
Exponential distribution has an exponential shape. 
The PDF of exponential noise is given as 

 
 
 

                                                                    Where a>0 
It is a special case of Erlang with b=1 

 
5.      Uniform Noise 

 
The PDF of uniform noise is given by 
 
 
 
 
 
 
 
 
The mean of this density function is given by 

 



 

 
6.      Impulse (Salt and Pepper )Noise 

 
In this case, the noise is signal dependent, and is multiplied to the image. 
The PDF of bipolar (impulse) noise is given by 
 
 
 
 
 
 
If b>a, gray level b will appear as a light dot in image. 
Level a will appear like a dark dot. 

 
 Restoration In the Presence of Noise Only-Spatial Filtering 
 
When the only degradation present in an image is noise, i.e. 
 

g(x,y)= f(x,y)+ η(x,y) 
or 

G(u,v)= F(u,v)+ N(u,v) 
 
The  noise  terms  are  unknown  so  subtracting  them  from  g(x,y)  or    G(u,v)  is  not  a  realistic 
approach. In the case of periodic noise it is possible to estimate N(u,v) from the spectrum G(u,v). So 
N(u,v) can be subtracted from G(u,v) to obtain an estimate of original image. Spatial filtering can 
be done when only additive noise is present. 

The following techniques can be used to reduce the noise effect: 
 
 Mean Filter 
 
 Arithmetic Mean Filter 
 
It is the simplest mean filter. Let Sxy represents the set of coordinates in the sub image of size m*n 
centered at point (x,y). The arithmetic mean filter computes the average value of the corrupted 
image g(x,y) in the area defined by Sxy. The value of the restored image f at any point (x,y) is the 
arithmetic mean computed using the pixels in the region defined by Sxy. 



 

 
This operation can be using a convolution mask in which all coefficients have value 1/mn 
A mean filter smoothes local variations in image Noise is reduced as a result of blurring. For 
every pixel in the image, the pixel value is replaced by the mean value of its neighboring pixels (             
with a weight           . This will resulted in a smoothing effect in the image. 
 
 
 Geometric mean filter 
An image restored using a geometric mean filter is given by the expression 

 
 
Here, each restored pixel is given by the product of the pixel in the subimage window, raised to 
the power 1/mn. A geometric mean filters but it to loose image details in the process. 
 
 
 
Harmonic mean filter 
The harmonic mean filtering operation is given by the expression 
 

 
 
The harmonic mean filter works well for salt noise but fails for pepper noise. It does well with 
Gaussian noise also. 
Order statistics filter 
Order statistics filters are spatial filters whose response is based on ordering the pixel contained in 
the image area encompassed by the filter. 
The response of the filter at any point is determined by the ranking result. 
 
Median filter 
It is the best order statistic filter; it replaces the value of a pixel by the median of gray levels in the 
Neighborhood of the pixel. 
 

 
 
The original  of the pixel is included  in the computation  of the median  of the filter are quite 
possible  because  for  certain  types  of  random  noise,  the  provide  excellent  noise  reduction 
capabilities  with  considerably  less  blurring  then  smoothing  filters  of  similar  size.  These  are 
effective for bipolar and unipolor impulse noise. 
 
Max and Min Filters 
Using the l00th percentile of ranked set of numbers is called the max filter and is given by the 
equation 
 
 
 

. 
 
It is used for finding the brightest point in an image. Pepper noise in the image has very low 
values, it is reduced by max filter using the max selection process in the sublimated area sky. 



The 0th percentile filter is min filter 
 

 
 
This filter is useful for flinging the darkest point in image. Also, it reduces salt noise of the min 
operation. 

a.   Midpoint Filter 
The midpoint filter simply computes the midpoint between the maximum and minimum values in 
the area encompassed by the filter 
 
 
 
 
It comeliness the order statistics and averaging .This filter works best for randomly distributed 
noise like Gaussian or uniform noise. 
 
Periodic Noise By Frequency Domain Filtering 
 
These types of filters are used for this purpose- 
 

Band Reject Filters 
It removes a band of frequencies about the origin of the Fourier transformer. 
 

Ideal Band reject Filter 
 
An ideal band reject filter is given by the expression 
 

 
 
D(u,v)- the distance from the origin of the centered frequency rectangle. 
W- the width of the band 
Do- the radial center of the frequency rectangle. 
 

Butterworth Band reject Filter 
 
 
 

 
Gaussian Band reject Filter 

 

 
 
These filters are mostly used when the location of noise component in the frequency domain is 
known. Sinusoidal noise can be easily removed by using these kinds of filters because it shows 
two impulses that are mirror images of each other about the origin. Of  the frequency transform. 



Band Pass Filters 
 
The function of a band pass filter is opposite to that of a band reject filter It allows a specific 
frequency band of the image to be passed and blocks the rest of frequencies. 
The transfer function of a band pass filter can be obtained from a corresponding band reject filter 
with transfer function Hbr(u,v) by using the equation- 
 
 
These filters cannot be applied directly on an image because it may remove too much details of an 
image but these are effective in isolating the effect of an image of selected frequency bands. 
 
Notch Filters 
 
This type of filters rejects frequencies I predefined in neighborhood above a centre frequency These  
filters are symmetric about origin in the Fourier transform the transfer function of ideal notch 
reject filter of radius do with centre at (…) and by symmetry at (……) is 
 
 
 
 

                                 Where 
 

 
 
Butterworth notch reject filter of order n is given by 
 

 
 
A Gaussian notch reject filter has the fauna 
 

 
 
These filter become high pass rather than suppress. The frequencies contained in the notch areas. 
These filters will perform exactly the opposite function as the notch reject filter. 

The transfer function of this filter may be given as 
 

 
 
Hnp(u,v)- transfer function of the pass filter 
Hnr(u,v)- transfer function of a notch reject filter 



Minimum Mean Square Error (Wiener) Filtering 
 
This  filter  incorporates  both  degradation  function  and  statistical  behavior  of  noise  into  the 
restoration process. 
The main concept behind this approach is that the images and noise are considered as random 
variables and the objective is to find an estimate f of the uncorrupted image f such that the mean 
sequence  error between then is minimized. 
 
 
 
This error measure is given by 
 
 
Where e( ) is the expected value of the argument 
Assuming that the noise and the image are uncorrelated (means zero average value) one or other 
has zero mean values 
The minimum error function of the above expression is given in the frequency …….. is given by 
the expression. 
 
 
 
 
Product  of a complex  quantity with its conjugate  is equal to the magnitude  of …… complex 
quantity squared. This result is known as wiener Filter The filter was named so because of the 
name of its inventor N Wiener. The term in the bracket is known as minimum mean square error 
filter or least square error filter. 

H*(u,v)-degradation  function . 
H*(u,v)-complex conjugate of H(u,v) 
H(u,v) H(u,v) 
Sn(u,v)=IN(u,v)I2- power spectrum of the noise 
Sf(u,v)=IF(u,v)2- power spectrum of the underrated image 
H(u,v)=Fourier transformer of the degraded function 
G(u,v)=Fourier transformer of the degraded image 

The restored  image in the spatial  domain is given  by the inverse  Fourier  transformed  of the 
frequency domain estimate F(u,v). 
Mean square error in statistical form can be approveiment by the function 
 

 
Inverse Filtering 

 
It is a process of restoring an image degraded by a degradation function H. This function can be 
obtained by any method. 
The simplest approach to restoration is direct, inverse filtering. 
Inverse filtering provides  an estimate  F(u,v) of the transform  of the original image simply by 
during the transform of the degraded image G(u,v) by the degradation function. 



It shows an interesting result that even if we know the depredation function we cannot recover the 
underrated image exactly because N(u,v) is not known . 
If the degradation value has zero or very small values then the ratio N(u,v)/H(u,v) could easily 
dominate the estimate F(u,v). 
 
 
 
IMAGE  COMPRESSION 
 
Digital Image Compression 
 
Data Compression and Data Redundancy 
Data compression is defined as the process of encoding data using a representation that reduces 
the overall size of data. This reduction is possible when the original dataset contains some type 
of redundancy. Digital image compression is a field that studies methods for reducing the total 
number of bits required to represent an image. This can be achieved by eliminating various types 
of redundancy that exist in the pixel values. In general, three basic redundancies exist in digital 
images that follow. 
 
Psycho-visual Redundancy: It is a redundancy corresponding to different sensitivities to all 
image signals by human eyes. Therefore, eliminating some less relative important information in 
our visual processing may be acceptable. 
 
Inter-pixel Redundancy: It is a redundancy corresponding to statistical dependencies among 
pixels, especially between neighboring pixels. 
 
Coding Redundancy: The uncompressed image usually is coded with each pixel by a fixed 
length. For example, an image with 256 gray scales is represented by an array of 8-bit integers. 
Using some variable length code schemes such as Huffman coding and arithmetic coding may 
produce compression. There are different methods to deal with different kinds of aforementioned 
redundancies. As a result, an image compressor often uses a multi-step algorithm toreduce these 
redundancies. 
 
Compression Methods 
During the past two decades, various compression methods have been developed to address 
major challenges faced by digital imaging.3—10 These compression methods 5 can be classified 
broadly into lossy or lossless compression. Lossy compression can achieve a high compression 
ratio, 50:1 or higher, since it allows some acceptable degradation. Yet it cannot completely 
recover the original data. On the other hand, lossless compression can completely recover the 
original data but this reduces the compression ratio to around 2:1. In medical applications, 
lossless compression has been a requirement because it facilitates accurate diagnosis due to no 
degradation on the original image. Furthermore, there exist several legal and regulatory issues 
that favor lossless compression in medical applications.11 
 
 



 
 
 
 
 
 
 
 
