VTUlive.com

Java and J2EE 10CS753

QUESTION PAPER SOLUTION
UNIT 1
INTRODUCTION TO JAVA

1. How ‘compile once and run anywhere’ is implemented in Java, Explain. (4M)

[July 2014, July 2016]

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of
the main problems facing programmers is that no guarantee exists that if you write a
program today, it will run tomorrow—even on the same machine. Operating system
upgrades, processor upgrades, and changes in core system resources can all combine to
make a program malfunction. The Java designers made several hard decisions in the Java
language and the Java Virtual Machine in an attempt to alter this situation. Their goal was
“write once; run anywhere, any time, forever.” To a great extent, this goal was

accomplished.

2. List and explain the Java buzzwords. (6M) [July 2014, July 2016]
Sun micro system officially describes java with a list of buzz words or attributes. They
- Simple & powerful
- Safe
- Object oriented
- Robust
- Architecture neutral
- Compiled & Interpreted
- Multithreaded
- Easy to learn
The salient features of Java are as follows:
e Simple & Powerful: To make the language familiar to the existing programming, java is
modeled on C & C++. Java empowers you to express every idea you have in a clean

object oriented way.

VTUlive.com

Java and J2EE 10CS753

e Safe: Threat of viruses and abuse of resources are every where, java system not only
verify the memory resources but also ensures that no viruses are communicated with the
applet. The absence of pointers in java ensures that program can not gain access to
memory location.

e Object-oriented: Java is an object-oriented language. Almost every thing in java is object.
All the program codes & data reside within object & classes.

e Robust: Java is a strictly typed language, because the types must match exactly. It checks
your code at compile time as well as at run time. Java is a garbage collected language,
relieving the programmers all memory management problems (i.e., deallocation is
completely automatic).

e Java incorporates exception handling which captures series of errors and eliminates any
risk of crashing the system.

e Architecture neutral: Java is the language that is not tied to any particular hardware or
operating system. Program developed in java can be executed anywhere on any system.
You can “write once, run anywhere, anytime forever”. Changes & upgrades in operating
system, processors will not force any changes in java program. It works on Macintosh
PC, UNIX & whatever the future platforms can offer.

e Interpreted: Java accomplishes architecture neutrality by compiling the java source code
into an intermediate code called “byte codes”, which can be interpreted on any system
that has a proper java runtime on it. Multithreaded: Java supports multithreaded
programming which allows you to write programs that do many things simultaneously.

e FEasy to learn: The language features feel like the natural way to do things & encourage
good programming style. Since object model is both mandatory & simple, you will

quickly become acquainted with object oriented style of programming.

3. Explain : i) >>> ii) short circuit logical operators iii) for each. (6M) [July 2014]
1) int num,den;
if(den I= 0 && num |den >2){
H

VTUlive.com

Java and J2EE 10CS753

11) int num,den;
if(den I=0 & num | den == 0){
H

An object is a single instance of a class that retains the structure and behavior as defined by the

class. These objects are some times called instances of a class

4. Describe the process of building and running Java program. (4M) [July 2014, July

2016]

BYTE Code is intermediate level code, which is interpreted by the JVM. It is not directly
executable on the machine. This gives java it’s “write once and run anywhere” nature.
When java program is written and compiled then it will create a .class file which consists
of byte code instructions, understandable to JVM. This class file is system independent.
Every system has it’s own JVM.so jvm will convert this byte code into machine language
understandable to that system. So it has run write once and run anywhere nature.

Java achieves architecture neutrality in the following way. Being platform independent
was one of the major objectives for java. Java achieves this independence by introducing
an intermediate code representation of compiled java programs. Programs are compiled
into a byte code which is then interpreted by platform specific interpreter. The byte code
is same for any architecture, IBM compatible, Apple, Sparc, Sun Solaris.

Java program
Java compiler
The Java Virtual Machine, or JVM, is an abstract computer that runs compiled Java
programs. The JVM is "virtual" because it is generally implemented in software on top of
a "real" hardware platform and operating system. All Java programs are compiled for the
JVM. Therefore, the JVM must be implemented on a particular platform before compiled

Java programs will run on that platform

. Explain arrays in java with examples(6M) [July 2016,July 2014 Jan 2015]

Arrays in Java are actual objects that can be passed around and treated just like

other objects.

VTUlive.com

Java and J2EE 10CS753

Arrays are a way to store a list of items. Each slot of the array holds an
individual element, and you can place elements into or change the contents or those
slots as you need to.
Three steps to create an array:
1. Declare a variable to hold the array.
2. Create a new array object and assign it to the array variable.
3. Store things in that array.
E.g.

String[] names;
names = new String[10];

names [1] = “nl”;
names[2] = ‘n2’;

6. What is jump statement? (4M) [July 2014,July 15]
e The if conditional, which enables you to execute different bits of code based
on a simple test in Java, is nearly identical to if statements in C.
e if conditionals contain the keyword if, followed by a boolean test, followed
by a statement (often a block statement) to execute if the test is true:
e if(x<y)
System.out.println("x is smaller than y");
An optional else keyword provides the statement to execute if the test is false:
if (x <)
System.out.println("x is smaller than y"); else

System.out.println("y is bigger");

7. Discuss break and continue(5M) [Jan 2015,Jan 2016]
An alternative to using the if and else keywords in a conditional statement is to use the
conditional operator, sometimes called the ternary operator.

The conditional operator is a ternary operator because it has three terms.

VTUlive.com

Java and J2EE 10CS753

Syntax : test ? trueresult : falseresult

The test is an expression that returns true or false, just like the test in the if statement. If
the test is true, the conditional operator returns the value of trueresult; if it's false, it
returns the value of falseresult. For example, the following conditional tests the values
of x and y, returns the smaller of the two, and assigns that value to the variable smaller:
int smaller=x<y?x:y;

The conditional operator has a very low precedence; that is, it's usually evaluated only
after all its subexpressions are evaluated. The only operators lower in precedence are the

assignment operators..

8. Explain about JDK(7M) [July 2014,July 15,Jan 2016]

The Java Virtual Machine, or JVM, is an abstract computer that runs compiled Java
programs. The JVM is "virtual" because it is generally implemented in software on top of a
"real" hardware platform and operating system. All Java programs are compiled for the JVM.
Therefore, the JVM must be implemented on a particular platform before compiled Java
programs will run on that platform

Java achieves architecture neutrality in the following way. Being platform independent was
one of the major objectives for java. Java achieves this independence by introducing an
intermediate code representation of compiled java programs. Programs are compiled into a
byte code which is then interpreted by platform specific interpreter. The byte code is same
for any architecture, IBM compatible, Apple, Sparc, Sun Solaris.

Java program

Java compiler

9. Discuss three OOP principles(6M) [Jan 2015,July 15]
In java basis of encapsulation is a class. You create a class that represents an abstraction for

a set of objects that share the same structure and behavior. An object is a single instance of a

VTUlive.com

Java and J2EE 10CS753

class that retains the structure and behavior as defined by the class. These objects are some
times called instances of a class. The individual or data representation of a class is defined by
a set of instance variables. These variables hold the dynamic state of each instance of a class.
The behavior of a class is defined by methods that operate on that instance data. A method is
a message to take some action on an object. Since the goal is to encapsulate complexity, there
are mechanisms for hiding the data declared inside class. Each method or variable in a class
may be marked private or public. You can declare private methods and instance data that can
not be accessed by any other code outside the implementation of your class.

Inheritance: Inheritance is the process by which object of one class acquire the properties of
objects of another class. Inheritance supports the concept of hierarchical classification. For
example, the bird robin is a part of the class flying bird, which is again part of a class bird as
illustrated in figure below

The principle behind this sort of division is that each derived class shares common
characteristics with the class from which it is derived. In OOP, the concept of inheritance
provides the idea of reusability. The new class will have the combined features of both the
classes. Java is said to be single inheritance language. Multiple inheritance which is
explicitly not a feature of java

Polymorphism: Polymorphism means ability take more than one form or polymorphism
means one object, many shapes, a simple concept that allows a method to have multiple
implementations that are selected based on the number & type of the arguments passed into
the method invocation. This is known as method overloading. Figure illustrate the method
overloading

Listed below are some major C++ features that were intentionally omitted from java

- Java does not support global variables. it is impossible to create a global variable that is
outside of all the classes.

- Java has no goto statement

- Java does not use pointers or addresses in memory, because pointers are unsafe. Improper

pointer arithmetic causes most of the bugs in today’s code.

VTUlive.com

Java and J2EE 10CS753

UNIT 2
CLASSES, INHERITANCE, EXCEPTIONS, APPLETS

1. Describe the significance of final and super, with examples. (6M) [Jan 2014, Jan

2015,Jan 2016]

When Sun was designing Java, it omitted multiple inheritance - or more precisely
multiple implementation inheritance - on purpose. Yet multiple inheritance can be useful,
particularly when the potential ancestors of a class have orthogonal concerns. This article
presents a utility class that not only allows multiple inheritance to be simulated, but also has
other far-reaching applications.

Here, Person is a concrete class that represents a person, while Employment is another
concrete class that represents the details of a person who is employed. If you could only put
them together, you would have everything necessary to define and implement an Employee
class. Except in Java - you can't. Inheriting implementation from more than one superclass -
multiple implementation inheritance - is not a feature of the language. Java allows a class to

have a single superclass and no more.

