Software Engineering 101S51

SOFTWARE ENGINEERING

Subject Code: 10I1S51 I.A.Marks : 25

HoursWeek : 04 Exam Hours: 03

Total Hours : 52 Exam Marks: 100
PART - A

UNIT -1 6 Hours

Overview: Introduction: FAQ's about software engineering, Professional and ethical
responsibility.

Socio-Technical systems. Emergent system properties; Systems engineering;
Organizations, people and computer systems; Legacy systems.

UNIT -2 6 Hours
Critical Systems, Software Processes: Critica Systems: A simple safety critical
system; System dependability; Availability and reliability.

Software Processes. Models, Process iteration, Process activities; The Rational
Unified Process, Computer Aided Software Engineering.

UNIT -3 7 Hours
Requirements: Software Requirements: Functional and Non-functional
requirements, User requirements; System requirements; Interface specification; The
software requirements document.

Requirements Engineering Processes: Feasibility studies, Requirements elicitation
and analysis; Requirements validation; Requirements management.

UNIT -4 7 Hours
System models, Project Management: System Models. Context models;

Behaviora models; Data models; Object models; Structured methods.

Project Management: Management activities; Project planning; Project scheduling;
Risk management

PART - B

UNIT -5 7 Hours
Software Design: Architectural Design: Architectural design decisions;, System
organization; Modular decomposition styles; Control styles. 33

Object-Oriented design: Objects and Object Classes; An Object-Oriented design
process; Design evolution.

UNIT -6 6 Hours
Development: Rapid Software Development: Agile methods;Extreme programming;
Rapid application development.

Softwar e Evolution: Program evolution dynamics,; Software maintenance;

Evolution processes; Legacy system evolution.

UNIT -7 7 Hours
Verification and Validation: Verification and Validation: Planning;

Software inspections; Automated static analysis; Verification and formal methods.
Software testing: System testing; Component testing; Test case design; Test
automation.

Department of CSE, SIBIT Page 1

Software Engineering 101S51

UNIT -8 6 Hours
Management: Managing People: Selecting staff; Motivating people; Managing
people; The People Capability Maturity Model.

Software Cost Estimation: Productivity; Estimation techniques; Algorithmic cost
modeling, Project duration and staffing.

Text Book:
1. lan Sommerville: Software Engineering, 8" Edition, Pearson Education, 2007.
(Chapters-: 1, 2, 3,4,5,6, 7,8, 11, 14, 17, 21, 22, 23, 25, 26)

Reference Books:

1. Roger.S.Pressman: Software Engineering-A Practitioners approach, 7" Edition,
Tata McGraw Hill, 2007.

2. Pankgj Jalote: An Integrated Approach to Software Engineering, Wiley India, 2009.

Department of CSE, SIBIT Page 2

Software Engineering

TABLE OF CONTENTS

UNIT-1 Overview

Socio-Technical systems

UNIT-2 Critical Systems, Softwar e Processes
UNIT-3 Requirements

Requirements Engineering Processes

UNIT -4 System models, Project M anagement

UNIT -5 Software Design, Object-Oriented design
UNIT-6 Development, Software Evolution

UNIT-7 Verification and Validation , Softwar etesting
UNIT-8 M anagement, Software Cost Estimation

Department of CSE, SIBIT

101S51

4-5

5-8

9-15

16 - 20
20-21
22 - 27
28-49
50-70
71-93
94 -114

Page 3

Software Engineering 101S51

UNIT -1
OVERVIEW

The economies of ALL developed nations are dependent on software. More and more
systems are software controlled.

Software engineering is concerned with theories, methods and tools for professional
software development.

FAQs About softwar e engineering:

What is software?
Software is set of Computer programs associated with documentation & configuration
data that is needed to make these programs operate correctly. A software system
consists of a number of programs, configuration files (used to set up programs),
system documentation (describes the structure of the system) and user documentation
(explains how to use system).
Software products may be developed for a particular customer or may be developed
for a general market.
Software products may be
* Generic - developed to be sold to arange of different customers
 Bespoke (custom) - developed for a single customer according

to their specification

What is software engineering?
» Software engineering is an engineering discipline which is concerned with all
aspects of software production.
» Software engineers should adopt a systematic and organized approach to their
work and use appropriate tools and techniques depending on the problem to be
solved, the development constraints and the resources available.

What isthe difference between software engineering and computer science?

» Computer science is concerned with theory and fundamentals; software
engineering is concerned with the practicalities of developing and delivering
useful software

» Computer science theories are currently insufficient to act as a complete
underpinning for software engineering

What is the difference between software engineering and system engineering?

» System engineering is concerned with all aspects of computer-based systems
development including hardware, software and process engineering. Software
engineering is part of this process

» System engineers are involved in system specification, architectural design,
integration and deployment

What is a softwar e process?

A set of activities whose goal is the development or evolution of software
Generic activitiesin all software processes are:

* Specification - what the system should do and its development constraints
» Development - production of the software system

Department of CSE, SIBIT Page 4

Software Engineering 101S51

* Validation - checking that the software is what the customer wants
* Evolution - changing the software in response to changing demands

What is a softwar e process model?

A simplified representation of a software process, presented from a specific
perspective

Examples of process perspectives are

» Workflow perspective - sequence of activities

* Data-flow perspective - information flow

* Role/action perspective - who does what

Generic process models

» Waterfall

* Evolutionary development

» Formal transformation

* Integration from reusable components

Socio-Technical Systems:
e A system isa purposeful collection of inter-related components working together
towards some common objective.

e A system may include software, mechanical, electrical and electronic hardware
and be operated by people.

* System components are dependent on other system components
The properties and behavior of system components are inextricably inter-mingled

Problems of systems engineering

e Large systems are usually designed to solve 'wicked' problems

e Systems engineering requires a great deal of co-ordination across disciplines
» Almost infinite possibilities for design trade-offs across components
» Mutual distrust and lack of understanding across engineering disciplines

e Systems must be designed to last many years in a changing environment

Software and systems engineering
The proportion of software in systems isincreasing. Software-driven general purpose
electronics is replacing special-purpose systems

Problems of systems engineering are similar to problems of software engineering

Software is seen as a problem in systems engineering. Many large system projects
have been delayed because of software problems.

Emergent properties
e Properties of the system as a whole rather than properties that can be derived from

the
properties of components of a system

Department of CSE, SIBIT Page 5

Software Engineering 101S51

e Emergent properties are a consequence of the relationships between system
components. They can therefore only be assessed and measured once the
components have been integrated into a system.

Examples of emergent properties

1. The overall weight of the system

* Thisis an example of an emergent property that can be computed from individual
component properties.

2. The reliability of the system

» This depends on the reliability of system components and the rel ationships between
the components.

3. The usability of a system

 Thisisacomplex property which is not smply dependent on the system hardware
and software but also depends on the system operators and the environment where it
is used.

Types of emergent property

1. Functional properties

» These appear when all the parts of a system work together to achieve some
objective. For example, a bicycle has the functional property of being a transportation
device once it has been assembled from its components.

2. Non-functional emergent properties

» Examples are reliability, performance, safety, and security.

These relate to the behaviour of the system in its operational environment. They are
often critical for computer-based systems as failure to achieve some minimal defined
level in

these properties may make the system unusable.

Because of component inter-dependencies, faults can be propagated through the
system

System failures often occur because of unforeseen inter-relationships between
Components It is probably impossible to anticipate all possible component
relationships

Software reliability measures may give afalse picture of the system reliability

System reliability engineering

1. Hardware reliability

» What is the probability of a hardware component failing and how long does it take
to repair that component?

2. Software reiability

» How likely is it that a software component will produce an incorrect output.
Software failure is usually distinct from hardware failure in that software does not
wear out.

3. Operator reliability

» How likely is it that the operator of a system will make an error?

Influences on rdiability

Department of CSE, SIBIT Page 6

Software Engineering 101S51

Reliability relationships

1. Hardware failure can generate spurious signals that are outside the range of inputs
expected by the software

2. Software errors can cause alarms to be activated which cause operator stress and
lead to operator errors

3. The environment in which a system isinstalled can affect its reliability
Systems and their environment

Systems are not independent but exist in an environment

System’s function may be to change its environment. Environment affects the
functioning of the system e.g. system may require electrical supply fromits
environment

The organizational as well as the physical environment may be important

Town
Street
Building
Hecating Power Warter
systemm systeml Vstem
Sccurity | Lighting Wastc
sysfem Rysfem sysTam

Human and organisational factors

Process changes

* Does the system require changes to the work

processes in the environment?

Job changes

* Does the system de-skill the usersin an environment or
cause them to change the way they work?
Organisational changes

* Does the system change the political power structure in
an organisation?

Department of CSE, SIBIT Page 7

Software Engineering 101S51

System ar chitecture modelling

An architectura model presents an abstract view of the sub-systems making up a
system

may include major information flows between sub-systems

1 Usualy presented as ablock diagram

1 May identify different types of functional component in the model

System evolution

Large systems have along lifetime. They must evolve to meet changing requirements
Evolution isinherently costly

» Changes must be analysed from a technical and business perspective

* Sub-systems interact so unanticipated problems can arise

» Thereisrarely arationale for original design decisions

» System structure is corrupted as changes are made to it

Existing systems which must be maintained are sometimes called legacy systems

The system engineering process

Usualy follows a ‘waterfall” model because of the need for parallel development of
different parts of the system

* Little scope for iteration between phases because hardware

changes are very expensive. Software may have to compensate for hardware problems

Inevitably involves engineers from different disciplines who must work together

» Much scope for misunderstanding here. Different disciplines use a

different vocabulary and much negotiation is required. Engineers may have personal
agendas to fulfill.

Department of CSE, SIBIT Page 8

Software Engineering 101S51

UNIT-2
CRITICAL SYSTEMS, SOFTWARE PROCESSES

Critical Systems

e For critical systems, it is usually the case that the most important system property
is the dependability of the system.

e The dependability of a system reflects the user’s degree of trust in that system. It
reflects the extent of the user’s confidence that it will operate as users expect and
that it will not “fail” in normal use.

e Usefulness and trustworthiness are not the same thing. A system does not have to
be trusted to be useful

Dimensions of dependability

Pependakd line
Avalnbilicy Bedulnbe ot s
2 i ehulnhby Safen Secrrity
Tae abilizr-of ths Tl ubabaiy of il The zhility ot the The ahiliry of the
svElem to deliver system to deliver syElcLn Lo el svailom bo prodeel el
servicas whan samyaeies s speenfed? AT camsmophic apainsT accidantal or
repIIEsTEr Talure del Brerars Wnte sion

The softwar e process
A software processis a structured set of activities required to develop a software
system

It involves the following phases:

* Specification

* Design

* Validation

* Evolution

A software process model is an abstract representation of a process. It presents a
description of a process from some particular perspective.

Softwar e process models
1. The waterfall model
* Separate and distinct phases of specification and development

2. Evolutionary development
* Specification and development are interleaved

Department of CSE, SIBIT Page 9

Software Engineering 101S51

3. Formal systems development
* A mathematical system model isformally transformed to an
Implementation

4. Reuse-based devel opment
* The system is assembled from existing components

Waterfall model

Fequirzments
definition

Systermn and
sefterare design

Lmplamentation
and un:t testing

Integration and
Sy=lom lesling

Coeration and
LEEEIOCIHIL

The different phases in waterfall model are:
* Requirements analysis and definition
e System and software design
e Implementation and unit testing
e Integration and system testing
e Operation and maintenance
The drawback of the waterfall model is the difficulty of accommodating change after
the
process is underway.

Waterfall model problems
. Inflexible partitioning of the project into distinct stages
» Thismakesit difficult to respond to changing
customer requirements

This model is only appropriate when the requirements are well-understood.
Evolutionary development
Thereare 2 types:

1. Exploratory development

Department of CSE, SIBIT Page 10

Software Engineering 101S51

* Objective is to work with customers and to evolve afinal system from an initial
outline
specification. Should start with well-understood requirements

2.Throw-away prototyping
* Objective is to understand the system requirements. Should start
with poorly understood requirements

Conciurent
activitics

Tl
Version

Specification

Ouiling
description

Intermediate
VErsions

Development

Tinal
Version

Problems

® | ack of process visibility
 Systems are often poorly structured
» Special skills (e.g. in languages for rapid prototyping) may be required

Applicability

* For small or medium-size interactive systems

* For parts of large systems (e.g. the user interface)
* For short-lifetime systems

Formal systems development

It is based on the transformation of a mathematical specification through different
representations to an executable program.

Transformations are ‘correctness-preserving’ so it is straightforward to show that the
program conforms to its specification.

It is embodied in the ‘Cleanroom’ approach to software development.

Formal 1 Intcgration and 'y
transfcrmationfy sysTom festing)

Department of CSE, SIBIT Page 11

Software Engineering 101S51

Problems

® Need for specialised skills and training to apply the technique

« Difficult to formally specify some aspects of the system such as
the user interface

Applicability

» Critical systems especially those where a safety or security case
must be made before the system is put into operation

Reuse-oriented development

It is based on systematic reuse where systems are integrated from existing

components or COTS (Commercial-off-the-shelf) systems

L

Process stages

» Component analysis

* Requirements modification

* System design with reuse

» Development and integration

This approach is becoming more important but still limited experience with it

System design

l.'r'illl TCALG

Requirementsy,
b enbom 8

Bequirements

Clomponent
specification 8

analysis

Drevelopmeznt
anc imtzorntion

System .
validation g

Processiteration

System requirements ALWAY S evolve in the course of aproject so process iteration
where earlier stages are reworked is always part of the process for large systems
Iteration can be applied to any of the generic process models

Two (related) approaches
* Incremental development
* Spira development

Incremental development

Rather than deliver the system as a single delivery, the development and delivery is
broken down into increments with each increment delivering part of the required
functionality.

User requirements are prioritised and the highest priority requirements are included in
early increments.

Once the development of an increment is started, the requirements are frozen though
requirements for later increments can continue to evolve.

Department of CSE, SIBIT Page 12

Software Engineering 101S51

Ti=fi e o1 tiline
requirsntents 8

Develop system
increment

Dissign systen
architecture)

Inlzmile
imeremeril 8

Assipn requirsments §
0 inerements

Validat= %
inerement &

Firn!
ayatem
System ncomgleic
Advantages
e Customer value can be delivered with each
increment so system functionality is available earlier
e Early increments act as a prototype to help dicit
requirements for later increments
e Lower risk of overall project failure
e The highest priority system servicestend to
receive the most testing
Spiral development
Process is represented as a spiral rather than as a sequence of activities with
backtracking
Each loop in the spiral represents a phase in the process.
No fixed phases such as specification or design -loops in the spiral are chosen
depending on what is required.
Risks are explicitly assessed and resolved throughout the process.
Diatetmine ohjschves _h_ ' ! ;
altcrantives and i ST Eﬁ:ﬂ"??“—‘ :l-e':!ﬂm:‘lt'e_s
m:ffam__tﬁ]f,,—-"’f Ri:l';;‘-___‘_‘_“:l-“--‘:1 '\,, TESIHLE TIXEN
e i S —-—-_._m__:_'_:a'.'_'.ms ko
_ﬂ'"J J__,-""‘- Risk ""'-.._‘ __:3‘.\
,.-""’ T —— analviiz B e M
f" _.-"',’ ..---""-FH_ _hh‘_""‘-.. \.
o "l F_.__..r _ﬂl;].ﬂ.i -:;_ . Upeas-
/ 7 e R N ol "\ Pretorypz 3™ tioanl
II|Ilr-" /’ f,f /.ﬂ"" i F‘--._‘l\’m:nr-,'pa 21\,\ -\\P-'G'JC'FP"-‘ l"..l
4 . 15k I N, \
7 | mmalymg|Frobo-y | \
! "II [O I 7 \ | |
1 ll'l Baquirements plan e { Simmiaticas, models, benchmarks
I|II \ LY Ll yede plan Lencent of -':'L""--.____h?‘."‘ | 'JI
\ \ S Uperatien /é_,ﬂ,-,,- e ¢
b o e ~~equuements” Froduct e A
\ 0 P i i dezign J.JcTa.L'.cd/
T, —— - ., 2
\\ \._h_h\ Devalopment Recm:r'&:nen1 - el 4 r.u:eug::l
1\“ -H-""'"-._ prau ""ah-::_?ﬂ-.- ,’_r Code /
T = ™ Dwesign -~ Uptreer
e V&V = Integation .~
Blan next chaze S TN e et _FFFA.EEEPH:DCE f::t'_
- el Deuvelor, vesify
- neyi-lerel product
=

Department of CSE, SIBIT Page 13

Software Engineering 101S51

CASE
Computer-aided software engineering (CASE) is software to support software
development and evolution processes.