Lossy Compression Methods 
 

 
Generally most lossy compressors (Figure 2.1) are three-step algorithms, each of which is in 
accordance with three kinds of redundancy mentioned above. Figure 2.1 Lossy image 
compression The first stage is a transform to eliminate the inter-pixel redundancy to pack 
information efficiently. Then a quantizer is applied to remove psycho- redundancy to represent 
the packed information with as few bits as possible. The quantized bits are then efficientl 
encoded to get more compression from the coding redundancy. 
2.2.1.1 Quantization 
Quantization is a many-to-one mapping that replaces a set of values with only one representative 
value. Scalar and vector quantization are two basic types of quantization. SQ (scalar 
quantization) performs many-to-one mapping on each value. VQ (vector quantization) replaces 
each block of input pixels with the index of a vector in the codebook, which is close to the input 
vector by using some closeness measurements. The decoder simply receives each index and 
looks up the corresponding vector in the codebook.Shannon12 first showed that VQ would result 
in a lower bit rate than SQ. But VQ suffers from a lack of generality, since the codebook must be 
trained on some set of initial images. As a result, the design of the codebook will directly affect 
the bit rate and distortion of the compression. Riskin et. al.5 presented variable-rate VQ design 



and applied it to MR images. Cosman et. al.13 used similar methods to compress CT and MR 
chest scans. Xuan et. 
al.14 also used similar VQ techniques to compress mammograms and brain MRI. 
2.2.1.2 Transform Coding 
Transform coding is a general scheme for lossy image compression. It uses a reversible and 
linear transform to decorrelate the original image into a set of coefficients in transform domain. 
The coefficients are then quantized and coded sequentially in transform domain.7 Numerous 
transforms are used in a variety of applications. The discrete KLT (Karhunen-Loeve transform), 
which is based on the Hotelling transform, is optimal with its information packing properties, but 
usually not practical since it is difficult to compute. 15,16 The DFT (discrete Fourier transform) 
and DCT (discrete cosine transform) approximate the energy-packing efficiency of the KLT, and 
have more efficient implementation. In practice, DCT is used by most practical transform 
systems since the DFT coefficients require twice the storage space of the DCT coefficients. 
Block Transform Coding 
In order to simplify the computations, block transform coding exploits correlation of the pixels 
within a number of small blocks that divide the original image. As a result, each block is 
transformed, quantized and coded separately. This technique, using square 8*8 pixel blocks and 
the DCT followed by Huffman or arithmetic coding, is utilized in the ISO JPEG (joint 
photographic expert group) draft international standard for image compression.17-19 The 
disadvantage of this scheme is the blocking (or tiling) artifacts appear at high compression ratios. 
Since the adoption of the JPEG standard, the algorithm has been the subject of considerable 
research. Collins et. al.20 studied the effects of a 10:1 lossy image compression scheme based on 
JPEG, with modifications to reduce the blocking artifacts. Baskurt et. al.21 used an algorithm 
similar to JPEG to compress mammograms with a bit rate as low as 0.27 bpp (bits per pixel) 
while retaining detection ability of pathologies by radiologists. Kostas et. al.22 used JPEG 
modified for use with 12-bit images and custom quantization tables to compress mammograms 
and chest radiographs.Moreover, the ISO JPEG committee is currently developing a new still-
image compression standard called JPEG-2000 for delivery to the marketplace by the end of the 
year 2000. The new JPEG-2000 standard is based upon wavelet decompositions combined with 
more powerful quantization and encoding strategies such as embedded quantization and context-
based arithmetic. It provides the potential for numerous 
advantages over the existing JPEG standard. Performance gains include improved compression 
efficiency at low bit rates for large images, while new functionalities include multi-resolution 
representation, scalability and embedded bit stream architecture, lossy to lossless progression, 
ROI (region of interest) coding, and a rich file format.23 
Full-Frame Transform Coding 
To avoid the artifacts generated by block transforms, full-frame methods, in which the transform 
is applied to the whole image as a single block, have been investigated in medical imaging 
research.24-26 The tradeoff is the increased computational requirements and the appearance of 
ringing artifacts (a periodic pattern due to the quantization of high frequencies). 
Subband coding is one example among full-frame methods. It will produce a number of sub-
images with specific properties such as a smoothed version of the original plus a set of images 
with the horizontal, vertical, and diagonal edges that are missing from the smoothed version 
according to different frequencies.27-29 Rompelman30 applied subband coding to compress 12-bit 
CT images at rates of 0.75 bpp and 0.625 bpp without significantly affecting diagnostic quality. 
Recently, much research has been devoted to the DWT (discrete wavelet transform) for subband 



coding of images. DWT is a hierarchical subband decomposition particularly suited to image 
compression.31 Many different wavelet functions can be applied to different applications. In 
general, more complicated wavelet functions provide better performance. The wavelet transform 
can avoid the blocking artifacts presented in block transform methods and allow easy progressive 
coding due to its multiresolution nature.Bramble et. al. 32 used full-frame Fourier transform 
compression on 12 bpp digitized hand radiographs at average rates from about 0.75 bpp to 0.1 
bpp with no significant degradation in diagnostic quality involving the detection of pathology 
characterized by a lack of sharpness in a bone edge. However, Cook et. al.33 investigated the 
effects of full-frame DCT compression on low-contrast detection of chest lesions and found 
significant degradation at rates of about 0.75 bpp. These results illustrate that 
both imaging modality and the task play an important role in determining achievable 
compression. 
2.2.2 Lossless Compression Methods 
Lossless compressors (Figure 2.2) are usually two-step algorithms. The first step transforms the 
original image to some other format in which the inter-pixel redundancy is reduced. The second 
step uses an entropy encoder to remove the coding redundancy. The lossless decompressor is a 
perfect inverse process of the lossless compressor. 

 
Typically, medical images can be compressed losslessly to about 50% of their original size. 
Boncelet et. al.34 investigated the use of three entropy coding methods for lossless compression 
with an application to digitized radiographs and found that a bit rate of about 4 to 5 bpp was best. 
Tavakoli35, 36 applied various lossless coding techniques to MR images and reported a 
compression down to about 5 to 6 bpp, with LZ (Lempel-Ziv) coding achieving the best results. 
Lossless compression works best with decorrelated data. Roose et. al.5, 37 investigated prediction, 
linear transformation, and multiresolution methods for decorrelating medical image data before 



coding them. The compression result was 3:1 and less than 2:1 for angiograms and MRI 
respectively. Kuduvalli and Rangayyan6 studied similar techniques and found linear prediction 
and interpolation techniques gave the best results with similar compression ratios. 
Here, we summarize the lossless compression methods into four categories. 
2.2.2.1 Run Length Coding 
Run length coding replaces data by a (length, value) pair, where “value” is the repeated value 
and “length” is the number of repetitions. This technique is especially successful in compressing 
bi-level images since the occurrence of a long run of a value is rare in ordinary gray-scale 
images. A solution to this is to decompose the gray-scale image into bit planes and compress 
every bit-plane separately. Efficient run-length coding method38 is one of the variations of run 
length coding. 
2.2.2.2 Lossless Predictive Coding 
Lossless predictive coding predicts the value of each pixel by using the values of its neighboring 
pixels. Therefore, every pixel is encoded with a prediction error rather than its original value. 
Typically, the errors are much smaller compared with the original value so that fewer bits are 
required to store them. 
DPCM (differential pulse code modulation) is a predictive coding based lossless image 
compression method. It is also the base for lossless JPEG compression. A variation of the 
lossless predictive coding is the adaptive prediction that splits the image into blocks and 
computes the prediction coefficients independently for each block to achieve high prediction 
performance. It can also be combined with other methods to get a hybrid coding algorithm with 
higher performance.14, 39 
Entropy Coding 
Entropy represents the minimum size of dataset necessary to convey a particular amount of 
information. Huffman coding, LZ (Lempel-Ziv) coding and arithmetic coding are the commonly 
used entropy coding schemes. Huffman coding utilizes a variable length code in which short 
code words are assigned to more common values or symbols in the data, and longer code words 
are assigned to less frequently occurring values. Modified Huffman coding40 and dynamic 
Huffman coding41are two examples among many variations of Huffman’s technique LZ coding 
replaces repeated substrings in the input data with references to earlier instances of the strings. It 
often refers to two different approaches to dictionary-based 
compression: the LZ7742 and the LZ7843. LZ77 utilizes a sliding window to search for the 
substrings encountered before and then substitutes them by the (position,length) pair to point 
back to the existing substring. LZ78 dynamically constructs a dictionary from the input file and 
then replaces the substrings by the index in the dictionary. Several compression methods, among 
which LZW (Lempel-Ziv-Welch)44 is one of the most well known methods, have been 
developed based on these ideas. Variations of LZ coding are used in the Unix utilities Compress 
and Gzip Arithmetic coding45 represents a message as some finite intervals between 0 and 1 on 
the real number line. Basically, it divides the intervals between 0 and 1 into a number of smaller 
intervals corresponding to the probabilities of the message’s symbols.Then the first input symbol 
selects an interval, which is further divided into smaller intervals. The next input symbol selects 
one of these intervals, and the procedure is repeated. As a result, the selected interval narrows 
with every symbol, and in the end, any number inside the final interval can be used to represent 
the message. That is to say, each bit in the output code refines the precision of the value of the 
input code in the interval. A variation of arithmetic coding is the Q-coder46, developed by IBM 
in the late 1980’s. Two references are provided for the latest Q-coder variation. 



2.2.2.4 Multiresolution Coding 
HINT (hierarchical interpolation)5, 37 is a multiresolution coding scheme based on sub-samplings. 
It starts with a low-resolution version of the original image, and interpolates the pixel values to 
successively generate higher resolutions. The errors between the interpolation values and the real 
values are stored, along with the initial low-resolution image. Compression is achieved since 
both the low-resolution image and the error values can be stored with fewer bits than the original 
image. Laplacian Pyramid49 is another multiresolution image compression method developed by 
Burt and Adelson. It successively constructs lower resolution versions of the original image by 
down sampling so that the number of pixels decreases by a factor of two at each scale. The 
differences between successive resolution versions together with the lowest resolution image are 
stored and utilized to perfectly reconstruct the original image. But it cannot achieve a high 
compression ratio because the number of data values is increased by 4/3 of the original image 
size.In general, the image is reversibly transformed into a group of different resolution sub-
images in multiresolution coding. Usually, it reduces the entropy of the image.Some kinds of tree 
representation could be used to get more compression by exploiting the tree structure of the 
multiresolution methods.50 
 
Measurements for Compression Methods 
 
Measurements for Lossy Compression Methods 
Lossy compression methods result in some loss of quality in the compressed images.It is a 
tradeoff between image distortion and the compression ratio. Some distortion measurements are 
often used to quantify the quality of the reconstructed image as well as the compression ratio (the 
ratio of the size of the original image to the size of the compressed image). The commonly used 
objective distortion measurements, which are derived from statistical terms, are the RMSE (root 
mean square error), the NMSE (normalized mean square error) and the PSNR (peak signal-to-
noise ratio). These measurements are defined as follows: 