2. What is an exception? Explain the different exception handling mechanisms, with
an example, (8M) [Jan 2014, July 2015]

This is the general form of an exception-handling block:

try

{

//block of code to be monitored for errors

}
catch (ExceptionTypel exOb)

{

/lexception handler for ExceptionTypel

h
catch (ExceptionType2 exOb)

{

VTUlive.com

Java and J2EE 10CS753

/lexception handler for ExceptionType2
}

/...

finally

{
//block of code to be executed before try block ends

}
DIVIDE-BY-ZERO EXCEPTION

This small program has an expression that causes a divide-by-zero error.

class DivideByZero

{

public static void main (String args[])
{

intd=0;

inta=42/d;

}

}

The Java run-time system constructs a new exception object when it detects an attempt to
divide-by-zero. It then throws this exception. In the above example, there is no exceptional
handler to catch the exception. The default handler provided by the Java run-time system will
process any exception that is not caught by a program. The output of the above program
when executed by the standard Java JDK runtime interpreter:
java.lang.ArithemeticException:/ by zero

at DivideByZero.main(DivideByZero.java:4)

Although the default exception handler is provided by Java run-time system, you will usually
like to handle exception yourself.

The following program includes a try block and a catch clause, which processes the
ArithmeticException generated by the division-by-zero:

class DivideByZero
{

VTUlive.com

Java and J2EE 10CS753

public static void main (String args[])

{

int d, a;

try //monitor a block of code

{

d=0;

a=42/d;

System.out.println("This will not be printed. ");

}

catch(ArithmeticException e)

{

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

This program generates the following output:

Division by zero.

After catch statement

The call to println() inside the try block is never executed .Once an exception is thrown,
program control transfers out of the try block into the catch block. Once the catch statement
has executed, the program continues with the next line in the program following the entire
try/

catch mechanism.

3. Write an applet program to display the message “VTU BELGAUM”. Set the
background color to cyan and foreground color to red. (6M) [Jan 2014,Jan 2016,
July 2016]

The applet parameter "Message" is the string to be drawn.

VTUlive.com

Java and J2EE 10CS753

import java.applet. *;

import java.awt.*;

public class DrawStringApplet extends Applet {

private String defaultMessage = "Hello!"; public

void paint(Graphics g) {

String inputFromPage = this .getParameter("Mes

sage");
if (inputFromPage == null) inputFromPage = defaultMessage;
g.drawString(inputFromPage, 50, 25);

b

b
HTML file that references the above applet.

<HTML> <HEAD>

<TITLE> Draw String </TITLE>

</HEAD>

<BODY>

This is the applet:<P>

<APPLET code="DrawStringApplet" width="3 00" height="50">
<PARAM name="Message" value="Howdy, there!"> This page will be very boring if
your
browser doesn't understand Java.
</APPLET>
</BODY> </HTML>

4. Why overriding methods are used in java? Example(8M) [July 2016, July 2015]
Overriding Methods
e When a method is called on an object, Java looks for that method definition in the class of
that object, and if it doesn't find one, it passes the method call up the class hierarchy until

a method definition is found.

10

VTUlive.com 11

Java and J2EE 10CS753

e Method inheritance enables you to define and use methods repeatedly in subclasses
without having to duplicate the code itself.

e However, there may be times when you want an object to respond to the same methods
but have different behavior when that method is called. In this case, you can override that
method. Overriding a method involves defining a method in a subclass that has the same
signature as a method in a superclass. Then, when that method is called, the method in the

subclass is found and executed instead of the one in the superclass.

5. What is meant by instance variable hiding? How to overcome it?
public static void main (String args[]) { Motorcycle m = new Motorcycle(); m.make =
"Yamaha RZ350"; (4M) [July 2014,Jan 2016]

m.color = "yellow";

System.out.println("Calling showAtts..."); m.showAtts(); System.out.println("
—"); System.out.println("Starting

engine..."); m.startEngine();

System.out.println("————");

System.out.println("Calling showAtts..."); m.showAtts(); System.out.println("

—"); System.out.println("Starting

engine..."); m.startEngine();

}

With the main() method, the Motorcycle class is now an application, and you can compile
it again and this time it'll run. Here's how the output should look:
Calling showAtts...

This motorcycle is a yellow Yamaha RZ350 The engine is off.
Starting engine... The engine is now on.

Calling showAtts...

This motorcycle is a yellow Yamaha RZ350 The engine is on.
Starting engine...

The engine is already on.

VTUlive.com

Java and J2EE 10CS753

6. Explain constructor method.how it differs from other member function(5M)

[Jan 2014,July 2014]
The program looks like this now :
class Motorcycle { engine is already
String make; on.");
String color; engine is now
boolean engineState; on.");

void startEngine() {
if (engineS tate == true)
System.out.printin("The

else {

}

The showAtts method prints the current values of the instance variables in an instance of
your Motorcycle class. Here's what it looks like:

void showAtts() {

System. out .println ("This motorcycle is a " + color + " " + make);

if (engineState == true)

System.out.println("The engine is on."); else System.out.println("The engine is off.");

The showAtts method prints two lines to the screen: the make and color of the motorcycle

object, and whether or not the engine is on or off.

7. What is an applet? Different stages of an applet(8M) [July 2014,Jan 2015 Jan
2016]

Applets are used to provide interactive features to web applications that cannot be provided

by HTML. Since Java's bytecode is platform independent, Java applets can be executed by

browsers for many platforms, including Windows, Unix, Mac OS and Linux. There are open

source tools like applet2app which can be used to convert an applet to a stand alone Java

application/windows executable/linux executable. This has the advantage of running a Java

applet in offline mode without the need for internet browser software. Life Cycle of an

12

VTUlive.com 13

Java and J2EE 10CS753

Applet: Basically, there are four methods in the Applet class on which any applet is built.
init: This method is intended for whatever initialization is needed for your applet.

It is called after the param attributes of the applet tag.

- start: This method is automatically called after init method. It is also called

whenever user returns to the page containing the applet after visiting other pages

- stop: This method is automatically called whenever the user moves away from the

page containing applets. You can use this method to stop an animation.

- destroy: This method is only called when the browser shuts down normally

8. Difference between method overloading & overriding(6M) [July 2015]
Overriding Methods
e When a method is called on an object, Java looks for that method definition in the class of
that object, and if it doesn't find one, it passes the method call up the class hierarchy until
a method definition is found.
e Method inheritance enables you to define and use methods repeatedly in subclasses
without having to duplicate the code itself.
overriding
However, there may be times when you want an object to respond to the same methods but have
different behavior when that method is called. In this case, you can override that method.
Overriding a method involves defining a method in a subclass that has the same signature as a
method in a superclass. Then, when that method is called, the method in the subclass is found

and executed instead of the one in the superclass

VTUlive.com

Java and J2EE 10CS753

UNIT 3
MULTI THREADED PROGRAMMING, EVENT HANDLING

1. What is synchronization? Explain with an example, how synchronization is
implemented in Java. (6M) [Jan 2014, July 2016, Jan 2015]

One further area of concern within threads is known as "busy waiting." This is the situation

where a thread is conceptually idle, perhaps waiting for some other synchronous processing

to complete, but yet it is still occupying the CPU. To illustrate, consider a spell-checking

thread.

It reads a text file and searches for each word in its database. If a word is not found, the

thread composes a list of suggested corrections and notifies the calling process. The calling

process displays a list of the while the thread waits. Eventually the user makes a selection

and the calling process allows the thread to continue. The thread eventually terminates, once

the whole file has been processed.

We might write such code by using a public boolean variable, 'paused,' like so:

paused = true;

parent.processWordList (aListOfWords);

//'loop until parent process clears 'paused'

while (paused && !terminated) {}

/I Continue

The thread simply loops continually until the paused variable is set to false. Although this

seems intuitive, the ramifications are that the CPU will continue to spend significant time

processing the loopingtime that could best be spent servicing other threads. Indeed, any

attempt to move windows around on the screen will be noticeably jerky.

void sleep (long milliseconds)

void sleep (long milliseconds, int nanoseconds)

These methods make the thread pause for the specified number of milliseconds and/or

nanoseconds. What is important here is that the thread really does pause and takes no CPU

time. Not all operating systems support time resolutions as small as nanoseconds, and in

VTUlive.com

Java and J2EE 10CS753

these cases the second method simply rounds the number of nanoseconds to the nearest
millisecond and calls the first method.

The sleep methods have been defined in the Java class libraries as being able to throw an
InterruptedException. This exception is generated if the sleep method is disturbed in some
way before it completes, such as if System.exit() is called from elsewhere in the application,
shutting the program down. Whether or not you wish to perform any processing to respond
specifically to a sleep being interrupted, Java mandates the exception be caught, hence your
calls to the sleep methods should be wrapped in a try/catch block. This exception was
designed to provide a general mechanism to allow one thread to implement another.
Unfortunately this has not yet been fully implemented.

The thread class provides a method, interrupt(), which sends an interruption to a specified
threadpresently this amounts to nothing more than setting a boolean flag. The boolean
function isInterrupted() may be used to query the status of this flag, but unfortunately there is
not presently any way to actually interrupt a thread and throw the InterruptedException. So
despite the fact that the exception must be caught it currently isn't useful for anything.
Eventually, it will permit threads to be woken up from their sleep. Because the sleep method
is not presently interruptible, the alternative is to have brief periods of inactivity (sleeping),
before querying the paused status. Our code fragment thus becomes:

paused = true;

parent.processWordList (aListOfWords);

//'loop until parent process clears 'paused'

while (paused && !terminated)

try { sleep (2000); }

catch (InterruptedException e) {}

/I Continue

This code tells the thread to sleep for two seconds (2000 milliseconds) in the body of the
while loop. The thread continues to loop but puts much less strain on the CPU. In fact, the
thread's awake time is greatly reduced.