Activity automation

* Graphical editors for system model development

« Data dictionary to manage design entities

* Graphical Ul builder for user interface construction
 Debuggers to support program fault finding

» Automated translators to generate new versions of a program

Case technology

Case technology has led to significant improvements in the software process though
not

the order of magnitude improvements that were once predicted

« Software engineering requires creative thought - this is not
readily automatable

» Software engineering is ateam activity and, for large projects,
much time is spent in team interactions. CASE technology does
not really support these

CASE classification

Classification helps us understand the different types of CASE tools and their support
for process activities.

1. Functional perspective
* Tools are classified according to their specific function

2. Process perspective
* Tools are classified according to process activities that are supported

3. Integration perspective
* Tools are classified according to their organisation into integrated units

CASE integration

Tools
* Support individual process tasks such as design consistency checking, text editing,
etc.

Workbenches
* Support a process phase such as specification or design, Normally include a number
of integrated tools

Environments
* Support al or a substantial part of an entire software process.
Normally include severa integrated workbenches

Department of CSE, SIBIT Page 14

Software Engineering 101S51

Tools, workbenches, environments

CASE
techoodare
Taols Workberzhes Coviroaments
il Ll File Tnic zraned Prooess-ocatred
o TR COBNPATATIE COvHOITL TS CHTVIEO BN e
| FProgrammicg I Testing I
Rinzle nethind
win Ehrriches

St by aneal
ﬂ.l:!i.ltl_'.l

W merhnd

workhiern Ties

Cranenl pormose I anpiome mmerific

v sl iemn ey wankliemrdics

Department of CSE, SIBIT Page 15

Software Engineering 101S51

UNIT -3
REQUIREMENTS

Requirements
Requirement - Descriptions and specifications of a system.

Requirements engineering

e The process of establishing the services that the customer requires from a system
and the congtraints under which it operates and is developed.

e The requirements themselves are the descriptions of the system services and
constraints that are generated during the requirements engineering process.

Requirement : A requirement may range from a high-level abstract statement of a
service or of a system constraint to a detailed mathematical functional specification.

Requirements serve a dual function :

» May be the basis for abid for a contract - therefore must be open to interpretation
» May be the basis for the contract itself - therefore must be defined in detail

* Both these statements may be called requirements

Functional and non-functional requirements
Definitions

Functional requirements : Statements of services the system should provide, how the
system should react to particular inputs and how the system should behave in
particular situations.

Non-functional requirements: Constraints on the services or functions offered by the
system such as timing constraints, constraints on the development process, standards,
etc.

Domain regquirements : Requirements that come from the application domain of the
system and that reflect characteristics of that domain.

Detailed descriptions
Functional requirements

e They Describe functionality or system services

* Depend on the type of software, expected users and the type of system where the
software is used

e Functional user requirements may be high-level statements of what the system
should do but functional system requirements should describe the system services
in detail

Department of CSE, SIBIT Page 16

Software Engineering 101S51

Examples (The requirements can be defined as follows)

e The user shall be able to search either al of theinitial set of databases or select
a subset from it.

e The system shall provide appropriate viewers for the user to read documentsin
the document store.

e Every order shall be allocated a unique identifier (ORDER_ID) which the user
shall be able to copy to the account’s permanent storage area.

Non-functional requirements

e They define system properties and constraints like reliability, response time
and storage reguirements.

* Congtraints are I/O device capability, system representations, etc.

e Process requirements may also be specified mandating
a particular CASE system, programming language or development method

Non-functional requirements may be more critical than functional requirements. If
these are not met, the system becomes useless.

Non-functional classifications

1. Product requirements
These requirements specify that the delivered product must behave in a particular
way e.g. execution speed, reliability, etc.

2. Organizational requirements
* Requirements which are a consequence of organizational policies and procedures
eg.

process standards used, implementation requirements, etc.

3. Externa requirements

» Requirements which arise from factors which are external to the system and its
development process e.g. interoperability requirements, legislative requirements,

etc.

Department of CSE, SIBIT Page 17

Software Engineering 101S51

Medi-Fasrtaonal
rUireinants

Bvon bt Chaasanm gl Foelomizal
Ponzkbiity Interoperabilicy
Ty Tropdrame neatinn Rtandands Toomizlabims
[Tl raquirements IeCpuirarsats CEqUUIEIRIE

g rerents raqerements reqmcsnents
[Ea T B T el

Feliabality Cthical
oA oy Lo el
Frivacy 5 afany
requiramiant: reqUMIEnIRTE

Types of requirement

1. User requirements
* Statements in natural language plus diagrams of the services the system provides
and its
operational constraints. Written for customers
2. System requirements
* A structured document setting out detailed descriptions of the system services.
Written
as a contract between client and contractor
3. Software specification
* A detailed software description which can serve as abasis for adesign
or implementation. These set of requirements are written for developers

User requirements

» Should describe functional and non-functional requirements so that they are
understandable by system users who don’t have detailed technical knowledge

e User requirements are defined using natural language, tables and diagrams

Some of the problems with natural language
1. Lack of clarity

* Precision is difficult without making the document difficult to read
2. Requirements confusion

* Functional and non-functional regquirements tend to be mixed-up
3. Requirements amalgamation

» Severa different requirements may be expressed together

System requirements

e More detailed specifications of user requirements

e Serveasabassfor designing the system

e May be used as part of the system contract

e System requirements may be expressed using system models

Department of CSE, SIBIT Page 18

Software Engineering 10151

I nter face specification

Most systems must operate with other systems and the operating interfaces must be
specified as part of the requirements

Three types of interface may have to be defined
* Procedural interfaces
» Data structures that are exchanged
» Data representations
Formal notations are an effective technique for interface specification

The requirements document
The requirements document is the official statement of what is required of the system
developers. It should include both a definition and a specification of requirements

The requirements document is NOT a design document. As far as possible, it should
set of WHAT the system should do rather than HOW it should do it.

Specify the requireme=nts and
read them to chock that they
meet their needs They
specits changes o the
IeunTlnely

-.E'l'}f'ﬂTE"‘.l'l‘i CIATOITHTSR

Use e reguiremeis

A e : document to plan 3 bid for
= the svstein and to plan the
system developiment process
= s Users of a
zo the requizscments o .
SWsteny clngincers nnderatand whar syatem s m requirements
be develuped document

T TTse the raqiirements 10
N P develop validoldon sl Lot
~ e wystenn

Use the requizemients e help
nnderstand the syetem and
the relatonships betweon its
Qarts
Requirements document requirements — The requirement doc should have the
following :
e Specify externa system behaviour
e Specify implementation constraints
e Easy to change
e Serve as reference tool for maintenance
* Record forethought about the life cycle of the

systemi.e. predict changes
e Characterise responses to unexpected events

Sarstem
I AINTENaANCe
CIYTICEE:

Department of CSE, SIBIT Page 19

Software Engineering 101S51

Requirements document structure - These are the various contents that the req doc
should possess :

e Introduction

e Glossary

e User requirements definition

e System architecture

e System requirements specification
e System models

e System evolution

e Appendices

e Index

Requirements engineering processes

The processes used for RE vary widely depending on the application domain, the
people

involved and the organization developing the regquirements

These are some of the generic activities common to all processes

* Requirements elicitation

* Requirements analysis

* Requirements validation

* Requirements management

Bequirements
eliritation and
analyais

J Requitements

specilicalion

Regirernengs
walidation

Vet lits:
repot

Svslem
Tl

Trser and syswem

1I.'[1'I1.il'l.‘1:'lli‘.!IT!':
Requirements
- docupzenl
Feasibility studies

A feasibility study decides whether or not the proposed system is worthwhile
It is ashort focused study that checks

« |f the system contributes to organisational objectives

* If the system can be engineered using current technology and within budget
* If the system can be integrated with other systems that are used

Elicitation and analysis

e Sometimes called requirements elicitation or requirements discovery

« Involves technical staff working with customers to find out about the application
domain, the services that the system should provide and the system’s operational
constraints

Department of CSE, SIBIT Page 20

Software Engineering 101S51

* May involve end-users, managers, engineers involved in maintenance, domain
experts, trade unions, etc. These are called stakeholders

Requirements validation
e Concerned with demonstrating that the requirements define the system that the
customer really wants
e Reqguirements error costs are high so validation is very important
Fixing a requirements error after delivery may cost up to 100 times the cost of
fixing
an implementation error

Requirements management
* Reguirements management is the process of managing changing requirements
during the requirements engineering process and system devel opment
e Reqguirements are inevitably incomplete and inconsi stent
New requirements emerge during the process as business needs change and a
better
understanding of the system is developed
Different viewpoints have different requirements and these are often contradictory

Requirements change

e The priority of requirements from different viewpoints changes during the
development process

e System customers may specify requirements from a business perspective that
conflict with end-user requirements

e The business and technical environment of the system changes during its
devel opment

Department of CSE, SIBIT Page 21

Software Engineering 101S51

UNIT 4
SYSTEM MODELS, PROJECT MANAGEMENT

System models

System modeling : System modeling helps the analyst to understand the functionality
of the system and models are used to communicate with customers

Different models present the system from different perspectives

* External perspective showing the system’s context or environment
 Behavioral perspective showing the behavior of the system

* Structural perspective showing the system or data architecture

Structured methods

e Structured methods incorporate system modeling as an inherent part of the method

e Methods define a set of models, a process for deriving these models and rules and
guidelines that should apply to the models

e CASE tools support system modeling as part of a structured method

Context models

e Context models are used to illustrate the boundaries of a system

e Social and organizational concerns may affect the decision on where to position
system boundaries

e Architectural models show the a system and its relationship with other systems

Process models

e Process models show the overall process and the processes that are supported by
the system

e Data flow models may be used to show the processes and the flow of information
from one process to another

Behavioural models

* Behavioural models are used to describe the overal behaviour of a system

e Two types of behavioural model are shown here
» Data processing models that show how datais processed as it moves through the
system
* State machine models that show the systems response to events

e Both of these models are required for a description of the system’s behaviour

Data-processing models

e Dataflow diagrams are used to model the system’s data processing
e These show the processing steps as data flows through a system

e Intrinsic part of many analysis methods

» Simple and intuitive notation that customers can understand

e Show end-to-end processing of data

Object models
e Object models describe the system in terms of object classes

Department of CSE, SIBIT Page 22

Software Engineering 101S51

e Anobject class is an abstraction over a set of objects with common attributes and
the services (operations) provided by each object

e Various object models may be produced

* Inheritance models

» Aggregation models

* Interaction models

Object models

e Naturd ways of reflecting the real-world entities manipulated by the system

e More abstract entities are more difficult to model using this approach

e Object classidentification is recognised as a difficult process requiring a deep
understanding of the application domain

e Object classes reflecting domain entities are reusable across systems

The Unified Modeling Language
« Devised by the developers of widely used objectoriented analysis and design
methods
* Has become an effective standard for objectoriented modelling
e Notation
* Object classes are rectangles with the name at the top, attributes In he middle
section
and operations in the bottom section
* Relationships between object classes (known as associations) are shown as lines
linking objects
* Inheritance is referred to as generalisation and is shown‘upwards’ rather than
‘downwards’ in a hierarchy

Project Management

It is concerned with activities involved in ensuring that software is delivered on time
and on schedule and in accordance with the requirements of the organisations
developing

and procuring the software

Project management is needed because software development is always subject to
budget and schedule constraints that are set by the organisation developing the
software

Softwar e management distinctions

e The product isintangible

e The product is uniquely flexible

e Software engineering is not recognized as an engineering discipline with the same
status as mechanical, electrical engineering, etc.

e The software development process is not standardised

e Many software projects are ‘one-off' projects

Management activities

e Proposa writing includes Feasibility, Project costing, Overall requirements
(Internal and External), terms and conditions

* Resource requirements al so include Personnel selection

Department of CSE, SIBIT Page 23

Software Engineering 101S51

e Project planning and scheduling
e Project monitoring and reviews also including Personnel and Process evaluation
e Report writing and presentations

Project staffing involves the following

e May not be possible to appoint the ideal people to work on a project

e Project budget may not allow for the use of highlypaid staff

* Staff with the appropriate experience may not be available

e An organization may wish to develop employee skills on a software project

Managers have to work within these constraints especially when (asis currently the
case) thereis an international shortage of skilled IT staff

Project planning

e Probably the most time-consuming project management activity

e Continuous activity from initial concept through to system delivery. Plans must be
regularly revised as new information becomes available

* Variousdifferent types of plan may be developed to support the main software
project plan that is concerned with schedule and budget

Types of project plan

Plan Description

Quality plan Describes the quality procedurss and
slandards al will be used 11 a project.

Validaton plan Describes (e approacl. resources and
schodule vsed for svstem validation

Conlieuraton Describes the ecnlipuration management

managetnenl plau procedures and struclures W be used,

Mainleuanes plan Predicts the maintenance requiremnents of
the systam, maintenancs costs and effort
required

Staff developmenl pla. Describes how (he skills aud expenence of
the project leam meinbers will be
developed.

Project plan structure - It should include the following:

e Introduction

e Project organization

e Risk anaysis

e Hardware and software resource requirements

e Work breakdown

e Project schedule

e Monitoring and reporting mechanisms

Activity organization

e Adctivities in a project should be organized to produce tangible outputs for
management to judge progress

Department of CSE, SIBIT Page 24

Software Engineering 101S51

e Milestones are the end-point of a process activity

e Déliverables are project results delivered to customers at the end of some major
project phase such as specification or design

* The waterfall process alows for the straightforward definition of progress
milestones

Project scheduling

e Split project into tasks and estimate time and resources required to complete each
task

e Organize tasks concurrently to make optimal use of workforce

* Minimize task dependencies to avoid delays caused by one task waiting for
another to
complete

* Dependent on project managers intuition and Experience

The project scheduling process

I iy anlivily

dependeocics

Aliocaie penple

! Creale pimgect
1 J e gy 1 Al

Snflwarm Activily chars
S TLEER S R and bar charis

Scheduling problems

e Estimating the difficulty of problems and hence the cost of developing a solution
is hard

* Productivity is not proportional to the number of people working on a task

e Adding people to alate project makes it later because of communication
overheads

* The unexpected always happens. Always allow contingency in planning

Department of CSE, SIBIT Page 25

Software Engineering 101S51

Activity network
ST 15 daye

'\\ I}’ I

ENET

Risk management
e Risk management is concerned with identifying risks and drawing up plansto
minimize their effect on a project.
e Avriskisaprobability that some adverse circumstance will occur.
* Project risks affect schedule or resources
* Product risks affect the quality or performance of the software being developed
 Business risks affect the organization developing or procuring the software
The risk management process
e Risk identification
* ldentify project, product and business risks
e Risk anaysis
» Assess the likelihood and consequences of these risks
e Risk planning
* Draw up plans to avoid or minimise the effects of the risk
e Risk monitoring
» Monitor the risks throughout the project

Risk identification

e Technology risks

e Peoplerisks

e Organizational risks
* Requirements risks
e Estimation risks

Risk analysis
e Assess probability and seriousness of each risk
« Probability may be very low, low, moderate, high or very high

Department of CSE, SIBIT Page 26

Software Engineering 101S51

* Risk effects might be catastrophic, serious, tolerable or insignificant

Risk planning
* Consider each risk and develop a strategy to manage that risk
e Avoidance strategies
* The probability that the risk will arise is reduced
e Minimization strategies
» The impact of the risk on the project or product will be reduced
» Contingency plans
* If the risk arises, contingency plans are plans to dea with that risk

Department of CSE, SIBIT Page 27

Software Engineering 101S51

UNIT -5
SOFTWARE DESIGN

Softwar e Design

Architectural Design
e Establisning the overall Structure of a software system.
Objectives
e Tointroduce software engineering and to explain its
importance
e To set out the answers to key questions about software
engineering
® Tointroduce ethical and professional issues and to explain why
they are of concern to software engineers

Software architecture
e Thedesign process for identifying the sub-systems making up a
system and the framework for sub-system control and
communication is the architectural design

e Theoutput of this design processis a description of the
software architecture

Architectural design
e Anearly stage of the system design process
* Represents the link between specification and design processes
e Often carried out in parallel with some specification activities

e Itinvolvesidentifying major system components and their
communications

Advantages of explicit architecture

e Stakeholder communication: Architecture may be used as a
focus of discussion by system stakeholders

e System analysis: Means that analysis of whether the system can
meet its non functiona requirements is possible or not.

e Large-scalereuse: The architecture may be reusable across a
range of systems

Architectural Design Decisions

Architectural design process

System structuring. The system is decomposed into several principal sub-
systems and communications between these sub-systems are identified.