 
 



where the images have N*M pixels (8 bits per pixel), f (i, j ) represents the original image, and f 
'(i, j) represents the reconstructed image after compressiondecompression. Since the images are 
for human viewing, it leads to subjective measurements based on subjective comparisons to tell 
how “good” the decoded image looks to a human viewer. Sometimes, application quality can be 
used as a measure to classify the usefulness of the decoded image for a particular task such as 
clinical diagnosis I medical images and meteorological prediction in satellite images and so 
on.When comparing two lossy coding methods, we may either compare the qualities of images 
reconstructed at a constant bit rate, or, equivalently, we may compare the bit rates used in two 
constructions with the same quality, if it is accomplishable. 
Measurements for Lossless Compression Methods 
Lossless compression methods result in no loss in the compressed images so that it can perfectly 
restore the original images when applying a reversible process. The frequently used 
measurement in lossless compression is the compression ratio. This measurement can be 
misleading, since it depends on the data storage format and sampling density. For instance, 
medical images containing 12 bits of useful information per pixel are often stored using 16 bpp. 
A better measurement of compression is the bit rate due to its independence of the data storage 
format. A bit rate measures the average number of bits used to represent each pixel of the image 
in a compressed form. Bit rates are measured in bpp, where a lower bit rate corresponds to a 
greater amount of compression. 
Summary 
Digital image compression has been the focus of a large amount of research in recent years. As a 
result, data compression methods grow as new algorithms or variations of the already existing 
ones are introduced. All these digital image compression methods are concerned with 
minimization of the amount of information used to represent an image. They are based on the 
same principles and on the same theoretical compression model, which effectively reduces three 
types of redundancy, such as psycho-visual, inter-pixel and coding, inherited in gray-level 
images.However, a 3-D medical image set contains an additional type of redundancy, which is 
not often addressed by the current compression methods. Several methods  that utilize 
dependencies in all three dimensions have been proposed. Some of these methods used the 3-D 
DWT in a lossy compression scheme, whereas others  used predictive coding in a lossless 
scheme. In the latest paper,58 3D CBEZW (context-based embedded zerotree wavelet) algorithm 
was proposed to efficiently encode 3-D image data by the exploitation of the dependencies in all 
dimensions, while enabling lossy and lossless decompression from the same bit stream.In this 
proposal, we first introduce a new type of redundancy existing among pixels values in all three 
dimensions from a new point of view and its basic characteristics. Secondly, we propose a novel 
lossless compression method based on integer wavelet transforms, embedded zerotree and 
predictive coding to reduce this special redundancy to gain more compression. Thirdly, we 
expand the proposed compression method to the application of the telemedicine to support the 
transmission of the ROI without any diagnostic information loss and the simple diagnosis of 
certain disease such as multiple sclerosis in MR brain images. 
 
 

       
 



 COLOR IMAGE FUNDAMENTALS 
Perception 

Many image processing applications are intended to produce images that are to be viewed by human 
observers. It is therefore important to understand the characteristics and limitations of the human visual 
system to understand the “receiver” of the 2D signals. At the outset it is important to realise that (1) 
human visual system (HVS) is not well understood; (2) no objective measure exists for judging the 
quality of an image that corresponds to human assessment of image quality, and (3) the typical human 
observer does not exist Nevertheless, research in perceptual psychology has provided some important 
insights into the visual system [stock ham]. 

Elements of Human Visual Perception. 

 

 The human eye 

The first part of the visual system is the eye. This is shown in figure . Its form is nearly spherical and its 
diameter is approximately 20 mm. Its outer cover consists of the ‘cornea' and ‘sclera' 

The cornea is a tough transparent tissue in the front part of the eye. The sclera is an opaque membrane, 
which is continuous with cornea and covers the remainder of the eye. Directly below the sclera lies  the 
“choroids”, which has many blood vessels.At its anterior extreme lies the iris diaphragm. The light enters 
in the eye through the central opening of the iris, whose diameter varies from 2mm to 8mm, according to 
the illumination conditions. Behind the iris is the “lens” which consists of concentric layers of fibrous 
cells and contains up to 60 to 70% of water. Its operation is similar to that of the man made optical lenses. 
It focuses the light on the “retina” which is the innermost membrane of the eye. 

Retina has two kinds of photoreceptors: cones and rods. The cones are highly sensitive to color. Their 
number is 6-7 million and they are mainly located at the central part of the retina. Each cone is connected 
to one nerve end. 

     Cone vision is the photopic or bright light vision. Rods serve to view the general picture of the vision 
field. They are sensitive to low levels of illumination and cannot discriminate colors. This is the scotopic 
or dim-light vision. Their number is 75 to 150 million and they are distributed over the retinal surface. 



Several rods are connected to a single nerve end. This fact and their large spatial distribution explain their 
low resolution. 

 Both cones and rods transform light to electric stimulus, which is carried through the optical nerve to the 
human brain for the high level image processing and perception. 

Model of the Human Eye 

Based on the anatomy of the eye, a model can be constructed as shown in Figure(2.2).Its first part is a 
simple optical system consisting of the cornea, the opening of iris, the lens and the fluids inside the eye. 
Its second part consists of the retina, which performs the photo electrical transduction, followed by the 
visual pathway (nerve) which performs simple image processing operations and carries the information to 
the brain. 

 

 A model of the human eye. 

Image Formation in the Eye. 

The image formation in the human eye is not a simple phenomenon. It is only partially understood and 
only some of the visual phenomena have been measured and understood. Most of them are proven to have 
non-linear characteristics. 

Two examples of visual phenomena are:Contrast sensitivity , Spatial Frequency Sensitivity 

Contrast sensitivity 

 

 The Weber ratio without background 

Let us consider a spot of intensity I+dI in a background having intensity I, as is shown in  Figure ; dI is 
increased from 0 until it becomes noticeable. The ratio dI/I, called Weber ratio, is nearly constant at about 
2% over a wide range of illumination levels, except for very low or very high illuminations, as it is seen 
in Figure .The range over which the Weber ratio remains constant is reduced considerably, when the 
experiment of Figure .is considered. In this case, the background has intensity I0 and two adjacent spots 
have intensities I and I+dI, respectively. The Weber ratio is plotted as a function of the background 



intensity in Figure (2.4). The envelope of the lower limits is the same with that of Figure.The derivative 
of the logarithm of the intensity I is the Weber ratio: 

 

  

Thus equal changes in the logarithm of the intensity result in equal noticeable changes in  the intensity for 
a wide range of intensities. This fact suggests that the human eye performs a pointwise logarithm 
operation on the input image. 

 

The Weber ratio with background 

Another characteristic of HVS is that it tends to “overshoot” around image edges (boundaries of regions 
having different intensity). As a result, regions of constant intensity, which are close to edges, appear to 
have varying intensity. Such an example is shown in Figure .The stripes appear to have varying intensity 
along the horizontal dimension, whereas their intensity is constant. This effect is called Mach band effect. 
It indicates that the human eye is sensitive to edge information and that it has high-pass characteristics. 

 

 



  

              The Mach-band effect: 

(a) Vertical stripes having constant illumination; 

(b) Actual image intensity profile; 

(c) Perceived image intensity profile. 

 Spatial Frequency Sensitivity 

 If the constant intensity (brightness) I0 is replaced by a sinusoidal grating with increasing spatial 
frequency , it is possible to determine the spatial frequency sensitivity. The result is shown in above 
Figure  

  

  

Figure shows Sinusoidal test grating ; spatial frequency sensitivity 

To translate these data into common terms, consider an “ideal” computer monitor at a viewing distance of 
50 cm. The spatial frequency that will give maximum response is at 10 cycles per degree. (See figure 
above) The one degree at 50 cm translates to 50 tan (1 deg.)  =0.87 cm on the computer screen. Thus the 
spatial frequency of maximum response fmax= =10 cycles/0.87 cm=11.46 cycles/cm at this viewing 
distance. Translating this into a general formula gives: 



                          

where d=viewing distance measured in cm 

Definition of color: 

 Light is a form of electromagnetic (em) energy that can be completely specified at a point in the image 
plane by its wavelength distribution. Not all electromagnetic radiation is visible to the human eye. In fact, 
the entire visible portion of the radiation is only within the narrow wavelength band of 380 to 780 nms. 
Till now, we were concerned mostly with light intensity, i.e. the sensation of brightness produced by the 
aggregate of wavelengths. However light of many wavelengths also produces another important visual 
sensation called “color”. Different spectral distributions generally, but not necessarily, have different 
perceived color. Thus color is that aspect of visible radiant energy by which an observer may distinguish 
between different spectral compositions. 

 A color stimulus therefore specified by visible radiant energy of a given intensity and spectral 
composition.Color is generally characterised by attaching names to the different stimuli e.g. white, gray, 
back red, green, blue. Color stimuli are generally more pleasing to eye than “black and stimuli” 
.Consequently pictures with color are widespread in TV photography  and  printing. 

 Color is also used in computer graphics to add “spice” to the synthesized pictures. Coloring of black and 
white pictures by transforming intensities into colors (called pseudo colors) has been extensively used by 
artist's working in pattern recognition. In this module we will be concerned with questions of how to 
specify color and how to reproduce it. Color specification consists of 3 parts: 

 (1) Color matching 

 (2) Color differences 

 (3) Color appearance or perceived color 

Representation of color for human vision 

Trichromacy of Vision Color Mixture 

            Let  denote the spectral power distribution (in watts /m2 /unit wavelength) of the light 
emanating from a pixel of the image plane, and   the wavelength. The human retina contains pre-
dominantly three different color receptors (called cones) that are sensitive to 3 overlapping areas of the 
visible spectrum.  The sensitivities of the receptors peak at approximately 445. (Called blue), 535 (called 
green) and 570 (called red) nanometers.  

Each type of receptors integrates the energy in the incident light at various wavelengths in proportion 
to their sensitivity to light at that wavelength. The three resulting numbers are primarily responsible for 
color sensation. This is the basis for trichromatic theory of color vision, which states that the color of light 
entering the eye may be specified by only 3 numbers, rather than a complete function of wavelengths over 



the visible range. This leads to significant economy in color specification and reproduction for human 
viewing. Much of the credit for this significant work goes to the physicist Thomas Young.  

The counterpart to trichromacy of vision is the Trichromacy of Color Mixture. 

            This important principle states that light of any color can be synthesized by an appropriate mixture 
of 3 properly chosen primary colors. 

Maxwell in 1855 showed this using a 3-color projecting system. Several development took place since 
that time creating a large body of knowledge referred to as colorimetry. 

Although trichromacy of color is based on subjective & physiological finding, these are precise 
measurements that can be made to examine color matches 

Color matching 

 Consider a bipartite field subtending an angle (<) of 20 at a viewer's eye. The entire field is viewed 
against a dark, neutral surround. The field contains the test color on left and an adjustable mixture of 3 
suitably chosen primary colors on the right  as shown in Figure (2.7). 

 

Figure : 20 bipartial field at view's eye 

 It is found that most test colors can be matched by a proper mixture of 3 primary colors as long 
as the primary colors are independent. The primary colors are usually chosen as red, green & blue or red, 
green & violet. 

