
Software Engineering 10IS51

SOFTWARE ENGINEERING
Subject Code: 10IS51 I.A. Marks : 25
Hours/Week : 04 Exam Hours: 03
Total Hours : 52 Exam Marks: 100

PART – A
UNIT – 1 6 Hours
Overview: Introduction: FAQ's about software engineering, Professional and ethical
responsibility.
Socio-Technical systems: Emergent system properties; Systems engineering;
Organizations, people and computer systems; Legacy systems.

UNIT – 2 6 Hours
Critical Systems, Software Processes: Critical Systems: A simple safety critical
system; System dependability; Availability and reliability.
Software Processes: Models, Process iteration, Process activities; The Rational
Unified Process; Computer Aided Software Engineering.

UNIT – 3 7 Hours
Requirements: Software Requirements: Functional and Non-functional
requirements; User requirements; System requirements; Interface specification; The
software requirements document.
Requirements Engineering Processes: Feasibility studies; Requirements elicitation
and analysis; Requirements validation; Requirements management.

UNIT – 4 7 Hours
System models, Project Management: System Models: Context models;
Behavioral models; Data models; Object models; Structured methods.
Project Management: Management activities; Project planning; Project scheduling;
Risk management

PART – B

UNIT – 5 7 Hours
Software Design: Architectural Design: Architectural design decisions; System
organization; Modular decomposition styles; Control styles. 33
Object-Oriented design: Objects and Object Classes; An Object-Oriented design
process; Design evolution.

UNIT – 6 6 Hours
Development: Rapid Software Development: Agile methods;Extreme programming;
Rapid application development.
Software Evolution: Program evolution dynamics; Software maintenance;
Evolution processes; Legacy system evolution.

UNIT – 7 7 Hours
Verification and Validation: Verification and Validation: Planning;
Software inspections; Automated static analysis; Verification and formal methods.
Software testing: System testing; Component testing; Test case design; Test
automation.

Department of CSE, SJBIT Page 1

Software Engineering 10IS51

UNIT – 8 6 Hours
Management: Managing People: Selecting staff; Motivating people; Managing
people; The People Capability Maturity Model.
Software Cost Estimation: Productivity; Estimation techniques; Algorithmic cost
modeling, Project duration and staffing.

Text Book:
1. Ian Sommerville: Software Engineering, 8th Edition, Pearson Education, 2007.
(Chapters-: 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 21, 22, 23, 25, 26)

Reference Books:
1. Roger.S.Pressman: Software Engineering-A Practitioners approach, 7th Edition,
Tata McGraw Hill, 2007.
2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India, 2009.

Department of CSE, SJBIT Page 2

Software Engineering 10IS51

TABLE OF CONTENTS

UNIT-1 Overview 4 - 5

Socio-Technical systems 5 - 8

UNIT-2 Critical Systems, Software Processes 9 - 15

UNIT-3 Requirements 16 - 20

Requirements Engineering Processes 20 - 21

UNIT – 4 System models, Project Management 22 - 27

UNIT – 5 Software Design, Object-Oriented design 28 – 49

UNIT-6 Development, Software Evolution 50 - 70

UNIT-7 Verification and Validation , Software testing 71 - 93

UNIT-8 Management, Software Cost Estimation 94 - 114

Department of CSE, SJBIT Page 3

Software Engineering 10IS51

UNIT -1
OVERVIEW

The economies of ALL developed nations are dependent on software. More and more
systems are software controlled.

Software engineering is concerned with theories, methods and tools for professional
software development.

FAQs About software engineering:

What is software?
Software is set of Computer programs associated with documentation & configuration
data that is needed to make these programs operate correctly. A software system
consists of a number of programs, configuration files (used to set up programs),
system documentation (describes the structure of the system) and user documentation
(explains how to use system).
Software products may be developed for a particular customer or may be developed
for a general market.
Software products may be
• Generic - developed to be sold to a range of different customers
• Bespoke (custom) - developed for a single customer according

to their specification

What is software engineering?
 Software engineering is an engineering discipline which is concerned with all

aspects of software production.
 Software engineers should adopt a systematic and organized approach to their

work and use appropriate tools and techniques depending on the problem to be
solved, the development constraints and the resources available.

What is the difference between software engineering and computer science?
 Computer science is concerned with theory and fundamentals; software

engineering is concerned with the practicalities of developing and delivering
useful software

 Computer science theories are currently insufficient to act as a complete
underpinning for software engineering

What is the difference between software engineering and system engineering?
 System engineering is concerned with all aspects of computer-based systems

development including hardware, software and process engineering. Software
engineering is part of this process

 System engineers are involved in system specification, architectural design,
integration and deployment

What is a software process?
A set of activities whose goal is the development or evolution of software
Generic activities in all software processes are:
• Specification - what the system should do and its development constraints
• Development - production of the software system

Department of CSE, SJBIT Page 4

Software Engineering 10IS51

• Validation - checking that the software is what the customer wants
• Evolution - changing the software in response to changing demands

What is a software process model?
A simplified representation of a software process, presented from a specific
perspective
Examples of process perspectives are
• Workflow perspective - sequence of activities
• Data-flow perspective - information flow
• Role/action perspective - who does what

Generic process models
• Waterfall
• Evolutionary development
• Formal transformation
• Integration from reusable components

Socio-Technical Systems:
• A system is a purposeful collection of inter-related components working together

towards some common objective.

• A system may include software, mechanical, electrical and electronic hardware
and be operated by people.

• System components are dependent on other system components
The properties and behavior of system components are inextricably inter-mingled

Problems of systems engineering

• Large systems are usually designed to solve 'wicked' problems
• Systems engineering requires a great deal of co-ordination across disciplines

• Almost infinite possibilities for design trade-offs across components
• Mutual distrust and lack of understanding across engineering disciplines

• Systems must be designed to last many years in a changing environment

Software and systems engineering

The proportion of software in systems is increasing. Software-driven general purpose
electronics is replacing special-purpose systems
Problems of systems engineering are similar to problems of software engineering

Software is seen as a problem in systems engineering. Many large system projects
have been delayed because of software problems.

Emergent properties

• Properties of the system as a whole rather than properties that can be derived from
the
properties of components of a system

Department of CSE, SJBIT Page 5

Software Engineering 10IS51

• Emergent properties are a consequence of the relationships between system
components. They can therefore only be assessed and measured once the
components have been integrated into a system.

Examples of emergent properties

1. The overall weight of the system
• This is an example of an emergent property that can be computed from individual
component properties.
2. The reliability of the system
• This depends on the reliability of system components and the relationships between
the components.
3. The usability of a system
• This is a complex property which is not simply dependent on the system hardware
and software but also depends on the system operators and the environment where it
is used.

Types of emergent property

1. Functional properties
• These appear when all the parts of a system work together to achieve some
objective. For example, a bicycle has the functional property of being a transportation
device once it has been assembled from its components.

2. Non-functional emergent properties
• Examples are reliability, performance, safety, and security.
These relate to the behaviour of the system in its operational environment. They are
often critical for computer-based systems as failure to achieve some minimal defined
level in
these properties may make the system unusable.

Because of component inter-dependencies, faults can be propagated through the
system
System failures often occur because of unforeseen inter-relationships between
Components It is probably impossible to anticipate all possible component
relationships
Software reliability measures may give a false picture of the system reliability

System reliability engineering

1. Hardware reliability
• What is the probability of a hardware component failing and how long does it take
to repair that component?
2. Software reliability
• How likely is it that a software component will produce an incorrect output.
Software failure is usually distinct from hardware failure in that software does not
wear out.
3. Operator reliability
• How likely is it that the operator of a system will make an error?
Influences on reliability

Department of CSE, SJBIT Page 6

Software Engineering 10IS51

Reliability relationships

1. Hardware failure can generate spurious signals that are outside the range of inputs
expected by the software
2. Software errors can cause alarms to be activated which cause operator stress and
lead to operator errors

3. The environment in which a system is installed can affect its reliability

Systems and their environment

Systems are not independent but exist in an environment
System’s function may be to change its environment. Environment affects the
functioning of the system e.g. system may require electrical supply from its
environment
The organizational as well as the physical environment may be important

Human and organisational factors

Process changes
• Does the system require changes to the work
processes in the environment?
Job changes
• Does the system de-skill the users in an environment or
cause them to change the way they work?
Organisational changes
• Does the system change the political power structure in
an organisation?

Department of CSE, SJBIT Page 7

Software Engineering 10IS51

System architecture modelling
An architectural model presents an abstract view of the sub-systems making up a
system
may include major information flows between sub-systems
I Usually presented as a block diagram
I May identify different types of functional component in the model

System evolution
Large systems have a long lifetime. They must evolve to meet changing requirements
Evolution is inherently costly
• Changes must be analysed from a technical and business perspective
• Sub-systems interact so unanticipated problems can arise
• There is rarely a rationale for original design decisions
• System structure is corrupted as changes are made to it
Existing systems which must be maintained are sometimes called legacy systems

The system engineering process
Usually follows a ‘waterfall’ model because of the need for parallel development of
different parts of the system
• Little scope for iteration between phases because hardware
changes are very expensive. Software may have to compensate for hardware problems

Inevitably involves engineers from different disciplines who must work together
• Much scope for misunderstanding here. Different disciplines use a
different vocabulary and much negotiation is required. Engineers may have personal
agendas to fulfill.

Department of CSE, SJBIT Page 8

Software Engineering 10IS51

UNIT-2
CRITICAL SYSTEMS, SOFTWARE PROCESSES

Critical Systems

• For critical systems, it is usually the case that the most important system property
is the dependability of the system.

• The dependability of a system reflects the user’s degree of trust in that system. It
reflects the extent of the user’s confidence that it will operate as users expect and
that it will not ‘fail’ in normal use.

• Usefulness and trustworthiness are not the same thing. A system does not have to
be trusted to be useful

Dimensions of dependability

The software process
A software process is a structured set of activities required to develop a software
system

It involves the following phases:

• Specification
• Design
• Validation
• Evolution
A software process model is an abstract representation of a process. It presents a
description of a process from some particular perspective.

Software process models
1. The waterfall model
• Separate and distinct phases of specification and development

2. Evolutionary development
• Specification and development are interleaved

Department of CSE, SJBIT Page 9

Software Engineering 10IS51

3. Formal systems development
• A mathematical system model is formally transformed to an
Implementation

4. Reuse-based development
• The system is assembled from existing components

Waterfall model

The different phases in waterfall model are :
• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

The drawback of the waterfall model is the difficulty of accommodating change after
the
process is underway.

Waterfall model problems
• Inflexible partitioning of the project into distinct stages

• This makes it difficult to respond to changing
customer requirements

This model is only appropriate when the requirements are well-understood.

Evolutionary development

There are 2 types :

1. Exploratory development

Department of CSE, SJBIT Page 10

Software Engineering 10IS51

• Objective is to work with customers and to evolve a final system from an initial
outline

specification. Should start with well-understood requirements

2.Throw-away prototyping
• Objective is to understand the system requirements. Should start

with poorly understood requirements

Problems

• Lack of process visibility
• Systems are often poorly structured
• Special skills (e.g. in languages for rapid prototyping) may be required

Applicability
• For small or medium-size interactive systems
• For parts of large systems (e.g. the user interface)
• For short-lifetime systems

Formal systems development

It is based on the transformation of a mathematical specification through different
representations to an executable program.

Transformations are ‘correctness-preserving’ so it is straightforward to show that the
program conforms to its specification.

It is embodied in the ‘Cleanroom’ approach to software development.

Department of CSE, SJBIT Page 11

Software Engineering 10IS51

Problems

• Need for specialised skills and training to apply the technique
• Difficult to formally specify some aspects of the system such as

the user interface

Applicability
• Critical systems especially those where a safety or security case

must be made before the system is put into operation
Reuse-oriented development
It is based on systematic reuse where systems are integrated from existing
components or COTS (Commercial-off-the-shelf) systems
L
Process stages
• Component analysis
• Requirements modification
• System design with reuse
• Development and integration

This approach is becoming more important but still limited experience with it

Process iteration
System requirements ALWAYS evolve in the course of a project so process iteration
where earlier stages are reworked is always part of the process for large systems
Iteration can be applied to any of the generic process models

Two (related) approaches
• Incremental development
• Spiral development

Incremental development
Rather than deliver the system as a single delivery, the development and delivery is
broken down into increments with each increment delivering part of the required
functionality.

User requirements are prioritised and the highest priority requirements are included in
early increments.
Once the development of an increment is started, the requirements are frozen though
requirements for later increments can continue to evolve.

Department of CSE, SJBIT Page 12

Software Engineering 10IS51

Advantages
• Customer value can be delivered with each

increment so system functionality is available earlier

• Early increments act as a prototype to help elicit
requirements for later increments

• Lower risk of overall project failure

• The highest priority system services tend to
receive the most testing

Spiral development
Process is represented as a spiral rather than as a sequence of activities with
backtracking
Each loop in the spiral represents a phase in the process.
No fixed phases such as specification or design -loops in the spiral are chosen
depending on what is required.
Risks are explicitly assessed and resolved throughout the process.

Department of CSE, SJBIT Page 13

Software Engineering 10IS51

CASE
Computer-aided software engineering (CASE) is software to support software
development and evolution processes.

Activity automation
• Graphical editors for system model development
• Data dictionary to manage design entities
• Graphical UI builder for user interface construction
• Debuggers to support program fault finding
• Automated translators to generate new versions of a program

Case technology
Case technology has led to significant improvements in the software process though
not
the order of magnitude improvements that were once predicted

• Software engineering requires creative thought - this is not
readily automatable
• Software engineering is a team activity and, for large projects,
much time is spent in team interactions. CASE technology does
not really support these

CASE classification

Classification helps us understand the different types of CASE tools and their support
for process activities.

1. Functional perspective
• Tools are classified according to their specific function

2. Process perspective
• Tools are classified according to process activities that are supported

3. Integration perspective
• Tools are classified according to their organisation into integrated units

CASE integration

Tools
• Support individual process tasks such as design consistency checking, text editing,
etc.

Workbenches
• Support a process phase such as specification or design, Normally include a number
of integrated tools

Environments
• Support all or a substantial part of an entire software process.
Normally include several integrated workbenches

Department of CSE, SJBIT Page 14

Software Engineering 10IS51

Tools, workbenches, environments

Department of CSE, SJBIT Page 15

Software Engineering 10IS51

UNIT -3
REQUIREMENTS

Requirements

Requirement - Descriptions and specifications of a system.