Control modeling: A model of the control relationships between the different
parts of the system is established.

Modular decomposition: The identified sub-systems are decomposed into
modules

Department of CSE, SIBIT Page 28

Software Engineering 101S51

Sub-systems and modules

. A sub-system is a system in its own right whose operation is independent
of the services provided by other sub-systems.

. A module is a system component that provides services to other
components but would not normally be considered as a separate system

Architectural models

. Different architectural models may be produced during the design
process

. Each model presents different perspectives on them architecture

. Static structural model that shows the major system components

. Dynamic process model that shows the process structure of the system
. Interface model that defines sub-system interfaces

. Rel ationships model such as a data-flow model

Architectural styles

The architectural model of a system may conform to a generic architectural

model or style.

An awareness of these styles can simplify the problem of defining system

architectures

* However, most large systems are heterogeneous and do not follow a single
architectural style

Architecture attributes

. Performance: Localize operations to minimize sub-system

communication

. Security: Use alayered architecture with critical assetsin inner layers

e Sdfety: Isolate safety-critical components

e Availability: Include redundant components in the architecture

. Maintainability: Use fine-grain, self-contained components

System structuring

. Concerned with decomposing the system into interacting sub-systems

. The architectural design is normally expressed as a block diagram

presenting an overview of the system structure

. More specific models showing how sub-systems share data, are

distributed and interface with each other may also be developed

Packing robot control system

Vision

system

Obj ect Arm Gripper
controller controller

identification
A

system

Packagi ng
sel ection
system

Packing Conveyor
Sy stem i - controller .

Department of CSE, SIBIT Page 29

Software Engineering 10151

System Organization

The repository model
. Sub-systems must exchange data. This may be done in two
ways:
. Shared datais held in a central database or repository and may
be accessed by all sub- systems.

. Each sub-system maintains its own database and passes data
explicitly to other sub- systems
. When large amounts of data are to be shared, the repository

model of sharing is most commonly used.

CASE toolset architecture
i
Design Code
editor generator
Design Project
translator repository

Design Report
analyser generator

Repository model characteristics

Advantages
e Efficient way to share large amounts of data
e Sub-systems need not be concerned with how datais produced
* Centralized management e.g. backup, security, etc.
e Sharing model is published as the repository schema
Disadvantages
e Sub-systems must agree on arepository data model. Inevitably
acompromise
e Dataevolutionisdifficult and expensive
* No scope for specific management policies
« Difficult to distribute efficiently

Client-server architecture

e Distributed system model which shows how data and
processing is distributed across arange of components

Department of CSE, SIBIT Page 30

Software Engineering 101S51

e Set of stand-alone servers which provide specific services such
as printing, data management, etc.

e Set of clients which call on these services

e Network which allows clients to access servers

Film and picture library

Gy @)

Wide-bandwidth network

Video Picture Hypertext
server server server

Film clip Digitized Hypertext
files photographs web

Client-server characteristics

Advantages
e Distribution of datais straightforward
e Makes effective use of networked systems. May require
cheaper hardware
e Easy to add new servers or upgrade existing servers

Disadvantages
e No shared data model so sub-systems use different data
organization. Data interchange may be inefficient
e Redundant management in each server
e Nocentral register of names and services - it may be hard to
find out what servers and services are available

Abstract machine model
e Used to model the interfacing of sub-systems
e Organizes the system into a set of layers (or abstract machines)
each of which provide a set of services
e Supports the incremental development of sub-Systemsin
different layers. When alayer interface changes, only the adjacent
layer is affected
* However, often difficult to structure systems in this way

Department of CSE, SIBIT Page 31

Software Engineering 101S51

Version management system

I Object management

Database system

Operating
system

Control Styles

Control models: Are concerned with the control flow between sub-systems.
Distinct from the system decomposition model
e Centralized control: One sub-system has overall responsibility
for control and starts and stops other sub-systems
e Event-based control: Each sub-system can respond to
externally generated events from other sub-systems or the system’s
environment

Centralized control
e A control sub-system takes responsibility for managing the
execution of other sub-systems
e Call-return model: Top-down subroutine model where control
starts at the top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems
e Manager model: Applicable to concurrent systems. One system
component controls the stopping, starting and coordination of other
system processes. Can be implemented in sequential systems as a
case statement

Call-return model

Main
program

Routine 1 Routine 2 Routine 3

| Routinel.l. | Routinel.ZI | Routine3.1. | Routine3.2.

Department of CSE, SIBIT

Page 32

Software Engineering 101S51

Real-time system control

System
controller
User
interface

Event-driven systems:

Driven by externally generated events where the timing of the
event is outwit the control of the sub-systems which process the
event.

' Computation

processes

Fault
handl er

Two principal event-driven models

e Broadcast models. An event is broadcast to all sub-systems.
Any sub-system which can handle the event may do so.

e Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed to some
other component for processing

Other event driven models include spreadsheets and production
systems

Broadcast model

» Effective in integrating sub-systems on different computersin a
network

e Sub-systems register an interest in specific events. When these
occur, control is transferred to the sub-system which can handle the
event

e Control policy is not embedded in the event and message
handler. Sub-systems decide on events of interest to them

e However, sub-systems don’t know if or when an event will be
handled

Selective broadcasting

Sub-system Sub-system Sub-system

Event and message handler

Department of CSE, SIBIT Page 33

Software Engineering 101S51

Interrupt-driven systems
e Used in real-time systems where fast response to an event is essential
e There are known interrupt types with a handler defined for each type
e Each typeis associated with a memory location and a hardware switch
causes transfer to its handler

* Allows fast response but complex to program and difficult to validate

Interrupt-driven control

I I Nnterrupts

Y v v v

I Nnterrupt
vector

Handler Handl er Handler Han-dler
1 2 3 4

Process Process Process Process
a1 2 3 4

Modular decomposition Styles
e Another structural level where sub-systems are decomposed
into modules
e Two modular decomposition models covered
* Anobject model where the system is decomposed into
interacting objects
e A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also known
as the pipeline model
e If possible, decisions about concurrency should be delayed
until modules are implemented

Object models
e Structure the system into a set of loosely coupled objects with
well-defined interfaces
e Object-oriented decomposition is concerned with identifying
object classes, their attributes and operations
* When implemented, objects are created from these classes and
some control model used to coordinate object operations

Department of CSE, SIBIT Page 34

Software Engineering

101S51

Invoice processing system

Customer Receipt
customer# invoice#
name <"": ----> date
address ' IFveiEs N amount
credit period ' \ customer#

! invoi ce# '
: date :
' amount ;
: customer :
1
Payment] issue () i
. 1
invoi cet sendReminder () !
dell e = acceptPayment (0] :
amount sendReceipt ()
customer#

Data-flow models
e Functional transformations process their inputs to produce
outputs

e May bereferred to as a pipe and filter model (asin UNIX shell)

e Variants of this approach are very common. When
transformations are sequential, thisis a batch sequential model
which is extensively used in data processing systems

e Not really suitable for interactive systems

Domain-specific architectures
e Architectura models which are specific to some application
domain
e Two types of domain-specific model

. Generic models which are abstractions from a number of real

systems and which encapsulate the principal characteristics of these

systems

e Reference models which are more abstract, idealized model.
Provide a means of information about that class of system and of
comparing different architectures

e Generic models are usually bottom-up models; Reference
models are top-down models

Object-oriented Design
e Designing systems using self- contained objects and object
classes

Characteristics of OOD
e Objects are abstractions of real-world or system entities and
manage themselves
e Objects are independent and encapsulate state and
representation information.
e System functionality is expressed in terms of object services

Department of CSE, SIBIT

Page 35

Software Engineering 101S51

e Shared data areas are eliminated. Objects communicate by
message passing

e Objects may be distributed and may execute sequentially or in
parallel.

Interacting objects

Jl: C1 03:C3 o4: C4
state o1 EE— . state 03 - state o4
ops1(ops3 () ops4
02: C3 06: C1 05:C5

state o2 state 06 state o5
ops3 () ops1 O ops5 O

Advantages of OOD

. Easier maintenance. Objects may be understood as stand-alone entities
. Objects are appropriate reusable components.
. For some systems, there may be an obvious mapping from real world

entities to system objects

Object-oriented development

. Object-oriented analysis, design and programming are related but
distinct

. OOA is concerned with developing an object model of the application
domain

. OOD is concerned with developing an object-oriented system model to
implement requirements
. OOP is concerned with realizing an OOD using an OO programming

language such as Java or C++

Objects and object classes

e Objects are entities in a software system which represent instances of real-
world and system entities

e Object classes are templates for objects. They may be used to createobjects

® Object classes may inherit attributes and services from other object classes

Objects

e An Object is an entity which has a state and a defined set of operations
which operate on that state. The state is represented as a set of object
attributes. The operations associated with the object provide services to
other objects (clients) which request these services when some
computation is required.

e Objects are created according to some object class definition. An object
class definition serves as atemplate for objects. It includes declarations of

Department of CSE, SIBIT Page 36

Software Engineering 101S51

all the attributes and services which should be associated with an object of
that class.

The Unified Modeling L anguage
e Severa different notations for describing object-oriented
designs were proposed in the 1980s and 1990s
e TheUnified Modeling Language is an integration of these
notations
e It describes notations for a number of different models that may
be produced during OO analysis and design
e Itisnow ade facto standard for OO modeling

Employee object class (UML)

Employee

name: string

address: string

dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept

manager: Employee

salary: integer

status: {current, left, retired}
taxCode: integer

join O

leave O

retire
changeDetails

Object communication
e Conceptually, objects communicate by message passing.
e Messages
e The name of the service requested by the calling object.
e Copies of the information required to execute the service and
the name of a holder for the result of the service.
e In practice, messages are often implemented by procedure calls
e Name = procedure name.
e Information = parameter list.

Message examples
/I Call a method associated with a buffer
/I object that returns the next value
/I inthe buffer
v = circularBuffer.Get ();
/I Call the method associated with a
[/l thermostat object that sets the

Department of CSE, SIBIT Page 37

Software Engineering 101S51

Il temperature to be maintained
thermostat.setTemp (20);

Generalization and inheritance
e Objects are members of classes which define attribute types
and operations
e Classes may be arranged in a class hierarchy where one class (a
super-class) is a generalization of one or more other classes (sub-
classes)
e A sub-classinherits the attributes and operations from its super
class and may add new methods or attributes of its own
e Generalization in the UML is implemented as inheritance in
OO0 programming languages

A generalization hierarchy

Employee
Manager Programmer
budgetsControlled project
dateAppointed proglanguages
Project Dept. Strategic
Manager Manager Manager
projects dept responsibilities

Advantages of inheritance
e Itisan abstraction mechanism which may be used to classify
entities
e Itisareuse mechanism at both the design and the programming
level
e Theinheritance graph is a source of organizational knowledge
about domains and systems

Problems with inheritance
e Object classes are not self-contained. they cannot be
understood without reference to their super-classes
e Designers have atendency to reuse the inheritance graph
created during analysis. Can lead to significant inefficiency
e Theinheritance graphs of analysis, design and implementation
have different functions and should be separately maintained

Department of CSE, SIBIT Page 38

Software Engineering 101S51

Inheritance and OOD
e There are differing views as to whether inheritance is
fundamental to OOD.
e View 1. Identifying the inheritance hierarchy or network isa
fundamental part of object-oriented design. Obviously this can only
be implemented using an OOPL.
e View 2. Inheritance is a useful implementation concept which
allows reuse of attribute and operation definitions. Identifying an
inheritance hierarchy at the design stage places unnecessary
restrictions on the implementation
e Inheritance introduces complexity and this is undesirable,
especialy in critical systems

UML associations
e Objects and object classes participate in relationships with
other objects and object classes
e Inthe UML, a generalized relationship is indicated by an
association
e Associations may be annotated with information that describes
the association Associations are general but may indicate that an
attribute of an object is an associated object or that a method relies
on an associated object
An association model

Employee Department

is-member-of

is-managed-by

manages

Manager

Coordscl, c2;

Satellite satl, sat? ;

Navigator theNavigator ;
public Position givePosition ()
{

return currentPosition ;

}

Department of CSE, SIBIT Page 39

Software Engineering 101S51

Concurrent objects
e The nature of objects as self-contained entities make them
suitable for concurrent implementation
e The message-passing model of object communication can be
implemented directly if objects are running on separate processors
in a distributed system

Servers and active objects
e Servers: The object isimplemented as a parallel process
(server) with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits for further
requests for service
e Active objects. Objects are implemented as parallel processes
and the internal object state may be changed by the object itself and
not simply by external calls.

Object- Oriented design process

Active transponder object
e Active objects may have their attributes modified by operations
but may also update them autonomously using internal operations
e Transponder object broadcasts an aircraft’s position. The
position may be updated using a satellite positioning system. The
object periodically update the position by triangulation from
satellites.

An active transponder object
class Transponder extends Thread {
Position currentPositi on ;

public void run ()

{

while (true)

{

cl = satl.position () ;

c2 = sat2.position () ;

currentPosition = theNavigator.compute (c1, c2) ;
}

}
} //Transponder

Javathreads
e Threadsin Java are a simple construct for implementing
concurrent objects
e Threads must include a method called run() and thisis started
up by the Java run-time system

Department of CSE, SIBIT Page 40

Software Engineering 101S51

e Active objects typically include an infinite loop so that they are
always carrying out the computation

An object-oriented design process
e Define the context and modes of use of the system
e Design the system architecture
e ldentify the principal system objects
e Develop design models
e Specify object interfaces

Layered architecture

i Data display IaKer where objects are
b concerned with preparing and
«subsystem» presenting the data in a human-
Data display readable form

_____________ 1___

Data archiving layer where objects
«subsystem» are concerned with storing the data
Data archiving for future processing

_____________ t--___

Data processing layer where objects
«subsystem» _ are concerned with checking and
Data processing integrating the collected data

_____________ t--___

Data collection layer where objects
«subsystem» are concerned with acquiring data
Data collection from remote sources

System context and models of use
Develop an understanding of the relationships between the software
being designed and its external environment
e System context: A static model that describes other systemsin
the environment. Use a subsystem model to show other systems.
Following slide shows the systems around the weather station
system.
e Modd of system use: A dynamic model that describes how the
system interacts with its environment. Use use-cases to show
interactions

Department of CSE, SIBIT Page 41

Software Engineering 101S51

Subsystems in the weather mapping system

«su bsystenl»
Data collection «subsystem»
Data display
Observer Satellite
User Ma
L Comms interface displ‘;y
/
Weather Map
station I— Balloon Map printer
«subsystem» «subsystem»
Data processing Data archiving
_ Data
ata Data — 1 storage
checking 7 | integration g
Map store Data store
Use-casesfor the weather station
i
Startup
Shutdown
% Report
Calibrate
Test
Use-case description
System Weather station
Use-case Report
Actors Weather data collection system,
Weather station

Data The weather station sends a
summary of the weather data that
has been collected from the
instruments in the collection
period to the weather data
collection system. The data sent
are the maximum minimum and
average ground and air
temperatures, the maximum,
minimum and average air
pressures, the maximum,
minimum and average wind

Department of CSE, SIBIT Page 42

Software Engineering 101S51

speeds, the total rainfall and the
wind direction as sampled at 5
minute sintervals.

Stimulus The weather data collection
system establishes a modem link
with the weather station and
requests transmission of the data.