The “tristimulus values” of a test color are the amount of 3 primary colors required to give a match by 
additive mixture.They are unique within an accuracy of the experiment. 

Much of colorimetry is based on experimental results as well as rules attributed to Grassman.  

Two important rules that are valid over a large range of observing conditions are “linearity “ and 
“additivity”. They state that, 

1) The color match between any two color stimuli holds even if the intensities of the stimuli are 
increased or decreased by the same multiplying factor, as long as their relative spectral distributions 
remain unchanged. 

 As an example, if stimuli   and   match, and stimuli   and   also match, then 

additive mixtures   and  will also match. 



         2)  Another consequence of the above rules of Grassman trichromacy is that any four colors cannot 
be linearly independent. This implies tristimulus value of one of the 4 colors can be expressed as linear 
combination of tristimulus values of remaining 3 colors.. That is, any color C is specified by its projection 
on 3-axes R, G, B corresponding to chosen set of primaries. This is shown in Figure 2.8 

   

Figure: R,G,B tristimulus space. A color C is specified by a vector in three-dimensional space with 
components R,G and B (tristimulusvalues.) 

Consider a mixture of two colors S1 and S2  i.e  S=S1+S2 

If S1 is specified by ( Rs1, Gs1, Bs1) and  S2 is specified by (Rs2, Gs2, Bs2) 

This implies, S is specified by (Rs1,+Rs2,Gs1,+Gs2,Bs1,+Bs2) 

The constraint of color matching experiment is that only non-ve amounts of primary colors can be added 
to match a test color. In practice this is not sufficient to effect a match. In this case, since negative 
amounts of primary cannot be produced, a match is made by simple transposition i.e. by adding  positive 
amounts  of primary to the test color 

   a test color S might be matched by , 

          S+3G=2R+B 

or,     S=2R-3G+B 

   The  negative tristimulus values (2,-3,1) present no special problem. 

By convention, tristimulus values are expressed in normalized form. This is done by a preliminary color 
experiment in which left side of the split field shown in Fig (2.7), is allowed to emit light of unit intensity 
whose spectral distribution is constant wrt   i.e. (equal energy white E).Then the amount of each 
primary required for a match is taken by definition as one “unit”. 

The amount of primaries for matching other test colors is then expressed in terms of this unit. In 
practice equal energy white ‘E' is matched with positive amounts of each primary. 



 

Figure: The color-matching functions for the 20 Standard Observer , using primaries of 
wavelengths 700(red), 546.1 (green), and 435.8 nm (blue), with units such that equal quantities of 
the three primaries are needed to match the equal energy white, E . 

Color-Coordinate Systems. 

CHROMATICITY 

 Instead of specifying a color by its tristimulus values R, G, B colorimetrists use normalized quantities 
called chromaticity coordinates. These are expressed by, 

 

and        

Of course since r+g+b=1, two chromaticity coordinates are sufficient. This however leaves us with only 
two pieces of information. The third dimension of color is called the luminance (Y) which may be 
obtained by a separate match. Luminance is an objective measure of that aspect of radiant energy that 
produces the sensation of ‘brightness'. 

Radiation of different wavelengths contributes differently to the sensation of brightness. The 
relative contribution of monochromatic radiation of a given wavelength to luminance i.e. the brightness 
sensation is termed as the relative luminous efficiency y . Since this is obtained by photometric 
matches i.e. matching of brightness, it is dependent on the condition of observations. Fig (2.11 ) shows 
the y  vs  curve for 20and 100 fields of view. 



 

Both these curves are normalized such that maximum  is taken to be unity. 

The luminance of any given spectral distribution  is then taken to be 

 

Candelas/meter2 

where Km=680 lumens/watt.As in color matches, a brightness match is observed between two spectral 

distributions,  and  if, 

 

  

   It is easy to see that the luminance of the sum of two spectral distributions is the sum of their 
luminances. 

A complete specification of color given by luminance and chromaticities is often used since it is very 
close to familiar concepts defining perceived color. 

CIE System of  Color Specification: 

        Standard observer 

        CIE primaries. 

Another specification of color that is also popular was generated by CIE (commission International de 
L' E clairage) an international body of color scientists in 1931. 

  Standard Observer 



The CIE defined a “standard observer” by averaging the color matching data of a large number of 
observers having normal color vision. This standard observed data consists of color matching functions 
for primary stimuli of wavelengths 700 (Ro), 546-1(Go) and 435-8(Bo) nm with units normalized in the 
standard way i.e. equal amounts of the three primaries are required to match the light from the equal 
energy illuminant E. Using these curves shown in Fig(2.9) and given the spectral distribution of any 
color, we can use equation(1) to calculate the tristimulus values required by the standard observer to 
match that color. 

 CIE Primaries:- 

CIE defined three new primaries x, y, and z in which standard observer results can be expressed. It is 
possible to calculate the amounts of X,Y,Z needed to match any color, given its tristrimulus values 
corresponding to any other primaries such as Ro, Go and Bo. In order to do this, CIE has defined the 
transformation equations relating two primary systems as: 

  

 Properties of CIE Coordinate System:- 

(1)   The trisimulus values X, Y, Z are normalized to equal energy white. 

(2) The Y tristimulus value corresponds to the luminance of the color.The color matching function for Y 
is proportional to the relative luminous efficiency shown earlier. 

(3) Unlike R, G, B system, where sometimes certain tristimulus values must be negative for match, the 
tristimulus value  and the color matching functions in CIE-XYZ system are always positive as shown is 
Fig (2.12). 

  



 

Figure :Color matching functions x(λ), y(λ), z(λ), for the 20 Standard Observer 

This positivity makes X, Y, Z primaries non-real or imaginary i.e. they cannot be realized by any actual 
color stimuli. In X, Y, Z tristimulus vector space, the primaries are represented by vectors outside the 
domain representing real colors. This will be clear from the following section. 

Chromaticity coordinates in CIE-XYZ system. 

 For tristimulus value X, Y, Z the chromaticity coordinates are given by 

x=X/X+Y+Z 

y=Y /X+Y+Z 

z=Z/X+Y+Z 

 Thus, a color is specified by two chromaticity coordinates (x, y) and the Y where Y is the luminance and 
(x, y) can be thought of as color of the stimulus devoid of brightness. 

A plot of chromaticity coordinates for the physical colors forms a “chromaticity diagram”. Two 

such diagrams are shown in Fig (2.13.) for chromaticities  and   (x, y). 



 

Figure :The (r0,g0) chromaticity diagram for the Standard Observer. 

 

Figure :1931 CIE-xy chromaticity diagram 



These chromaticity diagrams also show the chromaticity coordinates of each spectral color. The 
pure spectral colors are plotted on the elongated horse-shoe shaped curve called “spectral-locus”.The 
straight line joining the two extremes of the spectral locus is called the “line of purples”. 

Color models 
A color model is an abstract mathematical model describing the way colors can be represented 
as tupless of numbers, typically as three or four values or color components. When this model is 
associated with a precise description of how the components are to be interpreted (viewing conditions, 
etc.), the resulting set of colors is called r color space. This section describes ways in which human color 
vision can be modeled. 
RGB COLOR MODEL 

Media that transmit light (such as television) use additive color mixing with primary colors of red, green, 
and blue, each of which stimulates one of the three types of the eye's color receptors with as little 
stimulation as possible of the other two. This is called "RGB" color space. Mixtures of light of these 
primary colors cover a large part of the human color space and thus produce a large part of human color 
experiences. This is whycolor television sets or color computer monitors need only produce mixtures of 
red, green and blue light. See Additive color. 

Other primary colors could in principle be used, but with red, green and blue the largest portion of 
the human color space can be captured. Unfortunately there is no exact consensus as to what loci in 
the chromaticity diagram the red, green, and blue colors should have, so the same RGB values can give 
rise to slightly different colors on different screens. 

             



HSV and HSL representations 

Recognizing that the geometry of the RGB model is poorly aligned with the color-making attributes 
recognized by human vision, computer graphics researchers developed two alternate representations of RGB, 
HSV and HSL (hue, saturation, value and hue, saturation, lightness), in the late 1970s. HSV and HSL improve 
on the color cube representation of RGB by arranging colors of each hue in a radial slice, around a central axis 
of neutral colors which ranges from black at the bottom to white at the top. The fully saturated colors of each 
hue then lie in a circle, a color wheel. 

HSV models itself on paint mixture, with its saturation and value dimensions resembling mixtures of a brightly 
colored paint with, respectively, white and black. HSL tries to resemble more perceptual color models such as 
NCS or Munsell. It places the fully saturated colors in a circle of lightness ½, so that lightness 1 always 
implies white, and lightness 0 always implies black. 

HSV and HSL are both widely used in computer graphics, particularly as color pickers in image editing 
software. The mathematical transformation from RGB to HSV or HSL could be computed in real time, even 
on computers of the 1970s, and there is an easy-to-understand mapping between colors in either of these 
spaces and their manifestation on a physical RGB device. 



 

 

CMYK COLOR MODEL 

It is possible to achieve a large range of colors seen by humans by combining cyan, magenta, 
and yellow transparent dyes/inks on a white substrate. These are the subtractiveprimary colors. Often a 
fourth ink, black, is added to improve reproduction of some dark colors. This is called "CMY" or 
"CMYK" color space. 

The cyan ink absorbs red light but transmits green and blue, the magenta ink absorbs green light but 
transmits red and blue, and the yellow ink absorbs blue light but transmits red and green. The white 
substrate reflects the transmitted light back to the viewer. Because in practice the CMY inks suitable for 



printing also reflect a little bit of color, making a deep and neutral black impossible, the K (black ink) 
component, usually printed last, is needed to compensate for their deficiencies. Use of a separate black 
ink is also economically driven when a lot of black content is expected, e.g. in text media, to reduce 
simultaneous use of the three colored inks. The dyes used in traditional color photographic prints 
and slides are much more perfectly transparent, so a K component is normally not needed or used in those 
media. 

Color convertion 

RGB to HSI, HSI to RGB Conversion  

The RGB color model is an additive system in which each color is defined by the amount of red, green, 
and blue light emitted. In the RGB scheme, colors are represented numerically with a set of three 
numbers, each of which ranges from 0 to 255. White has the highest RGB value of (255, 255, 255) while 
black has the lowest value of (0, 0, 0). This is consistent with the additive nature of the RGB system, 
since white light is the presence of all colors of light, and black is the absense of all light. 
 
There are other three-parameter representations of colors. One such system is the HSI color model, which 
encodes colors according to their Hue, Saturation, andIntensity. The HSI model is used by some graphics 
programs and color monitors as an alternative to, or alongside the RGB representation. 
 
