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MODULE-I 

NUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are the decimal,

binary, octal, and hexadecimal systems. The decimal system is clearly the most familiar to us

because it is a tool that we use every day. Examining some of its characteristics will help us to

better understand the other systems. In the next few pages we shall introduce four numerical

representation systems that are used in the digital system. There are other systems, which
we

will look at briefly.

 Decimal

 Binary

 Octal

 Hexadecimal

 Decimal System

The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1, 2, 3,
4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any quantity. The
decimal system is also called the base-10 system because it has 10 digits.

Decimal Examples

3.1410

5210

102410

6400010



Binary System

In the binary system, there are only two symbols or possible digit values, 0 and 1. This base-2
system canbe used to represent any quantity that can be represented in decimal or other
base system.In digital systems the information that is being processed is usually presented in
binary form. Binaryquantities can be represented by any device that has only two operating
states or possible conditions.

E.g.. a switch is only open or closed. We arbitrarily (as we define them) let an open switch
represent binary 0 and a closed switch represent binary 1. Thus we can represent any binary
number by using series of switches.

Octal System

The  octal  number  system has  a  base  of  eight,  meaning  that  it  has  eight  possible  digits:
0,1,2,3,4,5,6,7.

 octal to Decimal Conversion

2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910

24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510

11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510

12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510

Hexadecimal System

The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the digits
0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.

Hexadecimal to Decimal Conversion

24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510

11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510

12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510



Code Conversion

Converting  from  one  code  form  to  another  code  form  is  called  code  conversion,  like
converting from binary to decimal or converting from hexadecimal to decimal.

Binary-To-Decimal Conversion

Any binary number can be converted to its decimal equivalent simply by summing together
the weights of the various positions in the binary number which contain a 1.e.g.

110112=24+23+01+21+20=16+8+0+2+1=2710

Octal-To-Binary Conversion

Each Octal digit is represented by three binary digits.

Example:
4 7 28 = (100) (111) (010)2 = 100 111 0102

Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion

 Convert Octal (Hexadecimal) to Binary first.

 Regroup  the  binary  number  by  three  bits  per  group  starting  from  LSB  if  Octal  is
required.

 Regroup the binary number by four bits per group starting from LSB if Hexadecimal is
required.



Binary Codes

Binary codes are codes which are represented in binary system with modification from the
original ones. Below we will be seeing the following:

 Weighted Binary Systems

 Non Weighted Codes

Weighted Binary Systems

Weighted  binary  codes  are  those  which  obey  the  positional  weighting  principles,  each
position of  the number  represents  a  specific  weight.  The binary  counting sequence is  an
example.

8421 Code/BCD Code

The  BCD  (Binary  Coded  Decimal)  is  a  straight  assignment  of  the  binary  equivalent.  It  is
possible to assign weights to the binary bits according to their positions. The weights in the
BCD code are 8,4,2,1.

Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9
because:

1x8+0x4+0x2+1x1 = 9

2421 Code

This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit
form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the
decimal numbers from 0 to 9.

5211 Code

This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in 4-bit
form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents the
decimal numbers from 0 to 9.



Reflective Code

A code is said to be reflective when code for 9 is complement for the code for 0, and so is for
8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective,
whereas the 8421 code is not.

Excess-3 Code

Excess-3 is a non weighted code used to express decimal numbers. The code derives its name 
from the fact that each binary code is the corresponding 8421 code plus 0011(3).

Gray Code

The gray code belongs to a class of codes called minimum change codes, in which only one bit
in the code changes when moving from one code to the next. The Gray code is non-weighted 
code, as the position of bit does not contain any weight. The gray code is a reflective digital 
code which has the special property that any two subsequent numbers codes differ by only 
one bit. This is also called a unit-distance code. In digital Gray code has got a special place.

Error Detecting and Correction Codes

For reliable transmission and storage of digital data, error detection and correction is 
required. Below are a few examples of codes which permit error detection and error 
correction after detection.