Response The summarized data is sent to
the weather data collection
system

Comments Weather stations are usualy

asked to report once per hour but
this frequency may differ from
one station to the other and may
be modified in future
Architectural design

e Once interactions between the system and its environment have

been understood, you use this information for designing the system

architecture

e Layered architecture is appropriate for the weather station

e Interface layer for handling communications

e Datacaollection layer for managing instruments

e Instruments layer for collecting data

e There should be no more than 7 entitiesin an architectural

model

Weather station architecture

Weather station

«subsystem» Manages all
Interface external
communications
«subsystem» Collects and

summarises

Data collection weather data

«subsystem» . Package of
Instruments instruments for raw

data collections

Object identification
e ldentifying objects (or object classes) isthe most difficult part
of object oriented design
e Thereisno 'magic formula for object identification. It relies on
the skill, experience and domain knowledge of system designers
e Object identification is an iterative process. You are unlikely to
get it right first time

Department of CSE, SIBIT Page 43

Software Engineering 101S51

Approaches to identification
e Useagrammatical approach based on a natura language
description of the system (used in Hood method)
e Basetheidentification on tangible things in the application
domain
e Useabehavioral approach and identify objects based on what
participates in what behavior
e Use a scenario-based analysis. The objects, attributes and
methods in each scenario are identified

Weather station object classes
e Ground thermometer, Anemometer, Barometer: Application
domain objects that are “hardware’ objects related to the instruments
in the system.
» Weather station: The basic interface of the weather station to its
environment. It therefore reflects the interactions identified in the
use-case mode
e Weather data: Encapsulates the summarized data from the
instruments

Weather station object classes

WeaterStation WeatherData
identifier airTemperatures
reportWeather () 5\:?_] L(jjr;d'lt'izgeratures
calibrate (instruments) w;nle?rections
test ()
startup (instruments) E:iisleﬁres
shutdown (instruments)

collect)

summarise ()

Ground Anemometer Barometer
thermometer windSpeed pressure
temperature windDirection height
test 0 test () test O
calibrate () calibrate ()

Further objects and object refinement

e Usedomain knowledge to identify more objects and operations
e Weather stations should have a unique identifier

e Weather stations are remotely situated so instrument failures
have to be reported automatically. Therefore attributes and
operations for self-checking are required

e Active or passive objects: In this case, abjects are passive and
collect data on request rather than autonomously. This introduces
flexibility at the expense of controller processing time

Department of CSE, SIBIT Page 44

Software Engineering 101S51

Design models

e Design models show the objects and object classes and
relationships between these entities

e Static models describe the static structure of the system in
terms of object classes and relationships

e Dynamic models describe the dynamic interactions between
objects.

Examples of design models

e Sub-system models that show logical groupings of objects into
coherent subsystems

e Sequence models that show the sequence of object interactions
e State machine models that show how individua objects change
their state in response to events

e Other models include use-case models, aggregation models,
generalization models, etc.

Subsystem models

e Shows how the design is organized into logically related groups
of objects

e Inthe UML, these are shown using packages — an
encapsulation construct. This is alogical model. The actual
organization of objectsin the system may be different.

I Weather station subsystems

«subsystem» «subsystem»
Interface Data collection
CommsController WeatherData
Instrument
WeatherStation — Status
«subsystem»
Instruments
Air .
thermometer RainGauge Anemometer
theGrlr'gg::‘ndeter Barometer windVane
Sequence models
e Sequence models show the sequence of object interactions that
take place

e Objects are arranged horizontally across the top

e Timeisrepresented vertically so models are read top to bottom
e Interactions are represented by labeled arrows, Different styles
of arrow represent different types of interaction

Department of CSE, SIBIT Page 45

request (report) :

Software Engineering 101S51

e A thinrectangle in an object lifeline represents the time when
the object is the controlling object in the system

Data collection sequence

:CommsController ‘WeatherStation ‘WeatherData

acknowledge ()

>

report ()

summarise ()

send (report)

=<

reply (report)

acknowledge ()

Statecharts

Show how objects respond to different service requests and the state
transitions triggered by these requests

If object state is Shutdown then it responds to a Startup() message In
the waiting state the objec t is waiting for further messages

If reportWeather () then system moves to summarizing state

If calibrate () the system movesto a calibrating state

A collecting state is entered when a clock signal is received

Department of CSE, SIBIT Page 46

Software Engineering 101S51

Weather station state diagram

1 Operation i

P calibrate 0 > Calibrating

I ‘ ¢ calibration OK
test .
Shutdown startup O > Waiting —»O Testing
A T t ission d

T shutdown () ransmission done test complete

Transmitting

clock collection
done reportWeather ()
weather summary
v Summarising complete
Collecting

Object interface specification

e Object interfaces have to be specified so that the objects and
other components can be designed in paralel

e Designers should avoid designing the interface representation
but should hide this in the object itself

e Objects may have several interfaces which are viewpoints on
the methods provided

e TheUML uses class diagrams for interface specification but
Java may also be used

Weather station interface
interface WeatherStation {

public void WeatherStation () ;
public void startup () ;

public void startup (Instrument i) ;
public void shutdown () ;

public void shutdown (Instrument i) ;
public void reportWeather () ;
public void test () ;

public void test (Instrument i) ;
public void calibrate (Instrument i) ;
publicint getlD () ;

} //WeatherStation

Department of CSE, SIBIT Page 47

Software Engineering 101S51

Design evolution
e Hiding information inside objects means that changes made to an object
do not affect other objects in an unpredictable way
e Assume pollution monitoring facilities are to be added to weather
stations. These sample the air and compute the amount of different
pollutants in the atmosphere
e Pollution readings are transmitted with weather data

Changes required
. Add an object class called ‘Air quality’ as part of
Weather Station

. Add an operation reportAirQuality to WeatherStation. Modify
the control software to collect pollution readings
. Add objects representing pollution monitoring instruments

Pollution monitoring

i
WeatherStation Air quality
identifier
NOData
reportWeather () smokeData
reportAirQuality () benzeneData
calibrate (instruments)
test) collect ()
startup (instruments) summarise ()

shutdown (instruments)

Pollution monitoring instruments

NOmeter SmokeMeter

BenzeneMeter

e OOD is an approach to design so that design components have their own
private state and operations

e Objects should have constructor and inspection operations. They provide
services to other objects

Department of CSE, SIBIT Page 48

Software Engineering 101S51

e Objects may be implemented sequentially or concurrently

e The Unified Modeling Language provides different notations for
defining different object models

« A range of different models may be produced during an object-oriented
design process. These include static and dynamic system models

* Object interfaces should be defined precisely using e.g. a programming

language like Java.

Object-oriented design simplifies system evolution

Department of CSE, SIBIT Page 49

Software Engineering 101S51

UNIT -6
Development

Rapid Softwar e Development

Because of rapidly changing business environments, businesses have to
respond to new opportunities and competition. This requires software and
rapid development and delivery is not often the most critical requirement for
software systems. Businesses may be willing to accept lower quality software
if rapid delivery of essential functionality is possible.

Requirements

Because of the changing environment, it is often impossible to arrive at a
stable, consistent set of system requirements. Therefore awaterfall model of
development is impractical and an approach to development based on iterative

specification and delivery isthe only way to deliver software quickly.

Characteristics of RAD processes

e The processes of specification, design and implementation are
concurrent. There is no detailed specification and design documentation
IS minimized.

e Thesystem is developed in a series of increments. End users evaluate
each increment and make proposals for later increments.

e System user interfaces are usualy developed using an interactive
development system.

An iterative development process

Defink system

deliverables
De5|g_n system Sp_eafy system B_U|Id system _ Validate
architecture Increment increment Increment
Mo
Deliver final System Validate Integrate
system complete? system « increment

YES

Advantages of incremental development

e Accelerated delivery of customer services. Each increment delivers the
highest priority functionality to the customer.

Department of CSE, SIBIT Page 50

Software Engineering 101S51

e User engagement with the system. Users have to be involved in the
development which means the system is more likely to meet their
requirements and the users are more committed to the system.

Problems with incremental development

< Management problems: Progress can be hard to judge and problems hard to
find because there is no documentation to demonstrate what has been done.

e Contractual problems: The normal contract may include a specification;
without a specification, different forms of contract have to be used.

e Validation problems: Without a specification, what is the system being tested
against?

e Maintenance problems: Continual change tends to corrupt software structure
making it more expensive to change and evolve to meet new requirements.

Prototyping

For some large systems, incremental iterative development and delivery may
be impractical; thisis especialy true when multiple teams are working on
different sites.

Prototyping, where an experimental system is developed as a basis for
formulating the requirements may be used. This system is thrown away when

the system specification has been agreed.

Incremental development and prototyping

Incremental

/ development
Outline

Delivered system

requirements

Throw-away Executable prototype +
prototyping System specification

Conflicting objectives
The objective of incremental development is to deliver a working system to
end-users. The development starts with those requirements which are best
understood.
The objective of throw-away prototyping is to validate or derive the system
requirements. The prototyping process starts with those requirements which
are poorly understood.
Agile methods

« Dissatisfaction with the overheads involved in design methods led to the

creation of agile methods. These methods:
e Focuson the code rather than the design;
e Arebased on an iterative approach to software development;

Department of CSE, SIBIT Page 51

Software Engineering 101S51

Are intended to deliver working software quickly and evolve this quickly
to meet changing requirements.

Agile methods are probably best suited to small/medium-sized business
systems or PC products.

Principles of agile methodsl

Principle

Customer involvem ent

Incrementaldelivery

People not process

Em brace change

Maintainsimplicity

Description

The customer should be closely involved throughout the
developmentprocess. Their role is provide and prioritise new
system requirements and to evaluate the iterations of the system.

The software is developed in increments with the customer
specifying the requirements to be included in each increment.

The skills of the development team should be recognised and
exploited. The team should be leftto develop their own ways of
workingwithoutprescriptiveprocesses.

Expect the system requirements to change and design the system
so that it can accommodate these changes.

Focus on simplicity in both the software being developed and in
the development process used. W herever possible, actively w ork
to eliminate complexity from the system.

Problems with agile methods
It can be difficult to keep the interest of customers who are involved in

the process.

Team members may be unsuited to the intense involvement that

characterizes agile methods.

Prioritizing changes can be difficult where there are multiple

stakeholders.

Maintaining simplicity requires extrawork.
Contracts may be a problem as with other approaches to iterative

development.

Extreme programming
Perhaps the best-known and most widely used agile method.
Extreme Programming (XP) takes an ‘extreme’ approach to iterative

development.

New versions may be built several times per day;
Increments are delivered to customers every 2 weeks;
All tests must be run for every build and the build is only accepted if

tests run successfully.

Department of CSE, SIBIT

Page 52

Software Engineering

101S51

The XP release cycle
Sele!t user Break down
stories for this ——> : —> Plan release
stories to tasks
release
Evaluate Release Develop/integrate/
system software test software

Extreme programming practices 1

Incremental planning

Small R eleases

Simple D esign

T est first development

R efactoring

R equirem ents are record ed on Story C ards and the Stories to be
included in a release are determined by the tim e available and
their relative priority. The developers break these Stories into
development OrasksO

T he minim al u seful set of functionality that prov ides business
value is developed first. R eleases of the system are frequent and
increm entally add functionality to the first release.

E nough design is carried out to meet the current requirements
and no more.

An automated unit test framew ork is used to write tests for a new
piece of functionality before that function ality itself is
implem ented.

A Il developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

Department of CSE, SIBIT

Page 53

Software Engineering

101S51

Extreme programming practices 2

Pair Programming

Collective Ownership

Continuous Integration

Sustainable pace

On-site Customer

providing the support to always do a good job.

Developers work in pairs, checking each other@work and

The pairs of developerswork on all areas of the system, so that

no islands of expertise develop and al the developers own all the

code. Anyone can change anything.

As soon aswork on atask iscomplete it isintegrated into the

whole system. After any such integration, all the unit testsin the

system must pass.

Large amounts of over-time are not considered acceptable as the

net effect is often to reduce code quality and medium term

productivity

A representative of the end-user of the system (the Customer)

should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of the

development team and is responsible for bringing
reguirements to the team for implementation.

system

XP and agile principles

Incremental development is supported through small, frequent system
releases.

Customer involvement means full-time customer engagement with the
team.

People not process through pair programming, collective ownership and
a process that avoids long working hours.

Change supported through regular system releases.

Maintaining simplicity through constant refactoring of code.

Requirements scenarios

In XP, user requirements are expressed as scenarios or user stories.
These are written on cards and the devel opment team breaks them down
into implementation tasks. These tasks are the basis of schedule and cost
estimates.

The customer chooses the stories for inclusion in the next rel ease based
on their priorities and the schedule estimates.

Department of CSE, SIBIT

Page 54

Software Engineering 101S51

Story card for document downloading

Downloading and printing an article

First, you select the article that you want from a displayed list. You
then have to tell the system how you will pay for it - this can either
be through a subscription, through a company account or by credit
card.

After this, you get a copyright form from the system to fill in and,
when you have submitted this, the article you want is downloaded
onto your computer.

You then choose a printer and a copy of the article is printed. You
tell the system if printing has been successful.

If the article is a print-only article, you can’t keep the PDF version
so it is automatically deleted from your computer.

XP and change

* Conventional wisdom in software engineering is to design for change. It
is worth spending time and effort anticipating changes as this reduces
costs later in the life cycle.

« XP, however, maintains that this is not worthwhile as changes cannot be
reliably anticipated.

* Rather, it proposes constant code improvement (refactoring) to make
changes easier when they have to be implemented

Testing in XP
* Test-first development. Incremental test development from scenarios.
e User involvement in test development and validation.

* Automated test harnesses are used to run al component tests each time
that a new release is built.

Test case description

Test 4: Test credit card validity

Input:

A string representing the credit card number and two integers representing
the month and year when the card expires

Tests:

Check that all bytes in the string are digits

Check that the month lies between 1 and 12 and the

year is greater than or equal to the current year.

Using the first 4 digits of the credit card number,

check that the card issuer is valid by looking up the

card issuer table. Check credit card validity by submitting the card
number and expiry date information to the card

issuer

Output:

OK or error message indicating that the card is invalid

Department of CSE, SIBIT Page 55

Software Engineering 101S51

Test-first development

« Writing tests before code clarifies the requirements to be implemented.

e Tests arewritten as programs rather than data so that they can be
executed automatically. The test includes a check that it has executed
correctly.

e All previous and new tests are automatically run when new functionality
is added. Thus checking that the new functionality has not introduced
errors.

Pair programming

In XP, programmers work in pairs, sitting together to develop code. This helps
develop common ownership of code and spreads knowledge across the team.
It serves as an informal review process as each line of code islooked at by
more than 1 person. It encourages refactoring as the whole team can benefit
from this. Measurements suggest that development productivity with pair
programming is similar to that of two people working independently.

Rapid application development

Agile methods have received alot of attention but other approaches to rapid
application development have been used for many years.

These are designed to develop data-intensive business applications and rely on
programming and presenting information from a database.

RAD environment tools
e Database programming language
e Interface generator
e Linksto office applications
e Report generators

A RAD environment

Interfface Office
‘ generator systems }

DB Report
programming generator

language
T—> Database management system <—T

Rapid application
development environment

Department of CSE, SIBIT Page 56

Software Engineering 101S51

Interface generation
e Many applications are based around complex forms and developing
these forms manually is a time-consuming activity.
 RAD environments include support for screen generation including:
e Interactive form definition using drag and drop techniques;
* Form linking where the sequence of forms to be presented is specified,;
e Form verification where allowed ranges in form fields are defined.

Visual programming
e Scripting languages such as Visual Basic support visua programming
where the prototype is developed by creating a user interface from
standard items and associating components with these items
e A largelibrary of components exists to support this type of devel opment
e These may be tailored to suit the specific application requirements.

Visual programming with reuse

Menu component
Date comp®nent

File Edit Views Layout Options Help
General
12th January 2000 Index
Range checking 3876
script .
User prompt
b——————— component +
Draw canvas - = script
component AN
Tree display
component

Problems with visua development

Difficult to coordinate team-based development. No explicit system
architecture. Complex dependencies between parts of the program can cause
maintai nability problems.

COTSreuse

« An effective approach to rapid development isto configure and link
exigting off the shelf systems. For example, a requirements management
system could be built by using:

e A database to store requirements;

e A word processor to capture requirements and format reports;

e A spreadsheet for traceability management;

Department of CSE, SIBIT Page 57

Software Engineering 101S51

Compound documents

For some applications, a prototype can be created by developing a compound
document. This is a document with active elements (such as a spreadsheet)
that allow user computations. Each active element has an associated
application which is invoked when that element is selected. The document
itself is the integrator for the different applications.