You have to be careful, though, not to make the sleep time too long or the thread will not

respond swiftly once the pause flag has been cleared. Because you are using the thread's

VTUlive.com

Java and J2EE 10CS753

sleep method, you have to catch the exception that could be raised (or javac will complain),

but you don't need to specify any code in the body of the exception handler.

2. What is producer — consumer problem? Explain the solution for producer —
consumer problem with a program. (8M) [Jan 2014,July 2016, Jan 2015]

Problem Description :
In computer science the producer-consumer problem (also known as the bounded-buffer
problem) is a classical example of a multi-process synchronization problem. The problem
describes two processes, the producer and the consumer, who share a
common, fixed-size buffer.
The producer's job is to generate a piece of data, put it into the buffer and start again. At the
same time the consumer is consuming the data (i.e. removing it from the buffer) one piece at
a time. The problem is to make sure that the producer won't try to add data into the buffer if
it's full and that the consumer won't try to remove data from an empty buffer. This is the code
for solving the above stated:
class Bufferltem {
public volatile double value = 0; // multiple threads access public volatile boolean occupied
= false; // so make these ‘volatile' }
class BoundedBuffer { // designed for a single producer thread and // a single consumer
thread
private int numSlots = 0;
private Bufferltem[] buffer = null;
private int putln = 0, takeOut = 0;
// private int count = 0;
public BoundedBuffer(int numSlots) {
if (numSlots <= 0) throw new Illegal ArgumentException("numSlots<=0"); this.numSlots =
numsSlots;
buffer = new Bufferltem[numSlots];
for (int 1 = 0; 1 < numSlots; i++) buffer[i] = new Bufferltem();

putln = (putln + 1) % numSlots;

VTUlive.com

Java and J2EE 10CS753

// count++;// race condition!!! }

public double fetch() {

double value;

while (!buffer[takeOut].occupied) // busy wait Thread.currentThread().yield();
value = buffer[takeOut].value; //C

buffer [takeOut] .occupied = false; /I D takeOut = (takeOut + 1) % numSlots;

// count--; // race condition!!! return value;

b

}

3. What is delegation event model? Describe the significance of adapter class, with an

example. (6M) [Jan 2014, Jan 2016,July 2016]

In Java, events represent all activity that goes on between the user and the application.
Two event handling mechanisms :
Delegation event model : It defines standard and consistent mechanisms to generate and
process events. Here the source generates an event and sends it to on or more listeners.
The listener simply waits until it receives an event. Once it is obtained, It processes this
event and returns. Listeners should register themselves with a source in order to receive
an even notification. Notifications are sent only to listeners that want to receive them.
Events
In the delegation model, an event is an object that describes a state change in a source. It
can be generated as a consequence of a person interacting with the elements in a
graphical user interface. Some of the activities that cause events to be generated are :
pressing a button, entering a character via the keyboard, selecting an item in a list, and
clicking the mouse. Events may also occur that are not directly caused by interactions
with a user interface. For example, an event may be generated when a timer expires, a
counter exceeds a value, a software or hardware failure occurs, or an operation is
completed.
Event Classes
The classes that represent events are at the core of Java’s event handling mechanism.

EventObject : It is at the root of the Java event class hierarchy in java.util. It is the

17

VTUlive.com

Java and J2EE 10CS753

superclass for all events. Its one constructor is shown here: EventObject(Object src)
Here, src is the object that generates this event. EventObject contains two methods:
getSource() and toString(). The getSource() method returns the source of the event.
EventObject is a superclass of all events.
The ActionEvent Class :
An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a
menu item is selected. The ActionEvent class defines four integer constants that can be
used to identify any modifiers associated with an action event: ALT MASK,
CTRL_MASK, META_MASK, and SHIFT _MASK.
ActionEvent has these three constructors: ActionEvent(Object src,
int type, String cmd) ActionEvent(Object src, int type,
String cmd, int modifiers)
ActionEvent(Object src, int type, String cmd, long when, int modifiers) Here, src is a
reference to the object that generated this event. The type of the event is specified by
type, and its command string is cmd. The argument modifiers indicates which modifier
keys (ALT, CTRL, META, and/or SHIFT) were pressed when the event was generated.
The when parameter specifies when the event occurred

eThe AdjustmentEvent Class An AdjustmentEvent is generated by a scroll bar

eThe ComponentEvent Class A ComponentEvent is generated when the size, position, or

visibility of a component is changed. There are four types of component events

e The ContainerEvent Class A ContainerEvent is generated when a component is added
to or removed from a container

e The FocusEvent Class : A FocusEvent is generated when a component gains or loses
input focus

e The InputEvent Class : The abstract class InputEvent is a subclass of
ComponentEvent and is the superclass for component input events. Its subclasses are
KeyEvent and MouseEvent.

e The ItemEvent Class : An ItemEvent is generated when a check box or a list item is
clicked or when a checkable menu item is selected or deselected

e The KeyEvent Class A KeyEvent is generated when keyboard input occurs.

VTUlive.com

Java and J2EE 10CS753

e The MouseEvent Class There are eight types of mouse events

e The MouseWheelEvent Class The MouseWheelEvent class encapsulates a mouse
wheel event.

e The TextEvent Class Instances of this class describe text events. These are generated by
text fields and text areas when characters are entered by a user or program.

e The WindowEvent Class There are ten types of window events. The WindowEvent

class defines integer constants that can be used to identify them.

4. What is meant by multithreaded programming? Explain with an example
interthread communication(10M) [July 2014, Jan 2014,Jan 2016]
A thread is a single path of execution of code in a program.
e A Multithreaded program contains two or more parts that can run concurrently.
e Each part of such a program is called a Thread.
e Each thread defines a separate path of execution. Multithreading is a specialized
form of Multitasking.
to make the classes threadable
A class can be made threadable in one of the following ways
(1) implement the Runnable Interface and apply its run() method.
(2) extend the Thread class itself.
1. Implementing Runnable Interface: The easiest way to create a thread is to create a
class that implements the Runnable interface. To implement Runnable, a class need
only implement a single method called run().
The Format of that function is public void run().
2. Extending Thread: The second way to create a thread is to create a new class that
extends the Thread class and then to create an instance of this class. This class must

override the run() method which is the entry point for the new thread.

5. What is meant by thread priority? How it is assigned(6M) [July 2014 Jan 2015]
The example in the next segment demonstrates the use of Runnable and its

implementation.

19

VTUlive.com

Java and J2EE 10CS753

Synchronization

Two or more threads accessing the same data simultaneously may lead to loss of data
integrity. In order to avoid this java uses the concept of monitor. A monitor is an object
used as a mutually exclusive lock.

At a time only one thread can access the Monitor. A second thread cannot enter the
monitor until the first comes out. Till such time the other thread is said to be waiting.

The keyword Synchronized is use in the code to enable synchronization and it can be
used along with a method.

Changing the state of thread

There might be times when you need to temporarily stop a thread from processing and
then resume processing, such as when you want to let another thread use the current
resource. You can achieve this objective by defining your own suspend and resume
methods, as shown in the following example. This example defines a MyThread class.
The MyThread class defines three methods: the run() method, the suspendThread()
method, and the resumeThread() method. In addition, the MyThread class declares the
instance variable suspended, whose value is used to indicate whether or not the thread is
suspended.

class MyThread implements Runnable {

String name;

Thread t;

boolean suspended;

MyThread() {

t = new Thread(this, "Thread");

suspended = false ; t.start();

h
public void run() {

try {

for (int i = 0; 1 < 10; 1++) { System.out.printin("Thread: " + i); Thread.sleep(200);
synchronized (this) {

while (suspended) {

VTUlive.com

Java and J2EE 10CS753

wait();
H

b
h

} catch (InterruptedException e) { System.out.println("Thread: interrupted."); }
System.out.println("Thread exiting.");

}

void suspendThread() { suspended = true;
h

synchronized void resumeThread() {
suspended = false;

notify();

}
}

class Demo {

public static void main (String args []) { MyThread t1 = new MyThread();

try{

Thread.sleep(1000); tl.suspendThread(); = System.out.println("Thread: Suspended");
Thread.sleep(1000);

tl.resumeThread(); System.out.println("Thread: Resume");

} catch (InterruptedException e) {

h

try {

t1.t.join();

} catch (InterruptedException e) { System.out.println (
"Main Thread: interrupted"); }

b
b

6. Explain action event class & adjustment event class(4M) [July 2014 Jan 2015]

21

VTUlive.com

Java and J2EE 10CS753

Event Listener Interfaces

Listeners are created by implementing one or more of the interfaces defined by the
java.awt.event package.

When an event occurs, the event source invokes the appropriate method defined by the
listener and provides an event object as its argument.

Interface Description

ActionListener - Defines one method to receive action events.

AdjustmentListener - Defines one method to receive adjustment events.
ComponentListener - Defines four methods to recognize when a component is hidden,
moved, resized, or shown.

ContainerListener - Defines two methods to recognize when a component is added to or
removed from a container.

FocusListener - Defines two methods to recognize when a component gains or loses
keyboard focus.

ItemListener - Defines one method to recognize when the state of an item changes.
KeyListener - Defines three methods to recognize when a key is pressed, released, or
typed.

MouseListener - Defines five methods to recognize when the mouse is clicked, enters a
component, exits a component, is pressed, or is released.