Error Detecting Codes

When data is transmitted from one point to another, like in wireless transmission, or it is just 
stored, like in hard disks and memories, there are chances that data may get corrupted. To 
detect these data errors, we use special codes, which are error detection codes.

Parity

In parity codes, every data byte, or nibble (according to how user wants to use it) is checked if
they have even number of ones or even number of zeros. Based on this information an 



additional bit is appended to the original data. Thus if we consider 8-bit data, adding the 
parity bit will make it 9 bit long.

At the receiver side, once again parity is calculated and matched with the received parity (bit 
9), and if they match, data is ok, otherwise data is corrupt.

There are two types of parity:

 Even parity: Checks if there is an even number of ones; if so, parity bit is zero. When 
the number of ones is odd then parity bit is set to 1.

 Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When 
number of ones is even then parity bit is set to 1.

Error-Correcting Codes

Error correcting codes not only detect errors, but also correct them. This is used normally in 
Satellite communication, where turn-around delay is very high as is the probability of data 
getting corrupt.

ECC (Error correcting codes) are used also in memories, networking, Hard disk, CDROM, DVD 
etc. Normally in networking chips (ASIC), we have 2 Error detection bits and 1 Error correction
bit.

Hamming Code

Hamming code adds a minimum number of bits to the data transmitted in a noisy channel, to 
be able to correct every possible one-bit error. It can detect (not correct) two-bits errors and 
cannot distinguish between 1-bit and 2-bits inconsistencies. It can't - in general – detect 3(or 
more)-bits errors The idea is that the failed bit position in an n-bit string (which we'll call X) 
can be represented in binary with log2(n) bits, hence we'll try to get it adding just log2(n) bits.

ASCII Code



ASCII stands for American Standard Code for Information Interchange. It has become a world 
standard alphanumeric code for microcomputers and computers. It is a 7-bit code 
representing 27 = 128 different characters. These characters represent 26 upper case letters 
(A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols 
and 33 control characters.

BOOLEAN ALGEBRA AND LOGIC GATES

The  English  mathematician  George  Boole  (1815-1864)  sought  to  give  symbolic  form  to
Aristotle‘s  system  of  logic.  Boole  wrote  a  treatise  on  the  subject  in  1854,  titled  An
Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of
Logic and Probabilities,  which codified several rules of relationship between mathematical
quantities  limited  to  one of  two possible  values:  true or  false,  1  or  0.  His  mathematical
system became known as Boolean algebra. All arithmetic operations performed with Boolean
quantities have but one of two possible Outcomes: either 1 or 0. There is no such thing as ‖2‖
or ‖-1‖ or ‖1/2‖ in the Boolean world.

It is a world in which all other possibilities are invalid by fiat. As one might guess, this is not
the kind of math you want to use when balancing a check book or calculating current through
a resistor.

However, Claude Shannon of MIT fame recognized how Boolean algebra could be applied to
on-and-off  circuits,  where  all  signals  are  characterized  as  either  ‖high‖  (1)  or  ‖low‖
(0).His1938 thesis,  titled  A Symbolic  Analysis  of  Relay and Switching  Circuits,  put  Boole‘s
theoretical  work to use in a way Boole never  could have imagined,  giving us  a powerful
mathematical tool for designing and analyzing digital circuits.

Like ‖normal‖ algebra, Boolean algebra uses alphabetical letters to denote variables. Unlike
‖normal‖ algebra, though, Boolean variables are always CAPITAL letters, never lowercase.

Because they are allowed to possess only one of two possible values, either 1 or 0, each and
every variable has a complement: the opposite of its value. For example, if variable ‖A‖ has a
value of 0, then the complement of A has a value of 1. Boolean notation uses a bar above the
variable character to denote complementation, like this:



In  written  form,  the  complement  of  ‖A‖  denoted  as  ‖A-not‖  or  ‖A-bar‖.  Sometimes  a
‖prime‖  symbol  is  used  to  represent  complementation.  For  example,  A‘  would  be  the
complement  of  A,  much  the  same as  using  a  prime symbol  to  denote  differentiation  in
calculus rather than the fractional notation dot. Usually, though, the ‖bar‖ symbol finds more
widespread use than the ‖prime‖ symbol, for reasons that will become more apparent later
in this chapter.

