
 
Question Papers Solutions 

 

UNIT 1  
1 Define Computer Architecture. Illustrate the seven dimensions of an ISA? (June 
2013)(Dec 2013)(Jan 2014)(Jan 2015)(June 2015)(Jan 2016) 
 

The computer designer has to ascertain the attributes that are important  

for a new computer and design the system to maximize the performance while  

staying within cost, power and availability constraints. The task has few important  

aspects such as Instruction Set design, Functional organization, Logic design and  

implementation.  

 
Instruction Set Architecture (ISA)  

ISA refers to the actual programmer visible Instruction set. The ISA serves as  

boundary between the software and hardware. Th e seven dimensions of the ISA are:  

 
i)Class of ISA: Nearly all ISAs today ar e classified as General-Purpose-  

Register architectures. The operands are either Registers or Memory locations.  

The two popular versions of this class are:  

Register-Memory ISAs : ISA of 80x86, can access memory as part of many  

instructions.  

Load -Store ISA Eg. ISA of MIPS, can access memory only with Load or  

Store instructions.  

 
ii)Memory addressing: Byte addressing scheme is most widely used in all  

desktop and server computers. Both 80x86 and MIPS use byte addressing.  

Incase of MIPS the object must be aligned. An access to an object of s b yte at  

byte address A is aligned if A mod s =0. 80x86 does not require alignment.  

Accesses are faster if operands are aligned.  

 
iii) Addressing modes:Specify the address of a M object apart from register and constant  

operands.  

MIPS Addressing modes:  

•Register mode addressing  

•Immediate mode addressing  

•Displacement mode addressing  

80x86 in addition to the above addressing modes supports the additional  

modes of addressing:  

i. Register Indirect  

ii. Indexed  

iii,Based with Scaled index  

 
iv)Types and sizes of operands:  

MIPS and x86 support:  

•8 bit (ASCII character), 16 bit(Unicode character)  

•32 bit (Integer/word )  

•64 bit (long integer/ Double word)  
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•32 bit (IEEE-754 floating point)  

 
 
•64 bit (Double precision floating point)  

•80x86 also supports 80 bit floating point operand.(extended double  

Precision  

v)Operations:The general category o f operations are:  

oData Transfer  

oArithmetic operations  

oLogic operations  

oControl operations  

oMIPS ISA: simple & easy to implement  

ox86 ISA: richer & larger set of operations  

 
vi) Control flow instructions:All ISAs support:  

Conditional & Unconditional Branches  

Procedure C alls & Returns MIPS 80x86  

• Conditional Branches tests content of Register Condition code bits  

• Procedure C all JAL CALLF  

• Return Address in a R Stack in M  

 
vii) Encoding an ISA  

Fixed Length ISA Variable Length ISA  

MIPS 32 Bit long 80x86 (1-18 bytes)  

Simplifies decoding Takes less space  

 
Number of Registers and number of Addressing modes hav e significant  

impact on the length of instruction as the register field and addressing mode field  

can appear many times in a single instruction.  

 

2.What is dependability? Explain the two measures of Dependability? (June 2014) 

(Jan 2015)  

The Infrastructure providers offer Service Level Agreement (SLA) or Service  

Level Objectives (SLO) to guarantee that their networking or power services would be  

dependable.  

• Systems alternate between 2 states of service with respect to an SLA:  

1. Service accomplishment, where the service is delivered as specified in SLA  

2. Service interruption, where the delivered service is different from the SLA  

• Failure = transition from state 1 to state 2  

• Restoration = transition from state 2 to state 1  

 
The two main measures of Dependability are Module Reliability and Module  

Availability. Module reliability is a measure of continuous service accomplishment (or  

time to failure) from a reference initial instant.  

1. Mean Time To Failure (MTTF) measures Reliability  

2. Failures In Time (FIT) = 1/MTTF, the rate of failures  
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• Traditionally reported as failures per billion hours of operation  

• Mean Time To Repair (MTTR) measures Service Interruption  

 
– Mean Time Between Failures (MTBF) = MTTF+MTTR  

• Module availability measures service as alternate between the 2 states of  

accomplishment and interruption (number between 0 and 1, e.g. 0.9)  

• Module availability = MTTF / ( MTTF + MTTR)  

 

3. Give the following measurements (  
Frequency of FP operations=25%  

Average CPI of other instructions=1.33  

Average CPI of FP operations=4.0  

Frequency of FPSQR=2%  

CPI of FPSQR=20  

Assume that the two design alternative are to decrease the CPI of FPSQR to  

2 or to decrease the average CPI of all FP operations to 2.5 compare the two design  

alternatives using the processor performance equations.  

(June 2014)  (June 2015) (Jan 2016) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Explain in brief measuring, reporting and summarizing performance of  

Computer. (June 2014) (June 2015)  

  
Performance: 
The Execution time or Response time is defined as the time between the start and  
completion of an event. The total amount of work done in a given time is defined as the  

Throughput.  

 
The Administrator of a data center may be interested in increasing the  
Throughput. The computer user may be interested in reducing the Response time. 

 
Computer user says that computer is faster when a program runs in less time.  

 

VTUlive.com 3



 
 
 
 
 
 
 
 
 
 
 
 
 
The routinely executed programs are the best candidates for evaluating the performance  

of the new computers. To evaluate new system the user would simply compare the  

execution time of their workloads.  

 

Benchmarks  
The real applications are the best choice of benchmarks to evaluate the  

performance. However, for many of the cases, the workloads will not be known at the  

time of evaluation. Hence, the benchmark program which resemble the real applications  
are chosen. The three types of benchmarks are:  

• KERNELS, which are small, key pieces of real applications;  

• Toy Programs: which are 100 line programs from beginning programming  

assignments, such Quicksort etc.,  
• Synthetic Benchmarks: Fake programs invented to try to match the profile and  

behavior of real applications such as Dhrystone.  

To make the process of evaluation a fair justice, the following points are to be followed.  

• Source code modifications are not allowed.  
• Source code modifications are allowed, but are essentially impossible.  