Application linking

1 Compound document
Text 1 —>= Table 1 —» Text2 — Text3 — = Sound 1

|
\J

Table 2 <« Text4 -«— Sound 2 «— Text5

Word processor Spreadsheet Audio player

Software prototyping

. A prototype is aninitial version of a system used to demonstrate
concepts and try out design options.

A prototype can be used in:

. The requirements engineering process to help with requirements
glicitation and validation;

. In design processes to explore options and develop a Ul design;
. In the testing process to run back-to-back tests.

Benefits of prototyping
e Improved system usability.
e A closer match to users’ real needs.
e Improved design quality.
e Improved maintainability.
e Reduced development effort.

Department of CSE, SIBIT Page 58

Software Engineering 101S51

Back to back testing

Test data
System Application
prototype system
Results
comparator
Difference
report

The prototyping process

Establish Define Develop
prototype —> prototype -
objectives functionality prototype
Prototyping Outline Executable
plan definition prototype

Throw-away prototypes

« Prototypes should be discarded after development as they are not a good
basis for a production system:

e It may be impossible to tune the system to meet non-functional
requirements,

e Prototypes are normally undocumented;

e The prototype structure is usually degraded through rapid change;

e The prototype probably will not meet normal organizational quality
standards.

Softwar e evolution

Softwar e change
e Software change is inevitable
e New requirements emerge when the software is used,
e The business environment changes;
e Errors must be repaired;
* New computers and equipment is added to the system;

e The performance or reliability of the system may have to be improved.

e A key problem for organisations is implementing and managing
change to their existing software systems

Evaluate
prototype

l

Evaluation
report

Department of CSE, SIBIT

Page 59

Software Engineering 101S51

I mportance of evolution

Organizations have huge investments in their software systems - they are
critical business assets. To maintain the value of these assets to the business,
they must be changed and updated. The mgjority of the software budget in
large companies is devoted to evolving existing software rather than
developing new software.

Spiral model of evolution

A
Specification Implemention
Start
Release 1
Operation Validation
Release 2
Release 3

Program evolution dynamics

Program evolution dynamics is the study of the processes of system change.
After mgjor empirical studies, Lehman and Belady proposed that there were a
number of ‘laws’ which applied to al systems as they evolved. There are
sensible observations rather than laws. They are applicable to large systems

developed by large organisations. Perhaps less applicable in other cases.

Department of CSE, SIBIT Page 60

Software Engineering

101S51

Lehman’s laws
(important)

L aw

Continuing change

Increasing complexity

L arge program evolution

Organisational stability

Conservation of
familiarity
Continuing grow th

D eclining quality

Feedback system

Description

A program that is used in a real-world environment necessarily
must change or become progressively less useful in that
environment.

A's an evolving program changes, its structure tends to become
more complex. Extra resources must be devoted to preserving
and simplifying the structure.

Program evolution is a self-regulating process. System
attrib utes such as size, time between releases and the number of
reported errors is approximately invariant for each system
release.

Over a program® lifetime, its rate of development is
approximately constant and independent of the resources
devoted to system development.

Over the lifetime of a system, the incremental change in each
releaseis approximately constant.

T he functionality off ered by systems has to continually increase
to maintain user satisfaction.

The quality of systems will appear to be declining unless they
are adapted to changesin their operational environment.

Evolution processes incorporate multi-agent, multi-loop
feedback systems and you have to treat them as feedback
systemsto achieve significant product improvement.

Applicability of Lehman’s laws
Lehman’s laws seem to be generally applicable to large, tailored systems
developed by large organisations.

e Confirmed in more recent work by Lehman on the FEAST project (see

further reading on book website).

e Itisnot clear how they should be modified for

e Shrink-wrapped software products;

e Systems that incorporate a significant number of COTS components;

e Small organisations;

e Medium sized systems.

Softwar e maintenance

Modifying a program after it has been put into use. Maintenance does not
normally involve major changes to the system’s architecture. Changes are
implemented by modifying existing components and adding new components

to the system

Department of CSE, SIBIT

Page 61

Software Engineering 101S51

Maintenanceisinevitable

e The system requirements are likely to change while the system is being
devel oped because the environment is changing. Therefore a delivered
system won't meet its requirements!

e Systems are tightly coupled with their environment. When a systemis
installed in an environment it changes that environment and therefore
changes the system requirements.

e Systems MUST be maintained therefore if they are to remain useful in an
environment.

Types of maintenance
e Maintenance to repair software faults
O Changing a system to correct deficiencies in the way meets its
requirements.
* Maintenance to adapt software to a different operating environment
O Changing a system so that it operates in adifferent environment
(computer, OS, etc.) from itsinitial implementation.
e Maintenance to add to or modify the system’s functionality
O Modifying the system to satisfy new requirements.

Distribution of maintenance effort

Fault repair
(17%)

Functionality

zOft\tN:_fe addition or

adaptation modification
(18%) (65%)

M aintenance costs

e Usudly greater than development costs (2* to 100* depending on the
application).

« Affected by both technical and non-technical factors.

e Increases as software is maintained. Maintenance corrupts the software
structure so makes further maintenance more difficult.

e Ageing software can have high support costs (e.g. old languages,
compilers etc.).

Department of CSE, SIBIT Page 62

Software Engineering 101S51

Development/maintenance costs

|
A
System 1
System 2
T T T T T T T T T >
0 50 100 150 200 250 300 350 400 450 500 ®
Development costs Maintenance costs
Maintenance cost factors

e Team stability
* Maintenance costs are reduced if the same staffs are involved with them for
some time.

e Contractual responsibility

e Thedevelopers of a system may have no contractual responsibility for maintenance
so there is no incentive to design for future change.

o Staff skills

e Maintenance staffs are often inexperienced and have limited domain
knowledge.
e Program age and structure
e Asprograms age, their structure is degraded and they become harder to
understand and change.
Maintenance prediction
Maintenance prediction is concerned with assessing which parts of the system
may cause problems and have high maintenance costs
Change acceptance depends on the maintainability of the components affected
by the change;
Implementing changes degrades the system and reduces its maintainability;
Maintenance costs depend on the number of changes and costs of change
depend on maintainability.

Department of CSE, SIBIT Page 63

Software Engineering 101S51

Maintenance prediction
i

What parts of the system
will be the most expensive
to maintain?

What parts of the system are
most likely to be affected by
change requests?

Predicting
maintainability

What will be the lifetime
maintenance costs of this
Predicting system?
maintenance
costs

Predicting system
changes

What will be the costs of
How many change maintaining this system

requests can be over the next year?
expected?

Change prediction
e Predicting the number of changes requires and understanding of
the relationships between a system and its environment.
e Tightly coupled systems require changes whenever the
environment is changed.
e Factorsinfluencing thisrelationship are
e Number and complexity of system interfaces,
e Number of inherently volatile system requirements,
e The business processes where the system is used.

Complexity metrics
e Predictions of maintainability can be made by assessing the
complexity of system components.
e Studies have shown that most maintenance effort is spent on a
relatively small number of system components.
e Complexity depends on
e Complexity of control structures;
e Complexity of data structures,
e Object, method (procedure) and module size.

Process metrics

Process measurements may be used to assess maintainability
e Number of requests for corrective maintenance;
e Average time required for impact anaysis,
e Average time taken to implement a change request;
e Number of outstanding change requests.

If any or all of theseisincreasing, thismay indicate adeclinein
mai ntainability.

Evolution processes

Evolution processes depend on
‘The type of software being maintained,;

Department of CSE, SIBIT Page 64

Software Engineering 101S51

-The development processes used;

-The skills and experience of the people involved.

Proposals for change are the driver for system evolution. Change
identification and evolution continue throughout the system

lifetime.

Change identification and evolution

i
Change identification
/ process \
New system Change proposals
\ Software evolution /
process

The system evolution process

Change Impact Release Change System
requests analysis planning implementation release
Fault repair Platform System
P adaptation enhancement

Change implementation

¢ 1
Proposed Requirements Requirements Software
—> . —> . —>
changes analysis updating development
Urgent change requests

Urgent changes may have to be implemented without going through all stages
of the software engineering process

Department of CSE, SIBIT Page 65

Software Engineering 101S51

-If a serious system fault hasto be repaired,

-If changes to the system’s environment (e.g. an OS upgrade) have
unexpected effects;

-If there are business changes that require a very rapid response (e.g.
the release of a competing product).

Emergency repair

|
Change Analyse Modify Deliver modified
—>» —>
requests source code source code system

System re-engineering
e Re-structuring or re-writing part or all of alegacy system
without changing its functionality.
e Applicable where some but not all sub-systems of alarger
system require frequent maintenance.
e Re-engineering involves adding effort to make them easier to
maintain. The system may be re-structured and re-documented.
Advantages of reengineering
Reduced risk
‘Thereis a high risk in new software development. There may be
development problems, staffing problems and specification
problems.
Reduced cost
-The cost of re-engineering is often significantly less than the costs
of developing new software.

Forward and re-engineering
System Design and New
specification implementation system

Forward engineering

Existing Understanding and Re-engineered
—> - —>
software system transformation system

Software re-engineering

Department of CSE, SIBIT Page 66

Software Engineering 101S51

The re-engineering process

Original Program Modularised Original data
program documentation program
Reverse / \ /
/ engineering
Data
Source code Program re-engineering
translation modularisation

\ Program
structure
improvement \

Structured Re-engineered
program data

Reengineering process activities

Source code translation

-Convert code to a hew language.
Reverse engineering

-Analyze the program to understand it;
Program structure improvement

-Restructure automatically for understandability;
Program modularization

-Reorganize the program structure;
Data reengineering

-Clean-up and restructure system data.

Reengineering cost factors

Automated program Program and data
restructuring restructuring

Automated source Automated restructuring Restructuring plus
code conversion with manual changes architectural changes

>
Increased cost

Re-engineering approaches
e Thequality of the software to be reengineered.
e Thetool support available for reengineering.
e Theextent of the data conversion which is required.
e Theavailability of expert staff for reengineering.
e Thiscan be a problem with old systems based on technology
that isno longer widely used.

Department of CSE, SIBIT Page 67

Software Engineering 101S51

Legacy system evolution

Organisations that rely on legacy systems must choose a strategy for evolving
these systems

-Scrap the system completely and modify business processes so that
it isno longer required;

-Continue maintaining the system;

-Transform the system by re-engineering to improve its

mai ntai nability;

-Replace the system with a new system.

The strategy chosen should depend on the system quality and its
business value.

System quality and business value

Business value

High business value - i
igh business valu High business value

L li . .
ow quality High quality
9
1
0 3 8
7
Low business value Low business value
Low quality High quality
2
5
1 3 4

Y

System quality

Legacy system categories

Low quality, low business value

-These systems should be scrapped.

Low-quality, high-business value

-These make an important business contribution but are expensive
to maintain. Should be re-engineered or replaced if a suitable
system is available.

High-quality, low-business value

Replace with COTS, scrap completely or maintain.

High-quality, high business value

-Continue in operation using normal system maintenance.

Business value assessment
Assessment should take different viewpoints into account

-System end-users,
-Business customers;
-Line managers,

IT managers;
-Senior managers.

Department of CSE, SIBIT Page 68

Software Engineering 101S51

Interview different stakeholders and collate results.

System quality assessment
Business process assessment
-How well does the business process support the current goals of the
business?
Environment assessment
-How effective is the system’s environment and how expensive is it
to maintain?
Application assessment
‘What is the quality of the application software system?

Business process assessment
Use a viewpoint-oriented approach and seek answers from system
stakeholders
-Isthere a defined process model and isit followed?
-Do different parts of the organisation use different processes for the
same function?
-How has the process been adapted?
‘What are the relationships with other business processes and are
these necessary?
-Is the process effectively supported by the legacy application
software?

Example - atravel ordering system may have a low business value
because of the widespread use of web-based ordering.

Environment assessment 1

Factor Questions

Understandability How difficult isit to understand the source code of the
current system? How complex are the control structures
that are used? Do variables have meaningful names that
reflect their function?

Documentation What system documentation is available? Is the
documentation complete, consistent and up-to-date?

Data Is there an explicit data model for the system? To what
extent is dataduplicated in different files? Is the data used
by the system up-to-date and consistent?

Performance Is the performance of the application adequate? Do
performance problems have a significant effect on system
users?

System measurement
You may collect quantitative data to make an assessment of the quality of the
application system

Department of CSE, SIBIT Page 69

Software Engineering 101S51

-The number of system change requests,
-The number of different user interfaces used by the system;
-The volume of data used by the system.

Black-box testing

e Input data and output results often fall into different classes
where all members of aclass are related.

» Each of these classes is an equivalence partition or domain
where the program behaves in an equivalent way for each class
member.

e Tedt cases should be chosen from each partition.
Equivalence partitioning
Invalid inputs Valid inputs

System

Outputs

Equivalence partitions

S

Less than 4 Between 4 and 10 More than 10

Number of input values

9999 100000
f 0000 50000 99999 l
Less than 10000 Between 10000 and 99999 More than 99999

Input values

Department of CSE, SIBIT Page 70

Software Engineering 101S51

UNIT 7
VERIFICATION AND VALIDATION

Verification vs. validation

Verification: "Are we building the product right”, The software should
conform to its specification.

Validation: "Are we building the right product”., The software should do what
the user really requires.

TheV & V process
e Isawholelife-cycle process- V & V must be applied at each stage
in the software process.
e Hastwo principal objectives
e The discovery of defectsin a system;
e The assessment of whether or not the system is useful and useable
in an operational situation

V& V goas

Verification and validation should establish confidence that the software isfit
for purpose. This does NOT mean completely free of defects. Rather, it must
be good enough for itsintended use and the type of use will determine the
degree of confidence that is needed.

V & V confidence

Depends on system’s purpose, user expectations and marketing environment
Software function
-The level of confidence depends on how critical the softwareisto
an organisation.
User expectations
-Users may have low expectations of certain kinds of software.
Marketing environment
-Getting a product to market early may be more important than
finding defects in the program.

Static and dynamic verification

» Software inspections. Concerned with analysis of
the static system representation to discover problems (static
verification)

* May be supplement by tool-based document and code analysis

e Software testing. Concerned with exercising and
observing product behaviour (dynamic verification)

e The system is executed with test data and its operational behaviour is
observed

Department of CSE, SIBIT Page 71

Software Engineering 101S51

Static and dynamic V&V
i Software
inspections

Requirements High-level Formal Detailed
e - . PP . Program

specification design specification design
- Program

Prot -

fototype testing

Program testing

Can reveal the presence of errors NOT their absence. The only validation
technique for non-functional requirements as the software has to be executed
to see how it behaves. Should be used in conjunction with static verification to
provide full V&V coverage.

Types of testing
e Defect testing: Tests designed to discover system defects. A
successful defect test is one which reveals the presence of defectsin
asystem. Covered in Chapter 23
e Validation testing: Intended to show that the software meets its
requirements. A successful test is one that shows that a requirement
has been properly implemented.

Testing and debugging
.Defect testing and debugging are distinct processes. Verification
and validation is concerned with establishing the existence of
defects in a program. Debugging is concerned with locating and
repairing these errors. Debugging involves formulating a hypothesis
about program behaviour then testing these hypotheses to find the

system error.
The debugging process
1
Test A Test
Specification
results cases
Locate Design Repair Retest
. — —>
= error m €[TOT [€PAIl | m— error m— DIOGram | mmm

Department of CSE, SIBIT Page 72

Software Engineering 101S51

V & V planning

Careful planning is required to get the most out of testing and inspection
processes. Planning should start early in the development process. The plan
should identify the balance between static verification and testing. Test
planning is about defining standards for the testing process rather than
describing product tests.

The V-model of development

Requirements|] System System Detailed
specification specification design design
System Sub-system Module and
Acceptance . . - - it cod
test plan integration integration unit code
test plan test plan and test
Acceptance System Sub-system

Service)—— test integration test integration test

The structure of a software test plan
e Thetesting process.
e Requirements traceability.
e Tested items.
e Tedting schedule.
e Tedt recording procedures.
e Hardware and software regquirements.
e Constraints.

Department of CSE, SIBIT Page 73

Software Engineering 101S51

The software test plan

The testing process
A description of the major phases of the testing process. These might be
as described earlier in this chapter.

Requirements traceability
Users are most interested in the system meeting its requirements and
testing should be planned so that all requirements are individually tested.