MouseMotionListener - Defines two methods to recognize when the mouse is dragged
or moved.

MouseWheelListener - Defines one method to recognize when the mouse wheel is
moved.

TextListener - Defines one method to recognize when a text value changes.
WindowFocusListener - Defines two methods to recognize when a window gains or
loses input focus.

WindowListener Defines seven methods to recognize when a window is activated,

closed, deactivated, deiconified, iconified, opened

7. Short notes on static, Final, Abstract, Native (10M) [July 2015,Jan 2016]

VTUlive.com

Java and J2EE 10CS753

A nested class has the same behavior as any static member of a class. You can have access
to it without initializing the parent class, and they can access theparent class static methods
and variables also. Nested classes are always define with the keyword static (and we will see
later that this is what differentiate them from the inner classes). An access tag (i.e. : public,
protected or private) can be defined, but by default a nested class takes the default package
access. Sun considers nested classes to be top-level classes (I find this at times to be
confusing). Here is an example of how to define a nested class Mylnner in the class
enclosing class MyOuter.

Notice that when you compile this code, you will have two .class file as the output :
MyOuter.class : being the enclosing class.

MyOuter$MyInner.class : being the inner class. Since class Mylnner is a static member of
MyOuter, it can be access from anywhere in your code using MyOuter.Mylnner (The same
way that you access classes in packages, you can even use the import statement with nested

classes : import MyOuter.MyInner).

8. What is a thread ? explain 2 ways of creating thread(10M) [July 2014,July 2015]
A thread is a single path of execution of code in a program.
e A Multithreaded program contains two or more parts that can run concurrently.
e Each part of such a program is called a Thread.
e Each thread defines a separate path of execution. Multithreading is a specialized
form of Multitasking.
to make the classes threadable
A class can be made threadable in one of the following ways
(3) implement the Runnable Interface and apply its run() method.
(4) extend the Thread class itself.
3. Implementing Runnable Interface: The easiest way to create a thread is to create a
class that implements the Runnable interface. To implement Runnable, a class need
only implement a single method called run().

The Format of that function is public void run().

VTUlive.com

Java and J2EE 10CS753

4. Extending Thread: The second way to create a thread is to create a new class that
extends the Thread class and then to create an instance of this class. This class must

override the run() method which is the entry point for the new thread.

UNIT 4
SWINGS

1. What is swing? List the main swing features. Explain the different types of panes of
swing containers. (10M) [Jan 2014, July 2016, July 2015]
Swing is built on top of AWT and is entirely written in Java, using AWT’s lightweight
component support. In particular, unlike AWT, t he architecture of Swing components
makes it easy to customize both their appearance and behavior. Components from AWT
and Swing can be mixed, allowing you to add Swing support to existing AWT-based
programs. For example, swing components such as JSlider, JButton and JCheckbox could
be used in the same program with standard AWT labels, textfields and scrollbars.
Component set (subclasses of JComponent) Support classes, Interfaces
Swing Components and Containers
Swing components are basic building blocks of an application. Swing toolkit has a wide
range of various widgets. Buttons, check boxes,sliders, list boxes etc. Everything a
programmer needs for his job. In this section of the tutorial, we will describe several
useful components.
JLabel Component
JLabel is a simple component for displaying text, images or both. It does not react to
input events.
JCheckBox
JCheckBox is a widget that has two states. On and Off. It is a box with a label JSlider
JSlider is a component that lets the user graphically select a value by sliding a knob
within a bounded interval

JComboBox

VTUlive.com

Java and J2EE 10CS753

Combobox is a component that combines a button or editable field and a drop-down list.
The user can select a value from the drop-down list, which appears at the user's request.
JProgressBar

A progress bar is a widget that is used, when we process lengthy tasks. It is animated so
that the user knows, that our task is progressing

JToggleButton

2. Create a swing application having two buttons named alpha and beta. When either
of the buttons pressed, it should display “alpha pressed” and “beta pressed”
respectively. (10M) [Jan 2014,July 2015,Jan 2016]

Create a JLabel with an image icon
import java.awt.FlowLayout;
import java.awt.HeadlessException;
import javax.swing.Icon;
import javax.swing.Imagelcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
public class Main extends JFrame {
public Main() throws HeadlessException {
setSize(300, 300);
setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
setLayout(new FlowLayout(FlowLayout.LEFT));
Icon icon = new Imagelcon("a.png");
JLabel labell = new JLabel("Full Name :", icon, JLabel. LEFT);
JLabel label2 = new JLabel("Address :", JLabel. LEFT);
label2.setlcon(new Imagelcon("b.png"));
getContentPane().add(labell);
getContentPane().add(label2);

}

25

VTUlive.com

Java and J2EE 10CS753

public static void main(String[] args) {
new Main().setVisible(true);

b
h

3. List the different types of swing buttons. Write a program to create four types of
buttons on JApplet. Use suitable events to show actions on the buttons and use
JLabel to display the action invoked. (10M) [Jan 2014, July 2016]

package com.ack.gui.swing.simple;
import java.awt.*;
import java.awt.event. WindowAdapter; import java.awt.event. WindowEvent; import
javax.swing.*;
public class SimpleSwingButtons extends JFrame {
public static void main(String[] argv) {
SimpleSwingButtons myExample = new SimpleSwingButtons("Simple Swing Buttons"
);
h
public SimpleSwingButtons(String title) {
super(title);
setSize(150, 150);
add WindowListener(new WindowAdapter() { public void windowClosing(
WindowEvent we) { dispose();
System.exit(0);
}
§ s
init();
setVisible(true);
h
private void init() {

JPanel my panel = new JPanel();

26

VTUlive.com

Java and J2EE 10CS753

my_panel.setLayout(new GridLayout(3,3)); for(inti=1;1<10; i++) {
Imagelcon icon = new Imagelcon(i + ".gif"); JButton jb = new JButton(icon);
jb.setToolTipText(i1+ ".gif");

my_panel.add(jb);

}

getContentPane().add(my panel);

my_panel.setBorder(BorderFactory.createEtchedBorder());

b
}

4. Write the steps to create Jtable. WAP to create a table with the column headings
Name, USN, age, address & insert records and display(10M) [July 2014,Jan 2015]

The JTableis used to display and edit regular two-dimensional tables of cells.
The JTable has many facilities that make it possible to customize its rendering and editing
but provides defaults for these features so that simple tables can be set up easily. For
example, to set up a table with 10 rows and 10 columns of numbers:

TableModel dataModel = new AbstractTableModel() {
public int getColumnCount() { return 10; }
public int getRowCount() { return 10;}
public Object getValueAt(int row, int col) { return new Integer(row*col); }
3
JTable table = new JTable(dataModel);
JScrollPane scrollpane = new JScrollPane(table);
Note that if you wish to use a JTable in a standalone view (outside of a JScrollPane) and

want the header displayed, you can get it using getTableHeader() and display it separately.

To enable sorting and filtering of rows, use a RowSorter. You can set up a row sorter in
either of two ways:
e Directly set the RowSorter. For example: table.setRowSorter(new

TableRowSorter(model)).

27

VTUlive.com

Java and J2EE 10CS753

e Set the autoCreateRowSorter property totrue, so that the JTable creates
a RowSorter for you. For example: setAutoCreateRowSorter(true).
When designing applications that use the JTable it is worth paying close attention to the data
structures that will represent the table's data. The DefaultTableModelis a model
implementation that uses a Vector ofVectors of Objects to store the cell values. As well as
copying the data from an application into the DefaultTableModel, it is also possible to wrap
the data in the methods of the TableModel interface so that the data can be passed to
the JTable directly, as in the example above. This often results in more efficient applications
because the model is free to choose the internal representation that best suits the data. A good
rule of thumb for deciding whether to use the AbstractTableModel or
the DefaultTableModel is to use the AbstractTableModel as the base class for creating
subclasses and the DefaultTableModel when subclassing is not required.
The "TableExample" directory in the demo area of the source distribution gives a number of
complete examples of JTable usage, covering how the JTable can be used to provide an
editable view of data taken from a database and how to modify the columns in the display to
use specialized renderers and editors.
The JTable uses integers exclusively to refer to both the rows and the columns of the model
that it displays. The JTable simply takes a tabular range of cells and uses getValueAt(int,
int) to retrieve the values from the model during painting. It is important to remember that
the column and row indexes returned by various JTable methods are in terms of
the JTable (the view) and are not necessarily the same indexes used by the model.
By default, columns may be rearranged in the JTable so that the view's columns appear in a
different order to the columns in the model. This does not affect the implementation of the
model at all: when the columns are reordered, the JTable maintains the new order of the
columns internally and converts its column indices before querying the model.
So, when writing a TableModel, it is not necessary to listen for column reordering events as
the model will be queried in its own coordinate system regardless of what is happening in the
view. In the examples area there is a demonstration of a sorting algorithm making use of
exactly this technique to interpose yet another coordinate system where the order of the rows is

changed, rather than the order of the columns.