• Source code modifications are allowed, as long as the modified version produces  
the same output.  

• To increase predictability, collections of benchmark applications, called  

benchmark suites, are popular  

• SPECCPU: popular desktop benchmark suite given by Standard Performance  
Evaluation committee (SPEC)  

– CPU only, split between integer and floating point programs  

– SPECint2000 has 12 integer, SPECfp2000 has 14 integer programs  

– SPECCPU2006 announced in Spring 2006.  
SPECSFS (NFS file server) and SPECWeb (WebServer) added as server  

benchmarks  

 
• Transaction Processing Council measures server performance and  

costperformance for databases  

– TPC-C Complex query for Online Transaction Processing  

– TPC-H models ad hoc decision support  

– TPC-W a transactional web benchmark  

– TPC-App application server and web services benchmark  
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 SPEC Ratio: Normalize execution times to reference computer, yielding a ratio  
proportional to performance = time on reference computer/time on computer being rated  

 
• If program SPECRatio on Computer A is 1.25 times bigger than Computer B, then  

 
 
 
 
 
 
 
 
 
 
 
Quantitative Principles of Computer Design  

 
While designing the computer, the advantage of the following points can be  
exploited to enhance the performance.  

* Parallelism: is one of most important methods for improving performance.  
- One of the simplest ways to do this is through pipelining ie, to over lap the  

instruction Execution to reduce the total time to complete an instruction  
sequence.  

- Parallelism can also be exploited at the level of detailed digital design.  
- Set- associative caches use multiple banks of memory that are typically searched  

n parallel. Carry look ahead which uses parallelism to speed the process of  
computing.  

 
* Principle of locality: program tends to reuse data and instructions they have used  

recently. The rule of thumb is that program spends 90 % of its execution time in only  

10% of the code. With reasonable good accuracy, prediction can be made to find what  
instruction and data the program will use in the near future based on its accesses in the  

recent past.  

 
* Focus on the common case while making a design trade off, favor the frequent case  

over the infrequent case. This principle applies when determining how to spend  

resources, since the impact of the improvement is higher if the occurrence is frequent.  

 
Amdahl’s Law: Amdahl’s law is used to find the performance gain that can be obtained  

by improving some portion or a functional unit of a computer Amdahl’s law defines the  

speedup that can be gained by using a particular feature.  
Speedup is the ratio of performance for entire task without using the enhancement  

when possible to the performance for entire task without using the enhancement.  
Execution time is the reciprocal of performance. Alternatively, speedup is defined as thee  
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ratio of execution time for entire task without using the enhancement to the execution  

time for entair task using the enhancement when possible. 

Speedup from some enhancement depends an two factors:  

i. The fraction of the computation time in the original computer that can be  

converted to take advantage of the enhancement. Fraction enhanced is always less than or  

equal to  

Example: If 15 seconds of the execution time of a program that takes 50  

seconds in total can use an enhancement, the fraction is 15/50 or 0.3  

ii. The improvement gained by the enhanced execution mode; ie how much  

faster the task would run if the enhanced mode were used for the entire program. Speedup  

enhanced is the time of the original mode over the time of the enhanced mode and is always  

greater then 1.  

 
 
 
 
 
The Processor performance Equation:  
Processor is connected with a clock running at constant rate. These discrete time events  

are called clock ticks or clock cycle.  

CPU time for a program can be evaluated:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

5. Explain with learning curve how the cost of processor varies with time along with  

factors influencing the cost.   (June/July 2013)   
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1960: Large Main frames (Millions of $ )  

(Applications: Business Data processing, large Scientific computin g)  

1970: Minicomputers (Scientific laboratories, Time sharing concepts)  

1980: Desktop Computers (µPs) in the form of Personal computers and workstations.  

(Larger Memory, more computing power, Replaced Time sharing g systems)  

1990: Emergence of Internet and WWW, PDAs, emergence of high performance digital  

consumer electronics  

2000: Cell phones  

These changes in computer use have led to three different computing classes each  

characterized by different applications, requirements and computing technologies.owth in  

processor performance since 1980s  

 
 
6. Find the number of dies per 200 cm wafer of circular shape that is used to cut die  

that is 1.5 cm side and compare the number of dies produced on the same wafer if  

die is 1.25 cm.  (Jan 2014)(June 2016)   
 

Cost of die + Cost of testing die + Cost of packaging and final test  

Cost of IC = Final test yield  

Cost of wafer  

Cost of die = Dies per wafer x die die yield  

π x (wafer diameter/2)2  

Dies per wafer = Die area - π x wafer diameter  

sqrt(2xdie area ) 

 
 
7. Define Amdahl's law. Derive n expression for CPU clock as a function of  

instruction count, clocks per instruction and clock cycle time.  

(Jan 2014) (Dec 2013)(Jan 2015)(Jan 2016) 
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Amdahl’s Law: Amdahl’s law is used to find the performance gain that can be obtained  

by improving some portion or a functional unit of a computer Amdahl’s law defines the  

speedup that can be gained by using a particular feature.  

Speedup is the ratio of performance for entire task without using the enhancement  

when possible to the performance for entire task without using the enhancement.  

Execution time is the reciprocal of performance. Alternatively, speedup is defined as thee  

ratio of execution time for entire task without using the enhancement to the execution  

time for entair task using the enhancement when possible.  

Speedup from some enhancement depends an two factors:  

i. The fraction of the computation time in the original computer that can be  

converted to take advantage of the enhancement. Fraction enhanced is always less than or  

equal to  

Example: If 15 seconds of the execution time of a program that takes 50  

seconds in total can use an enhancement, the fraction is 15/50 or 0.3  

ii. The improvement gained by the enhanced execution mode; ie how much  

faster the task would run if the enhanced mode were used for the entire program. Speedup  

enhanced is the time of the original mode over the time of the enhanced mode and is always  

greater then 1.  