Tested items
The products of the software process that are to be tested should be
specified.

Testing schedule

An overall testing schedule and resource allocation for this schedule.
This, obviously, is linked to the more general project development
schedule.

Test recording procedures

It is not enough simply to run tests. The results of the tests must be
systematically recorded. It must be possible to audit the testing process
to check that it been carried out correctly.

Hardware and software requirements
This section should set out software tools required and estimated
hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should
be anticipated in this section.

Software inspections

These involve people examining the source representation with the aim of

discovering anomalies and defects.

Inspections not require execution of a system so may be used before

implementation.

They may be applied to any representation of the system (requirements,

design, configuration data, test data, etc.).

They have been shown to be an effective technique for discovering program

errors.

I nspection success
Many different defects may be discovered in a single inspection. In
testing, one defect, may mask another so several executions are
required. The reuse domain and programming knowledge so
reviewers are likely to have seen the types of error that commonly
arise.

I nspections and testing
Inspections and testing are complementary and not opposing
verification techniques. Both should be used during theV & V
process. Inspections can check conformance with a specification but
not conformance with the customer’s real requirements. Inspections

Department of CSE, SIBIT Page 74

Software Engineering 101S51

cannot check non-functional characteristics such as performance,
usability, etc.

Program inspections
Formalised approach to document reviews. Intended explicitly for
defect detection (not correction). Defects may be logical errors,
anomalies in the code that might indicate an erroneous condition
(e.g. an uninitialised variable) or non-compliance with standards.

I nspection pre-conditions
e A precise specification must be available.
e Team members must be familiar with the organisation standards.

e Syntactically correct code or other system representations must be
available.

e An error checklist should be prepared.

* Management must accept that inspection will increase costs early
in the software process.

e Management should not use inspections for staff appraisa i.e.
finding out who makes mistakes.

The inspection process

Plan’ning—l ,—l
Overview Follow-up
Individual Rework

reparation
Prep Inspection

meeting

I nspection procedure

e System overview presented to inspection team.

* Code and associated documents are distributed to inspection
team in advance.

e Inspection takes place and discovered errors are noted.

* Modifications are made to repair discovered errors.

e Re-ingpection may or may not be required.

Department of CSE, SIBIT Page 75

Software Engineering

101S51

Inspection roles

Author or owner

Inspector

Reader

Scribe

Chairman or moderator

Chief moderator

I nspection checklists

The programmer or designer responsible for
producing the program or document. Responsible
for fixing defects discovered during the inspection
process.

Finds errors, omissions and inconsistencies in
programs and documents. May also identify
broader issues that are outside the scope of the
inspection team.

Presents the code or document at an inspection
meeting.

Records the results of the inspection meeting.

Manages the process and facilitates the inspection.
Reports process results to the Chief moderator.

Responsible for inspection process improvements,
checklist updating, standards development etc.

e Checklist of common errors should be used to drive the inspection.

e Error checklists are programming language dependent and reflect the
characteristic errors that are likely to arise in the language.

« Ingenerd, the 'weaker' the type checking, the larger the checklist.

* Examples: Initialisation, Constant naming, loop termination, array

bounds, etc.
| nspection check

Data faults

Control faults
condition

are al program variables initialized before

their values are used?

Have all constants been named?

Should the lower bound of arrays be0, 1,
or

something else?

Should the upper bound of arrays be equal

to the size of the array or Size -1?

If character strings are used, is a delimiter

explicitly assigned?

for each conditional statement, is the

correct?
Is each loop certain to terminate?

Department of CSE, SIBIT

Page 76

Software Engineering

101S51

Interface faults

Segment faults

Exception Management
taken

Inspection rate

Are compound statements correctly
bracketed?

In case statements, are all possible cases
accounted for?

Input/output faults are all input variables
used?

Are all output variables assigned avalue
before they are output?

do all function and procedure calls have
the correct number of parameters?

Do formal and actual parameter types

match?

Are the parameters in the right order?

If components access shared memory, do
they have the same model of the shared
memory structure?

If alinked structure is modified, have all
links been correctly reassigned?

If dynamic storage is used, has space been
allocated correctly?

Is space explicitly de-allocated after it is
no longer Inspection checks required?

Have al possible error conditions been

into account?

500 statements/hour during overview. 125 source statement/hour during

individual

preparation. 90-125 statements/hour can be inspected. Inspection is therefore
an expensive process. Inspecting 500 lines costs about 40 man/hours effort -

about £2800 at UK rates.

Automated static analysis

» Static analysers are software tools for source text processing.

e They parse the program text and try to discover potentially erroneous
conditions and bring these to the attention of theV & V team.

e They are very effective as an aid to inspections - they are a supplement
to but not areplacement for inspections.

Stages of static analysis

e Control flow analysis. Checks for loops with multiple exit or entry
points, finds unreachable code, etc.

Department of CSE, SIBIT

Page 77

Software Engineering 101S51

Data use analysis. Detects uninitialised variables, variables written
twice without an intervening assignment, variables which are declared
but never used, etc.

Interface analysis. Checks the consistency of routine and procedure

declarations and their use.
e Information flow analysis. Identifies the dependencies of output

variables. Does not detect anomalies itself but highlights information

for code inspection or review

e Pathanaysis. ldentifies paths through the program and sets out the

statements executed in that path. Again, potentially useful in the
review process

e Both these stages generate vast amounts of information. They must be

used with care.

LINT static analysis
138% more lint_ex.c
#include <stdio.h>
printarray (Anarray)
int Anarray;
{
printf(“%d”, Anarray);
}
main ()
{
int Anarray[5]; int i; char c;
printarray (Anarray, i, C);
printarray (Anarray) ;
}
139% cc lint_ex.c
140% lint lint_ex.c
lint_ex.c(10): warning: ¢ may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
LINT static analysis
lint_ex.c(11)
printf returns value which is always ignored.

Use of static analysis

Particularly valuable when alanguage such as C is used which has weak
typing and hence many errors are undetected by the compiler, Less cost-
effective for languages like Java that have strong type checking and can
therefore detect many errors during compilation.

Department of CSE, SIBIT

Page 78

Software Engineering 101S51

Verification and formal methods
e Forma methods can be used when a mathematical specification
of the system is produced.
e They arethe ultimate static verification technique.
e They involve detailed mathematical analysis of the
specification and may develop formal arguments that a program
conforms to its mathematical specification.

Arguments for formal methods
Producing a mathematical specification requires a detailed analysis
of the requirements and this is likely to uncover errors. They can
detect implementation errors before testing when the program is
analyzed alongside the specification.

Arguments against formal methods
e Require specialized notations that cannot be understood by
domain experts.
e Vey expensiveto develop a specification and even more
expensive to show that a program meets that specification.
e It may be possible to reach the same level of confidencein a
program more cheaply using other V & V techniques.
Cleanroom software development
The name is derived from the *Cleanroom’ process in
semiconductor fabrication. The
philosophy is defect avoidance rather than defect removal.
This software development process is based on:
e Incremental development;
e Formal specification;
e Static verification using correctness arguments,
e Statistical testing to determine program reliability.

The Cleanroom process

Formally I Error rework
specify
system l T
Define Construct Formally Integrate
software > structured —> verify | 'Mteg
increments program code increment

Develop
operational Design Test
profile statistical d

integ

tests system

Cleanroom process characteristics
e Formal specification using a state transition model.

Department of CSE, SIBIT Page 79

Software Engineering 101S51

e Incremental development where the customer prioritises
increments.

e Structured programming - limited control and abstraction
constructs are used in the program.

e Static verification using rigorous inspections.

e Statistical testing of the system

Formal specification and inspections
e The state based model is a system specification and the
inspection process checks the program against this mode. |
e The programming approach is defined so that the
correspondence between the model and the system is clear.
e Mathematical arguments (not proofs) are used to increase
confidence in the inspection process.

Cleanroom process teams
Specification team: Responsible for developing and maintaining the
system specification.
Development team: Responsible for developing and verifying the
software. The software is NOT executed or even compiled during
this process.
Certification team: Responsible for developing a set of statistical
tests to exercise the software after development. Reliability growth
models used to determine when reliability is acceptable.

Cleanroom process evaluation
e Theresults of using the Cleanroom process have been very
impressive with few discovered faults in delivered systems.
e Independent assessment shows that the process is no more
expensive than other approaches.
e There were fewer errorsthan in a 'traditional’ development
process.
e However, the processis not widely used. It is not clear how this
approach can be transferred to an environment with less skilled or
less motivated software engineers.

The testing process
Component testing
e Tedting of individual program components;
e Usualy the responsibility of the component developer (except
sometimes for critical systems);
e Tedtsare derived from the developer’s experience.
System testing
e Tedting of groups of components integrated to create a system
or sub-system;
e Theresponsibility of an independent testing team;
e Tedsare based on a system specification.

Department of CSE, SIBIT Page 80

Software Engineering 101S51

I Testing phases
Compgnent > Systgm
\testlng testing
Software developer Independent testing team
Defect testing

e Thegoa of defect testing isto discover defects in programs
e A successful defect test is atest which causes a program to
behave in an anomal ous way

e Teds show the presence not the absence of defects

Testing process goals

Validation testing: To demonstrate to the developer and the system
customer that the software meets its requirements; a successful test shows that
the system operates as intended.

Defect testing: To discover faults or defects in the software where its
behavior is incorrect or not in conformance with its specification; a successful
test is atest that makes the system perform incorrectly and so exposes a defect
in the system.

The softwar e testing process

i
Test
cases data results reports
Design test Prepare test Run program Compare results
cases data with test data to test cases
Testing policies

Only exhaustive testing can show a program is free from defects.
However, exhaustive testing is impossible,

Testing policies define the approach to be used in selecting system
tests:

-All functions accessed through menus should be tested;
-Combinations of functions accessed through the same menu should
be tested,;

Department of CSE, SIBIT Page 81

Software Engineering 101S51

‘Where user input is required, all functions must be tested with
correct and incorrect input.

System testing
* Involves integrating components to create a system or sub-
system.
e May involve testing an increment to be delivered to the
customer.
e Two phases:
Integration testing - the test team have access to the system source
code. The system is tested as components are integrated.
Release testing - the test team test the complete system to be
delivered as a black-box.
Integration testing
e Involves building a system from its components and testing it
for problems that arise from component interactions.
Top-down integration: Develop the skeleton of the system and
populate it with components.
Bottom-up integration: Integrate infrastructure components then add
functional components.
e Tosmplify error localisation, systems should be incrementally
integrated.

Incremental integration testing

1
A — T1
— T1
A
— T — T2
B
A — T2
}7— T2 B T3
— T3
B C
— T3 — T4
c — T4
D ——{ T5
Test sequence 1 Test sequence 2 Test sequence 3

Testing approaches
e Architectura validation: Top-down integration testing is better
at discovering errors in the system architecture.
e System demonstration: Top-down integration testing alows a
limited demonstration at an early stage in the devel opment.
e Tedt implementation: Often easier with bottom-up integration
testing.
e Test observation: Problems with both approaches. Extra code
may be required to observe tests.

Department of CSE, SIBIT Page 82

Software Engineering 101S51

Release testing
e The process of testing a release of a system that will be
distributed to customers.
e Primary godl is to increase the supplier’s confidence that the
system meets its requirements.
e Releasetesting is usualy black-box or functiona testing
e Based on the system specification only;
e Teders do not have knowledge of the system implementation.

Black-box testing

Inputs causing
/ anomalous
Input test data le behaviour
System
/ \ Outputs which reveal
/ the presence of
Output test results Oe defects

Testing guidelines
Testing guidelines are hints for the testing team to help them choose
tests that will reveal defects in the system
e Choose inputs that force the system to generate al error
messages;
e Design inputs that cause buffersto overflow;
e Repeat the same input or input series several times;
e Forceinvalid outputs to be generated;
e Force computation results to be too large or too small.

System tests

1. Test the login mechanism using correct and incorrect logins to check
thatvalidusersareacceptedandinvalidusersarerejected.

2. Testthesearch facilityusing differentqueries against known sourcesto
checkthatthesearchmechanism isactuallyfindingdocuments.

3. Test the system presentation facility to check that information about
documentsisdisplayedproperly.

4. Testthemechanismtorequestpermissionfordownloading.

Test the e-mail response indicating that the downloaded document is
available.

Department of CSE, SIBIT Page 83

Software Engineering 101S51

Use cases

Use cases can be abasis for deriving the tests for a system. They
help identify operations to be tested and help design the required
test cases. From an associated sequence diagram, the inputs and
outputs to be created for the tests can be identified.

Collect weather data sequence chart

% |
:CommsController ‘WeatherStation ‘WeatherData

request (report)

acknowledge ()

-
Y

report ()

Y

summarise ()

Y

send (report)

reply (report)

-
-

acknowledge ()

Performance testi ng

Part of release testing may involve testing the emergent properties
of a system, such as performance and reliability. Performance tests
usualy involve planning a series of tests where the load is steadily
increased until the system performance becomes unacceptable.

Stress testing

e Exercises the system beyond its maximum design load.
Stressing the system often causes defects to

come to light.

e Stressing the system test failure behaviour.. Systems should not
fail catastrophically. Stress testing checks for unacceptable loss of
service or data.

® Stresstesting is particularly relevant to distributed systems that
can exhibit severe degradation as a

network becomes overloaded.

Component testing

e Component or unit testing is the process of testing individual
components in isolation.

Department of CSE, SIBIT Page 84

Software Engineering 101S51

e Itisadefect testing process.

e Components may be:

e Individua functions or methods within an object;

e Object classes with several attributes and methods;

e Composite components with defined interfaces used to access
their functionality.

Object class testing
Complete test coverage of a classinvolves
e Tedting al operations associated with an object;
e Setting and interrogating all object attributes;
e Exercising the object in all possible states.
Inheritance makes it more difficult to design object class tests as the
information to be tested is not localised.

Weather station object interface
|

WeatherStation
identifier

reportWeather ()
calibrate (instruments)
test ()

startup (instruments)
shutdown (instruments)

Weather station testing
-Need to define test cases for reportWeather, calibrate, test, startup
and shutdown.
-Using a state model, identify sequences of state transitions to be
tested and the event sequences to cause these transitions
For example:
‘Waiting -> Calibrating -> Testing -> Transmitting -> Waiting.
Interface testing
e Objectives are to detect faults due to interface errors or invalid
assumptions about interfaces.

Department of CSE, SIBIT Page 85

Software Engineering 101S51

e Particularly important for object-oriented development as
objects are defined by their interfaces.

| nterface testing

i
Test
cases
|
>
A B
-<
l—» C -
| nter face types

e Parameter interfaces: Data passed from one procedure to
another.

e Shared memory interfaces: Block of memory is shared between
procedures or functions.

e Procedurd interfaces: Sub-system encapsulates a set of
procedures to be called by other sub-systems.

e Message passing interfaces: Sub-systems request services from
other sub-systems

Interfaceerrors

e Interface misuse: A calling component calls another component
and makes an error in its use of itsinterface e.g. parametersin the
wrong order.

e Interface misunderstanding: A calling component embeds
assumptions about the behaviour of the called component which are
incorrect.

Department of CSE, SIBIT Page 86

Software Engineering 101S51

e Timing errors: The called and the calling component operate at
different speeds and out-of-date information is accessed.

Interface testing guidelines
e Design tests so that parameters to a called procedure are at the
extreme ends of their ranges.
e Always test pointer parameters with null pointers.
e Design tests which cause the component to fail.
e Usestresstesting in message passing systems.
e Inshared memory systems, vary the order in which components
are activated.

Test case design
e Involves designing the test cases (inputs and outputs) used to
test the system.
e Thegoa of test case design isto create a set of tests that are
effective in validation and defect testing.
e Design approaches:
e Requirements-based testing;
e Partition testing;
e Structural testing.

Requirements based testing
A general principle of requirements engineering is that requirements
should be testable. Requirements-based testing is a validation
testing technique where you consider each requirement and derive a
set of tests for that requirement.

L1BSY SrequirementsL IBSY Stests

The user shall be able to search either all of the initial set of databases or select a
subset from it.

The system shall provide appropriate viewers for the user to read documents in the
document store.

Every order shall be alocated a unique identifier (ORDER _ID) that the user shal
be able to copy to the account@ permanent storage area.

Department of CSE, SIBIT Page 87

Software Engineering 101S51

Partition testing

Input data and output results often fall into different classes

where all members of aclass are related.