In the HSI system, the hue of a color is its angle measure on a color wheel. Pure red hues are 0°, pure 
green hues are 120°, and pure blues are 240°. (Neutral colors--white, gray, and black--are set to 0° for 
convenience.) Intensity is the overall lightness or brightness of the color, defined numerically as the 
average of the equivalent RGB values. 
 
The HSI definition of saturation is a measure of a color's purity/grayness. Purer colors have a saturation 
value closer to 1, while grayer colors have a saturation value closer to 0. (In other color models, the 
meanings and mathematical definitions of "saturation" are slightly different. See HSL and HSV color 
models for comparison.) 



 

 
 
Equations to Convert RGB Values to HSI Values 

Suppose R, G, and B are the red, green, and blue values of a color. The HSI intensity is given by 
the equation 
 
I = (R + G + B)/3. 
 
Now let m be the minimum value among R, G, and B. The HSI saturation value of a color is 
given by the equation 
 
S = 1 - m/I    if I > 0, or 
S = 0            if I = 0. 
 
To convert a color's overall hue, H, to an angle measure, use the following equations: 
 
H = cos-1[ (R - ½G - ½B)/√R² + G² + B² - RG - RB - GB ]            if G ≥ B, or  
H = 360 - cos-1[ (R - ½G - ½B)/√R² + G² + B² - RG - RB - GB ]    if B > G, 
 
where the inverse cosine output is in degrees. 

Equations to Convert  HSI Values to RGB Values 

To convert hue, saturation, and intensity to a set of red, green, and blue values, you must first 
note the value of H. If H = 0, then R, G, and B are given by 
 
R = I + 2IS 



G = I - IS 
B = I - IS. 
 
If 0 < H < 120, then 
 
R = I + IS*cos(H)/cos(60-H) 
G = I + IS*[1 - cos(H)/cos(60-H)] 
B = I - IS. 
 
If H = 120, then the red, green, and blue values are 
 
R = I - IS 
G = I + 2IS 
B = I - IS. 
 
If 120 < H < 240, then 
 
R = I - IS 
G = I + IS*cos(H-120)/cos(180-H) 
B = I + IS*[1 - cos(H-120)/cos(180-H)]. 
 
If H = 240 then 
 
R = I - IS 
G = I - IS 
B = I + 2IS. 
 
And if 240 < H < 360, we have 
 
R = I + IS*[1 - cos(H-240)/cos(300-H)] 
G = I - IS 
B = I + IS*cos(H-240)/cos(300-H). 

PSEUDO IMGE PROCESSING 

To understand false color, a look at the concept behind true color is helpful. An image is called 
a "true-color" image when it offers a natural color rendition, or when it comes close to it. This 
means that the colors of an object in an image appear to a human observer the same way as if this 
observer were to directly view the object: A green tree appears green in the image, a red apple 
red, a blue sky blue, and so on.[1] When applied to black-and-white images, true-color means that 
the perceived lightness of a subject is preserved in its depiction. 

A false-color image sacrifices natural color rendition (in contrast to a true-color image) in order to ease 
the detection of features that are not readily discernible otherwise – for example the use of near infrared 
for the detection of vegetation in satellite images.[1] While a false-color image can be created using solely 
the visual spectrum (e.g. to accentuate color differences), typically some or all data used is 



fromelectromagnetic radiation (EM) outside the visual spectrum (e.g. infrared, ultraviolet or X-ray). The 
choice of spectral bands is governed by the physical properties of the object under investigation. 

As the human eye uses three "spectral bands" (see trichromacy for details), three spectral bands are 
commonly combined into a false-color image. At least two spectral bands are needed for a false-color 
encoding,[4] and it is possible to combine more bands into the three visual RGB bands – with the eye's 
ability to discern three channels being the limiting factor.[5] In contrast, a "color" image made from one 
spectral band, or an image made from data consisting of non-EM data (e.g. elevation, temperature, tissue 
type) is a pseudocolor image (see below). 

For true color, the RGB channels (red "R", green "G" and blue "B") from the camera are mapped to the 
corresponding RGB channels of the image, yielding a "RGB→RGB" mapping. For false color this 
relationship is changed. The simplest false-color encoding is to take an RGB image in the visible 
spectrum, but map it differently, e.g. "GBR→RGB". For "traditional false-color" satellite 
images of Earth a "NRG→RGB" mapping is used, with "N" being the near-infrared spectral band (and 
the blue spectral band being unused) – this yields the typical "vegetation in red" false-color images.[1][6] 

False color is used (among others) for satellite and space images: Examples are remote sensing satellites 
(e.g. Landsat, see example above), space telescopes (e.g. the Hubble Space Telescope) or space 
probes (e.g. Cassini-Huygens). Some spacecraft, with rovers (e.g. the Mars Science 
Laboratory "Curiosity") being the most prominent examples, have the ability to capture approximate true-
color images as well.[3] Weather satellites produce, in contrast the spacecrafts mentioned 
previously, grayscale images from the visible or infrared spectrum 

Color complement 
Complementary colors are pairs of colors which, when combined, cancel each other out. This means that 
when combined, they produce black, or if colored light (rather than pigment) is used, they produce 
white. When placed next to each other, they create the strongest contrast for those particular two colors. 
Due to this striking color clash, the term opposite colors is often considered more appropriate than 
"complementary colors". 

The pairs of complementary colors vary depending upon whether the colors are physical (e.g. from 
pigments), or from light. These change the way in which the color is made, and therefore change the color 
model which applies. For pigments, subtractive colors apply, so the complementary/opposite color pairs, 
are red & green, yellow & violet, and blue& orange. In the RGB color model, which applies to colors 
created by light, such as on computer and television displays, the complementary/opposite pairs are red 
& cyan, green & magenta, and blue & yellow. 

Since color printing ink does not produce color by pigmentation, but instead produces color by masking 
colors on a white background to reduce light that would otherwise be reflected, the same mix for 
producing black applies as for light producing white, i.e. the complementary/opposite pairs are red 



& cyan, green & magenta, and blue & yellow. The most clashing colors to the eye may still be as for 
painting 

The traditional color model 

On the traditional color wheel developed in the 18th century (see 1708 illustration by Boutet below), used by 
Claude Monet and Vincent van Gogh and other painters, and still used by many artists today, the primary 
colors were considered to be red, yellow, and blue, and the primary–secondary complementary pairs are red–
green, orange–blue, and yellow–violet[2] (or yellow–purple in Boutet's color wheel). 

In the traditional model, a complementary color pair is made up of a primary color (yellow, blue, or red) and a 
secondary color (green, violet or orange). For example, yellow is aprimary color, and painters can make violet 
by mixing of red and blue;[3] so when yellow and violet paint are mixed, all three primary colors are present. 
Since paints work by absorbing light, having all three primaries together results in a black or gray color 
(see subtractive color). In more recent painting manuals, the more precise subtractive primary colors are 
magenta, cyan, and yellow.[4] 

Complementary colors can create some striking optical effects. The shadow of an object appears to contain 
some of the complementary color of the object. For example, the shadow of a red apple will appear to contain 
a little blue-green. This effect is often copied by painters who want to create more luminous and realistic 
shadows. Also, if you stare at a square of color for a long period of time (thirty seconds to a minute), and then 
look at a white paper or wall, you will briefly see an afterimage of the square in its complementary color. 

Placed side by side as tiny dots, in partitive color mixing, complementary colors appear gray.[5] 

 

Colors produced by light 

The RGB color model, invented in the 19th century and fully developed in the 20th century, uses 
combinations of red, green, and blue light against a black background to make the colors seen on 
a computer monitor or television screen. In the RGB model, the primary colors are red, green and blue. 
The complementary primary–secondary combinations are red–cyan, green–magenta, and blue–yellow. In 
the RGB color model, the light of two complementary colors, such as red and cyan, combined at full 
intensity, will make white light, since two complementary colors contain light with the full range of the 
spectrum. If the light is not fully intense, the resulting light will be gray. 

In some other color models, such as the HSV color space, the neutral colors (white, greys, and black) lie 
along a central axis. Complementary colors (as defined in HSV) lie opposite each other on any horizontal 
cross-section. For example, in the CIE 1931 color space a color of a "dominant" wavelength can be mixed 
with an amount of the complementary wavelength to produce a neutral color (gray or white) 



                              
Module III 

Digital Speech Processing 

A review of digital signals and system 

Signals convey information. Systems transform signals. A signal can be, for example, a sequence of 
commands or a list of names. We develop models for such signals and the systems that operate on them, 
such as a system that interprets a sequence of commands from a musician and produces a sound. 
Mathematically, we model both signals and systems as functions. A signal is a function that maps a 
domain, often time or space, into a range, often a physical measure such as air pressure or light intensity. 
A system is a function that maps signals from its domain—its input signals—into signals in its range—its 
output signals. Both the domain and the range are sets of signals (signal spaces). Thus, systems are 
functions that operate on functions. 

one-sided z-transform equation is given as 

 

The two-sided z-transform is defined as 

 

The z-Plane and The Unit Circle 



The frequency variables of the Laplace transform s=σ +jω, and the z-transform z=rejω are complex 
variables with real and imaginary parts and can be visualised in a two dimensional plane. In the s-plane 
the vertical jω−axis is the frequency axis, and the horizontal σ-axis gives the exponential rate of decay, or 
the rate of growth, of the amplitude of the complex sinusoid. 

 

Illustration of (a) the S-plane and (b) the Z-plane 

when a signal is sampled in the time domain its Laplace transform, and hence the s-plane, becomes 
periodic with respect to the jω−axis. This is illustrated by the periodic horizontal dashed lines in Fig a. 
Periodic processes can be conveniently represented using a circular polar diagram such as the z-plane and 
its associated unit circle. Now imagine bending the jω−axis of the s-plane of the sampled signal of Fig.a 
in the direction of the left hand side half of the s-plane to form a circle such that the points π and –π meet. 
The resulting circle is called the unit circle, and the resulting diagram is called the z-plane. The area to the 
left of the s-plane, i.e. for σ < 0 or r =eσ<1, is mapped into the area inside the unit circle, this is the region 
of stable causal signals and systems. The area to the right of the s-plane, σ > 0 or r=eσ>1, is mapped onto 
the outside of the unit circle this is the region of unstable signals and systems. The jω−axis, with σ =0 or r 
=eσ=1, is itself mapped onto the unit circle line. Hence the Cartesian co-ordinates used in s-plane for 
continuous time signals Fig.a, is mapped into a polar representation in the z-plane for discrete-time 
signals Fig b. 