 
 
 
 
 
8. List and explain four important technologies, which has lead to improvements in  

computer system. (June 2015)(June 2016) 

Desktop computing  

 
The first and still the largest market in dollar terms is desktop computing. Desktop  

computing system cost range from $ 500 (low end) to $ 5000 (high-end  
configuration). Throughout this range in price, the desktop market tends to drive to  

optimize price- performance. The performance concerned is compute performance  
and graphics performance. The combination of performance and price are the  

driving factors to the customers and the computer designer. Hence, the newest,  
high performance and cost effective processor often appears first in desktop computers.  

 

Servers:  

Servers provide large-scale and reliable computing and file services and are  

mainly used in the large-scale en terprise computing and web based services. The three  

important  

 
characteristics of servers are:  

 
•Dependability: Severs must operate 24x7 hours a week. Failure of server system  

is far more catastrophic than a failure of desktop. Enterprise will lose revenue if  
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the server is unavailable.  

 
•Scalability: as the business grows, the server may have to provide more  

functionality/ services. Thus ability to scale up the computin g capacity, memory, 

storage and I/O bandwidth is crucial.  

 
•Throughput: transactions completed per minute or web pages served per second  

are crucial for servers.  

 

Embedded Computers  

Simple embedded microprocessors are seen in washing machines, printers,  
network switches, handheld devices such as cell phones, smart cards video game  

devices etc. embedded computers have the widest spread of processing power and  
cost. The primary goal is often meeting the performance need at a minimum price  

rather than achieving higher performance at a higher price. The other two characteristic  
requirements are to minimize the memory and power.  

 
In many embedded applications, the memory can be substantial portion of  

the systems cost and it is very important to optimize the memory size in such  
cases. The application is expected to fit totally in the memory on the p rocessor  

chip or off chip memory. The importance of memory size translates to an emphasis  
on code size which is dictated by the application. Larger memory consumes more  

power. All these aspects are considered while choosing or designing processor for the  
embedded applications.  

9. Calculate FIT and MTTF for 10 disks (1M hour MTTF per disk), 1 disk controller 
(0.5M hour MTTF), and 1 power supply (0.2M hour MTTF) .  (June/July13, Jan 14) 

 
 
 
 
 
 
 
 
 
 
10. We will run two application needs 80% of the resources and the other only 20% 
of the resources. 
i>Given that 40% of the first application is parallelizable, how much speed up would 
you achieve with that application if run in isolation? 
ii>Given that 99%pf the second application is parallelized, how much speed up 
would this application observe if run in isolation? 
iii> Given that 40% of the first application is parallelizable, how much overall speed 
up would you observe if you parallelized it? 
 
iv> Given that 99%pf the second application is parallelized, how much overall speed 

hours

MTTF

FIT

eFailureRat

000,59

000,17/000,000,000,1

000,17

000,000,1/17

000,000,1/5210

000,200/1000,500/1)000,000,1/1(10
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up would you get?   (June2013)(June 2016) 
 
 
 
 
 
 
 
 

UNIT 2  

 
1. With a neat diagram explain the classic five stage pipeline for a RISC processor.  

(June 2014) (June 2013) (Jan 2015)(June 2016) 

Instruction set of implementation in RISC takes at most 5 cycles without pipelining.  

The 5 clock cycles are:  

1. Instruction fetch (IF) cycle:  

Send the content of program count (PC) to memory and fetch the current  

instruction from memory to update the PC.  

 
 
 

2. Instruction decode / Register fetch cycle (ID):  

 
Decode the instruction and access the register file. Decoding is done in parallel  

with reading registers, which is possible because the register specifies are at a fixed  
location in a RISC architecture. This corresponds to fixed field decoding. In addition it  

involves:  
- Perform equality test on the register as they are read for a possible branch.  

- Sign-extend the offset field of the instruction in case it is needed.  

- Compute the possible branch target address.  

 
3. Execution / Effective address Cycle (EXE)  

 
The ALU operates on the operands prepared in the previous cycle and performs  

one of the following function defending on the instruction type.  

 
 
 
* Register- Register ALU instruction: ALU performs the operation specified in the  

instruction using the values read from the register file.  

* Register- Immediate ALU instruction: ALU performs the operation specified in the  

instruction using the first value read from the register file and that sign extended  

immediate.  

 
4. Memory access (MEM)  
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For a load instruction, using effective address the memory is read. For a store  

instruction memory writes the data from the 2nd register read using effective address.  

 
5. Write back cycle (WB)  

Write the result in to the register file, whether it comes from memory system (for  

a LOAD instruction) or from the ALU.  

 
Each instruction taken at most 5 clock cycles for the execution  

* Instruction fetch cycle (IF)  

* Instruction decode / register fetch cycle (ID)  

* Execution / Effective address cycle (EX)  

* Memory access (MEM)  

* Write back cycle (WB)  

 
The execution of the instruction comprising of the above subtask can be pipelined. Each  

of the clock cycles from the previous section becomes a pipe stage – a cycle in the  

pipeline. A new instruction can be started on each clock cycle which results in the  

execution pattern shown figure 2.1. Though each instruction takes 5 clock cycles to  

complete, during each clock cycle the hardware will initiate a new instruction and will be  

executing some part of the five different instructions as illustrated in figure 2.1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each stage of the pipeline must be independent of the other stages. Also, two different  

operations can’t be performed with the same data path resource on the same clock. For  

example, a single ALU cannot be used to compute the effective address and perform a  

subtract operation during the same clock cycle. An adder is to be provided in the stage 1  

to compute new PC value and an ALU in the stage 3 to perform the arithmetic indicatedin  

the instruction (See figure 2.2). Conflict should not arise out of overlap of instructions  

using pipeline. In other words, functional unit of each stage need to be independent of  

other functional unit. There are three observations due to which the risk of conflict is  

reduced. 
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• Separate Instruction and data memories at the level of L1 cache eliminates a  

conflict for a single memory that would arise between instruction fetch and data  

access.  

• Register file is accessed during two stages namely ID stage WB. Hardware  

should allow to perform maximum two reads one write every clock cycle.  