VTUlive.com

Java and J2EE 10CS753

5. Difference between swings and AWT(10M) [Jan 2015,July 2014,Jan 2016]
public class JTextField

extends JTextComponent
implements SwingConstants
JTextField is a lightweight component that allows the editing of a single line of text. For
information on and examples of using text fields, JTextField is intended to be source-
compatible with java.awt.TextField where it is reasonable to do so. This component has
capabilities not found in the java.awt. TextField class. The superclass should be consulted for
additional capabilities.
JTextField has a method to establish the string used as the command string for the action
event that gets fired. The java.awt. TextField used the text of the field as the command string
for the ActionEvent.JTextField will use the command string set with
the setActionCommand method if not null, otherwise it will use the text of the field as a
compatibility with java.awt. TextField.
The method setEchoChar and getEchoChar are not provided directly to avoid a new
implementation of a pluggable look-and-feel inadvertently exposing password characters. To
provide password-like services a separate class JPasswordField extends JTextField to provide
this service with an independently pluggable look-and-feel.
The java.awt.TextField could be monitored for changes by adding
a TextListener for TextEvent's. In the JTextComponent based components, changes are
broadcasted from the model via a DocumentEvent toDocumentListeners.
The DocumentEvent gives the location of the change and the kind of change if desired. The
code fragment might look something like:

DocumentListener myListener = ?7;

JTextField myArea = ?7?;

myArea.getDocument().addDocumentListener(myListener);
The horizontal alignment of JTextField can be set to be left justified, leading justified,
centered, right justified or trailing justified. Right/trailing justification is useful if the required

size of the field text is smaller than the size allocated to it. This is determined by

VTUlive.com

Java and J2EE 10CS753

the setHorizontal Alignment and getHorizontal Alignment methods. The default is to be
leading justified.

How the text field consumes VK _ENTER events depends on whether the text field has any
action listeners. If so, then VK _ENTER results in the listeners getting an ActionEvent, and
the VK _ENTER event is consumed. This is compatible with how AWT text fields handle
VK _ENTER events. If the text field has no action listeners, then as of v 1.3 the VK_ENTER
event is not consumed. Instead, the bindings of ancestor components are processed, which
enables the default button feature of JFC/Swing to work.

Customized fields can easily be created by extending the model and changing the default
model provided. For example, the following piece of code will create a field that holds only
upper case characters. It will work even if text is pasted into from the clipboard or it is

altered via programmatic changes.

VTUlive.com

Java and J2EE 10CS753

UNIT-5

J2EE OVERVIEW, DATABASE ACCESS
1. Explain the four types of JDBC drivers. (10M) [July 2014,July 2016]

There are many possible implementations of JDBC drivers. These implementations are
categorized as follows:

e Type 1: Drivers that implement the JDBC API as a mapping to another data access
API, such as ODBC (Open Database Connectivity). Drivers of this type are generally
dependent on a native library, which limits their portability. The JDBC-ODBC Bridge
is an example of a Type 1 driver.

Note: The JDBC-ODBC Bridge should be considered a transitional solution. It is not
supported by Oracle. Consider using this only if your DBMS does not offer a Java-only
JDBC driver.

e Type 2: Drivers that are written partly in the Java programming language and partly
in native code. These drivers use a native client library specific to the data source to
which they connect. Again, because of the native code, their portability is limited.
Oracle's OCI (Oracle Call Interface) client-side driver is an example of a Type 2
driver.

o Type 3: Drivers that use a pure Java client and communicate with a middleware
server using a database-independent protocol. The middleware server then
communicates the client's requests to the data source.

e Type 4: Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

Check which driver types comes with your DBMS. Java DB comes with two Type 4 drivers,
an Embedded driver and a Network Client Driver. MySQL Connector/J is a Type 4 driver.

Installing a JDBC driver generally consists of copying the driver to your computer, then
adding the location of it to your class path. In addition, many JDBC drivers other than Type 4
drivers require you to install a client-side APL. No other special configuration is usually

needed.

VTUlive.com

Java and J2EE 10CS753

2. Describe the various steps of JDBC with code snippets. (10M) [Jan 2015, July 2014].
A JDBC driver allows a Java application/client to communicate with a SQL database.
2. A JDBC driver is a Java class that implements the JDBC's java.sql.Driver interface.
3. A JDBC driver converts program (and typically SQL) requests for a particular database.
Loading a JDBC Driver: Using Class.forName()

String className = "org.gjt.mm.mysql.Driver",;

Class driverObject = Class.forName(className);

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.Statement;

public class Main {

public static void main(String[] args) throws Exception {

Connection conn = getHSQLConnection();

Statement st = conn.createStatement();

st.executeUpdate("create table survey (id int,name varchar(30));");
st.executeUpdate("insert into survey (id,name) values (1,'nameValue')");

st = conn.createStatement();

ResultSet rs = st.executeQuery("SELECT * FROM survey");

ResultSetMetaData rsMetaData = rs.getMetaData();

int numberOfColumns = rsMetaData.getColumnCount();
System.out.println("resultSet MetaData column Count="+ numberOfColumns);
rs.close();

st.close();

conn.close();

h

private static Connection getHSQLConnection() throws Exception {
Class.forName("org.hsqldb.jdbcDriver");

String url = "jdbc:hsqldb:mem:data/tutorial";

VTUlive.com

Java and J2EE

return DriverManager.getConnection(url, "sa", "");

}
}

Using DriverManager.registerDriver()

//String className = "org.gjt.mm.mysql.Driver";

try {

// Registers the given driver with the DriverManager.
DriverManager.registerDriver(new org.gjt.mm.mysql.Driver());
// 'here the class 1s loaded

h

catch (SQLException e) {

e.printStackTrace();

H

To test a JDBC driver installation using Oracle

public class MainClass {

public static void main(String[] args) {

try {

String className = "oracle.jdbc.driver.OracleDriver";

Class driverObject = Class.forName(className);
System.out.println("driverObject=" + driverObject);
System.out.println("your installation of JDBC Driver OK.");
h

catch (Exception e) {

System.out.println("Failed: JDBC Driver Error: " + e.getMessage());

h
h
b

c. Write a note on database meta interface. (04 Marks)
public class MainClass {
public static void main(String[] args) {

10CS753

33

VTUlive.com

Java and J2EE 10CS753

try {

String className = "org.gjt.mm.mysql.Driver";

Class driverObject = Class.forName(className);
System.out.println("driverObject=" + driverObject);
System.out.println("your installation of JDBC Driver OK.");

} catch (Exception e) {

System.out.println("Failed: JDBC Driver Error: " + e.getMessage());
}

h

b

3.Explain : i) callable statement ii) prepared statement. (10M)[Jan 2014,Jan 2016]
The following simple code fragment gives a simple example of these three steps:

public void connectToAndQueryDatabase(String username, String password) {

Connection con = DriverManager.getConnection(
"jdbc:myDriver:myDatabase",
username,

password);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Tablel");

while (rs.next()) {
int x = rs.getInt("a");
String s = rs.getString("b");
float = rs.getFloat("c");

VTUlive.com

Java and J2EE 10CS753

This short code fragment instantiates a DriverManager object to connect to a database driver
and log into the database, instantiates a Statement object that carries your SQL language
query to the database; instantiates a ResultSet object that retrieves the results of your query,

and executes a simple while loop, which retrieves and displays those results. It's that simple.

4. Explain J2EE architecture(10M) [July 2016 ,Jan 2014,Jan 2016 |

A tier is an abstract concept that defines a group of technologies that provides one or more
services to its clients. In multi-tier architecture each tier contains services that include
software object or DBMS. Multi-tier architecture is composed of clients, resources,
components (service), and containers.

Clients, Resources and Components

A client refers to a program that requests a service from a component. A resource is anything
a component needs to provide a service, and a component is part of tier that consists of a
collection of classes or a program that performs a function to provide the service. A container
is software that manages a component and provides a component with system services. The
relationship between a container and a component is sometimes referred to as a contract,
whose terms are governed by an application programming interface (API). An API defines
rules a component must follow and the services a component will receive from the container.
A container handles persistence, resource management, security, threading and other system-
level services for components that are associated with the container. Components are
responsible for implementation of business logic. It helps the programmer to focus on coding
business rules into components without becoming concerned about low-level system
services. The relationship between client, component and resource is shown below.

Normally large organizations employ multi-tier architecture because it is easy to build an
application that is flexible, scalable and responsive to the expectation of clients. Considering
an organization that groups its services as marketing tier, production tier, support tier and
facility services tier. At the lowest level facility services contains variety of resources that
include electricity, elevator, computer network, and telephone services. The next tier in the
organization contains support resources like computer programming, accounting, counseling

etc. Production tier has the resources necessary to produce products and services sold by the

VTUlive.com

Java and J2EE 10CS753

company. The highest tier consists of resources for product management and advertising. All
the tiers should interact with each other for the proper functioning of the enterprise. This is
similar to the tier structure in distributed systems. The tier relationship in an enterprise is

given below.

Marketing Product management Advertising
tier
Y
Production Manufacturing Purchasing
tier A
v
Support tier Accounting Programming
— Electricity Network Telephone
Facility tier

5. Write a note on resultset(10M) [July 2016 Jan 2015]
A ResultSet object is a table of data representing a database result set, which is usually
generated by executing a statement that queries the database. For example,

theCoffeeTables.viewTable method creates a ResultSet, rs, when it executes the query

through the Statement object, stmt. Note that a ResultSet object can be created through any
object that implements the Statement interface,
including PreparedStatement, CallableStatement, and RowSet.

You access the data in a ResultSet object through a cursor. Note that this cursor is not a

database cursor. This cursor is a pointer that points to one row of data in theResultSet.