Boolean Arithmetic:

Let us begin our exploration of Boolean algebra by adding numbers together:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

The first three sums make perfect sense to anyone familiar with elementary addition. The

Last sum, though, is quite possibly responsible for more confusion than any other single

statement in digital electronics, because it seems to run contrary to the basic principles of

mathematics.



Well, it does contradict principles of addition for real numbers, but not for Boolean numbers.

Remember that in the world of Boolean algebra, there are only two possible values for any

quantity and for any arithmetic operation: 1 or 0. There is no such thing as ‖2‖ within the

scope of Boolean values. Since the sum ‖1 + 1‖ certainly isn‘t 0, it must be 1 by process of

elimination.

Principle of Duality:

It states that every algebraic expression is deducible from the postulates of Boolean

algebra, and it remains valid if the operators & identity elements are interchanged. If the

inputs of a NOR gate are inverted we get a AND equivalent circuit. Similarly when the inputs

of a NAND gate are inverted, we get a OR equivalent circuit. This property is called duality.

Theorems of Boolean algebra 

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression
and also to transform the given expression into a more useful and meaningful

equivalent  expression.  The theorems are presented as pairs,  with the two theorems in a
given

pair being the dual of each other. These theorems can be very easily verified by the method
of

‘perfect induction‘. According to this method, the validity of the expression is tested for all

possible combinations of values of the variables involved. Also, since the validity of the

theorem is based on its being true for all possible combinations of values of variables, there is

no reason why a variable cannot be replaced with its complement, or vice versa, without

disturbing the validity. Another important point is that, if a given expression is valid, its dual

will also be valid.

Theorem 1 (Operations with ‘0‘ and ‘1‘)



(a) 0.X = 0 and (b) 1+X= 1

Where X is not necessarily a single variable – it could be a term or even a large expression.

Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into the

given expression and checking whether the LHS equals the RHS:

• For X = 0, LHS = 0.X = 0.0 = 0 = RHS.

• For X= 1, LHS = 0.1 = 0 = RHS.

Thus, 0.X =0 irrespective of the value of X, and hence the proof.

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1,

0. (Boolean expression) = 0 and 1+ (Boolean expression) =1.

For example: 0. (A.B+B.C +C.D) = 0 and 1+ (A.B+B.C +C.D) = 1, where A, B and C are

Boolean variables.

Theorem 2 (Operations with ‘0‘ and ‘1‘)

(a) 1.X = X and (b) 0+X = X

where X could be a variable, a term or even a large expression. According to this theorem,

ANDing a Boolean expression to ‘1‘ or ORing ‘0‘ to it makes no difference to the expression:

• For X = 0, LHS = 1.0 = 0 = RHS.

• For X = 1, LHS = 1.1 = 1 = RHS.

Also,

1. (Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean

expression.

For example,

1.(A+B.C +C.D) = 0+(A+B.C +C.D) = A+B.C +C.D



Theorem 3 (Idempotent or Identity Laws)

(a) X.X.X……X = X and (b) X+X+X +···+X = X

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity

laws.

Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents

an OR gate operation when all the inputs of the gate have been tied together. The scope of

idempotent laws can be expanded further by considering X to be a term or an expression. For

example, let us apply idempotent laws to simplify the following Boolean expression:

Theorem 4 (Complementation Law)

(a) X_X = 0 and (b) X+X = 1

According to this theorem, in general, any Boolean expression when ANDed to its

complement yields a ‘0‘ and when ORed to its complement yields a ‘1‘, irrespective of the

complexity of the expression:

Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is

implied.



The example below further illustrates the application of complementation laws:

Theorem 5 (Commutative property)

Mathematical identity, called a ‖property‖ or a ‖law,‖ describes how differing

variables relate to each other in a system of numbers. One of these properties is known as

the commutative property, and it applies equally to addition and multiplication.