Each of these classes is an equivalence partition or domain

where the program behaves in an equivalent way for each class
member.

Initiate user search for searches for items that are known to
be present and known not to be present, where the set of
databases includes 1 database.

Initiate user searches for items that are known to be present
and known not to be present, where the set of databases
includes 2 databases

Initiate user searches for items that are known to be present
and known not to be present where the set of databases
includes more than 2 databases.

Select one database from the set of databases and initiate
user searches for items that are known to be present and
known not to be present.

Select more than one database from the set of databases
and initiate searches for items that are known to be present
and known not to be present.

Test cases should be chosen from each partition.

Equivalence partitioning

Invalid inputs Valid inputs

System

Outputs

Department of CSE, SIBIT Page 88

Software Engineering 101S51

Equivalence partitions

3
l 4 7 1ol
Less than 4 Between 4 and 10 More than 10

Number of input values

9999 100000
r 0000 50000 99999 l
Less than 10000 Between 10000 and 99999 More than 99999

Input values

Sear ch routine specification
procedure Search (Key : ELEM ; T: SEQ of ELEM;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the sequence has at least one element
T’FIRST <= T'LAST
Post-condition
-- the element is found and is referenced by L
(Foundand T (L) = Key)
or
-- the element is not in the array
(not Found and
not (existsi, T'FIRST >=i <= T’LAST, T (i) = Key))

Search routine - input partitions
e Inputs which conform to the pre-conditions.
e Inputs where a pre-condition does not hold.
e Inputs where the key element is a member of the array.
e Inputs where the key element is not a member of the array.

Testing guidelines (sequences)
e Tedt software with sequences which have only asingle value.
e Use sequences of different sizesin different tests.
e Derive tests so that the first, middle and last elements of the
sequence are accessed.
e Test with sequences of zero length.

Department of CSE, SIBIT Page 89

Software Engineering 101S51

Search routine - input partitions

Seg uence Elem ent

Single value In sequence

Single value N ot in sequence

M orethan 1 value First element in sequence

M orethan 1 value Last element in sequence

M orethan 1 value M iddle element in sequence
M orethan 1 value N ot in sequence

Input sequence (T) Key (Key) Output(Found, L)
17 17 true, 1

17 0 false, ??
17, 29, 21, 23 17 true, 1

41, 18,9, 31, 30, 16, 45 45 true, 7

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 false, ??

Structural testing
Sometime called white-box testing. Derivation of test cases
according to program structure. Knowledge of the program is used
to identify additional test cases. Objective isto exercise all program
statements (not all path combinations)

1
Test data
Tests Derives
Component Test
%
code outputs

Binary search - equiv. partitions
e Pre-conditions satisfied, key element in array.
e Pre-conditions satisfied, key element not in
array.
e Pre-conditions unsatisfied, key element in array.
e Pre-conditions unsatisfied, key element not in array.
e Input array hasasingle value.
e Input array has an even number of values.

Department of CSE, SIBIT Page 90

Software Engineering 101S51

e Input array has an odd number of values

I Equivalence class boundaries
BinBlgmeater Misk cases Elements > Mid
Mid-point
Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ?7?
17,21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17,18, 21, 23, 29, 38, 41 23 true, 4
17,18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ?7?
Path testing

* The objective of path testing is to ensure that the set of test
cases is such that each path through the program is executed at least
once.

e The starting point for path testing is a program flow graph that
shows nodes representing program decisions and arcs representing
the flow of control.

e Statements with conditions are therefore nodes in the flow

graph.

Department of CSE, SIBIT Page 91

Software Engineering 101S51

Binary search flow graph
|

bottom > top while bottom <= top

elemArray [mid] != key

elemArray

[mid] = key elemArray [mid]|< key

elemArray [mid] > key

Independent paths

, 7,8,9,10, 14

4,5,6
4,51
4,5,6,7
4,6,7,2

[
[l
[y

3,4,5
3,4,5
3,4,5
3,4,6

PRRR
NNNN

-Test cases should be derived so that all of these paths are executed
-A dynamic program analyser may be used to check that paths have
been executed

Test automation
e Tedting is an expensive process phase. Testing workbenches
provide arange of tools to reduce the time required and total testing
costs.
e Systems such as Junit support the automatic execution of tests.
* Most testing workbenches are open systems because testing
needs are organisation-specific.
® They are sometimes difficult to integrate with closed design
and analysis workbenches.

Department of CSE, SIBIT Page 92

Software Engineering 101S51

A testing workbench

Test data e
I -«—— Specification
generator
Source Test <«—— Testdata —> Oracle
code manager
Dynamic Program Test
- . —» Test results S
analyser being tested predictions

R I

Execution . File
Simulator
report comparator
Report » Testresults
generator report

Testing workbench adaptation
e Scripts may be developed for user interface smulators and
patterns for test data generators.
e Tedt outputs may have to be prepared manually for comparison.
e Special-purpose file comparators may be developed.

Department of CSE, SIBIT Page 93

Software Engineering 101S51

UNIT -8
MANAGEMENT

Managing people
e Managing people working as individuals and in groups
e Toexplain some of the issues involved in selecting and
retaining staff
e To describe factors that influence individua motivation
e Todiscuss key issues of team working including composition,
cohesiveness and communications
e Tointroduce the people capability maturity model (P-CMM) -
a framework for enhancing the capabilities of peoplein an
organization.

People in the process
People are an organization’s most important assets. The tasks of a
manager are essentially people-oriented. Unless there is some
understanding of people, management will be unsuccessful. Poor
people management is an important contributor to project failure.

People management factors
Consistency: Team members should al be treated in a comparable
way without favorites or discrimination.
Respect: Different team members have different skills and these
differences should be respected.
Inclusion: Involve all team members and make sure that people’s
views are considered.

Honesty: Y ou should always be honest about what is going well and
what is going badly in a project.

Selecting staff
An important project management task is team selection.
Information on selection comes from:
e Information provided by the candidates.
« Information gained by interviewing and talking with
candidates.
e Recommendations and comments from other people who know
or who have worked with the candidates.

Motivating people
An important role of a manager is to motivate the people working
on a project.
Motivation is a complex issue but it appears that there are different
types of motivation based on:
e Basic needs (e.g. food, sleep, etc.);

Department of CSE, SIBIT Page 94

Software Engineering 101S51

e Persona needs (e.g. respect, self-esteem);
e Socia needs (e.g. to be accepted as part of a group).

Human needs hierar chy

Self-
realisation needs

Esteem needs

Social needs

Safety needs

\ Physiological needs

Need satisfaction
Socia
e Provide communal facilities;
e Allow informa communications.
Esteem
e Recognition of achievements;
e Appropriate rewards.
e Sdf-realizationTraining - people want to learn
more;Responsibility

Personality types
The needs hierarchy is almost certainly an over-simplification of
motivation in practice.
Motivation should also take into account different personality types:

e Task-oriented;

e Self-oriented;

e [nteraction-oriented.

Task-oriented.

e The motivation for doing the work is the work itself;
Self-oriented.

Department of CSE, SIBIT Page 95

Software Engineering 101S51

e Thework isameansto an end which is the achievement of
individual goals - e.g. to get rich, to play tennis, to travel etc.;
Interaction-oriented

e Theprincipal motivation is the presence and actions of co-
workers. People go to work because they like to go to work.

Motivation balance
Individual motivations are made up of elements
of each class. The balance can change depending on personal
circumstances and external events. However, people are not just
motivated by persona factors but also by being part of a group and
culture. People go to work because they are motivated by the
people that they work with.

Managing groups
Most software engineering is a group activity
e The development schedule for most non-trivial software
projects is such that they cannot be completed by one person
working alone.
Group interaction is a key determinant of group performance.
Flexibility in group composition is limited
e Managers must do the best they can with available people.

Factors influencing group working
e Group composition.
e Group cohesiveness.
e Group communications.
e Group organization.

Group composition

Group composed of members who share the same motivation can be

problematic

e Task-oriented - everyone wants to do their own thing;

e Sdf-oriented - everyone wants to be the boss;

e Interaction-oriented - too much chatting, not enough work.
An effective group has a balance of al types. This can be difficult
to achieve software engineers are often task-oriented. Interaction-
oriented people are very important as they can detect and defuse
tensions that arise.

Department of CSE, SIBIT

Page 96

Software Engineering 101S51

Group composition
In creating a group for assistive technology development, Alice is aware of the
importance of selecting members with complementary personalities. When
interviewing people, she tried to assess whether they were task oriented, self-
oriented and interaction oriented. She felt that she was primarily a self-oriented
type as she felt that this project was a way in which she would benoticed by senior
management and promoted. She therefore looked for 1 or perhaps 2 interaction-
oriented persondities with the remainder task oriented. The final assessment that
she arrived at was:
Alice S sdf-oriented
Brian S task-oriented
Bob S task-oriented
Carol S interaction-oriented
Dorothy S self-oriented
Ed S interaction-oriented
Fred S task-oriented

Group leadership
Leadership depends on respect not titular status. There may be both
atechnical and an administrative leader. Democratic leadership is
more effective that autocratic leadership.

Group cohesiveness
In a cohesive group, members consider the group to be more
important than any individual in it.
The advantages of a cohesive group are:
e Group quality standards can be developed;
e Group members work closely together so inhibitions caused by
ignorance are reduced;
e Team members learn from each other and get to know each
other’s work;
e Egoless programming where members strive to improve each
other’s programs can be practised.

Team spirit

Developing cohesiveness
Cohesiveness is influenced by factors such as the organizational
culture and the personalities in the group. Cohesiveness can be
encouraged through
e Socia events;
e Developing agroup identity and territory;
e Explicit team-building activities.
Openness with information is a simple way of ensuring all group
members feel part of the group.

Department of CSE, SIBIT Page 97

Software Engineering 101S51

Group loyalties
e Group members tend to be loyal to cohesive groups.
e 'Groupthink' is preservation of group irrespective of technical
or organizational considerations.
e Management should act positively to avoid groupthink by
forcing external involvement with each group.

Group communications
Good communications are essential for effective group working.
Information must be exchanged on the status of work, design
decisions and changes to previous decisions. Good communications
also strengthens group cohesion as it promotes understanding.

Group size: The larger the group, the harder it is for people to
communicate with other group members.

Group structure: Communication is better in informally structured
groups than in hierarchically structured groups.

Group composition: Communication is better when there are
different personality typesin a group and when groups are mixed
rather than single sex.

The physical work environment: Good workplace organization can
help encourage communications.

Group organization
Small software engineering groups are usually organized informally
without arigid structure. For large projects, there may be a
hierarchical structure where different groups are responsible for
different sub-projects.

Informal groups
e Thegroup acts as a whole and comes to a consensus on
decisions affecting the system.
e Thegroup leader serves as the external interface of the group
but does not allocate specific work items.
e Rather, work is discussed by the group as a whole and tasks are
allocated according to ability and experience.
e Thisapproach is successful for groups where all members are
experienced and competent.

Extreme programming groups
e Extreme programming groups are variants of an informal,
democratic organization.
e In extreme programming groups, some ‘management’ decisions
are devolved to group members.
e Programmers work in pairs and take a collective responsibility
for code that is developed.

Department of CSE, SIBIT Page 98

Software Engineering 101S51

Chief programmer teams
Consist of akernel of specialists helped by others added to the
project as required. The motivation behind their development is the
wide difference in ability in different programmers. Chief
programmer teams provide a supporting environment for very able
programmers to be responsible for most of the system development.

Problems
This chief programmer approach, in different forms, has been
successful in some settings.
However, it suffers from a number of problems
e Taented designers and programmers are hard to find. Without
exceptional people in these roles, the approach will fail;
e Other group members may resent the chief programmer taking
the credit for success so may deliberately undermine his/her role;
e Thereisahigh project risk as the project will fail if both the
chief and deputy programmer are unavailable.
e Theorganizational structures and gradesin a company may be
unable to accommodate this type of group.

Working environments
The physical workplace provision has an important
effect on individual productivity and satisfaction

e Comfort;

e Privacy;

e Facilities.

Health and safety considerations must be taken
into account

e Lighting;

e Heating;

e Furniture.

Environmental factors
Privacy - each engineer requires an area for uninterrupted work.
Outside awareness - people prefer to work in natural light.
Persondization - individuals adopt different working practices and
like to organize their environment in different ways.

Workspace organization
Workspaces should provide private spaces where people can work
without interruption
e Providing individual offices for staff has been shown to
increase productivity.
However, teams working together also require spaces where formal
and informal meetings can be held.

Department of CSE, SIBIT Page 99

Software Engineering 101S51

Office layout

Meeting
room
Office Office Window
Communal
area
Office Office
Office Office
Shared
.] documentation
Office Office

The People Capability Maturity Model
e Intended as aframework for managing the development of
people involved in software development.
P-CMM Objectives
e Toimprove organizational capability by improving workforce
capability.
e Toensurethat software development capability is not reliant on
asmall number of individuals.
e Toalignthe motivation of individuals with that of the
organization.
e To help retain people with critical knowledge and skills.

P-CMM levels

Five stage model

Initial. Ad-hoc people management

Repeatable. Policies developed for capability improvement
Defined. Standardized people management across the organization
Managed. Quantitative goals for people management in place
Optimizing. Continuous focus on improving individual competence
and workforce motivation

Department of CSE, SIBIT Page 100

Software Engineering 101S51

The people capability model
Optimizing
Continuously improve methods Continuous workforce innovation

for developing personal and Coaching
organisational competence Personal competency development

Managed

Quantitatively manage Organisational performance alignment

\?vrgslgiosritéo‘:r‘aﬁ:la ritl)i‘é\ilet:s :':] d Organisational competency management
establish competency-based Team-based practices

teams Team building
Mentoring
Defined
Identify primary —
competencies and Participatory culture
align workforce Competency-based practices

activities with them Career development

Competency development
Workforce planning
Knowledge and skills analysis

Repeatable
Instill basic ;
discipline into Compensation
workforce Training
activities

Performance management
Staffing

Communication

Work environment

Initial

Software cost estimation

Fundamental estimation questions

e How much effort is required to complete an activity?

e How much calendar time is needed to complete an activity?

e What isthetota cost of an activity?

* Project estimation and scheduling are interleaved management
activities?

Software cost components
Hardware and software costs.
Travel and training costs.
Effort costs (the dominant factor in most projects)
e The salaries of engineers involved in the project;
e Socia and insurance costs.
Effort costs must take overheads into account
e Costs of building, heating, lighting.
e Costs of networking and communications.
e Costs of shared facilities (e.g. library, staff restaurant, etc.).

Department of CSE, SIBIT Page 101

Software Engineering 101S51

Costing and pricing
Estimates are made to discover the cog, to the developer, of
producing a software system. There is not a simple relationship
between the development cost and the price charged to the
customer. Broader organizational, economic, political and business
considerations influence the price charged.

Software pricing factors

M arket
opp ortu nity

Costestimate
uncertainty

Contractual terms

Requirements
volatility

Financial health

A development organisation may quote a low price because it
wishes to move into a new segment of the software market.
A ccepting alow profiton one project may give the opportunity
of more profit later. The experience ganed may allow new
productsto be dev elo ped.

If anorganisation is unsure of its cost estimate, it may increase
its price by somecontingency ov er and above itsnormal profit.

A customer may be willing to allow the developer to retain
ownership of the source code and reuse it in other projects. The
price charged may then be less than if the software source code
ishanded over to the customer.

If the requirements are likely to change, an organisation may
low er its price to win acontract. A fter the contract is aw ard ed,
high pricescan becharged for changesto therequirements.

Developers in financial difficulty may lower their price togain
acontract. It is better to make asm aller than normal profit or
break even than to go out of business.

Software productivity
A measure of the rate at which individual engineersinvolved in
software devel opment produce software and associated
documentation.
Not quality-oriented athough quality assurance is afactor in
productivity assessment.

Essentially, we want to measure useful functionality produced per
time unit.

Productivity measures

e Sizerelated measures based on some output from the software
process. This may be lines of delivered source code, abject code
instructions, etc.

e Function-related measures based on an estimate of the
functionality of the delivered software. Function-points are the best
known of this type of measure.

M easurement problems

e Estimating the size of the measure (e.g. how many function
points).

Department of CSE, SIBIT Page 102

Software Engineering 101S51

e Estimating the total number of programmer months that have
elapsed.

e Estimating contractor productivity (e.g. documentation team)
and incorporating this estimate in overall estimate.