Requirements engineering
• The process of establishing the services that the customer requires from a system

and the constraints under which it operates and is developed.
• The requirements themselves are the descriptions of the system services and

constraints that are generated during the requirements engineering process.

Requirement : A requirement may range from a high-level abstract statement of a
service or of a system constraint to a detailed mathematical functional specification.

Requirements serve a dual function :
• May be the basis for a bid for a contract - therefore must be open to interpretation
• May be the basis for the contract itself - therefore must be defined in detail
• Both these statements may be called requirements

Functional and non-functional requirements

Definitions

Functional requirements : Statements of services the system should provide, how the
system should react to particular inputs and how the system should behave in
particular situations.

Non-functional requirements : Constraints on the services or functions offered by the
system such as timing constraints, constraints on the development process, standards,
etc.

Domain requirements : Requirements that come from the application domain of the
system and that reflect characteristics of that domain.

Detailed descriptions

Functional requirements

• They Describe functionality or system services
• Depend on the type of software, expected users and the type of system where the

software is used
• Functional user requirements may be high-level statements of what the system

should do but functional system requirements should describe the system services
in detail

Department of CSE, SJBIT Page 16

Software Engineering 10IS51

Examples (The requirements can be defined as follows)

• The user shall be able to search either all of the initial set of databases or select
a subset from it.

• The system shall provide appropriate viewers for the user to read documents in
the document store.

• Every order shall be allocated a unique identifier (ORDER_ID) which the user
shall be able to copy to the account’s permanent storage area.

Non-functional requirements

• They define system properties and constraints like reliability, response time
and storage requirements.

• Constraints are I/O device capability, system representations, etc.
• Process requirements may also be specified mandating

a particular CASE system, programming language or development method

Non-functional requirements may be more critical than functional requirements. If
these are not met, the system becomes useless.

Non-functional classifications

1. Product requirements
These requirements specify that the delivered product must behave in a particular

way e.g. execution speed, reliability, etc.

2. Organizational requirements
• Requirements which are a consequence of organizational policies and procedures
e.g.

process standards used, implementation requirements, etc.

3. External requirements
• Requirements which arise from factors which are external to the system and its

development process e.g. interoperability requirements, legislative requirements,
etc.

Department of CSE, SJBIT Page 17

Software Engineering 10IS51

Types of requirement

1. User requirements
• Statements in natural language plus diagrams of the services the system provides
and its

operational constraints. Written for customers
2. System requirements
• A structured document setting out detailed descriptions of the system services.
Written

as a contract between client and contractor
3. Software specification
• A detailed software description which can serve as a basis for a design

or implementation. These set of requirements are written for developers

User requirements
• Should describe functional and non-functional requirements so that they are

understandable by system users who don’t have detailed technical knowledge
• User requirements are defined using natural language, tables and diagrams

Some of the problems with natural language
1. Lack of clarity

• Precision is difficult without making the document difficult to read
2. Requirements confusion

• Functional and non-functional requirements tend to be mixed-up
3. Requirements amalgamation

• Several different requirements may be expressed together

System requirements
• More detailed specifications of user requirements
• Serve as a basis for designing the system
• May be used as part of the system contract
• System requirements may be expressed using system models

Department of CSE, SJBIT Page 18

Software Engineering 10IS51

Interface specification
Most systems must operate with other systems and the operating interfaces must be
specified as part of the requirements

Three types of interface may have to be defined
• Procedural interfaces
• Data structures that are exchanged
• Data representations

Formal notations are an effective technique for interface specification

The requirements document
The requirements document is the official statement of what is required of the system
developers. It should include both a definition and a specification of requirements

The requirements document is NOT a design document. As far as possible, it should
set of WHAT the system should do rather than HOW it should do it.

Requirements document requirements – The requirement doc should have the
following :
• Specify external system behaviour
• Specify implementation constraints
• Easy to change
• Serve as reference tool for maintenance
• Record forethought about the life cycle of the

system i.e. predict changes
• Characterise responses to unexpected events

Department of CSE, SJBIT Page 19

Software Engineering 10IS51

Requirements document structure - These are the various contents that the req doc
should possess :
• Introduction
• Glossary
• User requirements definition
• System architecture
• System requirements specification
• System models
• System evolution
• Appendices
• Index

Requirements engineering processes
The processes used for RE vary widely depending on the application domain, the
people
involved and the organization developing the requirements
These are some of the generic activities common to all processes
• Requirements elicitation
• Requirements analysis
• Requirements validation
• Requirements management

Feasibility studies
A feasibility study decides whether or not the proposed system is worthwhile
It is a short focused study that checks
• If the system contributes to organisational objectives
• If the system can be engineered using current technology and within budget
• If the system can be integrated with other systems that are used

Elicitation and analysis
• Sometimes called requirements elicitation or requirements discovery
• Involves technical staff working with customers to find out about the application

domain, the services that the system should provide and the system’s operational
constraints

Department of CSE, SJBIT Page 20

Software Engineering 10IS51

• May involve end-users, managers, engineers involved in maintenance, domain
experts, trade unions, etc. These are called stakeholders

Requirements validation
• Concerned with demonstrating that the requirements define the system that the

customer really wants
• Requirements error costs are high so validation is very important

Fixing a requirements error after delivery may cost up to 100 times the cost of
fixing

an implementation error

Requirements management
• Requirements management is the process of managing changing requirements

during the requirements engineering process and system development
• Requirements are inevitably incomplete and inconsistent

New requirements emerge during the process as business needs change and a
better

understanding of the system is developed
Different viewpoints have different requirements and these are often contradictory

Requirements change
• The priority of requirements from different viewpoints changes during the

development process
• System customers may specify requirements from a business perspective that

conflict with end-user requirements
• The business and technical environment of the system changes during its

development

Department of CSE, SJBIT Page 21

Software Engineering 10IS51

UNIT 4
SYSTEM MODELS, PROJECT MANAGEMENT

System models

System modeling : System modeling helps the analyst to understand the functionality
of the system and models are used to communicate with customers

Different models present the system from different perspectives
• External perspective showing the system’s context or environment
• Behavioral perspective showing the behavior of the system
• Structural perspective showing the system or data architecture

Structured methods
• Structured methods incorporate system modeling as an inherent part of the method
• Methods define a set of models, a process for deriving these models and rules and

guidelines that should apply to the models
• CASE tools support system modeling as part of a structured method

Context models
• Context models are used to illustrate the boundaries of a system
• Social and organizational concerns may affect the decision on where to position

system boundaries
• Architectural models show the a system and its relationship with other systems

Process models
• Process models show the overall process and the processes that are supported by

the system
• Data flow models may be used to show the processes and the flow of information

from one process to another

Behavioural models
• Behavioural models are used to describe the overall behaviour of a system
• Two types of behavioural model are shown here

• Data processing models that show how data is processed as it moves through the
system
• State machine models that show the systems response to events

• Both of these models are required for a description of the system’s behaviour

Data-processing models
• Data flow diagrams are used to model the system’s data processing
• These show the processing steps as data flows through a system
• Intrinsic part of many analysis methods
• Simple and intuitive notation that customers can understand
• Show end-to-end processing of data

Object models
• Object models describe the system in terms of object classes

Department of CSE, SJBIT Page 22

Software Engineering 10IS51

• An object class is an abstraction over a set of objects with common attributes and
the services (operations) provided by each object

• Various object models may be produced
• Inheritance models
• Aggregation models
• Interaction models

Object models
• Natural ways of reflecting the real-world entities manipulated by the system
• More abstract entities are more difficult to model using this approach
• Object class identification is recognised as a difficult process requiring a deep

understanding of the application domain
• Object classes reflecting domain entities are reusable across systems

The Unified Modeling Language
• Devised by the developers of widely used objectoriented analysis and design

methods
• Has become an effective standard for objectoriented modelling
• Notation

• Object classes are rectangles with the name at the top, attributes In he middle
section

and operations in the bottom section
• Relationships between object classes (known as associations) are shown as lines
linking objects

• Inheritance is referred to as generalisation and is shown‘upwards’ rather than
‘downwards’ in a hierarchy
Project Management

It is concerned with activities involved in ensuring that software is delivered on time
and on schedule and in accordance with the requirements of the organisations
developing
and procuring the software

Project management is needed because software development is always subject to
budget and schedule constraints that are set by the organisation developing the
software

Software management distinctions
• The product is intangible
• The product is uniquely flexible
• Software engineering is not recognized as an engineering discipline with the same

status as mechanical, electrical engineering, etc.
• The software development process is not standardised
• Many software projects are 'one-off' projects

Management activities
• Proposal writing includes Feasibility, Project costing, Overall requirements

(Internal and External), terms and conditions
• Resource requirements also include Personnel selection

Department of CSE, SJBIT Page 23

Software Engineering 10IS51

• Project planning and scheduling
• Project monitoring and reviews also including Personnel and Process evaluation
• Report writing and presentations

Project staffing involves the following
• May not be possible to appoint the ideal people to work on a project
• Project budget may not allow for the use of highlypaid staff
• Staff with the appropriate experience may not be available
• An organization may wish to develop employee skills on a software project

Managers have to work within these constraints especially when (as is currently the
case) there is an international shortage of skilled IT staff

Project planning

• Probably the most time-consuming project management activity
• Continuous activity from initial concept through to system delivery. Plans must be

regularly revised as new information becomes available
• Various different types of plan may be developed to support the main software

project plan that is concerned with schedule and budget

Types of project plan

Project plan structure – It should include the following:
• Introduction
• Project organization
• Risk analysis
• Hardware and software resource requirements
• Work breakdown
• Project schedule
• Monitoring and reporting mechanisms
Activity organization
• Activities in a project should be organized to produce tangible outputs for

management to judge progress

Department of CSE, SJBIT Page 24

Software Engineering 10IS51

• Milestones are the end-point of a process activity
• Deliverables are project results delivered to customers at the end of some major

project phase such as specification or design
• The waterfall process allows for the straightforward definition of progress

milestones

Project scheduling
• Split project into tasks and estimate time and resources required to complete each

task
• Organize tasks concurrently to make optimal use of workforce
• Minimize task dependencies to avoid delays caused by one task waiting for

another to
complete

• Dependent on project managers intuition and Experience

The project scheduling process

Scheduling problems

• Estimating the difficulty of problems and hence the cost of developing a solution
is hard

• Productivity is not proportional to the number of people working on a task
• Adding people to a late project makes it later because of communication

overheads
• The unexpected always happens. Always allow contingency in planning

Department of CSE, SJBIT Page 25

Software Engineering 10IS51

Activity network

Risk management
• Risk management is concerned with identifying risks and drawing up plans to

minimize their effect on a project.
• A risk is a probability that some adverse circumstance will occur.

• Project risks affect schedule or resources
• Product risks affect the quality or performance of the software being developed
• Business risks affect the organization developing or procuring the software

The risk management process
• Risk identification

• Identify project, product and business risks
• Risk analysis

• Assess the likelihood and consequences of these risks
• Risk planning

• Draw up plans to avoid or minimise the effects of the risk
• Risk monitoring

• Monitor the risks throughout the project

Risk identification
• Technology risks
• People risks
• Organizational risks
• Requirements risks
• Estimation risks

Risk analysis
• Assess probability and seriousness of each risk
• Probability may be very low, low, moderate, high or very high

Department of CSE, SJBIT Page 26

Software Engineering 10IS51

• Risk effects might be catastrophic, serious, tolerable or insignificant

Risk planning
• Consider each risk and develop a strategy to manage that risk
• Avoidance strategies

• The probability that the risk will arise is reduced
• Minimization strategies

• The impact of the risk on the project or product will be reduced
• Contingency plans

• If the risk arises, contingency plans are plans to deal with that risk

Department of CSE, SJBIT Page 27

Software Engineering 10IS51

UNIT –5
SOFTWARE DESIGN

Software Design

Architectural Design
• Establishing the overall Structure of a software system.
Objectives
• To introduce software engineering and to explain its
importance
• To set out the answers to key questions about software
engineering

• To introduce ethical and professional issues and to explain why
they are of concern to software engineers

Software architecture
• The design process for identifying the sub-systems making up a
system and the framework for sub-system control and
communication is the architectural design
• The output of this design process is a description of the
software architecture

Architectural design
• An early stage of the system design process
• Represents the link between specification and design processes
• Often carried out in parallel with some specification activities
• It involves identifying major system components and their
communications

Advantages of explicit architecture
• Stakeholder communication: Architecture may be used as a
focus of discussion by system stakeholders
• System analysis: Means that analysis of whether the system can
meet its non functional requirements is possible or not.
• Large-scale reuse: The architecture may be reusable across a
range of systems

Architectural Design Decisions

Architectural design process
System structuring: The system is decomposed into several principal sub-
systems and communications between these sub-systems are identified.

Control modeling: A model of the control relationships between the different
parts of the system is established.

Modular decomposition: The identified sub-systems are decomposed into
modules

Department of CSE, SJBIT Page 28

Software Engineering 10IS51

Sub-systems and modules
• A sub-system is a system in its own right whose operation is independent
of the services provided by other sub-systems.
• A module is a system component that provides services to other
components but would not normally be considered as a separate system

Architectural models
• Different architectural models may be produced during the design
process
• Each model presents different perspectives on them architecture
• Static structural model that shows the major system components
• Dynamic process model that shows the process structure of the system
• Interface model that defines sub-system interfaces
• Relationships model such as a data-flow model

Architectural styles

The architectural model of a system may conform to a generic architectural
model or style.
An awareness of these styles can simplify the problem of defining system
architectures
• However, most large systems are heterogeneous and do not follow a single

architectural style
Architecture attributes
• Performance: Localize operations to minimize sub-system
communication
• Security: Use a layered architecture with critical assets in inner layers
• Safety: Isolate safety-critical components
• Availability: Include redundant components in the architecture
• Maintainability: Use fine-grain, self-contained components
System structuring
• Concerned with decomposing the system into interacting sub-systems
• The architectural design is normally expressed as a block diagram
presenting an overview of the system structure
• More specific models showing how sub-systems share data, are
distributed and interface with each other may also be developed
Packing robot control system

I
system

Object
identification

system

Packaging
selection
system

Packing
system

Department of CSE, SJBIT

Vision

Arm
controller

Gripper
controller

Conveyor
controller

Page 29

Software Engineering 10IS51

System Organization

The repository model
• Sub-systems must exchange data. This may be done in two
ways:
• Shared data is held in a central database or repository and may
be accessed by all sub- systems.
• Each sub-system maintains its own database and passes data
explicitly to other sub- systems
• When large amounts of data are to be shared, the repository
model of sharing is most commonly used.