• To start a new instruction every cycle, it is necessary to increment and store the  
PC every cycle.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Buffers or registers are introduced between successive stages of the pipeline so that at the  

end of a clock cycle the results from one stage are stored into a register (see figure 2.3).  
During the next clock cycle, the next stage will use the content of these buffers as input.  

Figure 2.4 visualizes the pipeline activity.  

 
 
 
 
 
 
 
 
 

 

2. What are the major hurdles of pipelining? Illustrate the branch hazard in  

detail? (June 2014) (July 2013) (Jan 2014)(Jan 2016) 

 
Hazards may cause the pipeline to stall. When an instruction is stalled, all the  

instructions issued later than the stalled instructions are also stalled. Instructions issued  

earlier than the stalled instructions will continue in a normal way. No new instructions  

are fetched during the stall. Hazard is situation that prevents the next instruction in the  

instruction stream fromk executing during its designated clock cycle. Hazards will reduce  

the pipeline performance.  
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Performance with Pipeline stall  

 
A stall causes the pipeline performance to degrade from ideal performance. Performance  

improvement from pipelining is obtained from:  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume that,  

i) cycle time overhead of pipeline is ignored  

ii) stages are balanced  

With theses assumptions  

 
 
 
 
 
 
 
 
 
If all the instructions take the same number of cycles and is equal to the number of  
pipeline stages or depth of the pipeline, then,  

 
 
 
 
 
 
If there are no pipeline stalls,  

Pipeline stall cycles per instruction = zero  

Therefore,  
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Speedup = Depth of the pipeline.  

When a branch is executed, it may or may not change the content of PC. If a branch is  

taken, the content of PC is changed to target address. If a branch is taken, the content of  

PC is not changed  

The simple way of dealing with the branches is to redo the fetch of the instruction  

following a branch. The first IF cycle is essentially a stall, because, it never performs  

useful work. One stall cycle for every branch will yield a performance loss 10% to 30%  

depending on the branch frequency  

 
Reducing the Brach Penalties  

 
There are many methods for dealing with the pipeline stalls caused by branch  
delay  

1. Freeze or Flush the pipeline, holding or deleting any instructions after the  
ranch until the branch destination is known. It is a simple scheme and branch penalty is  

fixed and cannot be reduced by software  
2. Treat every branch as not taken, simply allowing the hardware to continue as if  

the branch were not to executed. Care must be taken not to change the processor  
state until the branch outcome is known.  

Instructions were fetched as if the branch were a normal instruction. If the branch  
is taken, it is necessary to turn the fetched instruction in to a no-of instruction and restart  

the fetch at the target address. Figure 2.8 shows the timing diagram of both the situations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Treat every branch as taken: As soon as the branch is decoded and target  

Address is computed, begin fetching and executing at the target if the branch target is  

known before branch outcome, then this scheme gets advantage.  

For both predicated taken or predicated not taken scheme, the compiler can  

improve performance by organizing the code so that the most frequent path  

matches the hardware choice.  

4. Delayed branch technique is commonly used in early RISC processors.  

In a delayed branch, the execution cycle with a branch delay of one is  
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Branch instruction  

Sequential successor-1  

Branch target if taken  

 
The sequential successor is in the branch delay slot and it is executed irrespective of  

whether or not the branch is taken. The pipeline behavior with a branch delay is shown in  

Figure 2.9. Processor with delayed branch, normally have a single instruction delay.  

Compiler has to make the successor instructions valid and useful there are three ways in  

which the to delay slot can be filled by the compiler.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The limitations on delayed branch arise from  

i) Restrictions on the instructions that are scheduled in to delay slots.  

ii) Ability to predict at compiler time whether a branch is likely to be taken or  

not taken.  

The delay slot can be filled from choosing an instruction  

a) From before the branch instruction  

b) From the target address  

c) From fall- through path.  

The principle of scheduling the branch delay is shown in fig 2.10  
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3 With a neat diagram explain the classic five stage pipeline for a RISC processor.  

(June 2013) (June 2015) 

 

Instruction set of implementation in RISC takes at most 5 cycles without pipelining.  

The 5 clock cycles are:  

1. Instruction fetch (IF) cycle:  

Send the content of program count (PC) to memory and fetch the current  

instruction from memory to update the PC.  

 
 
 
 

2. Instruction decode / Register fetch cycle (ID):  

 
Decode the instruction and access the register file. Decoding is done in parallel  

with reading registers, which is possible because the register specifies are at a fixed  

location in a RISC architecture. This corresponds to fixed field decoding. In addition it  

involves:  

- Perform equality test on the register as they are read for a possible branch.  

- Sign-extend the offset field of the instruction in case it is needed.  

- Compute the possible branch target address.  

 
3. Execution / Effective address Cycle (EXE)  

The ALU operates on the operands prepared in the previous cycle and performs  

one of the following function defending on the instruction type. 

 
* Register- Register ALU instruction: ALU performs the operation specified in  

the  instruction using the values read from the register file. 

* Register- Immediate ALU instruction: ALU performs the operation specified in the  

instruction using the first value read from the register file and that sign extended  

immediate.  

 
4. Memory access (MEM)  

For a load instruction, using effective address the memory is read. For a store  

instruction memory writes the data from the 2nd register read using effective address.  

 
5. Write back cycle (WB)  

Write the result in to the register file, whether it comes from memory system (for  

a LOAD instruction) or from the ALU.  

 
Each instruction taken at most 5 clock cycles for the execution  
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* Instruction fetch cycle (IF)  

* Instruction decode / register fetch cycle (ID)  

* Execution / Effective address cycle (EX)  

* Memory access (MEM)  

* Write back cycle (WB)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each stage of the pipeline must be independent of the other stages. Also, two different  

operations can’t be performed with the same data path resource on the same clock. For  

example, a single ALU cannot be used to compute the effective address and perform a  

subtract operation during the same clock cycle. An adder is to be provided in the stage 1 

to compute new PC value and an ALU in the stage 3 to perform the arithmetic indicatedin  

the instruction (See figure 2.2). Conflict should not arise out of overlap of instructions  

using pipeline. In other words, functional unit of each stage need to be independent of  

other functional unit. There are three observations due to which the risk of conflict is  

reduced. 