 

Above Fig.  illustrates that an angle of 2π, i.e. once round the unit circle, corresponds to a 

frequency of Fs Hz where Fs is the sampling frequency. Hence a frequency of f Hz 

corresponds to an angle φ given by 

 

The Region of Convergence (ROC) 

Since the z-transform is an infinite power series, it exists only for those values of the variable z for which 
the series converges to a finite sum. The region of convergence (ROC) of X(z) is the set of all the values 
of z for which X(z) attains a finite computable value. 

Time –Domain Methods for Speech Processing. 

Since our goal is to extract parameters of the model by analysis of the speech signal, it is common to 
assume structures (or representations) for both the excitation generator and the linear system. One such 
model uses a more detailed representation of the excitation in terms of separate source generators for 
voiced and unvoiced speech. 



 

(Voiced/unvoiced/system model for a speech signal.) 

In this model the unvoiced excitation is assumed to be a random noise sequence, and the voiced excitation 
is assumed to be a periodic impulse train with impulses spaced by the pitch period (P0) rounded to the 
nearest sample.1 The pulses needed to model the glottal flow waveform during voiced speech are 
assumed to be combined (by convolution) with the impulse response of the linear system, which is 
assumed to be slowly-time-varying (changing every 50–100 ms or so). By this we mean that over the 
timescale of phonemes, the impulse response, frequency response, and system function of the system 
remains relatively constant. For example over time intervals of tens of milliseconds, the system can be 
described by the convolution expression 

 

where the subscript ˆn denotes the time index pointing to the block of samples of the entire speech signal 
s[n] wherein the impulse response hˆn[m] applies. We use n for the time index within that interval, and m 
is the index of summation in the convolution sum. In this model, the gain Gˆn is absorbed into hˆn[m] for 
convenience. To simplify analysis, it is often assumed that the system is an all-pole system with system 
function of the form: 

 

For all-pole linear systems, the input and output are related by a difference equation of the form: 

 

Because of the slowly varying nature of the speech signal, it is common to process speech in blocks (also 
called “frames”) over which the properties of the speech waveform can be assumed to remain relatively 
constant. This leads to the basic principle of short-time analysis, which is represented in a general form by 
the equation: 



 

where Xˆn represents the short-time analysis parameter (or vector of parameters) at analysis time ˆn. The 
operator T{ } defines the nature of the short-time analysis function, and w[ˆn − m] represents a time-
shifted window sequence, whose purpose is to select a segment of the sequence x[m] in the 
neighbourhood of sample m = ˆn. 

Short-Time Energy and Zero-Crossing Rate 

Two basic short-time analysis functions useful for speech signals are the short-time energy and the short-
time zero-crossing rate. These functions are simple to compute, and they are useful for estimating 
properties of the excitation function in the model. The short-time energy is defined as 

 

In this case the operator T{ } is simply squaring the windowed samples. In this case, Eˆn = x2[n] ∗ he[n] 
n=ˆn, where the impulse response of the linear filter is he[n] = w2[n]. 

The short-time zero crossing rate is defined as the weighted average of the number of times the speech 
signal changes sign within the time window. Representing this operator in terms of linear filtering leads to 

 

where 

 

Since 0.5|sgn{x[m]} − sgn{x[m − 1]}| is equal to 1 if x[m] and x[m − 1] have different algebraic signs and 
0 if they have the same sign, it follows that Zˆn in (4.7) is a weighted sum of all the instances of 
alternating sign (zero-crossing) that fall within the support region of the shifted window w[ˆn − m]. 



 

(Section of speech waveform with short-time energy and zero-crossing rate superimposed.) 

 

 

Module IV 

Digital Speech Processing 

It is the science and technology of the processing of speech signals for different applications in 
their digital versions. It is a wide field and covers the areas like digital signal processing, digital 
filteration, speech synthesis, analysis, recognition etc. 

What is Speech Analysis? 

• Analysis of speech sounds taking into consideration their method of production  
• The level of processing between the digitized acoustic waveform and the acoustic feature vectors.  
• The extraction of ``interesting'' information as an acoustic vector.  

Why we should study Speech Processing? 

• In order to process the speech signals we should know their characteristics 
• That is possible by study of speech by dissection. 
• So this study by parts is known as speech analysis. 
• Speech analysis is required for all speech related applications. 

Sampling theory 

To convert an analogue signal to a digital form it must first be band-limited then sampled:  



 

Figure : The digitization process 

Sampling frequency 

Signals must be filtered prior to sampling. Theoretically the maximum frequency that can be 
represented is half the sampling frequency. In practice a higher sample rate is used to allow for 
non-ideal filters.  

The signal is now represented at multiples of the sampling period, T, as s(nT) which is also 
written .  

Telephone speech is sampled at 8 kHz. 16 kHz is generally regarded as sufficient for speech 
recognition and synthesis. The audio standard is a sample rate of 44.1 kHz (Compact Disc) or 48 
kHz (Digital Audio Tape) to represent frequencies up to 20 kHz.  

Waveform coders 

• Simple to implement in hardware  
• Low delay  
• Contain little speech specific information and so are very general  
• data rates about 32 kbps  

Pulse Code Modulation (PCM) 

• Needs the sampling frequency, , to be greater than the Nyquist frequency (twice the 
maximum frequency in the signal)  

• For n bits per sample, the dynamic range is and the quantisation noise is 1/12  

• Total bit rate:  
• Can use non-uniform quantisation or variable length codes  

Differential Pulse Code Modulation (DPCM) 

• Predict the next sample based on the last few decoded samples  
• Minimize mean squared error of prediction residual - use LP coding  
• Good prediction results in a reduction in the dynamic range needed to code the prediction residual 

and hence a reduction in the bit rate  
• Can use non-uniform quantization or variable length codes  



Adaptive Differential Code Modulation (ADPCM) 

• Speech is quasi-stationary  
• Adapt the predictor  
• Forward adaptation: send new predictor values  
• Backward adaptation: use predictor values computed from recently decoded signal  
• Can use non-uniform quantization or variable length codes  

 

So what is an acoustic vector? 

A representation of the speech sound at that time (I mean the instant version of speech). For 
example:  

• The short-term power spectra  
• A representation of the vocal tract shape  
• An estimation of the formant frequencies and bandwidths  

These exist as there are limitations on the rate of speech production, (thus the fundamental 
information transfer rate) and this is less than a general signal at the same sampling rate. Speech 
analysis deals with time-scales of around 20ms. But normally 10ms or below that gives very 
accurate output.  

The problems of speech analysis 

• The assumption that speech is short time stationary  
• The formulation of a feature vector representation that captures the important information in the 

speech signal for future processing  
• Speech doesnot have a fixed frequency, so the sampling rate is determined from the highest zero-

crossing rate(f = no of zero crossings/2) 

Sampling frequency 

Signals must be filtered prior to sampling. Theortically the maximum frequency that can be 
represented is half the sampling frequency. In practice a higher sample rate is used to allow for 
non-ideal filters.  

Telephone speech is sampled at 8 kHz. 16 kHz is generally regarded as sufficient for speech 
recognition and synthesis. The audio standard is a sample rate of 44.1 kHz (Compact Disc) or 48 
kHz (Digital Audio Tape) to represent frequencies up to 20 kHz.  

Filters Used for Speech: 

The digital filters used for the processing of speech are of two types: 

1. FIR or the finite impulse response filters 



2. IIR or the infinite impulse response filters 

Filter bank Analysis  

We can now assemble a set of band pass filters to analyze speech. These need to be covering - 
that is every frequency is covered by one filter so no information is lost.  

An example of one filter has been shown in the figure:  

  

 
Figure:  A band pass filter 

The output is a waveform, but as the phase is not so important we need the magnitude or the 
energy - how?  

• Rectify and smooth - convenient for hardware implementations  
• Square and smooth - gives a better estimation of the power  
• Hilbert transforms - generate a signal that is 90 degrees out of phase, then square both signals and 

add:  

 If the filter bank is implemented as an FIR filter, a simple transform of the coefficients yields 
the phase shifted signal  

Windowing 

For speech processing we want to assume the signal is short-time stationary and perform a 
Fourier transform on these small blocks. Solution: multiple the signal by a window function that 
is zero outside some defined range.  

The rectangular window is defined as:  

                 Wn = 1, for 0≤1<N (where N is the window length) 

      = 0, otherwise 

But consider the discontinuities this can generate, as illustrated in the figure below.  



  

 
Figure: A waveform truncated with a rectangular window 

One way to avoid discontinuities at the ends is to taper the signal to zero or near zero and hence 
reduce the mismatch.  

The most common in speech analysis is the Hamming window. 

Now the windowed version is quite suitable for the STFT or the Short Time Fourier Transform, 
because the time is quite small the spectrum can be analyzed properly.  

Cpstral Aalysis: 

The following arrangement produces the cepstrum, which is required for the cepstral analysis, 
shown diagrammatically in the figure below 

  

 
Figure: Cepstral analysis 

The reason why the cepstral analysis is required that z-transform based complex analysis is quite 
suitable from the complex cepstrums.  

Models for Speech Production 

A schematic longitudinal cross-sectional drawing of the human vocal tract mechanism is given in 
figure below. This diagram highlights the essential physical features of human anatomy that 
enter into the final stages of the speech production process. It shows the vocal tract as a tube of 
no uniform cross-sectional area that is bounded at one end by the vocal cords and at the other by 
the mouth opening. This tube serves as an acoustic transmission system for sounds generated 
inside the vocal tract. For creating nasal sounds like /M/, /N/, or /NG/, a side-branch tube, called 
the nasal tract, is connected to the main acoustic branch by the trapdoor action of the velum. This 
branch path radiates sound at the nostrils. The shape (variation of cross-section along the axis) of 
the vocal tract varies with time due to motions of the lips, jaw, tongue, and velum. Although the 



actual human vocal tract is not laid out along a straight line as in figure , this type of model is a 
reasonable approximation for wavelengths of the sounds in speech. The sounds of speech are 
generated in the system in several ways. Voiced sounds (vowels, liquids, glides, nasals )  

 

Fig.  Schematic model of the vocal tract system. (After Flanagan et al. [35].) 

are produced when the vocal tract tube is excited by pulses of air pressure resulting from quasi-
periodic opening and closing of the glottal orifice (opening between the vocal cords).  

the general character of the speech signal varies at the phoneme rate, which is on the order of 10 
phonemes per second, while the detailed time variations of the speech waveform are at a much 
higher rate. That is, the changes in vocal tract configuration occur relatively slowly compared to 
the detailed time variation of the speech signal. The sounds created in the vocal tract are shaped 
in the frequency domain by the frequency response of the vocal tract. The resonance frequencies 
resulting from a particular configuration of the articulators are instrumental in forming the sound 
corresponding to a given phoneme. These resonance frequencies are called the formant 
frequencies of the sound . In summary, the fine structure of the time waveform is created by the 
sound sources in the vocal tract, and the resonances of the vocal tract tube shape these sound 
sources into the phonemes.  