CASE toolset architecture
I

Design Code
editor generator

Design Project Program
translator repository editor

Design Report
analyser generator

Repository model characteristics

Advantages
• Efficient way to share large amounts of data
• Sub-systems need not be concerned with how data is produced
• Centralized management e.g. backup, security, etc.
• Sharing model is published as the repository schema

Disadvantages
• Sub-systems must agree on a repository data model. Inevitably
a compromise
• Data evolution is difficult and expensive
• No scope for specific management policies
• Difficult to distribute efficiently

Client-server architecture
• Distributed system model which shows how data and
processing is distributed across a range of components

Department of CSE, SJBIT Page 30

Software Engineering 10IS51

• Set of stand-alone servers which provide specific services such
as printing, data management, etc.
• Set of clients which call on these services
• Network which allows clients to access servers

Film and picture library

Client 2 Client 3

Wide-bandwidth network

Picture
server

Digitized
photographs

Client-server characteristics

Advantages
• Distribution of data is straightforward
• Makes effective use of networked systems. May require
cheaper hardware
• Easy to add new servers or upgrade existing servers

Disadvantages
• No shared data model so sub-systems use different data
organization. Data interchange may be inefficient
• Redundant management in each server
• No central register of names and services - it may be hard to
find out what servers and services are available

Abstract machine model
• Used to model the interfacing of sub-systems
• Organizes the system into a set of layers (or abstract machines)
each of which provide a set of services
• Supports the incremental development of sub-Systems in
different layers. When a layer interface changes, only the adjacent
layer is affected
• However, often difficult to structure systems in this way

Department of CSE, SJBIT Page 31

I
Client 1 Client 4

Hypertext
server

Hypertext
web

Catalogue Video
server server

Catalogue Film clip
files

Software Engineering 10IS51

Version management system

Version management

Object management

Database system

Operating
system

Control Styles

Control models: Are concerned with the control flow between sub-systems.
Distinct from the system decomposition model

• Centralized control: One sub-system has overall responsibility
for control and starts and stops other sub-systems
• Event-based control: Each sub-system can respond to
externally generated events from other sub-systems or the system’s
environment

Centralized control
• A control sub-system takes responsibility for managing the
execution of other sub-systems
• Call-return model: Top-down subroutine model where control
starts at the top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems
• Manager model: Applicable to concurrent systems. One system
component controls the stopping, starting and coordination of other
system processes. Can be implemented in sequential systems as a
case statement

Call-return model

Main
program

Routine 2 Routine 3

Routine 3.1 Routine 3.2

Department of CSE, SJBIT Page 32

I

I

Routine 1

Routine 1.1 Routine 1.2

Software Engineering 10IS51

Real-time system control

I
Sensor Actuator

processes processes

System
controller

Computation User Fault
processes interface handler

Event-driven systems:
Driven by externally generated events where the timing of the

event is outwit the control of the sub-systems which process the
event.

Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-systems.
Any sub-system which can handle the event may do so.
• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed to some
other component for processing
Other event driven models include spreadsheets and production
systems

Broadcast model
• Effective in integrating sub-systems on different computers in a
network
• Sub-systems register an interest in specific events. When these
occur, control is transferred to the sub-system which can handle the
event
• Control policy is not embedded in the event and message
handler. Sub-systems decide on events of interest to them
• However, sub-systems don’t know if or when an event will be
handled

Selective broadcasting
I

Event and message handler

Department of CSE, SJBIT Page 33

Sub-system Sub-system
3 4

Sub-system Sub-system
1 2

Software Engineering 10IS51

Interrupt-driven systems
• Used in real-time systems where fast response to an event is essential
• There are known interrupt types with a handler defined for each type
• Each type is associated with a memory location and a hardware switch

causes transfer to its handler
• Allows fast response but complex to program and difficult to validate

Interrupt-driven control

I

Interrupt
vector

Handler Handler
1 2

Process Process
1 2

Modular decomposition Styles
• Another structural level where sub-systems are decomposed
into modules
• Two modular decomposition models covered
• An object model where the system is decomposed into
interacting objects
• A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also known
as the pipeline model
• If possible, decisions about concurrency should be delayed
until modules are implemented

Object models
• Structure the system into a set of loosely coupled objects with
well-defined interfaces
• Object-oriented decomposition is concerned with identifying
object classes, their attributes and operations
• When implemented, objects are created from these classes and
some control model used to coordinate object operations

Department of CSE, SJBIT Page 34

Interrupts

Handler Handler
3 4

Process Process
3 4

Software Engineering

Invoice processing system
I

Customer

customer#
name
address
credit period

Payment

invoice#
date
amount
customer#

Data-flow models
• Functional transformations process their inputs to produce
outputs
• May be referred to as a pipe and filter model (as in UNIX shell)
• Variants of this approach are very common. When
transformations are sequential, this is a batch sequential model
which is extensively used in data processing systems
• Not really suitable for interactive systems

Domain-specific architectures
• Architectural models which are specific to some application
domain
• Two types of domain-specific model
• Generic models which are abstractions from a number of real
systems and which encapsulate the principal characteristics of these
systems
• Reference models which are more abstract, idealized model.
Provide a means of information about that class of system and of
comparing different architectures
• Generic models are usually bottom-up models; Reference
models are top-down models

Object-oriented Design
• Designing systems using self- contained objects and object
classes

Characteristics of OOD
• Objects are abstractions of real-world or system entities and
manage themselves
• Objects are independent and encapsulate state and
representation information.
• System functionality is expressed in terms of object services

Department of CSE, SJBIT Page 35

10IS51

Receipt

invoice#
date
amount
customer#

invoice#
date
amount
customer

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

Invoice

Software Engineering 10IS51

• Shared data areas are eliminated. Objects communicate by
message passing
• Objects may be distributed and may execute sequentially or in
parallel.

Interacting objects

I

Advantages of OOD
• Easier maintenance. Objects may be understood as stand-alone entities
• Objects are appropriate reusable components.
• For some systems, there may be an obvious mapping from real world
entities to system objects

Object-oriented development
• Object-oriented analysis, design and programming are related but
distinct
• OOA is concerned with developing an object model of the application
domain
• OOD is concerned with developing an object-oriented system model to
implement requirements
• OOP is concerned with realizing an OOD using an OO programming
language such as Java or C++

Objects and object classes
• Objects are entities in a software system which represent instances of real-

world and system entities
• Object classes are templates for objects. They may be used to createobjects

• Object classes may inherit attributes and services from other object classes

Objects
• An Object is an entity which has a state and a defined set of operations

which operate on that state. The state is represented as a set of object
attributes. The operations associated with the object provide services to
other objects (clients) which request these services when some
computation is required.

• Objects are created according to some object class definition. An object
class definition serves as a template for objects. It includes declarations of

Department of CSE, SJBIT Page 36

Software Engineering 10IS51

all the attributes and services which should be associated with an object of
that class.

The Unified Modeling Language
• Several different notations for describing object-oriented
designs were proposed in the 1980s and 1990s
• The Unified Modeling Language is an integration of these
notations
• It describes notations for a number of different models that may
be produced during OO analysis and design
• It is now a de facto standard for OO modeling

Employee object class (UML)

I

Object communication
• Conceptually, objects communicate by message passing.
• Messages
• The name of the service requested by the calling object.
• Copies of the information required to execute the service and
the name of a holder for the result of the service.
• In practice, messages are often implemented by procedure calls
• Name = procedure name.
• Information = parameter list.

Message examples
// Call a method associated with a buffer
// object that returns the next value
// in the buffer
v = circularBuffer.Get ();
// Call the method associated with a
// thermostat object that sets the

Department of CSE, SJBIT Page 37

Software Engineering 10IS51

// temperature to be maintained
thermostat.setTemp (20);

Generalization and inheritance
• Objects are members of classes which define attribute types
and operations
• Classes may be arranged in a class hierarchy where one class (a
super-class) is a generalization of one or more other classes (sub-
classes)
• A sub-class inherits the attributes and operations from its super
class and may add new methods or attributes of its own
• Generalization in the UML is implemented as inheritance in
OO programming languages

A generalization hierarchy
I

Advantages of inheritance
• It is an abstraction mechanism which may be used to classify
entities
• It is a reuse mechanism at both the design and the programming
level
• The inheritance graph is a source of organizational knowledge
about domains and systems

Problems with inheritance
• Object classes are not self-contained. they cannot be
understood without reference to their super-classes
• Designers have a tendency to reuse the inheritance graph
created during analysis. Can lead to significant inefficiency
• The inheritance graphs of analysis, design and implementation
have different functions and should be separately maintained

Department of CSE, SJBIT Page 38

Software Engineering 10IS51

Inheritance and OOD
• There are differing views as to whether inheritance is
fundamental to OOD.
• View 1. Identifying the inheritance hierarchy or network is a
fundamental part of object-oriented design. Obviously this can only
be implemented using an OOPL.
• View 2. Inheritance is a useful implementation concept which
allows reuse of attribute and operation definitions. Identifying an
inheritance hierarchy at the design stage places unnecessary
restrictions on the implementation
• Inheritance introduces complexity and this is undesirable,
especially in critical systems

UML associations
• Objects and object classes participate in relationships with
other objects and object classes
• In the UML, a generalized relationship is indicated by an
association
• Associations may be annotated with information that describes
the association Associations are general but may indicate that an
attribute of an object is an associated object or that a method relies
on an associated object
An association model

I

Coords c1, c2 ;
Satellite sat1, sat2 ;
Navigator theNavigator ;
public Position givePosition ()
{
return currentPosition ;
}

Department of CSE, SJBIT Page 39

Software Engineering 10IS51

Concurrent objects
• The nature of objects as self-contained entities make them
suitable for concurrent implementation
• The message-passing model of object communication can be
implemented directly if objects are running on separate processors
in a distributed system

Servers and active objects
• Servers: The object is implemented as a parallel process
(server) with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits for further
requests for service
• Active objects: Objects are implemented as parallel processes
and the internal object state may be changed by the object itself and
not simply by external calls.

Object- Oriented design process

Active transponder object
• Active objects may have their attributes modified by operations
but may also update them autonomously using internal operations
• Transponder object broadcasts an aircraft’s position. The
position may be updated using a satellite positioning system. The
object periodically update the position by triangulation from
satellites.

An active transponder object
class Transponder extends Thread {
Position currentPositi on ;

public void run ()
{
while (true)
{
c1 = sat1.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;
}
}
} //Transponder

Java threads
• Threads in Java are a simple construct for implementing
concurrent objects
• Threads must include a method called run() and this is started
up by the Java run-time system

Department of CSE, SJBIT Page 40

Software Engineering 10IS51

• Active objects typically include an infinite loop so that they are
always carrying out the computation

An object-oriented design process
• Define the context and modes of use of the system
• Design the system architecture
• Identify the principal system objects
• Develop design models
• Specify object interfaces

Layered architecture

I

System context and models of use
Develop an understanding of the relationships between the software
being designed and its external environment
• System context: A static model that describes other systems in
the environment. Use a subsystem model to show other systems.
Following slide shows the systems around the weather station
system.
• Model of system use: A dynamic model that describes how the
system interacts with its environment. Use use-cases to show
interactions

Department of CSE, SJBIT Page 41

Software Engineering 10IS51

Subsystems in the weather mapping system

I

Use-cases for the weather station
I

Use-case description
System Weather station
Use-case Report
Actors Weather data collection system,

Weather station
Data The weather station sends a
summary of the weather data that
has been collected from the
instruments in the collection
period to the weather data
collection system. The data sent
are the maximum minimum and
average ground and air
temperatures, the maximum,
minimum and average air
pressures, the maximum,
minimum and average wind

Department of CSE, SJBIT Page 42

Software Engineering 10IS51

speeds, the total rainfall and the
wind direction as sampled at 5
minute s intervals.

Stimulus The weather data collection
system establishes a modem link
with the weather station and
requests transmission of the data.

Response The summarized data is sent to
the weather data collection
system

Comments Weather stations are usually
asked to report once per hour but
this frequency may differ from
one station to the other and may
be modified in future

Architectural design
• Once interactions between the system and its environment have
been understood, you use this information for designing the system
architecture
• Layered architecture is appropriate for the weather station
• Interface layer for handling communications
• Data collection layer for managing instruments
• Instruments layer for collecting data
• There should be no more than 7 entities in an architectural
model

Weather station architecture
I

Object identification
• Identifying objects (or object classes) is the most difficult part
of object oriented design
• There is no 'magic formula' for object identification. It relies on
the skill, experience and domain knowledge of system designers
• Object identification is an iterative process. You are unlikely to
get it right first time

Department of CSE, SJBIT Page 43

Software Engineering 10IS51

Approaches to identification
• Use a grammatical approach based on a natural language
description of the system (used in Hood method)
• Base the identification on tangible things in the application
domain
• Use a behavioral approach and identify objects based on what
participates in what behavior
• Use a scenario-based analysis. The objects, attributes and
methods in each scenario are identified

Weather station object classes
• Ground thermometer, Anemometer, Barometer: Application
domain objects that are ‘hardware’ objects related to the instruments
in the system.
• Weather station: The basic interface of the weather station to its
environment. It therefore reflects the interactions identified in the
use-case model
• Weather data: Encapsulates the summarized data from the
instruments

Weather station object classes
I

Further objects and object refinement
• Use domain knowledge to identify more objects and operations
• Weather stations should have a unique identifier
• Weather stations are remotely situated so instrument failures
have to be reported automatically. Therefore attributes and
operations for self-checking are required
• Active or passive objects: In this case, objects are passive and
collect data on request rather than autonomously. This introduces
flexibility at the expense of controller processing time

Department of CSE, SJBIT Page 44

Software Engineering 10IS51

Design models
• Design models show the objects and object classes and
relationships between these entities
• Static models describe the static structure of the system in
terms of object classes and relationships
• Dynamic models describe the dynamic interactions between
objects.

Examples of design models
• Sub-system models that show logical groupings of objects into
coherent subsystems
• Sequence models that show the sequence of object interactions
• State machine models that show how individual objects change
their state in response to events
• Other models include use-case models, aggregation models,
generalization models, etc.

Subsystem models
• Shows how the design is organized into logically related groups
of objects
• In the UML, these are shown using packages – an
encapsulation construct. This is a logical model. The actual
organization of objects in the system may be different.