VTUlive.com

Java and J2EE 10CS753

Initially, the cursor is positioned before the first row. The method ResultSet.next moves the
cursor to the next row. This method returns false if the cursor is positioned after the last row.
This method repeatedly calls the ResultSet.next method with a while loop to iterate through
all the data in the ResultSet. The following method, CoffeesTable.viewTable outputs the

contents of the COFFEES tables, and demonstrates the use of ResultSet objects and cursors:
public static void viewTable(Connection con, String dbName)
throws SQLException {
Statement stmt = null;
String query =
"select COF_NAME, SUP_ID, PRICE, " +
"SALES, TOTAL " +
"from " + dbName + ".COFFEES";

try {

stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {
String coffeeName = rs.getString("COF_NAME");
int supplierID = rs.getInt("SUP_ID");
float price = rs.getFloat("PRICE");
int sales = rs.getInt("SALES");
int total = rs.getInt("TOTAL");
System.out.println(coffeeName + "\t" + supplierID +
"\t" + price + "\t" + sales +
"\t" + total); }
} catch (SQLException e) {
JDBCTutorialUtilities.printSQLException(e);
} finally {
if (stmt !=null) { stmt.close(); }

37

VTUlive.com

Java and J2EE 10CS753

6. Explain different type of statement object.(10M) [July 2015,Jan 2016]
JDBC Product Components
JDBC includes four components:

1. The JDBC API — The JDBC™ API provides programmatic access to relational
data from the Java™ programming language. Using the JDBC API, applications can
execute SQL statements, retrieve results, and propagate changes back to an
underlying data source. The JDBC API can also interact with multiple data sources in
a distributed, heterogeneous environment.

The JDBC API is part of the Java platform, which includes the Java™ Standard
Edition (Java™ SE) and the Java™ Enterprise Edition (Java™ EE). The JDBC 4.0 API is
divided into two packages: java.sql and javax.sql. Both packages are included in the Java SE
and Java EE platforms.

2. JDBC Driver Manager — The JDBC DriverManager class defines objects which
can connect Java applications to a JDBC driver. DriverManager has traditionally been
the backbone of the JDBC architecture. It is quite small and simple.

The Standard Extension packages javax.naming and javax.sql let you use
a DataSource object registered with aJava Naming and Directory Interface™ (JNDI)
naming service to establish a connection with a data source. You can use either connecting
mechanism, but using a DataSource object is recommended whenever possible.

3. JDBC Test Suite — The JDBC driver test suite helps you to determine that JDBC
drivers will run your program. These tests are not comprehensive or exhaustive, but
they do exercise many of the important features in the JDBC API.

4. JDBC-ODBC Bridge — The Java Software bridge provides JDBC access via
ODBC drivers. Note that you need to load ODBC binary code onto each client
machine that uses this driver. As a result, the ODBC driver is most appropriate on a
corporate network where client installations are not a major problem, or for
application server code written in Java in a three-tier architecture.

This Trail uses the first two of these these four JDBC components to connect to a

database and then build a java program that uses SQL commands to communicate with a

VTUlive.com

Java and J2EE 10CS753

test Relational Database. The last two components are used in specialized environments

to test web applications, or to communicate with ODBC-aware DBMSs

UNIT-6
SERVLETS
1. Explain the different stages in the life cycle of a servlet. (6M) [Jan 2014, July 2016 ,
Jan 2015]
Servlet Life Cycle

The life cycle of a servlet is controlled by the container in which the servlet has been
deployed.

When a request is mapped to a servlet, the container performs the following steps.

1. If an instance of the servlet does not exist, the Web container

a. Loads the servlet class.

b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method.

Initialization is covered in Initializing a Servlet.

2. Invokes the service method, passing a request and response object.

Service methods are discussed in the section Writing Service Methods.

If the container needs to remove the servlet, it finalizes the servlet by calling the servlet's

destroy method. Finalization is discussed in Finalizing a Servlet.

2. What is a cookie? List out the methods defined by cookie. Write a program to add a
cookie. (8M) [Jan 2014, July 2016, July 2015, Jan 2015]
An individual developing servlet for handling HTTP Requests needs to
override one
of these methods in order to process the request and generate a response.
The servlet is
invoked dynamically when an end-user submits a form.

Example:

VTUlive.com

Java and J2EE 10CS753

<form name="F1" action=/servlet/ColServlet> Select the color:

<select name = "col" size = "3">

<option value = "blue">Blue</option> <option value =
"orange">Orange</option>

</select>

<input type = "submit" value = "Submit"> </form>

Here’s the code for ColServlet.java that overrides the doGet() method to
retrieve data

from the HTTP Request and it then generates a response as well.

// import the java packages that are needed for the servlet to work

import java.io .*;

import javax.servlet. *;

import javax.servlet.http. *;

// defining a class

public class ColServlet extends HttpServlet {

public void doGet(HttpServletRequest request,HttpServletResponse
response) throws

ServletException, IOException

/I request is an object of type HttpServletRequest and it's used to obtain
information

/I response is an object of type HttpServletResponse and it's used to
generate a response // throws is used to specify the exceptions than a
method can throw

{

String colname = request.getParameter("col");

/I getParameter() method is used to retrieve the selection made by the
user

response.setContentType("text/html");

PrintWriter info = response.getWriter();

info .println("The color is: ");

40

VTUlive.com

Java and J2EE 10CS753

info .println(col);
info.close();

b

b

3. Write a program to describe parameter reading using servlets.(6M) [Jan 2014,Jan

2015,July 2016]

The main difference between them is, In servlets both the presentation and business logic
are place it together. Where as in jsp both are saparated by defining by java beans . In jsp's
the overall code is modulated so the developer who deesn't know about java can write jsp
pages by simply knowing the additional tages and class names. One more important to be
considered is servlet take less time to compile. Jsp is a tool to simplify theprocess and make
the process automate.Both are webapplications used to produce web content that mean
dynamic web pages. Bot are used to take the requests and service the clients.When the JSP
engine encounters a tag extension in a JSP attranslation time, it parses the tag library
descriptor to find the required tag handler class and generates code to obtain, and interact
with, the taghandler.

The Tag or BodyTag interfaces, one of which must be implemented by any tag handler,

For performance reasons, JSP engines will not necessarily instantiate a new tag handler
instance every time a tag is encountered in a JSP. Instead, they may maintain a pool of tag
instances, reusing them where possible. When a tag is encountered in a JSP, the JSP engine
will try to find a Tag instance that is not being used, initialize it, use it and release it (but not
destroy it), making it available for further use. The programmer has no control over any
pooling that may occur. The repeated use model is similar to a servlet lifecycle, but note one
very important difference: tag handler implementations don't need to concern themselves
with thread safety. The JSP engine will not use an instance of a tag handler to handle a tag
unless it is free. This is good news: as with JSP authoring in general, developers need to

worry about threading issues less often than when developing servlets.

4. Write a note on HTTP status codes.(4M) [July 2016,July 2015,Jan 2016]

41

VTUlive.com 42

Java and J2EE 10CS753

Tomcat
- Tomcat is the Servlet Engine than handles servlet requests for Apache
o Tomcat is a “helper application” for Apache
o It’s best to think of Tomcat as a “servlet container”
- Apache can handle many types of web services
o Apache can be installed without Tomcat
o Tomcat can be installed without Apache
- It’s easier to install Tomcat standalone than as part of Apache
o By itself, Tomcat can handle web pages, servlets, and JSP
- Apache and Tomcat are open source (and therefore free)
c. With a code snippet, explain how session tracking is handled in Java with
servlets. (04
Marks)
public class HelloServlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello World</H1>\n" +
"</BODY></HTML>"),

b
}

VTUlive.com 43

Java and J2EE 10CS753

The superclass

- public class HelloServlet extends HttpServlet {

- Every class must extend GenerilSErvlet or a subclass of GenerilSErvlet
o GenerilSErvlet is “protocol independent,” so you could write a servlet to
process any protocol

o In practice, you almost always want to respond to an HTTP request, so

you extend HttpServlet

5. Explain servlet interface, generic class, cookie class (6M) [Jan 2014, July 2015,Jan
2016]

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String docType =

"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";

out.println(docType +

"<HTML>\n" +

"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1>Hello World</H1>\n" +

"</BODY></HTML>");

j
b

The superclass
- public class HelloServlet extends HttpServlet {

- Every class must extend GenerilSErvlet or a subclass of GenerilSErvlet

VTUlive.com

Java and J2EE 10CS753

o GenerilSErvlet is “protocol independent,” so you could write a servlet to
process any protocol
o In practice, you almost always want to respond to an HTTP request, so

you extend HttpServlet

6. Explain use of session information in servlets(6M) [July 2014,Jan 2016]
In servlets both the presentation and business logic are place it together. Where as in jsp
both are saparated by defining by java beans . In jsp's the overall code is modulated so
the developer who deesn't know about java can write jsp pages by simply knowing the
additional tages and class names. One more important to be considered is servlet take less
time to compile. Jsp is a tool to simplify theprocess and make the process automate.Both
are webapplications used to produce web content that mean dynamic web pages. Bot are
used to take the requests and service the clients. When the JSP engine encounters a tag
extension in a JSP attranslation time, it parses the tag librarydescriptor to find the
required tag handler class,and generates code to obtain, and interact with, the taghandler.
The Tag or BodyTag interfaces, one of which must be implemented by any tag handler,
For performance reasons, JSP engines will not necessarily instantiate a new tag handler
instance every time a tag is encountered in a JSP. Instead, they may maintain a pool of tag
instances, reusing them where possible. When a tag is encountered in a JSP, the JSP engine
will try to find a Tag instance that is not being used, initialize it, use it and release it (but not
destroy it), making it available for further use.The programmer has no control over any
pooling that may occur. The repeated use model is similar to a servlet lifecycle, but note one
very important difference: tag handler implementations don't need to concern themselves
with thread safety. The JSP engine will not use an instance of a tag handler to handle a tag
unless it is free. This is good news: as with JSP authoring in general, developers need to

worry about threading issues less often than when developing servlets.