• Separate Instruction and data memories at the level of L1 cache eliminates a  

conflict for a single memory that would arise between instruction fetch and data  

access.  

• Register file is accessed during two stages namely ID stage WB. Hardware should allow  

to perform maximum two reads one write every clock cycle.  

• To start a new instruction every cycle, it is necessary to increment and store the  

PC every cycle.  
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Buffers or registers are introduced between successive stages of the pipeline so that at the  

end of a clock cycle the results from one stage are stored into a register (see figure 2.3).  

During the next clock cycle, the next stage will use the content of these buffers as input.  

Figure 2.4 visualizes the pipeline activity.  
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4. Explain how pipeline is implemented in MIPS. (Dec 2014) (June 2015) 

 

Instruction set of implementation in RISC takes at most 5 cycles without pipelining.  

The 5 clock cycles are:  

1. Instruction fetch (IF) cycle:  

Send the content of program count (PC) to memory and fetch the current  

instruction from memory to update the PC.  

 
 
 

2. Instruction decode / Register fetch cycle (ID):  

Decode the instruction and access the register file. Decoding is done in parallel  

with reading registers, which is possible because the register specifies are at a fixed  

location in a RISC architecture. This corresponds to fixed field decoding. In addition it  

involves:  

- Perform equality test on the register as they are read for a possible branch.  

- Sign-extend the offset field of the instruction in case it is needed.  

- Compute the possible branch target address.  

3. Execution / Effective address Cycle (EXE)  

 
The ALU operates on the operands prepared in the previous cycle and performs  

one of the following function defending on the instruction type. 

 
 
 
* Register- Register ALU instruction: ALU performs the operation specified in the  

instruction using the values read from the register file. 

* Register- Immediate ALU instruction: ALU performs the operation specified in the  

instruction using the first value read from the register file and that sign extended  

immediate.  

4. Memory access (MEM)  

For a load instruction, using effective address the memory is read. For a store  

instruction memory writes the data from the 2nd register read using effective address.  

 
5. Write back cycle (WB)  

 
Write the result in to the register file, whether it comes from memory system (for  

a LOAD instruction) or from the ALU.  

 
Each instruction taken at most 5 clock cycles for the execution  
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* Instruction fetch cycle (IF)  

* Instruction decode / register fetch cycle (ID)  

* Execution / Effective address cycle (EX)  

* Memory access (MEM)  

* Write back cycle (WB)  

The execution of the instruction comprising of the above subtask can be pipelined. Each  

of the clock cycles from the previous section becomes a pipe stage – a cycle in the  

pipeline. A new instruction can be started on each clock cycle which results in the  

execution pattern shown figure 2.1. Though each instruction takes 5 clock cycles to  

complete, during each clock cycle the hardware will initiate a new instruction and will be  

executing some part of the five different instructions as illustrated in figure 2.1. 

 
Write the result in to the register file, whether it comes from memory system (for  

a LOAD instruction) or from the ALU.  

 
Each instruction taken at most 5 clock cycles for the execution  

* Instruction fetch cycle (IF)  

* Instruction decode / register fetch cycle (ID)  

* Execution / Effective address cycle (EX)  

* Memory access (MEM)  

* Write back cycle (WB)  

The execution of the instruction comprising of the above subtask can be pipelined. Each  

of the clock cycles from the previous section becomes a pipe stage – a cycle in the  

pipeline. A new instruction can be started on each clock cycle which results in the  

execution pattern shown figure 2.1. Though each instruction takes 5 clock cycles to  

complete, during each clock cycle the hardware will initiate a new instruction and will be  

executing some part of the five different instructions as illustrated in figure 2.1. 
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Each stage of the pipeline must be independent of the other stages. Also, two different  

operations can’t be performed with the same data path resource on the same clock. For  

example, a single ALU cannot be used to compute the effective address and perform a  

subtract operation during the same clock cycle. An adder is to be provided in the stage 1 

to compute new PC value and an ALU in the stage 3 to perform the arithmetic indicatedin  

the instruction (See figure 2.2). Conflict should not arise out of overlap of instructions 

using pipeline. In other words, functional unit of each stage need to be independent of  

other functional unit. There are three observations due to which the risk of conflict is  

reduced. 

• Separate Instruction and data memories at the level of L1 cache eliminates a  

conflict for a single memory that would arise between instruction fetch and data  

 
access.  

• Register file is accessed during two stages namely ID stage WB. Hardware should allow  

to perform maximum two reads one write every clock cycle.  

• To start a new instruction every cycle, it is necessary to increment and store the  

PC every cycle.  
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Buffers or registers are introduced between successive stages of the pipeline so that at the  

end of a clock cycle the results from one stage are stored into a register (see figure 2.3).  

During the next clock cycle, the next stage will use the content of these buffers as input.  

Figure 2.4 visualizes the pipeline activity.  

 
 
5. Explain different techniques in reducing pipeline branch penalties. (Dec 2014) 
(June2013) (Jan 2015) 

 

Reducing the Brach Penalties  

There are many methods for dealing with the pipeline stalls caused by branch  

delay  

1. Freeze or Flush the pipeline, holding or deleting any instructions after the  

ranch until the branch destination is known. It is a simple scheme and branch penalty is  

fixed and cannot be reduced by software  

2. Treat every branch as not taken, simply allowing the hardware to continue as if  

the branch were not to executed. Care must be taken not to change the processor state until 
the branch outcome is known.  

Instructions were fetched as if the branch were a normal instruction. If the branch  

is taken, it is necessary to turn the fetched instruction in to a no-of instruction and restart  

the fetch at the target address. Figure 2.8 shows the timing diagram of both the situations.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Treat every branch as taken: As soon as the branch is decoded and target  

Address is computed, begin fetching and executing at the target if the branch target is  

known before branch outcome, then this scheme gets advantage.  

For both predicated taken or predicated not taken scheme, the compiler can  

improve performance by organizing the code so that the most frequent path  
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matches the hardware choice.  