IWeather station subsystems

Sequence models
• Sequence models show the sequence of object interactions that
take place
• Objects are arranged horizontally across the top
• Time is represented vertically so models are read top to bottom
• Interactions are represented by labeled arrows, Different styles
of arrow represent different types of interaction

Department of CSE, SJBIT Page 45

Software Engineering 10IS51

• A thin rectangle in an object lifeline represents the time when
the object is the controlling object in the system

Data collection sequence

I

Statecharts
• Show how objects respond to different service requests and the state

transitions triggered by these requests
• If object state is Shutdown then it responds to a Startup() message In

the waiting state the objec t is waiting for further messages
• If reportWeather () then system moves to summarizing state
• If calibrate () the system moves to a calibrating state
• A collecting state is entered when a clock signal is received

Department of CSE, SJBIT Page 46

Software Engineering 10IS51

Weather station state diagram

I

Object interface specification
• Object interfaces have to be specified so that the objects and
other components can be designed in parallel
• Designers should avoid designing the interface representation
but should hide this in the object itself
• Objects may have several interfaces which are viewpoints on
the methods provided
• The UML uses class diagrams for interface specification but
Java may also be used

Weather station interface
interface WeatherStation {
public void WeatherStation () ;
public void startup () ;
public void startup (Instrument i) ;
public void shutdown () ;
public void shutdown (Instrument i) ;
public void reportWeather () ;
public void test () ;
public void test (Instrument i) ;
public void calibrate (Instrument i) ;
public int getID () ;
} //WeatherStation

Department of CSE, SJBIT Page 47

Software Engineering 10IS51

Design evolution
• Hiding information inside objects means that changes made to an object

do not affect other objects in an unpredictable way
• Assume pollution monitoring facilities are to be added to weather

stations. These sample the air and compute the amount of different
pollutants in the atmosphere

• Pollution readings are transmitted with weather data

Changes required
• Add an object class called ‘Air quality’ as part of
WeatherStation
• Add an operation reportAirQuality to WeatherStation. Modify
the control software to collect pollution readings
• Add objects representing pollution monitoring instruments

Pollution monitoring

I

• OOD is an approach to design so that design components have their own
private state and operations

• Objects should have constructor and inspection operations. They provide
services to other objects

Department of CSE, SJBIT Page 48

Software Engineering 10IS51

• Objects may be implemented sequentially or concurrently
• The Unified Modeling Language provides different notations for

defining different object models
• A range of different models may be produced during an object-oriented

design process. These include static and dynamic system models
• Object interfaces should be defined precisely using e.g. a programming

language like Java.
• Object-oriented design simplifies system evolution

Department of CSE, SJBIT Page 49

Software Engineering 10IS51

UNIT –6
Development

Rapid Software Development

Because of rapidly changing business environments, businesses have to
respond to new opportunities and competition. This requires software and
rapid development and delivery is not often the most critical requirement for
software systems. Businesses may be willing to accept lower quality software
if rapid delivery of essential functionality is possible.

Requirements
Because of the changing environment, it is often impossible to arrive at a
stable, consistent set of system requirements. Therefore a waterfall model of
development is impractical and an approach to development based on iterative
specification and delivery is the only way to deliver software quickly.

Characteristics of RAD processes
• The processes of specification, design and implementation are

concurrent. There is no detailed specification and design documentation
is minimized.

• The system is developed in a series of increments. End users evaluate
each increment and make proposals for later increments.

• System user interfaces are usually developed using an interactive
development system.

An iterative development process

I

Advantages of incremental development
• Accelerated delivery of customer services. Each increment delivers the

highest priority functionality to the customer.

Department of CSE, SJBIT Page 50

Software Engineering 10IS51

• User engagement with the system. Users have to be involved in the
development which means the system is more likely to meet their
requirements and the users are more committed to the system.

Problems with incremental development
• Management problems: Progress can be hard to judge and problems hard to

find because there is no documentation to demonstrate what has been done.
• Contractual problems: The normal contract may include a specification;

without a specification, different forms of contract have to be used.
• Validation problems: Without a specification, what is the system being tested

against?
• Maintenance problems: Continual change tends to corrupt software structure

making it more expensive to change and evolve to meet new requirements.

Prototyping
For some large systems, incremental iterative development and delivery may
be impractical; this is especially true when multiple teams are working on
different sites.
Prototyping, where an experimental system is developed as a basis for
formulating the requirements may be used. This system is thrown away when

the system specification has been agreed.

Incremental development and prototyping

I

Conflicting objectives
The objective of incremental development is to deliver a working system to
end-users. The development starts with those requirements which are best
understood.
The objective of throw-away prototyping is to validate or derive the system
requirements. The prototyping process starts with those requirements which
are poorly understood.
Agile methods

• Dissatisfaction with the overheads involved in design methods led to the
creation of agile methods. These methods:

• Focus on the code rather than the design;
• Are based on an iterative approach to software development;

Department of CSE, SJBIT Page 51

Software Engineering 10IS51

• Are intended to deliver working software quickly and evolve this quickly
to meet changing requirements.

• Agile methods are probably best suited to small/medium-sized business
systems or PC products.

Principles of agile methodsI
P r i n c i p l e D e s c r i p t io n

C u s t o m e r i n v o l v e m e n t T h e c u s t o m e r s h o u ld b e c l o s e l y i n v o l v e d t h r o u g h o u t t h e
d e v e l o p m e n t p r o c e s s . T h e i r r o l e i s p r o v i d e a n d p r i o r it i s e n e w
s y s t e m r e q u ir e m e n t s a n d t o e v a l u a t e t h e i t e r a t i o n s o f t h e s y s t e m .

I n c r e m e n t a l d e l i v e r y T h e s o f t w a r e i s d e v e l o p e d i n i n c r e m e n t s w i th t h e c u s t o m e r
s p e c i f y i n g t h e r e q u i r e m e n t s t o b e in c l u d e d i n e a c h i n c r e m e n t .

P e o p l e n o t p r o c e s s T h e s k i l l s o f t h e d e v e l o p m e n t te a m s h o u l d b e r e c o g n i s e d a n d
e x p l o i t e d . T h e t e a m s h o u l d b e l e f t t o d e v e l o p t h e i r o w n w a y s o f
w o r k i n g w i t h o u t p r e s c r i p t i v e p r o c e s s e s .

E m b r a c e c h a n g e E x p e c t t h e s y s t e m r e q u i r e m e n t s t o c h a n g e a n d d e s i g n th e s y s t e m
s o th a t i t c a n a c c o m m o d a t e t h e s e c h a n g e s .

M a i n t a i n s i m p l i c i t y F o c u s o n s i m p l i c i ty i n b o th t h e s o f t w a r e b e i n g d e v e l o p e d a n d i n
t h e d e v e l o p m e n t p r o c e s s u s e d . W h e r e v e r p o s s ib le , a c t i v e l y w o r k
to e l im i n a t e c o m p le x i ty f r o m th e s y s t e m .

Problems with agile methods
• It can be difficult to keep the interest of customers who are involved in

the process.
• Team members may be unsuited to the intense involvement that

characterizes agile methods.
• Prioritizing changes can be difficult where there are multiple

stakeholders.
• Maintaining simplicity requires extra work.
• Contracts may be a problem as with other approaches to iterative

development.

Extreme programming
• Perhaps the best-known and most widely used agile method.
• Extreme Programming (XP) takes an ‘extreme’ approach to iterative

development.
• New versions may be built several times per day;
• Increments are delivered to customers every 2 weeks;
• All tests must be run for every build and the build is only accepted if

tests run successfully.

Department of CSE, SJBIT Page 52

Software Engineering 10IS51

The XP release cycle
I

Extreme programming practices 1

Increm ental p lanning R equirem ents are record ed on Story C ards and the Stories to be
included in a re lease are determ ined by the tim e availab le and
their relative prior ity. The deve lope rs break these S tor ies into
deve lop m ent Ō as ksÕ

S m all R eleases T he minim al u seful set o f func tiona lity tha t prov ides business
va lue is deve loped first. R eleases of the system are frequen t and
increm entally add func tiona lity to the first relea se.

S im ple D esign E nough de sign is carried ou t to m eet the cu rren t requirem en ts
and no m ore.

T est first deve lopm ent An auto m ated un it tes t fram ew o rk is u sed to wr ite tes ts for a new
piece of func tiona lity be fore tha t function ality itse lf is
im plem ented .

R efactoring A ll develope rs are expec ted to refacto r the code con tinuous ly as
soon as po ssib le code im prove m en ts are found. T his keeps the
code sim ple and m ain tainable .

Department of CSE, SJBIT Page 53

T .

Software Engineering 10IS51

Extreme programming practices 2

Developers work in pairs, checking each otherÕ
providing the support to always do a good job.

The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers own all the
code. Anyone can change anything.

As soon as work on a task is complete it is integrated into the
whole system. After any such integration, all the unit tests in the
system must pass.

Large amounts of over-time are not considered acceptable as the
net effect is often to reduce code qua lity and medium term
productivity

A representative of the end-user of the system (the Customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of the
development team and is responsible for bringing system
requirements to the team for implementation.

XP and agile principles
• Incremental development is supported through small, frequent system

releases.
• Customer involvement means full-time customer engagement with the

team.
• People not process through pair programming, collective ownership and

a process that avoids long working hours.
• Change supported through regular system releases.
• Maintaining simplicity through constant refactoring of code.

Requirements scenarios
• In XP, user requirements are expressed as scenarios or user stories.
• These are written on cards and the development team breaks them down

into implementation tasks. These tasks are the basis of schedule and cost
estimates.

• The customer chooses the stories for inclusion in the next release based
on their priorities and the schedule estimates.

Department of CSE, SJBIT Page 54

Pair Programming

Collective Ownership

Continuous Integration

Sustainable pace

On-site Customer

s work and

Software Engineering 10IS51

Story card for document downloading

XP and change
• Conventional wisdom in software engineering is to design for change. It

is worth spending time and effort anticipating changes as this reduces
costs later in the life cycle.

• XP, however, maintains that this is not worthwhile as changes cannot be
reliably anticipated.

• Rather, it proposes constant code improvement (refactoring) to make
changes easier when they have to be implemented

Testing in XP
• Test-first development. Incremental test development from scenarios.
• User involvement in test development and validation.

• Automated test harnesses are used to run all component tests each time
that a new release is built.

Test case description

Department of CSE, SJBIT Page 55

Software Engineering 10IS51

Test-first development
• Writing tests before code clarifies the requirements to be implemented.
• Tests are written as programs rather than data so that they can be

executed automatically. The test includes a check that it has executed
correctly.

• All previous and new tests are automatically run when new functionality
is added. Thus checking that the new functionality has not introduced
errors.

Pair programming
In XP, programmers work in pairs, sitting together to develop code. This helps
develop common ownership of code and spreads knowledge across the team.
It serves as an informal review process as each line of code is looked at by
more than 1 person. It encourages refactoring as the whole team can benefit
from this. Measurements suggest that development productivity with pair
programming is similar to that of two people working independently.

Rapid application development
Agile methods have received a lot of attention but other approaches to rapid
application development have been used for many years.
These are designed to develop data-intensive business applications and rely on
programming and presenting information from a database.

RAD environment tools
• Database programming language
• Interface generator
• Links to office applications
• Report generators

A RAD environment

I

Department of CSE, SJBIT Page 56

Software Engineering 10IS51

Interface generation
• Many applications are based around complex forms and developing

these forms manually is a time-consuming activity.
• RAD environments include support for screen generation including:
• Interactive form definition using drag and drop techniques;
• Form linking where the sequence of forms to be presented is specified;
• Form verification where allowed ranges in form fields are defined.

Visual programming
• Scripting languages such as Visual Basic support visual programming

where the prototype is developed by creating a user interface from
standard items and associating components with these items

• A large library of components exists to support this type of development
• These may be tailored to suit the specific application requirements.

Visual programming with reuse

I

Problems with visual development

Difficult to coordinate team-based development. No explicit system
architecture. Complex dependencies between parts of the program can cause
maintainability problems.

COTS reuse
• An effective approach to rapid development is to configure and link

existing off the shelf systems. For example, a requirements management
system could be built by using:

• A database to store requirements;
• A word processor to capture requirements and format reports;
• A spreadsheet for traceability management;

Department of CSE, SJBIT Page 57

Software Engineering 10IS51

Compound documents
For some applications, a prototype can be created by developing a compound
document. This is a document with active elements (such as a spreadsheet)
that allow user computations. Each active element has an associated
application which is invoked when that element is selected. The document
itself is the integrator for the different applications.

Application linking

I

Software prototyping
• A prototype is an initial version of a system used to demonstrate
concepts and try out design options.
A prototype can be used in:
• The requirements engineering process to help with requirements
elicitation and validation;
• In design processes to explore options and develop a UI design;
• In the testing process to run back-to-back tests.

Benefits of prototyping
• Improved system usability.
• A closer match to users’ real needs.
• Improved design quality.
• Improved maintainability.
• Reduced development effort.

Department of CSE, SJBIT Page 58

Software Engineering 10IS51

Back to back testing

The prototyping process

Throw-away prototypes
• Prototypes should be discarded after development as they are not a good

basis for a production system:
• It may be impossible to tune the system to meet non-functional

requirements;
• Prototypes are normally undocumented;
• The prototype structure is usually degraded through rapid change;
• The prototype probably will not meet normal organizational quality

standards.

Software evolution
Software change

• Software change is inevitable
• New requirements emerge when the software is used;
• The business environment changes;
• Errors must be repaired;
• New computers and equipment is added to the system;
• The performance or reliability of the system may have to be improved.
• A key problem for organisations is implementing and managing

change to their existing software systems

Department of CSE, SJBIT Page 59

Software Engineering 10IS51

Importance of evolution
Organizations have huge investments in their software systems - they are
critical business assets. To maintain the value of these assets to the business,
they must be changed and updated. The majority of the software budget in
large companies is devoted to evolving existing software rather than
developing new software.

Spiral model of evolution

Program evolution dynamics
Program evolution dynamics is the study of the processes of system change.
After major empirical studies, Lehman and Belady proposed that there were a
number of ‘laws’ which applied to all systems as they evolved. There are
sensible observations rather than laws. They are applicable to large systems
developed by large organisations. Perhaps less applicable in other cases.

Department of CSE, SJBIT Page 60

Software Engineering 10IS51

Lehman’s laws
(important)

L a w D e scrip tio n

C o nt in u in g cha n g e A p ro gra m tha t is u sed in a re a l-w o rld e n v iro n m e n t n ec essa rily
m u s t ch ang e o r be c om e prog ress ive l y le s s us eful in th at
en viro n m en t.

In c re as in g c o m p le xi ty A s a n evo lv ing p rog ram cha ng es , i ts s truc tu re ten ds to b ec om e
m ore co m p lex . E x tra re sources m u st b e de vo ted to p rese rvin g
an d sim p lify ing th e s tru c tu re .