7. Write short nots on HTTP request & HTTP response (SM) [July 2014]
e Servlets can be used for handling both the GET Requests and the POST Requests.

44

VTUlive.com

Java and J2EE 10CS753

e The HttpServlet class is used for handling HTTP GET Requests as it has som
specialized methods that can efficiently handle the HTTP requests. These methods are;
doGet()
doPost()
doPut()
doDelete() doOptions() doTrace() doHead()
An individual developing servlet for handling HTTP Requests needs to override one of
these methods in order to process the request and generate a response. The servlet is
invoked dynamically when an end-user submits a form.
Example:
<form name="F1" action=/servlet/ColServlet> Select the color:
<select name = "col" size = "3">
<option value = "blue">Blue</option> <option value = "orange">Orange</option>
</select>
<input type = "submit" value = "Submit"> </form>
Here’s the code for ColServlet.java that overrides the doGet() method to retrieve data
from the HTTP Request and it then generates a response as well.
// import the java packages that are needed for the servlet to work
import java.io .*;
import javax.servlet. *;
import javax.servlet.http. *;
// defining a class
public class ColServlet extends HttpServlet {
public void doGet(HttpServletRequest request,HttpServletResponse response) throws
ServletException, IOException
// request is an object of type HttpServletRequest and it's used to obtain information
// response is an object of type HttpServletResponse and it's used to generate a response //
throws is used to specify the exceptions than a method can throw

{

String colname = request.getParameter("col");

VTUlive.com

Java and J2EE 10CS753

/I getParameter() method is used to retrieve the selection made by the user
response.setContentType("text/html");

PrintWriter info = response.getWriter();

info .println("The color is: ");

info .println(col);

info.close();} }

UNIT-7
JSP, RMI
1. Define JSP. Explain the different types of JSP tags by taking suitable examples. (10

Marks) [Jan 2014, July 2016 , Jan 2015]
In JSP tags can be divided into 4 different types. These are:

Directives: In the directives we can import packages, define error handling pages or the
session information of the JSP page.

Declarations: This tag is used for defining the functions and variables to be used in the
JSP.

Scriplets: In this tag we can insert any amount of valid java code and these codes are
placed in _jspService method by the JSP engine.

Expressions: We can use this tag to output any data on the generated page. These data

are automatically converted to string and printed on the output stream.
DIRECTIVES
Syntax of JSP directives is:

<%(@directive attribute="value" %>

Where directive may be:

VTUlive.com

Java and J2EE 10CS753

page: page is used to provide the information about it.

Example: <%@page language="java" %>

include: include is used to include a file in the JSP page.

Example: <%@ include file="/header.jsp" %>

taglib: taglib is used to use the custom tags in the JSP pages (custom tags
allows us to defined our own tags).

Example: <%(@ taglib uri="tlds/taglib.tld" prefix="mytag" %> and attribute
may be:

language="java"This tells the server that the page is using the java language.
Current JSP specification supports only java language.

—"3

Example: <%@page language="java" %>

extends="mypackage.myclass"

This attribute is used when we want to extend any class. We can use commayg,)
to import more than one packages.

1

Example: <%@page language="java" import="java.sql.*,mypackage.myclass"

%>

session="true"
When this value is true session data is available to the JSP page otherwise not.
By default this value is true.

Example:<%@pagelanguage="java"session="true" %>
errorPage="error.jsp"

errorPage is used to handle the un-handled exceptions in the page.
Example: <%@page language="java" session="true" errorPage="error.jsp"

%>

VTUlive.com

Java and J2EE 10CS753

contentType="text/html;charset=ISO-8859-1"
Use this attribute to set the mime type and character set of the JSP.
Example: <%@page language="java" session="true"

contentType="text/html;charset=ISO-8859-1" %>

2. What is RMI? Describe with code snippet RMI at server side. (10M) [Jan 2014, July

2014, Jan 2015,Jan 2016]

Serialization is the process of converting a set of object instances that contain references
to each other into a linear stream of bytes, which can then be sent through a socket, stored
to a file, or simply manipulated as a stream of data. Serialization is the mechanism used
by RMI to pass objects between JVMs, either as arguments in a method invocation from

a client to a server or as return values from a method invocation.

Client Account Server
Stub makelitfidrawal (nstamce of Maney) Skeleton
RMIRuntime | Netwark - RMI Runtime

Server Implementations

Once the remote object's Java interface is defined, a server implementation of the
interface can be written. In addition to implementing the object's interface, the server also
typically extends thejava.rmi.server.UnicastRemoteObject class. UnicastRemoteObject is
an extension of theRemoteServer class, which acts as a base class for server
implementations of objects in RMI. Subclasses of RemoteServer can implement different
kinds of object distribution schemes, like replicated objects, multicast objects, or point-
to-point communications. The current version of RMI (1.1) only supports remote objects
that use point-to-point communication, andUnicastRemoteObject is the only subclass
of RemoteServer provided. RMI doesn't require your server classes to derive from

a RemoteServer subclass, but doing so lets your server inherit specialized

48

VTUlive.com

Java and J2EE

10CS753

implementations of some methods from Object (hashCode(), equals(), andtoString()) so

that they do the right thing in a remote object scenario. If you decide that you don't want

to subclass from a RemoteServer subclass for some reason, then you have to either

provide your own special implementations for these methods or live with the fact that

these methods may not behave consistently on your remote objects. For example, if you

have two client stubs that refer to the same remote object, you would probably want

their hashCode() methods to return the

same value, but the standard Object

implementation will return independent hash codes for the two stubs. The same

inconsistency applies to the standard equals() and toString() methods.

3. Difference between servlet and JSP?(6M) [July 2016, July 2015,Jan 2016]

49

JSP

Servlets

JSP is a webpage scripting language that can

generate dynamic content.

Servlets are Java programs that are already
compiled which also creates dynamic web

content.

JSP run slower compared to Servlet as it takes

compilation time to convert into Java Servlets.

Servlets run faster compared to JSP.

It’s easier to code in JSP than in Java Servlets.

Its little much code to write here.

In MVC, jsp act as a view.

In MVC, servlet act as a controller.

JSP are generally preferred when there is not

much processing of data required.

servlets are best for use when there is more

processing and manipulation involved.

The advantage of JSP programming over servlets

There is no such custom tag facility in servlets.

4. Write a note on request string(4M) [July 2014,July 2015]

<html>

<head><title>First JSP</title></head>

<body>

VTUlive.com

Java and J2EE 10CS753

<%

double num = Math.random();

if (num > 0.95) {

%>

<h2>You'll have a luck day!</h2><p>(<%= num %>)</p>
<%

} else {

%>

<h2>Well, life goes on ... </h2><p>(<%= num %>)</p>
<%

b

%>

<a href="<%= request.getRequestURI() %>"><h3>Try Again</h3>
</body>

</html>

<htmI>

<h2>You'll have a luck day!</h2>

<p>(0.987)</p>

<h3>Try Again</h3></html>

5. WAP to create & read cookie called EMPIDthat has a value of AN2356 (10M) [July
2015,Jan 2016]

Create Table

To create the Employees table in EMP database, use the following steps:
Step 1:

Open a Command Prompt and change to the installation directory as follows:
C:\>

C:\>cd Program Files\MySQL\bin

50

VTUlive.com

Java and J2EE 10CS753

C:\Program Files\MySQL\bin>
Step 2:
Login to database as follows
C:\Program Files\MySQL\bin>mysql -u root -p
Enter password: *## &k
mysql>
Step 3:
Create the table Employee in TEST database as follows:
mysql> use TEST;
mysql> create table Employees
(
id int not null,
age int not null,
first varchar (255),
last varchar (255)
);
Query OK, 0 rows affected (0.08 sec)
mysql>
Create Data Records
Finally you create few records in Employee table as follows:
mysql> INSERT INTO Employees VALUES (100, 18, 'Zara', 'Ali'");
Query OK, 1 row affected (0.05 sec)

mysql> INSERT INTO Employees VALUES (101, 25, 'Mahnaz', 'Fatma');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Employees VALUES (102, 30, 'Zaid', 'Khan');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Employees VALUES (103, 28, 'Sumit', 'Mittal');

VTUlive.com

Java and J2EE

Query OK, 1 row affected (0.00 sec)
mysql>
SELECT Operation:

Following example shows how we can execute SQL SELECT statement using JTSL in

JSP programming:

<% @ page import="java.io.* java.util. * java.sql.*"%>

<%@ page import="javax.servlet.http.* javax.servlet.*" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<% (@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<htmI>

<head>

<title>SELECT Operation</title>
</head>

<body>

N '

<sql:setDataSource var

url="jdbc:mysql://localhost/ TEST"

snapshot" driver="com.mysql.jdbc.Driver'

user="root" password="pass123"/>

<sql:query dataSource="$ {snapshot}" var="result">
SELECT * from Employees;
</sql:query>

<table border="1" width="100%">
<tr>
<th>Emp ID</th>
<th>First Name</th>
<th>Last Name</th>
<th>Age</th>

10CS753

52

VTUlive.com

Java and J2EE

</tr>

<c:forEach var="row" items="$ {result.rows} ">

<tr>
<td><c:out value="$ {row.id}"/></td>
<td><c:out value="${row.first}"/></td>
<td><c:out value="$ {row.last}"/></td>
<td><c:out value="$ {row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>
</html

10CS753

53

VTUlive.com

Java and J2EE 10CS753

UNIT-8

ENTERPRISE JAVA BEANS
o What is deployment descriptor? List the deployment descriptor for EJB1. (6M) [Jan

2014, July 2016, Jan 2015]

e EJB structural information, such as the EJB name, class, home and remote
interfaces, bean type (session or entity), environment entries, resource factory
references, EJB references, security role references, as well as additional information
based on the bean type.

o Application assembly information, such as EJB references, security roles, security
role references, method permissions, and container transaction attributes. Specifying
assembly descriptor information is an optional task that an Application Assembler
performs.