Lines of code
What’s aline of code?
e The measure was first proposed when programs were typed on
cards with one line per card;
e How does this correspond to statements as in Java which can
span several lines or where there can be several statements on one
line?
What programs should be counted as part of the system?
This model assumes that there is alinear relationship between
system size and volume of documentation.

Productivity comparisons
The lower level the language, the more productive the programmer
The same functionality takes more code to implement in a lower-
level language than in a high-level language.
The more verbose the programmer, the higher the productivity
Measures of productivity based on lines of code suggest that
programmers who write verbose code are more productive than
programmers who write compact code.

System development times

Analysis Design Coding Testing Documentation

Assembly code 3weeks 5Sweeks 8weeks 10 2 weeks
High-level language 3weeks 5S5weeks 4weeks weeks 2 weeks
6 weeks
Size Effort Productivity
Assembly code 5000 lines 28 weeks 714 lines'fmonth

High-level language 1500 lines 20 weeks 300 lines'month

Function points
Based on a combination of program characteristics
e external inputs and outputs;
e user interactions;
e external interfaces;
e Filesused by the system.

Department of CSE, SIBIT Page 103

Software Engineering 101S51

A weight is associated with each of these and the function point
count is computed by multiplying each raw count by the weight and

summing all values.

UPC=3 (no. of elements of given type) X (weight).

The function point count is modified by complexity of the project
FPs can be used to estimate LOC depending on the average number
of LOC per FP for a given language

e LOC=AVC* number of function points;

e AVCisalanguage-dependent factor varying from 200-300 for
assemble language to 2-40 for a4GL;

FPs isvery subjective. They depend on the estimator

e Automatic function-point counting is impossible.

Object points
Object points (alternatively named application points) are an
aternative function-related measure to function points when 4Gls or
similar languages are used for development.
Object points are NOT the same as object classes.
e The number of object pointsin a program is a weighted
estimate of
e The number of separate screens that are displayed;
e The number of reportsthat are produced by the system,;
e The number of program modules that must be developed to
supplement the database code;

Object point estimation
Object points are easier to estimate from a specification than
function points as they are simply concerned with screens, reports
and programming language modules. They can therefore be
estimated at a fairly early point in the development process. At this
stage, it is very difficult to estimate the number of lines of codein a
system.

Productivity estimates
e Real-time embedded systems, 40-160 L OC/P-month.
e Systems programs, 150-400 L OC/P-month.
e Commercial applications, 200-900 L OC/P-month.
e Inobject points, productivity has been measured between 4 and
50 object points/month depending on tool support and devel oper
capability.

Department of CSE, SIBIT Page 104

Software Engineering 101S51

Factor s affecting productivity

Application Knowledge of the application domain is essential for effective

domain
experience

software development. Engineers who aready understand a
domain are likely to be the most productive.

Process quality = The development process used can have asignificant effect on

productivity. Thisis covered in Chapter 28.

Project size The larger a project, the more time required for team

communications. Less time is available for development so
individual productivity is reduced.

Technology Good support technology such asC ASE tools, configuration
support management systems, etc. can improve productivity.
Working As| discussed in Chapter 25, aqguiet working environment with
environment private work areas contributes to improved productivity.
Quality and productivity
All metrics based on volume/unit time are flawed because they do
not take quality into account. Productivity may generally be
increased at the cost of quality. It is not clear how
productivity/quality metrics are related. If requirements are
constantly changing then an approach based on counting lines of
code is not meaningful as the program itself is not static;
Estimation techniques

There is no simple way to make an accurate estimate of the effort
required to develop a software system

e Initial estimates are based on inadequate information in a user
requirements definition;

e The software may run on unfamiliar computers or use new
technology;

e The peoplein the project may be unknown.

Project cost estimates may be sdlf-fulfilling

e The estimate defines the budget and the product is adjusted to
meet the budget.

Changing technologies

Changing technologies may mean that previous estimating
experience does not carry over to new systems

e Distributed object systems rather than mainframe systems;
e Useof web services,

e Use of ERP or database-centered systems;

e Use of off-the-shelf software;

e Development for and with reuse;

Department of CSE, SIBIT Page 105

Software Engineering 101S51

e Development using scripting languages,
e Theuse of CASE tools and program generators.

Estimation techniques
e Algorithmic cost modeling.
e Expert judgment.
e Estimation by analogy.
e Parkinson's Law.
e Pricing to win.
Estimation techniques

Algorithmic A model based on historical cost information that relates some software
cost modelling metric (usudly its size) to the project cost is used. An estimate is m ade
of that metric and the model predicts the effort required.

Expert Several experts on the proposed software development techniques and

judgement the application domain are consulted. They each estimate the project
cost. These estimates are compared and discussed. The estimation
process iterates until an agreed estimate is reached.

Estimation by This technique is applicable when other projects in the same application

analogy domain have been completed. The cost of a new project is estimated by
analogy with these completed projects. Myers (Myers 1989) gives a
very clear description of this approach.

ParkinsonOs ParkinsonOsLaw states that work expands to fill the time available. The

Law cost is determined by available resources rather than by objective
assessment. If the software has to be delivered in 12 months and 5
people are available, the effort required is estimated to be 60 person-
months.

Pricing to win The software cost is estimated to be whatever the customer has
available to spend on the project. The estimated effort depends on the
customerOs idget and not on the software functionality.

Pricing to win
The project costs whatever the customer has to spend on it.
Advantages:
Y ou get the contract.
Disadvantages:
The probability that the customer gets the system he or she wants is
small. Costs do not accurately reflect the work required.

Top-down and bottom-up estimation
Any of these approaches may be used top-down or bottom-up.
Top-down
Start at the system level and assess the overall system functionality
and how thisis delivered through sub-systems.
Bottom-up
Start at the component level and estimate the effort required for
each component. Add these effortsto reach afinal estimate.

Department of CSE, SIBIT Page 106

Software Engineering 101S51

Top-down estimation
e Usable without knowledge of the system architecture and the
components that might be part of the system.
e Takesinto account costs such as integration, configuration
management and documentation.

® Can underestimate the cost of solving difficult low-level
technical problems.

Bottom-up estimation

e Usable when the architecture of the system is known and
components identified.

e Thiscan be an accurate method if the system has been designed
in detail.

e It may underestimate the costs of system level activities such as
integration and documentation.

Estimation methods
Each method has strengths and weaknesses.
Estimation should be based on several methods.
If these do not return approximately the same result, then you have
insufficient information available to make an estimate.
Some action should be taken to find out morein order to make more
accurate estimates.
Pricing to win is sometimes the only applicable method.

Pricing to win
This approach may seem unethical and un-businessike.
However, when detailed information is lacking it may be the only
appropriate strategy.
The project cost is agreed on the basis of an outline proposal and the
development is constrained by that cost.
A detailed specification may be negotiated or an evolutionary
approach used for system development.

Algorithmic cost modeling
Cost is estimated as a mathematical function of product, project and
process attributes whose values are estimated by project managers:
e Effort=A "SizeB "M
e Aisan organisation-dependent constant, B reflects the
disproportionate effort for large projects and M isamultiplier
reflecting product, process and peopl e attributes.
The most commonly used product attribute for cost estimation is
code size. Most models are smilar but they use different values for
A,Band M.

Department of CSE, SIBIT Page 107

Software Engineering 101S51

Estimation accuracy
The size of a software system can only be known accurately when it
isfinished.
Several factors influence the final size
e Useof COTS and components;
e Programming language;
e Distribution of system.
As the development process progresses then the size estimate
becomes more accurate.

Estimate uncertainty

4x
2x
X Fleasibility Requlirements Desilgn Colde Delivery
0.5x
0.25x
The COCOMO model

e Anempirical model based on project experience.

e Wall-documented, ‘independent’” model whichisnot tied to a
specific software vendor.

e Long history from initial version published in 1981
(COCOMO-81) through various instantiationsto COCOMO 2.

e COCOMO 2 takesinto account different approachesto
software development, reuse, etc.

Department of CSE, SIBIT Page 108

Software Engineering 101S51
COCOMO 81
Project Formula Description
complexity

Simple PM = 2.4 (KDSI)*® x M Well-understood applications
developed by small teams.

M oderate PM = 3.0 (KDSI**2 x M More complex projects where
team members may have limited
experience of related systems.

Embedded PM = 3.6 (KDSI)'?° x M Complex projects where the
software is pat of a strongly
coupled complex of hardware,
software, regulations and
operationa procedures.

COCOMO 2

COCOMO 81 was developed with the assumption that awaterfall
process would be used and that all software would be devel oped

from scratch.

Since its formulation, there have been many changesin software
engineering practice and COCOMO 2 is designed to accommodate
different approachesto software devel opment.

COCOMO 2 models

COCOMO 2 incorporates arange of sub-modelsthat produce

increasingly detailed software estimates.

The sub-modelsin COCOMO 2 are;

e Application composition model. Used when software is

composed from existing parts.

e Early design model. Used when requirements are available but

design has not yet started.

e Reuse model. Used to compute the effort of integrating

reusable components.

e Post-architecture model. Used once the system architecture has
been designed and more information about the system is available.

Department of CSE, SIBIT

Page 109

Software Engineering

Use of COCOMO 2 models

101S51

Prototype systems

Number of | Based on Application Used for developed usin
application points [T composition model scriptﬁng, DB 8
programming etc.
- Initial effort
Number of function | Based on Early design model Used for > estimation based on
points system requirements
and design options
Number of lines of Based on Used for Effort to integrate
code reused or = Reuse model » reusable components
generated or automatically
generated code
Number of lines of || Based on Post-architecture Used for Dsgseéo g:,esn tsféfnﬂrt
source code model design specification

Application composition model

e Supports prototyping projects and projects wherethere is
extensive reuse.

e Based on standard estimates of developer productivity in

application (object) points/month.

e Takes CASE tool use into account.

Formulais

e PM=(NAP" (1-%reuse/100))/PROD
e PM isthe effort in person-months, NAP is the number of
application points and PROD is the productivity.

Object point productivity

Devel oper@ experience

and capability
ICASE maturity and
capability

PROD (NOP/month)

Very low

Very low

Low Nomind

Low Nomind

7 13

High Very high
High Very high
25 50

Department of CSE, SIBIT

Page 110

Software Engineering 101S51

Early design model
Estimates can be made after the requirements have been agreed.
Based on a standard formula for algorithmic models
e PM=A"SizeB" M where
e M=PERS"RCPX " RUSE " PDIF" PREX "~ FCIL ~ SCED;
e A =29%ininitial calibration, Sizein KLOC, B variesfrom 1.1
to 1.24 depending on novelty of the project, development flexibility,
risk management approaches and the process maturity.

Multipliers

Multipliers reflect the capability of the developers, the non-
functional requirements, the familiarity with the development
platform, etc.

e RCPX - product reliability and complexity;

e RUSE - the reuse required;

e PDIF - platform difficulty;

e PREX - personnel experience;

e PERS - personnel capability;

e SCED - required schedule;

e FCIL - the team support facilities.

The reuse model
e Takesinto account black-box code that is reused without
change and code that has to be adapted to integrate it with new
code.
There are two versions:
 Black-box reuse where codeis not modified. An effort estimate
(PM) is computed.

® White-box reuse where code is modified. A size estimate
equivalent to the number of lines of new source code is computed.

This then adjusts the size estimate for new code.

Reuse model estimates 1
For generated code:
PM = (ASLOC * AT/100)/ATPROD
ASLOC isthe number of lines of generated code
AT isthe percentage of code automatically generated.
ATPROD isthe productivity of engineersin integrating this code.

Reuse model estimates 2
When code has to be understood and integrated:
ESLOC =ASLOC * (1-AT/100) * AAM.
ASLOC and AT asbefore.
AAM is the adaptation adjustment multiplier computed from the
costs of changing the reused code, the costs of understanding how
to integrate the code and the costs of reuse decision making.

Department of CSE, SIBIT Page 111

Software Engineering 101S51

The exponent term

This depends on 5 scale factors (see next slide). Their sum/100 is
added to 1.01

A company takes on a project in a new domain. The client has not
defined the process to be used and has not allowed time for risk
analysis. The company has a CMM level 2 rating.

e Precedent ness - new project (4)

e Development flexibility - no client involvement - Very high (1)
e Architecture/risk resolution - No risk analysis- V. Low .(5)

e Team cohesion - new team - nominal (3)
e Process maturity - some control - nominal (3)
Scale factor istherefore 1.17.

Exponent scale factors

Precedentedness

Development
flexibility

Architecture/risk
resolution

Team cohesion

Reflects the previous experience of the organisation with this type of
project. Very low means no previous experience, Extra high m eans
that the organisation is completely familiar with this application
domain.

Reflects the degree of flexibility in the development process. Very
low m eans a prescribed process is used; Extra high means that the
client only sets general goals.

Reflects the extent of risk analysis carried out. Very low m eans little
analysis, Extra high means a complete a thorough risk analysis.

Reflects how well the development team know each other and work

together. Very low means very difficult interactions, Extra high
means an integrated and effective team with no communication
problems.

Process maturity Reflects the process maturity of the organisation. The computation

of this value depends on the CM M Maturity Questionnaire but an
estimate can be ac hieved by subtracting the CM M process maturity
level from 5.

Multipliers

Product attributes : Concerned with required characteristics of the
software product being developed.

Computer attributes: Constraints imposed on the software by the
hardware platform.

Personnel attributes: Multipliers that take the experience and
capabilities of the people working on the project into account.
Project attributes: Concerned with the particular characteristics of
the software development project.

Project planning

Algorithmic cost models provide abasis for project planning as they
allow alternative strategies to be compared.

Department of CSE, SIBIT Page 112

Software Engineering 101S51

e Embedded spacecraft system Must bereliable;

e Must minimize weight (number of chips);

e Multipliers onreiability and computer constraints > 1.
Cost components

Target hardware;Development platform;Development effort

M anagement
options
A. Use existing hardware,
development system and
development team
B. Processor and C. Memory D. More
memory upgrade upgrade only experienced staff
Hardware cost increase Hardware cost
Experience decrease increase
E. New development E Staff with
system hardware experience

Hardware cost increase
Experience decrease

M anagement option costs

Option choice

Option RELY STOR TIME TOOLS LTEX Total effort Softwarecost Hardware Total cost

cost
A 1.39 1.06 111 0.86 1 63 949393 100000 1049393
B 1.39 1 1 112 122 88 1313550 120000 1402025
C 1.39 1 111 0.86 1 60 895653 105000 1000653
D 1.39 1.06 111 0.86 0.84 51 769008 100000 897490
E 1.39 1 1 0.72 122 56 844425 220000 1044159
F 1.39 1 1 112 0.84 57 851180 120000 1002706

Option D (use more experienced staff) appears to be the best
aternative

 However, it has a high associated risk as experienced staff may
be difficult to find.

Option C (upgrade memory) has alower cost saving but very low
risk.

Overall, the model reveals the importance of staff experiencein
software development.

Department of CSE, SIBIT Page 113

Software Engineering 101S51

Project duration and staffing
Aswell aseffort estimation, managers must estimate the calendar
time required completing a project and when staff will be required.
Calendar time can be estimated using a COCOMO 2 formula
e TDEV =3’ (PM)(0.33+0.2*(B-1.01))
e PM isthe effort computation and B is the exponent computed
as discussed above (B is 1 for the early prototyping model). This
computation predicts the nominal schedule for the project.
The time required is independent of the number of people working

on the project.

Staffing requirements
Staff required can’t be computed by diving the development time by
the required schedule. The number of people working on a project
varies depending on the phase of the project. The more people who
work on the project, the moretotal effort is usualy required. A very
rapid build-up of people often correlates with schedule slippage
Key points
e Thereis not asimple relationship between the price charged for
a system and its development costs.
e Factors affecting productivity include individual aptitude,
domain experience, the development project, the project size, tool
support and the working environment.
e Software may be priced to gain a contract and the functionality
adjusted to the price.
e Different techniques of cost estimation should be used when
estimating costs.
e The COCOMO model takes project, product, personnel and
hardware attributes into account when predicting effort required.
e Algorithmic cost models support quantitative option analysis as
they allow the costs of different options to be compared.
e Thetime to complete a project is not proportional to the
number of people working on the project.

Department of CSE, SIBIT Page 114