L a rge p rogr am e v o lutio n P ro gram e vo lu tion is a s elf -r eg u la tin g p ro c ess . S ys tem
attrib utes su ch a s s ize , tim e be tw een re lea ses an d the nu m be r o f
r ep o r te d er ro r s is ap p ro x im a tely inv ar ian t for e ach s y s te m
relea s e.

O rg an isa tion al s tab ility O ve r a p ro g ra m Õ life tim e, i ts ra t e o f d ev elo p m en t is
ap prox im at e ly co nstan t an d in de pe nd en t o f th e re s o u rce s
d e vo ted to sys tem d ev elop m e n t.

C o ns e rva tion of O ve r the lifet im e of a sys te m , the in c rem en ta l c ha ng e in
fa m il ia rity rele a s e i s a pp ro xim ate ly co n s tan t.

C o nt in u in g gr o w th T he func tiona li ty o ff ere d b y s ys te m s h as to co n tin u ally inc reas e
to m a inta in us e r sa tis fa c t io n .

D eclin in g qu a lity T he qu al ity o f sys te m s w ill app ear to b e d ec lining u n le ss th ey
are a da p ted to ch an ge s in th eir o p era tio n al e nv iro n m en t.

F e ed ba c k sys tem E vo lu tio n pro ces ses in co rp o ra te m u lti-a ge n t, m u l ti- lo op
fee d b ac k sys te m s an d yo u h av e to tre a t th em as feed b ac k
system s to a c hieve s ig n if ic an t pro du ct im pro v em e n t.

Applicability of Lehman’s laws
Lehman’s laws seem to be generally applicable to large, tailored systems
developed by large organisations.

• Confirmed in more recent work by Lehman on the FEAST project (see
further reading on book website).

• It is not clear how they should be modified for
• Shrink-wrapped software products;
• Systems that incorporate a significant number of COTS components;
• Small organisations;
• Medium sized systems.

Software maintenance

Modifying a program after it has been put into use. Maintenance does not
normally involve major changes to the system’s architecture. Changes are
implemented by modifying existing components and adding new components
to the system

Department of CSE, SJBIT Page 61

s

e a c h

Software Engineering 10IS51

Maintenance is inevitable
• The system requirements are likely to change while the system is being

developed because the environment is changing. Therefore a delivered
system won't meet its requirements!

• Systems are tightly coupled with their environment. When a system is
installed in an environment it changes that environment and therefore
changes the system requirements.

• Systems MUST be maintained therefore if they are to remain useful in an
environment.

Types of maintenance
• Maintenance to repair software faults

O Changing a system to correct deficiencies in the way meets its
requirements.

• Maintenance to adapt software to a different operating environment
O Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation.
• Maintenance to add to or modify the system’s functionality

O Modifying the system to satisfy new requirements.

Distribution of maintenance effort

Maintenance costs
• Usually greater than development costs (2* to 100* depending on the

application).
• Affected by both technical and non-technical factors.
• Increases as software is maintained. Maintenance corrupts the software

structure so makes further maintenance more difficult.
• Ageing software can have high support costs (e.g. old languages,

compilers etc.).

Department of CSE, SJBIT Page 62

Software Engineering 10IS51

Development/maintenance costs
I

Maintenance cost factors
• Team stability
• Maintenance costs are reduced if the same staffs are involved with them for

some time.

• Contractual responsibility
• The developers of a system may have no contractual responsibility for maintenance

so there is no incentive to design for future change.

• Staff skills
• Maintenance staffs are often inexperienced and have limited domain

knowledge.

• Program age and structure
• As programs age, their structure is degraded and they become harder to

understand and change.

Maintenance prediction
Maintenance prediction is concerned with assessing which parts of the system
may cause problems and have high maintenance costs
Change acceptance depends on the maintainability of the components affected
by the change;
Implementing changes degrades the system and reduces its maintainability;
Maintenance costs depend on the number of changes and costs of change
depend on maintainability.

Department of CSE, SJBIT Page 63

Software Engineering 10IS51

Maintenance prediction
I

Change prediction
• Predicting the number of changes requires and understanding of
the relationships between a system and its environment.
• Tightly coupled systems require changes whenever the
environment is changed.
• Factors influencing this relationship are
• Number and complexity of system interfaces;
• Number of inherently volatile system requirements;
• The business processes where the system is used.

Complexity metrics
• Predictions of maintainability can be made by assessing the
complexity of system components.
• Studies have shown that most maintenance effort is spent on a
relatively small number of system components.
• Complexity depends on
• Complexity of control structures;
• Complexity of data structures;
• Object, method (procedure) and module size.

Process metrics
Process measurements may be used to assess maintainability

• Number of requests for corrective maintenance;
• Average time required for impact analysis;
• Average time taken to implement a change request;
• Number of outstanding change requests.
If any or all of these is increasing, this may indicate a decline in
maintainability.

Evolution processes
Evolution processes depend on
•The type of software being maintained;

Department of CSE, SJBIT Page 64

Software Engineering 10IS51

•The development processes used;
•The skills and experience of the people involved.
Proposals for change are the driver for system evolution. Change
identification and evolution continue throughout the system
lifetime.

Change identification and evolution
I

The system evolution process

I

Change implementation

I

Urgent change requests
Urgent changes may have to be implemented without going through all stages
of the software engineering process

Department of CSE, SJBIT Page 65

Software Engineering 10IS51

•If a serious system fault has to be repaired;
•If changes to the system’s environment (e.g. an OS upgrade) have
unexpected effects;
•If there are business changes that require a very rapid response (e.g.
the release of a competing product).

Emergency repair
I

System re-engineering
• Re-structuring or re-writing part or all of a legacy system
without changing its functionality.
• Applicable where some but not all sub-systems of a larger
system require frequent maintenance.
• Re-engineering involves adding effort to make them easier to
maintain. The system may be re-structured and re-documented.

Advantages of reengineering
Reduced risk
•There is a high risk in new software development. There may be
development problems, staffing problems and specification
problems.
Reduced cost
•The cost of re-engineering is often significantly less than the costs
of developing new software.

Forward and re-engineering

I

Department of CSE, SJBIT Page 66

Software Engineering 10IS51

The re-engineering process

I

Reengineering process activities
Source code translation

•Convert code to a new language.
Reverse engineering

•Analyze the program to understand it;
Program structure improvement

•Restructure automatically for understandability;
Program modularization

•Reorganize the program structure;
Data reengineering

•Clean-up and restructure system data.

Reengineering cost factors
I

Re-engineering approaches
• The quality of the software to be reengineered.
• The tool support available for reengineering.
• The extent of the data conversion which is required.
• The availability of expert staff for reengineering.
• This can be a problem with old systems based on technology
that is no longer widely used.

Department of CSE, SJBIT Page 67

Software Engineering 10IS51

Legacy system evolution

Organisations that rely on legacy systems must choose a strategy for evolving
these systems

•Scrap the system completely and modify business processes so that
it is no longer required;
•Continue maintaining the system;
•Transform the system by re-engineering to improve its
maintainability;
•Replace the system with a new system.
The strategy chosen should depend on the system quality and its
business value.

System quality and business value
I

Legacy system categories
Low quality, low business value
•These systems should be scrapped.
Low-quality, high-business value
•These make an important business contribution but are expensive
to maintain. Should be re-engineered or replaced if a suitable
system is available.
High-quality, low-business value
•Replace with COTS, scrap completely or maintain.
High-quality, high business value
•Continue in operation using normal system maintenance.

Business value assessment
Assessment should take different viewpoints into account

•System end-users;
•Business customers;
•Line managers;
•IT managers;
•Senior managers.

Department of CSE, SJBIT Page 68

Software Engineering 10IS51

Interview different stakeholders and collate results.

System quality assessment
Business process assessment
•How well does the business process support the current goals of the
business?
Environment assessment
•How effective is the system’s environment and how expensive is it
to maintain?
Application assessment
•What is the quality of the application software system?

Business process assessment
Use a viewpoint-oriented approach and seek answers from system
stakeholders

•Is there a defined process model and is it followed?
•Do different parts of the organisation use different processes for the
same function?
•How has the process been adapted?
•What are the relationships with other business processes and are
these necessary?
•Is the process effectively supported by the legacy application
software?

Example - a travel ordering system may have a low business value
because of the widespread use of web-based ordering.

Environment assessment 1

Factor Questions

Understandability How difficult is it to understand the source code of the
current system? How complex are the control structures
that are used? Do variables have meaningful names that
reflect their function?

Documentation What system documentation is available? Is the
documentation complete, consistent and up-to-date?

Data Is there an explicit data model for the system? To what
extent is data duplicated in different files? Is the data used
by the system up-to-date and consistent?

Performance Is the performance of the application adequate? Do
performance problems have a significant effect on system
users?

System measurement
You may collect quantitative data to make an assessment of the quality of the
application system

Department of CSE, SJBIT Page 69

Software Engineering 10IS51

•The number of system change requests;
•The number of different user interfaces used by the system;
•The volume of data used by the system.

Black-box testing

• Input data and output results often fall into different classes
where all members of a class are related.
• Each of these classes is an equivalence partition or domain
where the program behaves in an equivalent way for each class
member.
• Test cases should be chosen from each partition.

Equivalence partitioning

I

Equivalence partitions

I

Department of CSE, SJBIT Page 70

Software Engineering 10IS51

UNIT 7
VERIFICATION AND VALIDATION

Verification vs. validation

Verification: "Are we building the product right”, The software should
conform to its specification.

Validation: "Are we building the right product”., The software should do what
the user really requires.

The V & V process
• Is a whole life-cycle process - V & V must be applied at each stage

in the software process.
• Has two principal objectives
• The discovery of defects in a system;
• The assessment of whether or not the system is useful and useable

in an operational situation

V& V goals
Verification and validation should establish confidence that the software is fit
for purpose. This does NOT mean completely free of defects. Rather, it must
be good enough for its intended use and the type of use will determine the
degree of confidence that is needed.

V & V confidence
Depends on system’s purpose, user expectations and marketing environment

Software function
•The level of confidence depends on how critical the software is to
an organisation.
User expectations
•Users may have low expectations of certain kinds of software.
Marketing environment
•Getting a product to market early may be more important than
finding defects in the program.

Static and dynamic verification
• Software inspections. Concerned with analysis of

the static system representation to discover problems (static
verification)

• May be supplement by tool-based document and code analysis
• Software testing. Concerned with exercising and

observing product behaviour (dynamic verification)
• The system is executed with test data and its operational behaviour is

observed

Department of CSE, SJBIT Page 71

Software Engineering 10IS51

Static and dynamic V&V

I

Program testing
Can reveal the presence of errors NOT their absence. The only validation
technique for non-functional requirements as the software has to be executed
to see how it behaves. Should be used in conjunction with static verification to
provide full V&V coverage.

Types of testing
• Defect testing: Tests designed to discover system defects. A

successful defect test is one which reveals the presence of defects in
a system. Covered in Chapter 23

• Validation testing: Intended to show that the software meets its
requirements. A successful test is one that shows that a requirement
has been properly implemented.

Testing and debugging
Defect testing and debugging are distinct processes. Verification
and validation is concerned with establishing the existence of
defects in a program. Debugging is concerned with locating and
repairing these errors. Debugging involves formulating a hypothesis
about program behaviour then testing these hypotheses to find the
system error.

The debugging process

I

Department of CSE, SJBIT Page 72

Software Engineering 10IS51

V & V planning
Careful planning is required to get the most out of testing and inspection
processes. Planning should start early in the development process. The plan
should identify the balance between static verification and testing. Test
planning is about defining standards for the testing process rather than
describing product tests.

The V-model of development

I

The structure of a software test plan
• The testing process.
• Requirements traceability.
• Tested items.
• Testing schedule.
• Test recording procedures.
• Hardware and software requirements.
• Constraints.

Department of CSE, SJBIT Page 73

Software Engineering 10IS51

The software test plan

The testing process
A description of the major phases of the testing process. These might be
as described earlier in this chapter.

Requirements traceability
Users are most interested in the system meeting its requirements and
testing should be planned so that all requirements are individually tested.

Tested item s
The products of the software process that are to be tested should be
specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule.
This, obviously, is linked to the more general project development
schedule.

Test recording procedures
It is not enough simply to run tests. The results of the tes ts must be
systematically recorded. It must be possible to audit the testing process
to check that it been carried out correctly.

Hardware and softw are requirem ents
This section should set out software tools required and estimated
hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should
be anticipated in this section.

Software inspections

These involve people examining the source representation with the aim of
discovering anomalies and defects.
Inspections not require execution of a system so may be used before
implementation.
They may be applied to any representation of the system (requirements,
design, configuration data, test data, etc.).
They have been shown to be an effective technique for discovering program
errors.
Inspection success

Many different defects may be discovered in a single inspection. In
testing, one defect, may mask another so several executions are
required. The reuse domain and programming knowledge so
reviewers are likely to have seen the types of error that commonly
arise.

Inspections and testing
Inspections and testing are complementary and not opposing
verification techniques. Both should be used during the V & V
process. Inspections can check conformance with a specification but
not conformance with the customer’s real requirements. Inspections

Department of CSE, SJBIT Page 74

Software Engineering 10IS51

cannot check non-functional characteristics such as performance,
usability, etc.

Program inspections
Formalised approach to document reviews. Intended explicitly for
defect detection (not correction). Defects may be logical errors,
anomalies in the code that might indicate an erroneous condition
(e.g. an uninitialised variable) or non-compliance with standards.

Inspection pre-conditions
• A precise specification must be available.
• Team members must be familiar with the organisation standards.
• Syntactically correct code or other system representations must be

available.
• An error checklist should be prepared.
• Management must accept that inspection will increase costs early

in the software process.
• Management should not use inspections for staff appraisal i.e.

finding out who makes mistakes.

The inspection process

I

Inspection procedure
• System overview presented to inspection team.
• Code and associated documents are distributed to inspection
team in advance.
• Inspection takes place and discovered errors are noted.
• Modifications are made to repair discovered errors.
• Re-inspection may or may not be required.

Department of CSE, SJBIT Page 75

Software Engineering 10IS51

Inspection roles

Author or owner The programmer or designer responsible for
producing the program or document. Responsible
for fixing defects discovered during the inspection
process.

Inspector Finds errors, omissions and inconsistencies in
programs and documents. May also identify
broader issues that are outside the scope of the
inspection team.

Reader Presents the code or document at an inspection
meeting.

Scribe Records the results of the inspection meeting.