4. Delayed branch technique is commonly used in early RISC processors.  

In a delayed branch, the execution cycle with a branch delay of one is  

Branch instruction  

Sequential successor-1  

Branch target if taken  

 
The sequential successor is in the branch delay slot and it is executed irrespective of  

whether or not the branch is taken. The pipeline behavior with a branch delay is shown in  

Figure 2.9. Processor with delayed branch, normally have a single instruction delay.  

Compiler has to make the successor instructions valid and useful there are three ways in  

which the to delay slot can be filled by the compiler.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The limitations on delayed branch arise from  

i) Restrictions on the instructions that are scheduled in to delay slots.  

ii) Ability to predict at compiler time whether a branch is likely to be taken or  

not taken.  

The delay slot can be filled from choosing an instruction  

a) From before the branch instruction  

b) From the target address  

c) From fall- through path.  

The principle of scheduling the branch delay is shown in fig 2.10  

 
 
 
 
 
 
 
 

 

6.What are the major hurdles of pipelining? Explain briefly. (July 2014) 

(Dec 2013) 
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Pipeline Hazards  

 
Hazards may cause the pipeline to stall. When an instruction is stalled, all the  

instructions issued later than the stalled instructions are also stalled. Instructions issued  

earlier than the stalled instructions will continue in a normal way. No new instructions  

are fetched during the stall. Hazard is situation that prevents the next instruction in the  

instruction stream fromk executing during its designated clock cycle. Hazards will reduce  

the pipeline performance.  

 
Performance with Pipeline stall  

 
A stall causes the pipeline performance to degrade from ideal performance. Performance  

improvement from pipelining is obtained from:  

 
 
 
 
 
 
 
 
 
 
 
Assume that,  

i) cycle time overhead of pipeline is ignored  

ii) stages are balanced  

With theses assumptions  

 
 
 
 
 
 
 
 
 
If all the instructions take the same number of cycles and is equal to the number of  

pipeline stages or depth of the pipeline, then,  

 
 
 
 
 
 
 
 
 

VTUlive.com 24



If there are no pipeline stalls,  

Pipeline stall cycles per instruction = zero  

Therefore,  
Speedup = Depth of the pipeline.  
 

7. List and explain five ways of classifying exception in a computer system.  

(July 2013) (Jan 2015)(Jan 2016) 

 
Types of exceptions:  

The term exception is used to cover the terms interrupt, fault and exception.  

I/O device request, page fault, Invoking an OS service from a user program, Integer  

arithmetic overflow, memory protection overflow, Hardware malfunctions, Power failure  

etc. are the different classes of exception. Individual events have important characteristics  

that determine what action is needed corresponding to that exception.  

 
i) Synchronous versus Asynchronous  

 
If the event occurs at the same place every time the program is executed with the  

same data and memory allocation, the event is asynchronous. Asynchronous events are  

caused by devices external to the CPU and memory such events are handled after the  

completion of the current instruction.  

 
ii) User requested versus coerced:  

User requested exceptions are predictable and can always be handled after the  

current instruction has completed. Coerced exceptions are caused by some  

hardware event that is not under the control of the user program. Coerced  

exceptions are harder to implement because they are not predictable  

 
iii) User maskable versus user non maskable : 

 
If an event can be masked by a user task, it is user maskable. Otherwise it is user  

non maskable.  

 
iv) Within versus between instructions:  

Exception that occur within instruction are usually synchronous, since the  

instruction triggers the exception. It is harder to implement exceptions that occur  

withininstructions than those between instructions, since the instruction must be  

stopped and restarted. Asynchronous exceptions that occurs within instructions arise from  

catastrophic situations and always causes program termination.  

 
v) Resume versus terminate:  

If the program’s execution continues after the interrupt, it is a resuming event  

otherwise if is terminating event. It is easier implement exceptions that terminate  

execution. 29 

8. List pipeline hazards. Explain any one in detail. (June2013) (June 

2015)(June 2016) 
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Hazards may cause the pipeline to stall. When an instruction is stalled, all the  

instructions issued later than the stalled instructions are also stalled. Instructions issued  

earlier than the stalled instructions will continue in a normal way. No new instructions  

are fetched during the stall. Hazard is situation that prevents the next instruction in the  

instruction stream fromk executing during its designated clock cycle. Hazards will reduce  

the pipeline performance.  

Performance with Pipeline stall  

 
A stall causes the pipeline performance to degrade from ideal performance. Performance  

improvement from pipelining is obtained from: 

 
 
 
 
 
 
 
 
 
 
 
 
 
Assume that,  

i) cycle time overhead of pipeline is ignored  

ii) stages are balanced  

With theses assumptions  

 
 
 
 
 
 
 
 
 
 
If all the instructions take the same number of cycles and is equal to the number of  

pipeline stages or depth of the pipeline, then,  
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If there are no pipeline stalls,  

Pipeline stall cycles per instruction = zero  

Therefore,  

Speedup = Depth of the pipeline.  

 
When a branch is executed, it may or may not change the content of PC. If a branch is  

taken, the content of PC is changed to target address. If a branch is taken, the content of  

PC is not changed  

 
The simple way of dealing with the branches is to redo the fetch of the instruction  

following a branch. The first IF cycle is essentially a stall, because, it never performs  

useful work. One stall cycle for every branch will yield a performance loss 10% to 30%  

depending on the branch frequency  

 
 
 

UNIT 3  
1. What are the techniques used to reduce branch costs? Explain both static  

and dynamic branch prediction used for same? (June 2014) (June2013) (June 

2015)(June 2016) 
 

To keep a pipe line full, parallelism among instructions must be exploited by  

finding sequence of unrelated instructions that can be overlapped in the pipeline. To  

avoid a pipeline stall,a dependent instruction must be separated from the source  

instruction by the distance in clock cycles equal to the pipeline latency of that source  

instruction. A compiler’s ability to perform this scheduling depends both on the amount  

of ILP available in the program and on the latencies of the functional units in the  
pipeline.  