 

(Source/system model for a speech signal.) 

for the most part, it is sufficient to model the production of a sampled speech signal by a 
discrete-time system model such as the one depicted in above figure. The discrete-time time-



varying linear system simulates the frequency shaping of the vocal tract tube. The excitation 
generator on the left simulates the different modes of sound generation in the vocal tract. 
Samples of a speech signal are assumed to be the output of the time-varying linear system. In 
general such a model is called a source/system model of speech production. The short-time 
frequency response of the linear system simulates the frequency shaping of the vocal tract 
system, and since the vocal tract changes shape relatively slowly, it is reasonable to assume that 
the linear system response does not vary over time intervals on the order of 10 ms or so. Thus, it 
is common to characterize the discrete time linear system by a system function of the form: 
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where the filter coefficients ak and bk (labeled as vocal tract parameters) change at a rate on the 
order of 50–100 times/s. Some of the poles (ck) of the system function lie close to the unit circle 
and create resonances to model the formant frequencies. 

Linear Predictive Analysis 

Linear prediction analysis of speech is historically one of the most important speech analysis 
techniques. The basis is the source-filter model where the filter is constrained to be an all-pole 
linear filter. This amounts to performing a linear prediction of the next sample as a weighted sum 
of past samples:  

The transfer function of a lossless tube can be described by an all pole model. This is also a 
reasonable approximation to speech formed by the excitation of the vocal tract by glottal pulses 
(although the glottal pulses are not spectrally flat).  

   

                   Fig: The lossless tube model of speech production 

But:  

• The vocal tract is not built of cylinders  
• The vocal tract is not lossless  



• The vocal tract has a side passage (the nasal cavity)  
• fricatives (e.g. /s/ and /sh/) are generated near the lips  

Nevertheless, with sufficient parameters the LP model can make a reasonable approximation to 
the spectral envelope for all speech sounds. 

Parameter estimation 

Given N samples of speech, we would like to compute estimates to that result in the best fit. 
One reasonable way to define ``best fit'' is in terms of mean squared error. These can also be 
regarded as ``most probable'' parameters if it is assumed the distribution of errors is Gaussian and 
a priori there were no restrictions on the values of .  

The error at any time, , is the difference obtained from the two signals. Refer the book for 
different methods of parameter estimation. The parameters  and  are from the 
autocorrelation method of parameter estimation 

Practicalities of LPC (As per the Federal Standards) 

Introduction 
Linear Predictive Coding (LPC) is one of the most powerful speech analysis techniques, and one of the 
most useful methods for encoding good quality speech at a low bit rate. It provides extremely accurate 
estimates of speech parameters, and is relatively efficient for computation. This document describes the 
basic ideas behind linear prediction, and discusses some of the issues involved in its use.  

Basic Principles 
LPC starts with the assumption that the speech signal is produced by a buzzer at the end of a tube. The 
glottis (the space between the vocal cords) produces the buzz, which is characterized by its intensity 
(loudness) and frequency (pitch). The vocal tract (the throat and mouth) forms the tube, which is 
characterized by its resonances, which are called formants. 

LPC analyzes the speech signal by estimating the formants, removing their effects from the 
speech signal, and estimating the intensity and frequency of the remaining buzz. The process of 
removing the formants is called inverse filtering, and the remaining signal is called the residue.  

The numbers which describe the formants and the residue can be stored or transmitted 
somewhere else. LPC synthesizes the speech signal by reversing the process: use the residue to 
create a source signal, use the formants to create a filter (which represents the tube), and run the 
source through the filter, resulting in speech.  

Because speech signals vary with time, this process is done on short chunks of the speech signal, 
which are called frames. Usually 30 to 50 frames per second give intelligible speech with good 
compression.  



Estimating the Formants 
The basic problem of the LPC system is to determine the formants from the speech signal. The basic 
solution is a difference equation, which expresses each sample of the signal as a linear combination of 
previous samples. Such an equation is called a linear predictor, which is why this is called Linear 
Predictive Coding.  

The coefficients of the difference equation (the prediction coefficients) characterize the formants, 
so the LPC system needs to estimate these coefficients. The estimate is done by minimizing the 
mean-square error between the predicted signal and the actual signal.  

This is a straightforward problem, in principle. In practice, it involves (1) the computation of a 
matrix of coefficient values, and (2) the solution of a set of linear equations. Several methods 
(autocorrelation, covariance, recursive lattice formulation) may be used to assure convergence to 
a unique solution with efficient computation.  

Problem: the tube isn't just a tube 
It may seem surprising that the signal can be characterized by such a simple linear predictor. It turns out 
that, in order for this to work, the tube must not have any side branches. (In mathematical terms, side 
branches introduce zeros, which require much more complex equations.)  

For ordinary vowels, the vocal tract is well represented by a single tube. However, for nasal 
sounds, the nose cavity forms a side branch. Theoretically, therefore, nasal sounds require a 
different and more complicated algorithm. In practice, this difference is partly ignored and partly 
dealt with during the encoding of the residue (see below).  

Encoding the Source 
If the predictor coefficients are accurate, and everything else works right, the speech signal can be inverse 
filtered by the predictor, and the result will be the pure source (buzz). For such a signal, it's fairly easy to 
extract the frequency and amplitude and encode them.  

However, some consonants are produced with turbulent airflow, resulting in a hissy sound 
(fricatives and stop consonants). Fortunately, the predictor equation doesn't care if the sound 
source is periodic (buzz) or chaotic (hiss).  

This means that for each frame, the LPC encoder must decide if the sound source is buzz or hiss; 
if buzz, estimate the frequency; in either case, estimate the intensity; and encode the information 
so that the decoder can undo all these steps. This is how LPC-10e, the algorithm described in 
federal standard 1015, works: it uses one number to represent the frequency of the buzz, and 
the number 0 is understood to represent hiss. LPC-10e provides intelligible speech transmission 
at 2400 bits per second.  

Problem: the buzz isn't just buzz 
Unfortunately, things are not so simple. One reason is that there are speech sounds which are made with a 
combination of buzz and hiss sources (for example, the initial consonants in "this zoo" and the middle 



consonant in "azure"). Speech sounds like this will not be reproduced accurately by a simple LPC 
encoder.  

Another problem is that, inevitably, any inaccuracy in the estimation of the formants means that 
more speech information gets left in the residue. The aspects of nasal sounds that don't match the 
LPC model (as discussed above), for example, will end up in the residue. There are other aspects 
of the speech sound that don't match the LPC model; side branches introduced by the tongue 
positions of some consonants, and tracheal (lung) resonances are some examples.  

Therefore, the residue contains important information about how the speech should sound, and 
LPC synthesis without this information will result in poor quality speech. For the best quality 
results, we could just send the residue signal, and the LPC synthesis would sound great. 
Unfortunately, the whole idea of this technique is to compress the speech signal, and the residue 
signal takes just as many bits as the original speech signal, so this would not provide any 
compression.  

Encoding the Residue 
Various attempts have been made to encode the residue signal in an efficient way, providing better quality 
speech than LPC-10e without increasing the bit rate too much. The most successful methods use a 
codebook, a table of typical residue signals, which is set up by the system designers. In operation, the 
analyzer compares the residue to all the entries in the codebook, chooses the entry which is the closest 
match, and just sends the code for that entry. The synthesizer receives this code, retrieves the 
corresponding residue from the codebook, and uses that to excite the formant filter. Schemes of this kind 
are called Code Excited Linear Prediction (CELP).  

For CELP to work well, the codebook must be big enough to include all the various kinds of 
residues. But if the codebook is too big, it will be time consuming to search through, and it will 
require large codes to specify the desired residue. The biggest problem is that such a system 
would require a different code for every frequency of the source (pitch of the voice), which 
would make the codebook extremely large.  

This problem can be solved by using two small codebooks instead of one very large one. One 
codebook is fixed by the designers, and contains just enough codes to represent one pitch period 
of residue. The other codebook is adaptive; it starts out empty, and is filled in during operation, 
with copies of the previous residue delayed by various amounts. Thus, the adaptive codebook 
acts like a variable shift register, and the amount of delay provides the pitch.  

This is the CELP algorithm described in federal standard 1016. It provides good quality, 
natural sounding speech at 4800 bits per second.  

Summary 

Linear Predictive Coding is a powerful speech analysis technique for representing speech for low 
bit rate transmission or storage. We hope this tutorial has been informative and helpful. For more 
information, click on one of the pointers below, or see the texts listed in the References section. 



 Linear Predictive Analysis 

Linear predictive analysis is one of the most powerful and widely used speech analysis 
techniques. The importance of this method lies both in its ability to provide accurate estimates of 
the speech parameters and in its relative speed of computation. The sampled speech signal was 
modeled as the output of a linear, slowly time-varying system excited by either quasi-periodic 
impulses (during voiced speech), or random noise (during unvoiced speech).  

 

 

 

 

(Model for linear predictive analysis of speech signals.) 

The particular form of the source/system model implied by linear predictive analysis is depicted 
in above figure, where the speech model is the part inside the dashed box. Over short time 
intervals, the linear system is described by an all-pole system function of the form: 
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In linear predictive analysis, the excitation is defined implicitly by the vocal tract system model, 
i.e., the excitation is whatever is needed to produce s[n] at the output of the system. The major 
advantage of this model is that the gain parameter, G, and the filter coefficients {ak} can be 
estimated in a very straight forward and computationally efficient manner by the method of 
linear predictive analysis. For the system of above figure  with the vocal tract model, the speech 
samples s[n] are related to the excitation e[n] by the difference equation 
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A linear predictor with prediction coefficients, αk, is defined as a system whose output is 
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And the prediction error, defined as the amount by which ˜s[n] fails to exactly predict sample 
s[n], is 
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The basic problem of linear prediction analysis is to determine the set of predictor coefficients 
{αk} directly from the speech signal in order to obtain a useful estimate of the time-varying vocal 
tract system. The basic approach is to find a set of predictor coefficients that will minimize the 
mean-squared prediction error over a short segment of the speech waveform. The resulting 
parameters are then assumed to be the parameters of the system function H(z) in the model for 
production of the given segment of the speech waveform. This process is repeated periodically at 
a rate appropriate to track the phonetic variation of speech (i.e., order of 50–100 times per 
second). 