Chairman or moderator Manages the process and facilitates the inspection.
Reports process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements,
checklist updating, standards development etc.

Inspection checklists
• Checklist of common errors should be used to drive the inspection.
• Error checklists are programming language dependent and reflect the

characteristic errors that are likely to arise in the language.
• In general, the 'weaker' the type checking, the larger the checklist.

• Examples: Initialisation, Constant naming, loop termination, array

bounds, etc.
Inspection check

Data faults are all program variables initialized before
their values are used?
Have all constants been named?
Should the lower bound of arrays be 0, 1,

or
something else?
Should the upper bound of arrays be equal
to the size of the array or Size -1?
If character strings are used, is a delimiter
explicitly assigned?

Control faults for each conditional statement, is the
condition

correct?
Is each loop certain to terminate?

Department of CSE, SJBIT Page 76

Software Engineering 10IS51

Are compound statements correctly
bracketed?
In case statements, are all possible cases
accounted for?
Input/output faults are all input variables
used?
Are all output variables assigned a value
before they are output?

Interface faults do all function and procedure calls have
the correct number of parameters?

Do formal and actual parameter types
match?

Are the parameters in the right order?
If components access shared memory, do
they have the same model of the shared
memory structure?

Segment faults If a linked structure is modified, have all
links been correctly reassigned?
If dynamic storage is used, has space been
allocated correctly?
Is space explicitly de-allocated after it is
no longer Inspection checks required?

Exception Management Have all possible error conditions been
taken

into account?

Inspection rate

500 statements/hour during overview. 125 source statement/hour during
individual
preparation. 90-125 statements/hour can be inspected. Inspection is therefore
an expensive process. Inspecting 500 lines costs about 40 man/hours effort -
about £2800 at UK rates.

Automated static analysis
• Static analysers are software tools for source text processing.
• They parse the program text and try to discover potentially erroneous

conditions and bring these to the attention of the V & V team.
• They are very effective as an aid to inspections - they are a supplement

to but not a replacement for inspections.

Stages of static analysis
• Control flow analysis. Checks for loops with multiple exit or entry

points, finds unreachable code, etc.

Department of CSE, SJBIT Page 77

Software Engineering 10IS51

• Data use analysis. Detects uninitialised variables, variables written
twice without an intervening assignment, variables which are declared
but never used, etc.

• Interface analysis. Checks the consistency of routine and procedure
declarations and their use.

• Information flow analysis. Identifies the dependencies of output
variables. Does not detect anomalies itself but highlights information
for code inspection or review

• Path analysis. Identifies paths through the program and sets out the
statements executed in that path. Again, potentially useful in the
review process

• Both these stages generate vast amounts of information. They must be
used with care.

LINT static analysis
138% more lint_ex.c
#include <stdio.h>
printarray (Anarray)
int Anarray;
{
printf(“%d”,Anarray);
}
main ()
{
int Anarray[5]; int i; char c;
printarray (Anarray, i, c);
printarray (Anarray) ;
}
139% cc lint_ex.c
140% lint lint_ex.c
lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
LINT static analysis
lint_ex.c(11)
printf returns value which is always ignored.

Use of static analysis
Particularly valuable when a language such as C is used which has weak
typing and hence many errors are undetected by the compiler, Less cost-
effective for languages like Java that have strong type checking and can
therefore detect many errors during compilation.

Department of CSE, SJBIT Page 78

Software Engineering 10IS51

Verification and formal methods
• Formal methods can be used when a mathematical specification
of the system is produced.
• They are the ultimate static verification technique.
• They involve detailed mathematical analysis of the
specification and may develop formal arguments that a program
conforms to its mathematical specification.

Arguments for formal methods
Producing a mathematical specification requires a detailed analysis
of the requirements and this is likely to uncover errors. They can
detect implementation errors before testing when the program is
analyzed alongside the specification.

Arguments against formal methods
• Require specialized notations that cannot be understood by
domain experts.
• Very expensive to develop a specification and even more
expensive to show that a program meets that specification.
• It may be possible to reach the same level of confidence in a
program more cheaply using other V & V techniques.

Cleanroom software development
The name is derived from the ‘Cleanroom’ process in
semiconductor fabrication. The
philosophy is defect avoidance rather than defect removal.
This software development process is based on:
• Incremental development;
• Formal specification;
• Static verification using correctness arguments;
• Statistical testing to determine program reliability.

The Cleanroom process

I

Cleanroom process characteristics
• Formal specification using a state transition model.

Department of CSE, SJBIT Page 79

Software Engineering 10IS51

• Incremental development where the customer prioritises
increments.
• Structured programming - limited control and abstraction
constructs are used in the program.
• Static verification using rigorous inspections.
• Statistical testing of the system

Formal specification and inspections
• The state based model is a system specification and the
inspection process checks the program against this mode. l
• The programming approach is defined so that the
correspondence between the model and the system is clear.
• Mathematical arguments (not proofs) are used to increase
confidence in the inspection process.

Cleanroom process teams
Specification team: Responsible for developing and maintaining the
system specification.
Development team: Responsible for developing and verifying the
software. The software is NOT executed or even compiled during
this process.
Certification team: Responsible for developing a set of statistical
tests to exercise the software after development. Reliability growth
models used to determine when reliability is acceptable.

Cleanroom process evaluation
• The results of using the Cleanroom process have been very
impressive with few discovered faults in delivered systems.
• Independent assessment shows that the process is no more
expensive than other approaches.
• There were fewer errors than in a 'traditional' development
process.
• However, the process is not widely used. It is not clear how this
approach can be transferred to an environment with less skilled or
less motivated software engineers.

The testing process
Component testing
• Testing of individual program components;
• Usually the responsibility of the component developer (except
sometimes for critical systems);
• Tests are derived from the developer’s experience.

System testing
• Testing of groups of components integrated to create a system
or sub-system;
• The responsibility of an independent testing team;
• Tests are based on a system specification.

Department of CSE, SJBIT Page 80

Software Engineering 10IS51

ITesting phases

\

Defect testing
• The goal of defect testing is to discover defects in programs
• A successful defect test is a test which causes a program to
behave in an anomalous way
• Tests show the presence not the absence of defects

Testing process goals
Validation testing: To demonstrate to the developer and the system
customer that the software meets its requirements; a successful test shows that
the system operates as intended.

Defect testing: To discover faults or defects in the software where its
behavior is incorrect or not in conformance with its specification; a successful
test is a test that makes the system perform incorrectly and so exposes a defect
in the system.

The software testing process

I

Testing policies
Only exhaustive testing can show a program is free from defects.
However, exhaustive testing is impossible,
Testing policies define the approach to be used in selecting system
tests:
•All functions accessed through menus should be tested;
•Combinations of functions accessed through the same menu should
be tested;

Department of CSE, SJBIT Page 81

Software Engineering 10IS51

•Where user input is required, all functions must be tested with
correct and incorrect input.

System testing
• Involves integrating components to create a system or sub-
system.
• May involve testing an increment to be delivered to the
customer.
• Two phases:
Integration testing - the test team have access to the system source
code. The system is tested as components are integrated.
Release testing - the test team test the complete system to be
delivered as a black-box.
Integration testing
• Involves building a system from its components and testing it
for problems that arise from component interactions.
Top-down integration: Develop the skeleton of the system and
populate it with components.
Bottom-up integration: Integrate infrastructure components then add
functional components.
• To simplify error localisation, systems should be incrementally
integrated.

Incremental integration testing
I

Testing approaches
• Architectural validation: Top-down integration testing is better
at discovering errors in the system architecture.
• System demonstration: Top-down integration testing allows a
limited demonstration at an early stage in the development.
• Test implementation: Often easier with bottom-up integration
testing.
• Test observation: Problems with both approaches. Extra code
may be required to observe tests.

Department of CSE, SJBIT Page 82

Software Engineering 10IS51

Release testing
• The process of testing a release of a system that will be
distributed to customers.
• Primary goal is to increase the supplier’s confidence that the
system meets its requirements.
• Release testing is usually black-box or functional testing
• Based on the system specification only;
• Testers do not have knowledge of the system implementation.

Black-box testing
I

Testing guidelines
Testing guidelines are hints for the testing team to help them choose
tests that will reveal defects in the system
• Choose inputs that force the system to generate all error
messages;
• Design inputs that cause buffers to overflow;
• Repeat the same input or input series several times;
• Force invalid outputs to be generated;
• Force computation results to be too large or too small.

System tests
1 . T e s t t h e l o g in m e c h a n i s m u s i n g c o r r e c t a n d i n c o r re c t l o g in s to c h e c k

t h a t v a l i d u s e rs a r e a c c e p te d a n d i n v a l i d u s e rs a re r e je c t e d .

2 . T e s t t h e s e a r c h f a c i li t y u s i n g d if f e r e n t q u e r ie s a g a in s t k n o w n s o u r c e s to
c h e c k t h a t th e s e a r c h m e c h a n i s m is a c t u a l ly f i n d i n g d o c u m e n t s .

3 . T e s t t h e s y s te m p re s e n t a t i o n f a c i l i t y t o c h e c k th a t i n f o r m a t i o n a b o u t
d o c u m e n t s is d i s p la y e d p r o p e r ly .

4 . T e s t t h e m e c h a n is m t o r e q u e s t p e r m is s i o n f o r d o w n l o a d i n g .

5 . T e s t t h e e - m a i l r e s p o n s e in d i c a t i n g th a t th e d o w n l o a d e d d o c u m e n t i s
a v a i l a b l e .

Department of CSE, SJBIT Page 83

Software Engineering 10IS51

Use cases
Use cases can be a basis for deriving the tests for a system. They
help identify operations to be tested and help design the required
test cases. From an associated sequence diagram, the inputs and
outputs to be created for the tests can be identified.

Collect weather data sequence chart

I

Performance testing
Part of release testing may involve testing the emergent properties
of a system, such as performance and reliability. Performance tests
usually involve planning a series of tests where the load is steadily
increased until the system performance becomes unacceptable.

Stress testing
• Exercises the system beyond its maximum design load.
Stressing the system often causes defects to
come to light.
• Stressing the system test failure behaviour.. Systems should not
fail catastrophically. Stress testing checks for unacceptable loss of
service or data.

• Stress testing is particularly relevant to distributed systems that
can exhibit severe degradation as a

network becomes overloaded.

Component testing
• Component or unit testing is the process of testing individual
components in isolation.

Department of CSE, SJBIT Page 84

Software Engineering 10IS51

• It is a defect testing process.
• Components may be:
• Individual functions or methods within an object;
• Object classes with several attributes and methods;
• Composite components with defined interfaces used to access
their functionality.

Object class testing
Complete test coverage of a class involves
• Testing all operations associated with an object;
• Setting and interrogating all object attributes;
• Exercising the object in all possible states.
Inheritance makes it more difficult to design object class tests as the
information to be tested is not localised.

Weather station object interface
I

Weather station testing
•Need to define test cases for reportWeather, calibrate, test, startup
and shutdown.
•Using a state model, identify sequences of state transitions to be
tested and the event sequences to cause these transitions
For example:

•Waiting -> Calibrating -> Testing -> Transmitting -> Waiting.
Interface testing
• Objectives are to detect faults due to interface errors or invalid
assumptions about interfaces.

Department of CSE, SJBIT Page 85

Software Engineering 10IS51

• Particularly important for object-oriented development as
objects are defined by their interfaces.

Interface testing

I

Interface types
• Parameter interfaces: Data passed from one procedure to
another.
• Shared memory interfaces: Block of memory is shared between
procedures or functions.
• Procedural interfaces: Sub-system encapsulates a set of
procedures to be called by other sub-systems.
• Message passing interfaces: Sub-systems request services from
other sub-systems

Interface errors
• Interface misuse: A calling component calls another component
and makes an error in its use of its interface e.g. parameters in the
wrong order.
• Interface misunderstanding: A calling component embeds
assumptions about the behaviour of the called component which are
incorrect.

Department of CSE, SJBIT Page 86

Software Engineering 10IS51

• Timing errors: The called and the calling component operate at
different speeds and out-of-date information is accessed.

Interface testing guidelines
• Design tests so that parameters to a called procedure are at the
extreme ends of their ranges.
• Always test pointer parameters with null pointers.
• Design tests which cause the component to fail.
• Use stress testing in message passing systems.
• In shared memory systems, vary the order in which components
are activated.

Test case design
• Involves designing the test cases (inputs and outputs) used to
test the system.
• The goal of test case design is to create a set of tests that are
effective in validation and defect testing.
• Design approaches:
• Requirements-based testing;
• Partition testing;
• Structural testing.

Requirements based testing
A general principle of requirements engineering is that requirements
should be testable. Requirements-based testing is a validation
testing technique where you consider each requirement and derive a
set of tests for that requirement.

LIBSYS requirementsLIBSYS tests

The user shall be able to search either all of the initial set of databases or select a
subset from it.

The system shall provide appropriate viewers for the user to read documents in the
document store.

Every order shall be allocated a unique identifier (ORDER_ID) that the user shall
be able to copy to the accountÕ

Department of CSE, SJBIT Page 87

s permanent storage area.

Software Engineering 10IS51

Partition testing
• Input data and output results often fall into different classes
where all members of a class are related.
• Each of these classes is an equivalence partition or domain
where the program behaves in an equivalent way for each class
member.

• Initiate user search for searches for items that are known to
be present and known not to be present, where the set of
databases includes 1 database.

• Initiate user searches for items that are known to be present
and known not to be present, where the set of databases
includes 2 databases

• Initiate user searches for items that are known to be present
and known not to be present where the set of databases
includes more than 2 databases.

• Select one database from the set of databases and initiate
user searches for items that are known to be present and
known not to be present.

• Select more than one database from the set of databases
and initiate searches for items that are known to be present
and known not to be present.

• Test cases should be chosen from each partition.

Equivalence partitioning

I

Department of CSE, SJBIT Page 88

Software Engineering 10IS51

Equivalence partitions

I

Search routine specification
procedure Search (Key : ELEM ; T: SEQ of ELEM;

Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the sequence has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

Search routine - input partitions
• Inputs which conform to the pre-conditions.
• Inputs where a pre-condition does not hold.
• Inputs where the key element is a member of the array.
• Inputs where the key element is not a member of the array.

Testing guidelines (sequences)
• Test software with sequences which have only a single value.
• Use sequences of different sizes in different tests.
• Derive tests so that the first, middle and last elements of the
sequence are accessed.
• Test with sequences of zero length.