 
The compiler can increase the amount of available ILP by transferring loops.  

for(i=1000; i>0 ;i=i-1)  

X[i] = X[i] + s;  

We see that this loop is parallel by the noticing that body of the each iteration is  

independent.  

 
The first step is to translate the above segment to MIPS assembly language  

Loop: L.D F0, 0(R1) : F0=array element  

 
ADD.D F4, F0, F2 : add scalar in F2  
S.D F4, 0(R1) : store result  

DADDUI R1, R1, #-8 : decrement pointer  

: 8 Bytes (per DW)  

BNE R1, R2, Loop : branch R1! = R2  
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Without any Scheduling the loop will execute as follows and takes 9 cycles for each  

iteration.  

1 Loop: L.D F0, 0(R1) ;F0=vector element  

2 stall  

3 ADD.D F4, F0, F2 ;add scalar in F2  

4 stall  

5 stall  

6 S.D F4, 0(R1) ;store result  

7 DADDUI R1, R1,# -8 ;decrement pointer 8B (DW)  

8 stall ;assumes can’t forward to branch  

9 BNEZ R1, Loop ;branch R1!=zero  

 
We can schedule the loop to obtain only two stalls and reduce the time to 7 cycles:  

L.D F0, 0(R1)  

 
DADDUI R1, R1, #-8  

ADD.D F4, F0, F2  

 
Stall  

 
Stall  

 
S.D F4, 0(R1)  

 
BNE R1, R2, Loop  

 
Loop Unrolling can be used to minimize the number of stalls. Unrolling the body of the  

loop by our times, the execution of four iteration can be done in 27 clock cycles or 6.75  

clock cycles per iteration.  

 
1 Loop: L.D F0,0(R1)  

 
3 ADD.D F4,F0,F2  

 
6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ  

 
7 L.D F6,-8(R1)  

 
9 ADD.D F8,F6,F2  

 
 
 

 

12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ  

 
13 L.D F10,-16(R1)  

VTUlive.com 28



 
15 ADD.D F12,F10,F2  

 
18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ  

 
19 L.D F14,-24(R1)  

 
21 ADD.D F16,F14,F2  

 
24 S.D -24(R1),F16  

 
25 DADDUI R1,R1,#-32 :alter to 4*8  

 
26 BNEZ R1,LOOP  

 
Unrolled loop that minimizes the stalls to 14 clock cycles for four iterations is given  

below:  

1 Loop: L.D F0, 0(R1)  

 
2 L.D F6, -8(R1)  

 
3 L.D F10, -16(R1)  

 
4 L.D F14, -24(R1)  
5 ADD.D F4, F0, F2  

 
6 ADD.D F8, F6, F2  

 
7 ADD.D F12, F10, F2  

 
8 ADD.D F16, F14, F2  

 
9 S.D 0(R1), F4  

 
10 S.D -8(R1), F8  

 
11 S.D -16(R1), F12  

 
12 DSUBUI R1, R1,#32  

 
13 S.D 8(R1), F16 ;8-32 = -24  

 
14 BNEZ R1, LOOP  

 
 
Summary of Loop unrolling and scheduling  
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The loop unrolling requires understanding how one instruction depends on another and  

how the instructions can be changed or reordered given the dependences:  

 
1. Determine loop unrolling useful by finding that loop iterations were independent  

(except for maintenance code)  

 
2. Use different registers to avoid unnecessary constraints forced by using same registers  

for different computations  

3. Eliminate the extra test and branch instructions and adjust the loop termination and  

iteration code  

 
4. Determine that loads and stores in unrolled loop can be interchanged by observing that  

loads and stores from different iterations are independent  

 
• Transformation requires analyzing memory addresses and finding that they do  

not refer to the same address  

 
5. Schedule the code, preserving any dependences needed to yield the same result as the  

original code  

 
To reduce the Branch cost, prediction of the outcome of the branch may be done.  

The prediction may be done statically at compile time using compiler support or  

dynamically using hardware support. Schemes to reduce the impact of control hazard are  

discussed below:  

 
Static Branch Prediction  

 
Assume that the branch will not be taken and continue execution down the  

sequential instruction stream. If the branch is taken, the instruction that are being fetched  

and decoded must be discarded. Execution continues at the branch target. Discarding  

instructions means we must be able to flush instructions in the IF, ID and EXE stages.  

Alternately, it is possible that the branch can be predicted as taken. As soon as the  

instruction decoded is found as branch, at the earliest, start fetching the instruction from  

the target address.  

 

Dynamic Branch Prediction  

With deeper pipelines the branch penalty increases when measured in clock  

cycles. Similarly, with multiple issue, the branch penalty increases in terms of  

instructions lost. Hence, a simple static prediction scheme is inefficient or may not be  

efficient in most of the situations. One approach is to look up the address of the  

instruction to see if a branch was taken the last time this instruction was executed, and if  

so, to begin fetching new instruction from the target address.  

This technique is called Dynamic branch prediction.  

• Why does prediction work?  

 
– Underlying algorithm has regularities  
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– Data that is being operated on has regularities  

– Instruction sequence has redundancies that are artifacts of way that  
humans/compilers think about problems.  

– There are a small number of important branches in programs which have  
dynamic behavior for which dynamic branch prediction performance will be definitely  

better compared to static branch prediction.  

 
• Performance = ƒ(accuracy, cost of misprediction)  
• Branch History Table (BHT) is used to dynamically predict the outcome of the  

current branch instruction. Lower bits of PC address index table of 1-bit values  
– Says whether or not branch taken last time  

o - No address check  

 

 

 
• Problem: in a loop, 1-bit BHT will cause two mispredictions (average is 9 iterations  
before exit):  

– End of loop case, when it exits instead of looping as before  

– First time through loop on next time through code, when it predicts exit instead of  

looping  

 
• Simple two bit history table will give better performance. The four different states of 2  

bit predictor is shown in the state transition diagram.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correlating Branch Predictor  
It may be possible to improve the prediction accuracy by considering the recent behavior  

of other branches rather than just the branch under consideration. Correlating predictors  

are two-level predictors. Existing correlating predictors add information about the  

behavior of the most recent branches to decide how to predict a given branch.  