 In essence, the commutative property tells us we can reverse the order of variables that are 
either added together or multiplied together without changing the truth of the expression:

Commutative property of addition

A + B = B + A

Commutative property of multiplication

AB = BA

Theorem 6 (Associative Property)

The Associative Property,  again applying equally well to addition and multiplication.

This property tells us we can associate groups of added or multiplied variables together with

parentheses  without altering the truth of the equations.

Associative property of addition

A + (B + C) = (A + B) + C

Associative property of multiplication

A (BC) = (AB) C

Theorem 7 (Distributive Property)

The Distributive Property, illustrating how to expand a Boolean expression formed by

the product of a sum, and in reverse shows us how terms may be factored out of Boolean



sums-of-products:

Distributive property

A (B + C) = AB + AC

Theorem 8 (Absorption Law or Redundancy Law)

(a) X+X.Y = X and (b) X.(X+Y) = X

The proof of absorption law is straightforward:

X+X.Y = X. (1+Y) = X.1 = X

Theorem 8(b) is the dual of theorem 8(a) and hence stands proved.

The crux of this simplification theorem is that, if a smaller term appears in a larger term, then

the larger term is redundant. The following examples further illustrate the underlying

concept:

De-Morgan‘s First Theorem

It States that ―The complement of the sum of the variables is equal to the product of the

complement of each variable . This theorem may be expressed by the following Boolean

expression.



De-Morgan‘s Second Theorem

It states that the ―Complement of the product of variables is equal to the sum of 
complements of each individual variables‖. Boolean expression for this theorem is

Boolean Function





MIN TERMS AND MAX TERMS

Any boolean expression may be expressed in terms of either minterms or maxterms. To do

this we must first define the concept of a literal. A literal is a single variable within a term

which may or may not be complemented. For an expression with N variables, minterms and

maxterms are defined as follows :

 A minterm is the product of N distinct literals where each literal occurs exactly once.

 A maxterm is the sum of N distinct literals where each literal occurs exactly once.



Product-of-Sums Expressions

A product-of-sums expression contains the product of different terms, with each term

being either a single literal or a sum of more than one literal. It can be obtained from the 
truth

table by considering those input combinations that produce a logic ‘0‘ at the output. Each

such input combination gives a term, and the product of all such terms gives the expression.

Different terms are obtained by taking the sum of the corresponding literals. Here ‘0‘ and ‘1‘

respectively mean the uncomplemented and complemented variables, unlike sum-of-
products

expressions where ‘0‘ and ‘1‘ respectively mean complemented and uncomplemented

variables.

Since each term in the case of the product-of-sums expression is going to be the sum of

literals, this implies that it is going to be implemented using an OR operation. Now, an OR

gate produces a logic ‘0‘ only when all its inputs are in the logic ‘0‘ state, which means that

the first term corresponding to the second row of the truth table will be A+B+C. The product 
of-

sums Boolean expression for this truth table is given by Transforming the given product of-

sums expression into an equivalent sum-of-products expression is a straightforward

process. Multiplying out the given expression and carrying out the obvious simplification

provides the equivalent sum-of-products expression:

A given sum-of-products expression can be transformed into an equivalent product-of-sums

expression by (a) taking the dual of the given expression, (b) multiplying out different terms

to get the sum-of products form, (c) removing redundancy and (d) taking a dual to get the



equivalent product-of-sums expression. As an illustration, let us find the equivalent product 
of sums expression of the sum-of products expression

Digital Logic Gates

The basic logic gates are AND, OR, NAND, NOR, XOR, INV, and BUF. The last two are not

standard terms; they stand for ‘inverter’ and ‘buffer’, respectively. The symbols for these

gates and their corresponding Boolean expressions are given in Fig. 2.



                                                Figure 2:

All of the logical gate functions, as well as the Boolean relations discussed in the next

section, follow from the truth tables for the AND and OR gates. We reproduce these below.

We also show the XOR truth table, because it comes up quite often, although, as we shall see,

it is not elemental.
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