Department of CSE, SJBIT Page 89

Software Engineering 10IS51

Search routine - input partitions

Seq uence Elem e nt
Single value In sequence
Single value N ot in sequence
M ore than 1 value First elem ent in sequence
M ore than 1 value Last elem ent in sequence
M ore than 1 value M iddle elem ent in sequence
M ore than 1 value N ot in sequence

Inp ut sequ ence (T) K ey (K ey) O u tput (Found , L)
17 17 true, 1
17 0 false, ??
17, 29 , 21, 23 17 true, 1
41, 18 , 9, 31, 30, 16, 45 45 true, 7
17, 18 , 21, 23 , 29, 41 , 38 23 true, 4
21, 23 , 29, 33 , 38 25 false, ??

Structural testing
Sometime called white-box testing. Derivation of test cases
according to program structure. Knowledge of the program is used
to identify additional test cases. Objective is to exercise all program
statements (not all path combinations)

I

Binary search - equiv. partitions
• Pre-conditions satisfied, key element in array.
• Pre-conditions satisfied, key element not in
array.
• Pre-conditions unsatisfied, key element in array.
• Pre-conditions unsatisfied, key element not in array.
• Input array has a single value.
• Input array has an even number of values.

Department of CSE, SJBIT Page 90

Software Engineering 10IS51

• Input array has an odd number of values

I

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

Path testing
• The objective of path testing is to ensure that the set of test
cases is such that each path through the program is executed at least
once.
• The starting point for path testing is a program flow graph that
shows nodes representing program decisions and arcs representing
the flow of control.
• Statements with conditions are therefore nodes in the flow
graph.

Department of CSE, SJBIT Page 91

Software Engineering 10IS51

Binary search flow graph
I

Independent paths
•1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
•1, 2, 3, 4, 5, 14
•1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …
•1, 2, 3, 4, 6, 7, 2, 11, 13, 5, …

•Test cases should be derived so that all of these paths are executed
•A dynamic program analyser may be used to check that paths have
been executed

Test automation
• Testing is an expensive process phase. Testing workbenches
provide a range of tools to reduce the time required and total testing
costs.
• Systems such as Junit support the automatic execution of tests.
• Most testing workbenches are open systems because testing
needs are organisation-specific.

• They are sometimes difficult to integrate with closed design

and analysis workbenches.

Department of CSE, SJBIT Page 92

Software Engineering 10IS51

A testing workbench
I

Testing workbench adaptation
• Scripts may be developed for user interface simulators and
patterns for test data generators.
• Test outputs may have to be prepared manually for comparison.
• Special-purpose file comparators may be developed.

Department of CSE, SJBIT Page 93

Software Engineering 10IS51

UNIT – 8
MANAGEMENT

Managing people
• Managing people working as individuals and in groups
• To explain some of the issues involved in selecting and
retaining staff
• To describe factors that influence individual motivation
• To discuss key issues of team working including composition,
cohesiveness and communications
• To introduce the people capability maturity model (P-CMM) -
a framework for enhancing the capabilities of people in an
organization.

People in the process
People are an organization’s most important assets. The tasks of a
manager are essentially people-oriented. Unless there is some
understanding of people, management will be unsuccessful. Poor
people management is an important contributor to project failure.

People management factors
Consistency: Team members should all be treated in a comparable
way without favorites or discrimination.
Respect: Different team members have different skills and these
differences should be respected.
Inclusion: Involve all team members and make sure that people’s
views are considered.
Honesty: You should always be honest about what is going well and
what is going badly in a project.

Selecting staff
An important project management task is team selection.
Information on selection comes from:
• Information provided by the candidates.
• Information gained by interviewing and talking with
candidates.
• Recommendations and comments from other people who know
or who have worked with the candidates.

Motivating people
An important role of a manager is to motivate the people working
on a project.
Motivation is a complex issue but it appears that there are different
types of motivation based on:
• Basic needs (e.g. food, sleep, etc.);

Department of CSE, SJBIT Page 94

Software Engineering 10IS51

• Personal needs (e.g. respect, self-esteem);
• Social needs (e.g. to be accepted as part of a group).

Human needs hierarchy

I

\

Need satisfaction
Social
• Provide communal facilities;
• Allow informal communications.
Esteem
• Recognition of achievements;
• Appropriate rewards.
• Self-realizationTraining - people want to learn
more;Responsibility

Personality types
The needs hierarchy is almost certainly an over-simplification of
motivation in practice.
Motivation should also take into account different personality types:
• Task-oriented;
• Self-oriented;
• Interaction-oriented.

Task-oriented.
• The motivation for doing the work is the work itself;
Self-oriented.

Department of CSE, SJBIT Page 95

Software Engineering 10IS51

• The work is a means to an end which is the achievement of
individual goals - e.g. to get rich, to play tennis, to travel etc.;
Interaction-oriented
• The principal motivation is the presence and actions of co-
workers. People go to work because they like to go to work.

Motivation balance
Individual motivations are made up of elements
of each class. The balance can change depending on personal
circumstances and external events. However, people are not just
motivated by personal factors but also by being part of a group and
culture. People go to work because they are motivated by the
people that they work with.

Managing groups
Most software engineering is a group activity
• The development schedule for most non-trivial software
projects is such that they cannot be completed by one person
working alone.
Group interaction is a key determinant of group performance.
Flexibility in group composition is limited
• Managers must do the best they can with available people.

Factors influencing group working
• Group composition.
• Group cohesiveness.
• Group communications.
• Group organization.

Group composition
Group composed of members who share the same motivation can be
problematic
• Task-oriented - everyone wants to do their own thing;
• Self-oriented - everyone wants to be the boss;
• Interaction-oriented - too much chatting, not enough work.
An effective group has a balance of all types. This can be difficult
to achieve software engineers are often task-oriented. Interaction-
oriented people are very important as they can detect and defuse
tensions that arise.

Department of CSE, SJBIT Page 96

Software Engineering 10IS51

Group composition
In creating a group for assistive technology development, Alice is aware of the
importance of selecting memb ers with comp lementary personalities. When
interviewing people, she tried to assess whether they were task oriented, self-
oriented and interaction oriented. She felt that she was primarily a self-oriented
type as she felt that this project was a way in which she would be n oticed b y senior
management and promoted. She therefore looked for 1 or perhaps 2 interaction-
oriented personalities with the remainder task oriented. The final assessment that
she arrived at was:
Alice Š self-oriented
Brian Š task-oriented
Bob Š task-oriented
Carol Š interaction-oriented
Dorothy Š self-oriented
Ed Š interaction-oriented
Fred Š task-oriented

Group leadership
Leadership depends on respect not titular status. There may be both
a technical and an administrative leader. Democratic leadership is
more effective that autocratic leadership.

Group cohesiveness
In a cohesive group, members consider the group to be more
important than any individual in it.
The advantages of a cohesive group are:
• Group quality standards can be developed;
• Group members work closely together so inhibitions caused by
ignorance are reduced;
• Team members learn from each other and get to know each
other’s work;
• Egoless programming where members strive to improve each
other’s programs can be practised.

Team spirit

Developing cohesiveness
Cohesiveness is influenced by factors such as the organizational
culture and the personalities in the group. Cohesiveness can be
encouraged through
• Social events;
• Developing a group identity and territory;
• Explicit team-building activities.
Openness with information is a simple way of ensuring all group
members feel part of the group.

Department of CSE, SJBIT Page 97

Software Engineering 10IS51

Group loyalties
• Group members tend to be loyal to cohesive groups.
• 'Groupthink' is preservation of group irrespective of technical
or organizational considerations.
• Management should act positively to avoid groupthink by
forcing external involvement with each group.

Group communications
Good communications are essential for effective group working.
Information must be exchanged on the status of work, design
decisions and changes to previous decisions. Good communications
also strengthens group cohesion as it promotes understanding.

Group size: The larger the group, the harder it is for people to
communicate with other group members.
Group structure: Communication is better in informally structured
groups than in hierarchically structured groups.
Group composition: Communication is better when there are
different personality types in a group and when groups are mixed
rather than single sex.
The physical work environment: Good workplace organization can
help encourage communications.

Group organization
Small software engineering groups are usually organized informally
without a rigid structure. For large projects, there may be a
hierarchical structure where different groups are responsible for
different sub-projects.

Informal groups
• The group acts as a whole and comes to a consensus on
decisions affecting the system.
• The group leader serves as the external interface of the group
but does not allocate specific work items.
• Rather, work is discussed by the group as a whole and tasks are
allocated according to ability and experience.
• This approach is successful for groups where all members are
experienced and competent.

Extreme programming groups
• Extreme programming groups are variants of an informal,
democratic organization.
• In extreme programming groups, some ‘management’ decisions
are devolved to group members.
• Programmers work in pairs and take a collective responsibility
for code that is developed.

Department of CSE, SJBIT Page 98

Software Engineering 10IS51

Chief programmer teams
Consist of a kernel of specialists helped by others added to the
project as required. The motivation behind their development is the
wide difference in ability in different programmers. Chief
programmer teams provide a supporting environment for very able
programmers to be responsible for most of the system development.

Problems
This chief programmer approach, in different forms, has been
successful in some settings.
However, it suffers from a number of problems
• Talented designers and programmers are hard to find. Without
exceptional people in these roles, the approach will fail;
• Other group members may resent the chief programmer taking
the credit for success so may deliberately undermine his/her role;
• There is a high project risk as the project will fail if both the
chief and deputy programmer are unavailable.
• The organizational structures and grades in a company may be
unable to accommodate this type of group.

Working environments
The physical workplace provision has an important
effect on individual productivity and satisfaction
• Comfort;
• Privacy;
• Facilities.
Health and safety considerations must be taken
into account
• Lighting;
• Heating;
• Furniture.

Environmental factors
Privacy - each engineer requires an area for uninterrupted work.
Outside awareness - people prefer to work in natural light.
Personalization - individuals adopt different working practices and
like to organize their environment in different ways.

Workspace organization
Workspaces should provide private spaces where people can work
without interruption
• Providing individual offices for staff has been shown to
increase productivity.
However, teams working together also require spaces where formal
and informal meetings can be held.

Department of CSE, SJBIT Page 99

Software Engineering 10IS51

Office layout

The People Capability Maturity Model
• Intended as a framework for managing the development of
people involved in software development.

P-CMM Objectives
• To improve organizational capability by improving workforce
capability.
• To ensure that software development capability is not reliant on
a small number of individuals.
• To align the motivation of individuals with that of the
organization.
• To help retain people with critical knowledge and skills.

P-CMM levels
Five stage model
Initial. Ad-hoc people management
Repeatable. Policies developed for capability improvement
Defined. Standardized people management across the organization
Managed. Quantitative goals for people management in place
Optimizing. Continuous focus on improving individual competence
and workforce motivation

Department of CSE, SJBIT Page 100

Software Engineering 10IS51

The people capability model

Software cost estimation

Fundamental estimation questions
• How much effort is required to complete an activity?
• How much calendar time is needed to complete an activity?
• What is the total cost of an activity?
• Project estimation and scheduling are interleaved management
activities?

Software cost components
Hardware and software costs.
Travel and training costs.
Effort costs (the dominant factor in most projects)
• The salaries of engineers involved in the project;
• Social and insurance costs.
Effort costs must take overheads into account
• Costs of building, heating, lighting.
• Costs of networking and communications.
• Costs of shared facilities (e.g. library, staff restaurant, etc.).

Department of CSE, SJBIT Page 101

Software Engineering 10IS51

Costing and pricing
Estimates are made to discover the cost, to the developer, of
producing a software system. There is not a simple relationship
between the development cost and the price charged to the
customer. Broader organizational, economic, political and business
considerations influence the price charged.

Software pricing factors

M a rket A d e ve lopm ent org an isation m ay quote a low p rice b eca use it
opp ortu nity w ishes to m ov e into a new se gm ent of the soft wa re m ark et.

A cce pting a low pro fit o n on e pro jec t m ay give th e o pp ortu nity
o f m o re pro fit late r. T he ex p erie n ce g ain ed m ay allo w n ew
p ro du cts to be dev elo pe d.

C os t es tim ate If an o rga n isatio n is unsure of its cos t estim ate, i t m a y inc rea se
unce rta in ty its price b y som e c o ntin gen cy o v er a nd above its no rm al p rofit.

C o ntractu al term s A c usto m er m ay b e w illin g to al low th e d evelo pe r to retain
o w n ersh ip o f the sou rc e co de an d reuse it in o the r projects. Th e
p rice ch arge d m ay th en be less th an if th e soft wa re so urce co d e
is ha n de d o ve r to the cu stom er.

R e qu irem en ts If th e req u irem en ts are lik ely to ch an ge , an organisa tio n m ay
vola ti l ity low er its pric e to w in a c o ntra ct. A fte r the co n tract is aw ard ed,

h igh price s c an b e c harged fo r chan ges t o th e requirem ents.

Fin an cial he alt h D ev elop ers in fin an c ial diffic ulty m a y low er th eir pr ice to ga in
a c on tract . It is be tter to m ake a sm aller than no rm a l p rofit or
b rea k ev en th an to g o o ut of b usiness.

Software productivity
A measure of the rate at which individual engineers involved in
software development produce software and associated
documentation.
Not quality-oriented although quality assurance is a factor in
productivity assessment.
Essentially, we want to measure useful functionality produced per
time unit.

Productivity measures
• Size related measures based on some output from the software
process. This may be lines of delivered source code, object code
instructions, etc.
• Function-related measures based on an estimate of the
functionality of the delivered software. Function-points are the best
known of this type of measure.

Measurement problems
• Estimating the size of the measure (e.g. how many function
points).

Department of CSE, SJBIT Page 102

Software Engineering 10IS51

• Estimating the total number of programmer months that have
elapsed.
• Estimating contractor productivity (e.g. documentation team)
and incorporating this estimate in overall estimate.

Lines of code
What’s a line of code?
• The measure was first proposed when programs were typed on
cards with one line per card;
• How does this correspond to statements as in Java which can
span several lines or where there can be several statements on one
line?
What programs should be counted as part of the system?
This model assumes that there is a linear relationship between
system size and volume of documentation.

Productivity comparisons
The lower level the language, the more productive the programmer
The same functionality takes more code to implement in a lower-
level language than in a high-level language.
The more verbose the programmer, the higher the productivity
Measures of productivity based on lines of code suggest that
programmers who write verbose code are more productive than
programmers who write compact code.

System development times

Analysis Design Coding Testing Documentation

Assembly code 3 weeks 5 weeks 8 weeks 10 2 weeks
High-level language 3 weeks 5 weeks 4 weeks weeks 2 weeks

6 weeks

Size Effort Productivity

Assembly code 5000 lines 28 weeks 714 lines/month
High-level language 1500 lines 20 weeks 300 lines/month

Function points
Based on a combination of program characteristics
• external inputs and outputs;
• user interactions;
• external interfaces;
• Files used by the system.