Specifying deployment descriptor information is a required task that a Bean
Provider performs. The Bean Provider creates a standard EJB deployment
descriptor file using the XML markup conventions in accordance with the
syntax described in the Enterprise JavaBeans Specification 1.1. Multiple EJBs
can be defined in a single deployment descriptor.
DOCTYPE Declaration
All valid EJB JAR deployment descriptors must contain the following DOCTYPE
declaration:
<IDOCTYPE e¢jb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar 1 1.dtd">

Security
The following ejb-jar.xml file overrides any @RolesAllowed, @PermitAll,
or @DenyAll source code annotations for the bar method of the FooB EJB and adds

a @RolesAllowed annotation for the allowed role.

<ejb-jar>

VTUlive.com 55

Java and J2EE 10CS753

<assembly-descriptor>
<method-permission>
<role-name>allowed</role-name>
<method>
<ejb-name>FooB</ejb-name>
<method-name>bar</method-name>
</method>
</method-permission>
</assembly-descriptor>
</ejb-jar>
Transactions
The following ejb-jar.xml file overrides any @TransactionAttribute annotations for
the bar method of the FooA EJB and adds a@TransactionAttribute annotation
for NOT SUPPORTED.
<ejb-jar>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>FooA</ejb-name>
<method-name>bar</method-name>
</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>
</assembly-descriptor>

</ejb-jar>

2. With a skeleton, explain entity Java bean. (6M) [Jan 2014, July 2016 , Jan 2016]
A enterprise bean is written in Java is a server side component that encapsulates business
logic of an application. For example in an inventory control system, an enterprise bean

might have a method named orderProduct or checkInventory level.

VTUlive.com

Java and J2EE 10CS753

Session bean represents a single client inside the J2EE server. To access the application
deployed in the server the client invokes methods on the session bean. The session bean
performs the task shielding the client from the complexity of the business logic. Thereare
two types of session beans, namely: Stateful and Stateless.
Stateful Session Bean: A state of a bean is represented by the values of its instance
variables. In a stateful session bean the values of its instance variables represent the state
of a client-bean session. When the client quits or leaves the bean the state is terminated.
There are only two stages in the life cycle of a stateless bean, namely i. does not exists
and ii. ready. ejbActivate and ejbPassivate will never be called hence their state will
nover be saved
setEntityState
create
ejbCreate
ejbPostCreate
ejbActivate
ejbPassivate
remove
ejbRemove
unsetEntityState

3. Explain : i) JAR file ii) Stateless bean versus stateful bean. (8M) [Jan 2014, July
2016, Jan 2015]
A JAR file allows Java runtimes to efficiently deploy a set of classes and their associated
resources. The elements in a JAR file can be compressed, which, together with the ability
to download an entire application in a single request, makes downloading a JAR file
much more convenient than separately downloading the many uncompressed files which
would form a single Java Application. The package java.util.zip contains classes that read
and write JAR files.
A JAR file has an optional manifest file located in the path META-INF/MANIFEST.MF.
The entries in the manifest file determine how one can use the JAR file. For instance,

a Classpath entry can be used to specify other JAR files for loading with the JAR. This

VTUlive.com

Java and J2EE 10CS753

entry consists of a list of absolute or relative paths to other JAR files. Although intended
to simplify JAR use, in practice it turns out to be notoriously brittle, as it depends on all
the relevant JARs being in the exact locations specified when the entry-point JAR was
built.

Stateless Session Beans

A session bean represents work performed by a single client. That work can be performed
within a single method invocation, or it may span multiple method invocations. If the
work does span more than one method, the object must retain the user’s object state
across the method calls, and a stateful session bean would therefore be required.
Generally, stateless beans are intended to perform individual operations automatically
and don’t maintain state across method invocations. They’re also amorphous, in that any
client can use any instance of a stateless bean at any time at the container’s discretion.
They are the lightest weight and easiest to manage of the various EJB component
configurations.

Stateful Session Beans

Stateful session beans maintain state both within and between transactions. Each stateful
session bean is therefore associated with a specific client. Containers are able to save and
retrieve a bean’s state automatically while managing instance pools (as opposed to bean
pools) of stateful session beans.

Stateful session beans maintain data consistency by updating their fields each time a
transaction is committed. To keep informed of changes in transaction status, a stateful
session bean implements the SessionSynchronization interface. The container calls
methods of this interface while it initiates and completes transactions involving the bean.
Session beans, whether stateful or stateless, are not designed to be persistent. The data
maintained by stateful session beans is intended to be transitional. It is used solely for a
particular session with a particular client. A stateful session bean instance typically can’t
survive system failures and other destructive events. While a session bean has a
container-provided identity (called its handle), that identity passes when the client
removes the session bean at the end of a session. If a client needs to revive a stateful

bean that has disappeared, it must provide its own means to reconstruct the bean’s state.

VTUlive.com

Java and J2EE 10CS753

4. List & explain EJB transaction attributes(10M) [July 2014, Jan 2013, Jan 2015]
EJB transactions are a set of concepts and a set of mechanisms that attempt to insure the
integrity and consistency of a database for which multiple clients may attempt to access it
and/or update it simultaneously.
An Entity EJB is a representation of business data. Its state is represented completely by
the values of its persistent instance variables, that is, those that are synchronized with the
persistent store (database). If a transactional operation in such an Entity EJB fails, then
the system considers it to have been successfully rolled back if its underlying business
data is put back to its pre-transactional state. Instance variables that do not represet data
in the persistent store cannot be restored. If the EJB has container-managed persistence,
then all the synchronization of the variables with the persistent store will be automatic,
even after a rollback. This takes some work away from the developer, but it does imply
that the EJB must be no more than an object representing a database row.
Because of the assumption above, transaction management in Entity EJBs should never
be under programmer control. The EJB 2.0 specification prohibits an Entity EJB from
managing its own transactions; the container must do everything. Therefore, if your
transaction management requirements are beyond those offered by the container, then
you can't use Entity EJBs at all. Of course, the EJB paradigm says that an Entity EJB is
simply a model of business data and, as such, will never need a more complicated
transaction mechanism than that offered by the container.
Basic properties of transactions can be summarized using the ACID mnemonic:
Atomic
All or nothing. If a transaction is interrupted, all previous steps within that transaction are
undone.
Consistent
The state of objects and/or the state of tables within a database move from one consistent
state to another consistent state.
Isolated
What happens within one transaction should not affect or be visible within another

transaction.

VTUlive.com

Java and J2EE 10CS753

Durable

The effects of a transaction are persistent.

Difference between stateless and stateful session bean(4M) [July 2014, Jan 2016]
Stateless Session Beans

A session bean represents work performed by a single client. That work can be performed
within a single method invocation, or it may span multiple method invocations. If the
work does span more than one method, the object must retain the user’s object state
across the method calls, and a stateful session bean would therefore be required.
Generally, stateless beans are intended to perform individual operations automatically
and don’t maintain state across method invocations. They’re also amorphous, in that any
client can use any instance of a stateless bean at any time at the container’s discretion.
They are the lightest weight and easiest to manage of the various EJB component
configurations.

Stateful Session Beans

Stateful session beans maintain state both within and between transactions. Each stateful
session bean is therefore associated with a specific client. Containers are able to save and
retrieve a bean’s state automatically while managing instance pools (as opposed to bean
pools) of stateful session beans.

Stateful session beans maintain data consistency by updating their fields each time a
transaction is committed. To keep informed of changes in transaction status, a stateful
session bean implements the SessionSynchronization interface. The container calls
methods of this interface while it initiates and completes transactions involving the bean.
Session beans, whether stateful or stateless, are not designed to be persistent. The data
maintained by stateful session beans is intended to be transitional. It is used solely for a
particular session with a particular client. A stateful session bean instance typically can’t
survive system failures and other destructive events. While a session bean has a
container-provided identity (called its handle), that identity passes when the client

removes the session bean at the end of a session. If a client needs to revive a stateful

59

VTUlive.com

Java and J2EE 10CS753

session bean that has disappeared, it must provide its own means to reconstruct the bean’s
state.
6. Write a note on message driven bean(4M) [July 2014,Jan 2016]

A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. This type of bean normally acts as a JMS message listener,
which is similar to an event listener but receives JMS messages instead of events. The
messages can be sent by any Java EE component (an application client, another enterprise
bean, or a web component) or by a JMS application or system that does not use Java EE
technology. Message-driven beans can process JMS messages or other kinds of

messages.

e A message-driven bean’s instances retain no data or conversational state for a
specific client.

e All instances of a message-driven bean are equivalent, allowing the EJB container
to assign a message to any message-driven bean instance. The container can pool
these instances to allow streams of messages to be processed concurrently.

e A single message-driven bean can process messages from multiple clients.

60