The Autocorrelation Method 

Perhaps the most widely used method of linear predictive analysis is called the autocorrelation 
method because the covariance function ϕˆn[i,k] needed reduces to the STACF φˆn[|i − k|] .In 
the autocorrelation method, the analysis segment sˆn[m] is defined as 
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where the analysis window w[m] is used to taper the edges of the segment to zero. Since the 
analysis segment is defined by the windowing  of (6.17) to be zero outside the interval −M1 ≤ m 
≤ M2, it follows that the prediction error sequence dˆn[m] can be nonzero only in the range −M1 
≤ m ≤ M2 + p.  Therefore, Eˆn is defined as 
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The windowing allows us to use the infinite limits to signify that the sum is over all nonzero 
values of dˆn[m]. Applying this notion leads to the conclusion that 
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Thus, ϕ[i,k] is a function only of |i − k|. Therefore, we can replace ϕˆn[i,k] by φˆn[|i − k|], which 
is the STACF defined as 
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The resulting set of equations for the optimum predictor coefficients is therefore 
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The covariance method 

The covariance method uses the real values of covariance coefficients.  

Note that:  

• This method can be used on much smaller sample sequences (as end discontinuities are less of a 
problem)  

• There is no guarantee of stability (but you can check for instability)  
• Commonly used in ``open'' and ``closed'' phase analysis  
• This is just a special case of the general least squares problem.  

The LP spectrum 

The transfer function 1/H(z) is a FIR whitening filter for the speech. The frequency response for 
this can be computed as the Fourier Transform of the filter coefficients, then inverted to give the 
frequency response of H(Z).  

Perceptual Linear Prediction 

A combination of DFT and LP techniques is perceptual linear prediction (PLP). It is a 
modification of normal linear prediction in the design of prediction filter.  

   
Figure: Perceptual Linear Prediction in the form of a flow chart 



Spectral Analysis 

The typical window length is 20ms. For 10 kHz sampling frequency, 200 speech samples are 
used, padded with 56 zeros, hamming windowed, FFT and converted to a power spectral density. 
Of course different specifications can be used, but the above one is the most widely used. 

 Speech Coding 

Speech can be coded by varios means in the digital format. But the widely used methods are the 
DPCM, delta modulation (DM), ADM and ADPCM etc. 

But as we have seen LPC to be a powerful method, many speech coders are linear prediction 
vocoders. 

Linear prediction vocoders 

• We employ the source filter model for this. 
• For ever frame, need to code:  

o A representation of the LP filter  
o Power  
o Degree of voicing  
o Pitch (if voiced)  

• Most bits go into the LP parameters  

Commonly used representations of the LP parameters:  

• LP coefficients: when quantisation is not a problem  
• Reflection coefficients: robust but not very efficient  
• Line spectral pairs: most efficient  

Quantisation:  

• Independent: about 50 bits per frame  
• Vector quantisation: about 25 bits per frame  



   
Figure: Block Diagram of Simple LPC vocoder  

 

Speech Recognition 
Speaker Recognition Systems- 

The goal of an ASR system is to accurately and efficiently convert a speech signal into a text message 
transcription of the spoken words, independent of the device used to record the speech (i.e., the transducer 
or microphone), the speaker’s accent, or the acoustic environment in which the speaker is located (e.g., 
quiet office, noisy room, outdoors). 

 

(Conceptual model of speech production and speech recognition processes.) 

A simple conceptual model of the speech generation and speech recognition processes is given in above 
figure, which is a simplified version of the speech chain. It is assumed that the speaker intends to express 
some thought as part of a process of conversing with another human or with a machine. To express that 
thought, the speaker must compose a linguistically meaningful sentence, W, in the form of a sequence of 
words (possibly with pauses and other acoustic events such as uh’s, um’s, er’s etc.). Once the words are 
chosen, the speaker sends appropriate control signals to the articulatory speech organs which form a 
speech utterance whose sounds are those required to speak the desired sentence, resulting in the speech 
waveform s[n].We refer to the process of creating the speech  waveform from the speaker’s intention as 
the Speaker Model since it reflects the speaker’s accent and choice of words to express a given thought or 
request. The processing steps of the Speech  Recognizer are shown at the right side of figure and consist 
of an acoustic processor which analyzes the speech signal and converts it into a set of acoustic (spectral, 



temporal) features, X, which efficiently characterize the speech sounds, followed by a linguistic decoding 
process which makes a best  maximum likelihood) estimate of the words of the spoken sentence, resulting 
in the recognized sentence ˆW . 

 

(Block diagram of an overall speech recognition system) 

Above figure shows a more detailed block diagram of the overall speech recognition system. The input 
speech signal, s[n], is converted to the sequence of feature vectors, X = {x1,x2, . . . ,xT }, by the feature 
analysis block (also denoted spectral analysis). The feature vectors are computed on a frame-by-frame 
basis using various techniques. In particular, the mel frequency cepstrum coefficients are widely used to 
represent the short-time spectral characteristics. The pattern classification block (also denoted as the 
decoding and search block) decodes the sequence of feature vectors into a symbolic representation that is 
the maximum likelihood string, ˆW that could have produced the input sequence of feature vectors. The 
pattern recognition system uses a set of acoustic models (represented as hidden Markov models) and a 
word lexicon to provide the acoustic match score for each proposed string. Also, an N-gram language 
model is used to compute a language model score for each proposed word string. The final block in the 
process is a confidence scoring process (also denoted as an utterance verification block), which is used to 
provide a confidence score for each individual word in the recognized string. Each of the operations in 
flowchart involves many details and, in some cases, extensive digital computation.  

Hidden Markov model (HMM)-based speech Recognition 

 

As we know the human speech follows the statistical nature, it is always a good thing to put the statistics 
in the generation and recognition of speech. So when the speech is to be recognised by a statistical means 
we have to provide a proper model for it. This becomes possible when we use Markov models for this 
purpose.  

So almost all, modern general-purpose speech recognition systems are generally based on HMMs. These 
are statistical models which output a sequence of symbols or quantities. One possible reason why HMMs 
are used in speech recognition is that a speech signal could be viewed as a piece-wise stationary signal or 
a short-time stationary signal. That is, one could assume in a short-time in the range of 10 milliseconds, 
speech could be approximated as a stationary process. Speech could thus be thought as a Markov model 
for many stochastic processes (known as states).  



There are also further reasons why HMMs are popular are because they can be trained automatically and 
are simple and computationally feasible to use. In speech recognition, to give the very simplest set up 
possible, the hidden Markov model would output a sequence of n-dimensional real-valued vectors with n 
around, say, 13, outputting one of these every 10 milliseconds. The vectors, again in the very simplest 
case, would consist of cepstral coefficients, which are obtained by taking a Fourier transform of a short-
time window of speech and decorrelating the spectrum using a cosine transform, then taking the first 
(most significant) coefficients. The hidden Markov model will tend to have, in each state, a statistical 
distribution called a mixture of diagonal covariance Gaussians which will give a likelihood for each 
observed vector. Each word, or (for more general speech recognition systems), each phoneme, will have a 
different output distribution; a hidden Markov model for a sequence of words or phonemes is made by 
concatenating the individual trained hidden Markov models for the separate words and phonemes.  

Of course the above procedure is not the only way we can use the HMMs for the speech recognition. 
Rather depending on the problem domain we have to choose a proper way of their applications. So 
HMMs with the help of other optimising tools can be used to recognise the missing data which is required 
in many complex applications. 

 De4coding of the speech (the term for what happens when the system is presented with a new utterance 
and must compute the most likely source sentence) would probably use the Viterbi algorithm to find the 
best path, and here there is a choice between dynamically creating a combination hidden Markov model 
which includes both the acoustic and language model information, or combining it statically beforehand 
(the finite state transducer, or FST, approach). 

 

Dynamic time warping (DTW)-based speech Recognition 

There is an alternative way to recognise the speech as well,  by storing them and bringing back in to use 
when we need them. This process of mating the speech patterns are known as Dynamic time warping or 
matching of speech patterns with those of the stored versions collected before. Of course this method is an 
old one and has many limitations. But for small scale applications it can be an economical one. 

Dynamic time warping is an approach that was historically used for speech recognition but has now 
largely been displaced by the more successful HMM-based approach. Dynamic time warping is an 
algorithm for measuring similarity between two sequences which may vary in time or speed. For instance, 
similarities in walking patterns would be detected, even if in one video the person was walking slowly 
and if in another they were walking more quickly, or even if there were accelerations and decelerations 
during the course of one observation. DTW has been applied to video, audio, and graphics as well, any 
data which can be turned into a linear representation can be analyzed with DTW.  

A well known application has been automatic speech recognition, to cope with different speaking speeds. 
In general, it is a method that allows a computer to find an optimal match between two given sequences 
(e.g. time series) with certain restrictions, i.e. the sequences are "warped" non-linearly to match each 
other. This sequence alignment method is often used in the context of hidden Markov models. 



Speech Identification  

In speech identification a person is singled out from a pool by taking the speech as his or her identifying 
character. So certain characterising speech templates are stored for this purpose. When it comes for 
identification the same speech is produced again and the two patterns are compared by some method 
(Using HMMs or DTW) and then the output is obtained in the form of rejection or acceptance.  

Speech Verification 

Speech verification is the verification of a person in terms of his or her claims by taking his or 
her speech characteristics into consideration. It is similar to that of the speech identification but 
here the search process is quite small in comparison to that of speech identification.  

Speech verification is thus the application of speech recognition to verify the correctness of the 
pronounced speech. Speech verification doesn't try to decode unknown speech from a huge 
search space, but instead, knowing the expected speech to be pronounced, it attempts to verify 
the correctness of the utterance's pronunciation, cadence, pitch, and stress. Pronunciation 
assessment is the main application of this technology.  

HMM: 

As we have mentioned before HMMs are nothing but a kind of statistical model which follow the 
Markov property. In a regular Markov model, the state is directly visible to the observer, and 
therefore the state transition probabilities are the only parameters. In a hidden Markov model, the 
state is not directly visible, but variables influenced by the state are visible. Each state has a 
probability distribution over the possible output tokens. Therefore the sequence of tokens 
generated by an HMM gives some information about the sequence of states.   

The Viterbi algorithm is a dynamic programming algorithm for finding the most likely 
sequence of hidden states – called the Viterbi path – that results in a sequence of observed 
events, especially in the context of hidden Markov models. 

Baum-Welch algorithm is a generalized expectation-maximization (GEM) algorithm. It can 
compute maximum likelihood estimates and posterior mode estimates for the parameters 
(transition and emission probabilities) of an HMM, when given only emissions as training data. 
It is also based on the dynamic programming approach.   

 

 

 
 
 