Department of CSE, SJBIT Page 103

Software Engineering 10IS51

A weight is associated with each of these and the function point
count is computed by multiplying each raw count by the weight and

summing all values.

UPC=∑ (no. of elements of given type) X (weight).
The function point count is modified by complexity of the project
FPs can be used to estimate LOC depending on the average number
of LOC per FP for a given language
• LOC = AVC * number of function points;
• AVC is a language-dependent factor varying from 200-300 for
assemble language to 2-40 for a 4GL;
FPs is very subjective. They depend on the estimator
• Automatic function-point counting is impossible.

Object points
Object points (alternatively named application points) are an
alternative function-related measure to function points when 4Gls or
similar languages are used for development.
Object points are NOT the same as object classes.
• The number of object points in a program is a weighted
estimate of
• The number of separate screens that are displayed;
• The number of reports that are produced by the system;
• The number of program modules that must be developed to
supplement the database code;

Object point estimation
Object points are easier to estimate from a specification than
function points as they are simply concerned with screens, reports
and programming language modules. They can therefore be
estimated at a fairly early point in the development process. At this
stage, it is very difficult to estimate the number of lines of code in a
system.

Productivity estimates
• Real-time embedded systems, 40-160 LOC/P-month.
• Systems programs, 150-400 LOC/P-month.
• Commercial applications, 200-900 LOC/P-month.
• In object points, productivity has been measured between 4 and
50 object points/month depending on tool support and developer
capability.

Department of CSE, SJBIT Page 104

Software Engineering 10IS51

Factors affecting productivity

Application Knowledge of the application domain is essential for effective
domain software development. Engineers who already understand a
experience domain are likely to be the most productive.

Process quality The development process used can have a s ignificant effect on
productivity. This is covered in Chapter 28.

Project size The larger a project, the more time required for team
communications. Less time is available for development so
individual productivity is reduced.

Technology Good support technology such as C ASE tools, configuration
support management systems, etc. can improve productivity.

Working As I discussed in Chapter 25, a q uiet working environment with
environment private work areas contributes to improved productivity.

Quality and productivity
All metrics based on volume/unit time are flawed because they do
not take quality into account. Productivity may generally be
increased at the cost of quality. It is not clear how
productivity/quality metrics are related. If requirements are
constantly changing then an approach based on counting lines of
code is not meaningful as the program itself is not static;

Estimation techniques
There is no simple way to make an accurate estimate of the effort
required to develop a software system
• Initial estimates are based on inadequate information in a user
requirements definition;
• The software may run on unfamiliar computers or use new
technology;
• The people in the project may be unknown.
Project cost estimates may be self-fulfilling
• The estimate defines the budget and the product is adjusted to
meet the budget.

Changing technologies
Changing technologies may mean that previous estimating
experience does not carry over to new systems
• Distributed object systems rather than mainframe systems;
• Use of web services;
• Use of ERP or database-centered systems;
• Use of off-the-shelf software;
• Development for and with reuse;

Department of CSE, SJBIT Page 105

Software Engineering 10IS51

• Development using scripting languages;
• The use of CASE tools and program generators.

Estimation techniques
• Algorithmic cost modeling.
• Expert judgment.
• Estimation by analogy.
• Parkinson's Law.
• Pricing to win.

Estimation techniques

Algorithm ic A m odel based on historical cos t information that relates som e software
cost mo del ling metric (usually its size) to the project cost is used. An estimate is m ade

of that metric and the m odel predicts the effort required.

Expert Several experts on the proposed software development techniques and
judgement the application domain are consulted. They each estimate the project

cos t. These estimates are compared and discussed. The estimation
process iterates until an agreed estim ate is reached.

Estim ation by This technique is applicable when other projects in the same application
analogy domain have been completed. The cost of a new project is estimated by

analogy with these completed projects. Myers (Myers 1989) gives a
very clear description of this approach.

ParkinsonÕs ParkinsonÕsLaw states that work expands to fill the time available. Th e
Law cost is determined by available resources rather than by objective

assessment. If the software has to be delivered in 12 months and 5
people are available, the effort required is estimated to be 60 person-
months .

Pricing to win The software cost is estimated to be whatever the customer has
available to spend on the project. The estimated effort depends on the
customerÕ s b

Pricing to win
The project costs whatever the customer has to spend on it.
Advantages:
You get the contract.
Disadvantages:
The probability that the customer gets the system he or she wants is
small. Costs do not accurately reflect the work required.

Top-down and bottom-up estimation
Any of these approaches may be used top-down or bottom-up.
Top-down
Start at the system level and assess the overall system functionality
and how this is delivered through sub-systems.
Bottom-up
Start at the component level and estimate the effort required for
each component. Add these efforts to reach a final estimate.

Department of CSE, SJBIT Page 106

udget and not on the softw are functional ity.

Software Engineering 10IS51

Top-down estimation
• Usable without knowledge of the system architecture and the
components that might be part of the system.
• Takes into account costs such as integration, configuration
management and documentation.

• Can underestimate the cost of solving difficult low-level

technical problems.

Bottom-up estimation
• Usable when the architecture of the system is known and
components identified.
• This can be an accurate method if the system has been designed
in detail.
• It may underestimate the costs of system level activities such as
integration and documentation.

Estimation methods
Each method has strengths and weaknesses.
Estimation should be based on several methods.
If these do not return approximately the same result, then you have
insufficient information available to make an estimate.
Some action should be taken to find out more in order to make more
accurate estimates.
Pricing to win is sometimes the only applicable method.

Pricing to win
This approach may seem unethical and un-businesslike.
However, when detailed information is lacking it may be the only
appropriate strategy.
The project cost is agreed on the basis of an outline proposal and the
development is constrained by that cost.
A detailed specification may be negotiated or an evolutionary
approach used for system development.

Algorithmic cost modeling
Cost is estimated as a mathematical function of product, project and
process attributes whose values are estimated by project managers:
• Effort = A ´ SizeB ´ M
• A is an organisation-dependent constant, B reflects the
disproportionate effort for large projects and M is a multiplier
reflecting product, process and people attributes.
The most commonly used product attribute for cost estimation is
code size. Most models are similar but they use different values for
A, B and M.

Department of CSE, SJBIT Page 107

Software Engineering 10IS51

Estimation accuracy
The size of a software system can only be known accurately when it
is finished.
Several factors influence the final size
• Use of COTS and components;
• Programming language;
• Distribution of system.
As the development process progresses then the size estimate
becomes more accurate.

Estimate uncertainty

The COCOMO model
• An empirical model based on project experience.
• Well-documented, ‘independent’ model which is not tied to a
specific software vendor.
• Long history from initial version published in 1981
(COCOMO-81) through various instantiations to COCOMO 2.
• COCOMO 2 takes into account different approaches to
software development, reuse, etc.

Department of CSE, SJBIT Page 108

Software Engineering 10IS51

COCOMO 81

Description

W ell-understood applications
developed by small teams.

More complex project s where
team members may have limited
experience of related systems.

Complex projects where the
software is part of a strongly
coupled complex of hardware,
software, regulations and
operational procedures.

COCOMO 2
COCOMO 81 was developed with the assumption that a waterfall
process would be used and that all software would be developed
from scratch.
Since its formulation, there have been many changes in software
engineering practice and COCOMO 2 is designed to accommodate
different approaches to software development.

COCOMO 2 models
COCOMO 2 incorporates a range of sub-models that produce
increasingly detailed software estimates.
The sub-models in COCOMO 2 are:
• Application composition model. Used when software is
composed from existing parts.
• Early design model. Used when requirements are available but
design has not yet started.
• Reuse model. Used to compute the effort of integrating
reusable components.
• Post-architecture model. Used once the system architecture has
been designed and more information about the system is available.

Department of CSE, SJBIT Page 109

Form ula

P M = 2.4 (KD SI)1 .0 5 × M

P M = 3.0 (KD SI)1 .1 2 × M

P M = 3.6 (KD SI)1 .2 0 × M

Project
complexity

Simple

Moderate

Embedded

Software Engineering 10IS51

Use of COCOMO 2 models

Application composition model
• Supports prototyping projects and projects where there is
extensive reuse.
• Based on standard estimates of developer productivity in
application (object) points/month.
• Takes CASE tool use into account.
Formula is
• PM = (NAP ´ (1 - %reuse/100)) / PROD
• PM is the effort in person-months, NAP is the number of
application points and PROD is the productivity.

Object point productivity

s experience Very low Low Nominal High Very high
and capability

ICASE maturity and Very low Low Nominal High Very high
capability

PROD (NOP/month) 4 7 13 25 50

Department of CSE, SJBIT Page 110

DeveloperÕ

Software Engineering 10IS51

Early design model
Estimates can be made after the requirements have been agreed.
Based on a standard formula for algorithmic models
• PM = A ´ SizeB ´ M where
• M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ´ FCIL ´ SCED;
• A = 2.94 in initial calibration, Size in KLOC, B varies from 1.1
to 1.24 depending on novelty of the project, development flexibility,
risk management approaches and the process maturity.

Multipliers
Multipliers reflect the capability of the developers, the non-
functional requirements, the familiarity with the development
platform, etc.
• RCPX - product reliability and complexity;
• RUSE - the reuse required;
• PDIF - platform difficulty;
• PREX - personnel experience;
• PERS - personnel capability;
• SCED - required schedule;
• FCIL - the team support facilities.

The reuse model
• Takes into account black-box code that is reused without
change and code that has to be adapted to integrate it with new
code.
There are two versions:
• Black-box reuse where code is not modified. An effort estimate
(PM) is computed.

• White-box reuse where code is modified. A size estimate
equivalent to the number of lines of new source code is computed.

This then adjusts the size estimate for new code.

Reuse model estimates 1
For generated code:
PM = (ASLOC * AT/100)/ATPROD
ASLOC is the number of lines of generated code
AT is the percentage of code automatically generated.
ATPROD is the productivity of engineers in integrating this code.

Reuse model estimates 2
When code has to be understood and integrated:
ESLOC = ASLOC * (1-AT/100) * AAM.
ASLOC and AT as before.
AAM is the adaptation adjustment multiplier computed from the
costs of changing the reused code, the costs of understanding how
to integrate the code and the costs of reuse decision making.

Department of CSE, SJBIT Page 111

Software Engineering 10IS51

The exponent term
This depends on 5 scale factors (see next slide). Their sum/100 is
added to 1.01
A company takes on a project in a new domain. The client has not
defined the process to be used and has not allowed time for risk
analysis. The company has a CMM level 2 rating.
• Precedent ness - new project (4)
• Development flexibility - no client involvement - Very high (1)
• Architecture/risk resolution - No risk analysis - V. Low .(5)
• Team cohesion - new team - nominal (3)
• Process maturity - some control - nominal (3)
Scale factor is therefore 1.17.

Exponent scale factors

Precedentedness Reflects the previous experience of the organisation with this type of
projec t. Very low means no previous experience, Extra high m eans
that the organisation is completely familiar with this application
domain.

Development Reflects the degree of flexib ility in the development process. Very
flexibility low m eans a prescribed process is used; Extra high means that the

client only sets general goals.

Architecture/risk Reflects the extent of risk analysis carried out. Very low m eans little
resolution analysis, Extra high means a complete a thorough risk analysis.

Team cohesion Reflects how well the development team know each other and work
together. Very low means very difficult interactions, Extra high
means an integrated and effective team with no communication
problems.

Process maturity Reflects the process maturity of the organisation. The computa tion
of this value depends on the CM M Maturity Questionnaire but an
estimate can be ac hieved by subtracting the CM M process maturity
level from 5.

Multipliers
Product attributes : Concerned with required characteristics of the
software product being developed.
Computer attributes: Constraints imposed on the software by the
hardware platform.
Personnel attributes: Multipliers that take the experience and
capabilities of the people working on the project into account.
Project attributes: Concerned with the particular characteristics of
the software development project.

Project planning
Algorithmic cost models provide a basis for project planning as they
allow alternative strategies to be compared.

Department of CSE, SJBIT Page 112

Software Engineering 10IS51

• Embedded spacecraft system Must be reliable;
• Must minimize weight (number of chips);
• Multipliers on reliability and computer constraints > 1.
Cost components
Target hardware;Development platform;Development effort

Management
options

Management option costs

Option choice
Option RELY STOR TIME TOOLS LTEX Total effort Software cost Hardware Total cost

cost
A 1.39 1.06 1.11 0.86 1 63 949393 100000 1049393

B 1.39 1 1 1.12 1.22 88 1313550 120000 1402025

C 1.39 1 1.11 0.86 1 60 895653 105000 1000653

D 1.39 1.06 1.11 0.86 0.84 51 769008 100000 897490

E 1.39 1 1 0.72 1.22 56 844425 220000 1044159

F 1.39 1 1 1.12 0.84 57 851180 120000 1002706

Option D (use more experienced staff) appears to be the best
alternative
• However, it has a high associated risk as experienced staff may
be difficult to find.
Option C (upgrade memory) has a lower cost saving but very low
risk.
Overall, the model reveals the importance of staff experience in
software development.

Department of CSE, SJBIT Page 113

Software Engineering 10IS51

Project duration and staffing
As well as effort estimation, managers must estimate the calendar
time required completing a project and when staff will be required.
Calendar time can be estimated using a COCOMO 2 formula
• TDEV = 3 ´ (PM)(0.33+0.2*(B-1.01))
• PM is the effort computation and B is the exponent computed
as discussed above (B is 1 for the early prototyping model). This
computation predicts the nominal schedule for the project.
The time required is independent of the number of people working
on the project.

Staffing requirements
Staff required can’t be computed by diving the development time by
the required schedule. The number of people working on a project
varies depending on the phase of the project. The more people who
work on the project, the more total effort is usually required. A very
rapid build-up of people often correlates with schedule slippage
Key points
• There is not a simple relationship between the price charged for
a system and its development costs.
• Factors affecting productivity include individual aptitude,
domain experience, the development project, the project size, tool
support and the working environment.
• Software may be priced to gain a contract and the functionality
adjusted to the price.
• Different techniques of cost estimation should be used when
estimating costs.
• The COCOMO model takes project, product, personnel and
hardware attributes into account when predicting effort required.
• Algorithmic cost models support quantitative option analysis as
they allow the costs of different options to be compared.
• The time to complete a project is not proportional to the
number of people working on the project.

Department of CSE, SJBIT Page 114