 
• Idea: record m most recently executed branches as taken or not taken, and use  

that pattern to select the proper n-bit branch history table (BHT)  
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• In general, (m,n) predictor means record last m branches to select between 2m  

history tables, each with n-bit counters  

 
– Thus, old 2-bit BHT is a (0,2) predictor  

– Global Branch History: m-bit shift register keeping T/NT status of last m  

branches.  

 
• Each entry in table has m n-bit predictors. In case of (2,2) predictor, behavior of  

recent branches selects between four predictions of next branch, updating just that  
prediction. The scheme of the table is shown 

 
Tournament predictor is a multi level branch predictor and uses n bit saturating counter  
to chose between predictors. The predictors used are global predictor and local predictor.  

 
– Advantage of tournament predictor is ability to select the right predictor for a  

particular branch which is particularly crucial for integer benchmarks.  

 
– A typical tournament predictor will select the global predictor almost 40% of the  
time for the SPEC integer benchmarks and less than 15% of the time for the SPEC  

FP benchmarks  

 
 
 
– Existing tournament predictors use a 2-bit saturating counter per branch to choose  

among two different predictors based on which predictor was most effective oin  

recent prediction.  
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Dynamic Branch Prediction Summary  

 
• Prediction is becoming important part of execution as it improves the performance of  

the pipeline.  

 
• Branch History Table: 2 bits for loop accuracy  

 
• Correlation: Recently executed branches correlated with next branch  

– Either different branches (GA)  

– Or different executions of same branches (PA)  
• Tournament predictors take insight to next level, by using multiple predictors  

– usually one based on global information and one based on local information,  
and combining them with a selector  

 
2. with a neat diagram give the basic structure of tomasulo based MIPS FP unit and  

explain the various field of reservation stations . (June 2014)  (Dec 2013) (Jan 2015) 
(June 2015)(Jan 2016) 

  

Tomasulu algorithm and Reorder Buffer  

 
Tomasulu idea:  

1. Have reservation stations where register renaming is possible  
2. Results are directly forwarded to the reservation station along with the final  

registers. This is also called short circuiting or bypassing.  

ROB:  
1.The instructions are stored sequentially but we have indicators to say if it is speculative  

or completed execution.  

2. If completed execution and not speculative and reached head of the queue then we  

commit it. 
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Three components of hardware-based speculation  

 
1. dynamic branch prediction to pick branch outcome  
2. speculation to allow instructions to execute before control dependencies are  

resolved, i.e., before branch outcomes become known – with ability to undo in case  
of incorrect speculation  

3. dynamic scheduling  

 
Speculating with Tomasulo  
Key ideas:  

1. separate execution from completion: instructions to execute speculatively but no  
instructions update registers or memory until no more speculative  

 
2. therefore, add a final step – after an instruction is no longer speculative, called  

instruction commit– when it is allowed to make register and memory updates  

 
 
3. allow instructions to execute and complete out of order but force them to commit in  

order  

 
4. Add hardware called the reorder buffer (ROB), with registers to hold the result of  

an instruction between completion and commit  

 
Tomasulo’s Algorithm with Speculation: Four Stages  

 
1. Issue: get instruction from Instruction Queue  

_ if reservation station and ROB slot free (no structural hazard),  

control issues instruction to reservation station and ROB, and sends to reservation  

station operand values (or reservation station source for values) as well as  
allocated ROB slot number  

 
2. Execution: operate on operands (EX)  

_ when both operands ready then execute;if not ready, watch CDB for result  

 
3. Write result: finish execution (WB)  

_ write on CDB to all awaiting units and ROB; mark reservation station available  

 
4. Commit: update register or memory with ROB result  

_ when instruction reaches head of ROB and results present, update register with  

result or store to memory and remove instruction from ROB  

_ if an incorrectly predicted branch reaches the head of ROB, flush the ROB, and  

restart at correct successor of branch  
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ROB Data Structure  

 
ROB entry fields  

• Instruction type: branch, store, register operation (i.e., ALU or load)  

• State: indicates if instruction has completed and value is ready  

• Destination: where result is to be written – register number for register operation (i.e.  

ALU or load), memory address for store  

• branch has no destination result  

 
 
• Value: holds the value of instruction result till time to commit  

Additional reservation station field  

• Destination: Corresponding ROB entry number  

Example  

1. L.D F6, 34(R2)  

 
2. L.D F2, 45(R3  

 
3. MUL.D F0, F2, F4  

 
4. SUB.D F8, F2, F6  

 
5. DIV.D F10, F0, F6  

 
6. ADD.D F6, F8, F2  

 
The position of Reservation stations, ROB and FP registers are indicated below:  

 
Assume latencies load 1 clock, add 2 clocks, multiply 10 clocks, divide 40 clocks  

Show data structures just before MUL.D goes to commit…  

 
Reservation Stations  

 
 
 
 
 
 
 
 
 
 
 
 
 
At the time MUL.D is ready to commit only the two L.D instructions have already  

VTUlive.com 35



committed,though others have completed execution  

Actually, the MUL.D is at the head of the ROB – the L.D instructions are shown only for  

understanding purposes #X represents value field of ROB entry number X  

 

Floating point registers  

 
 
 
 
 
 
 

 

Reorder Buffer  
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Example  

 
Loop: LD F0 0 R1  

 
MULTD F4 F0 F2  

 
SD F4 0 R1  

 
SUBI R1 R1 #8  

 
BNEZ R1 Loop  

 
 
3. What are data dependencies? Explain name dependencies with examples between  

two instructions. (Dec 2013) (June2013) (Jan 2015) 

 
 

Data Dependences  
An instruction j is data dependant on instruction i if either of the following holds:  

i) Instruction i produces a result that may be used by instruction j  
Eg1: i: L.D F0, 0(R1)  

j: ADD.D F4, F0, F2  
ith instruction is loading the data into the F0 and jth instruction use F0 as one the  

operand. Hence, jth instruction is data dependant on ith instruction.  
Eg2: DADD R1, R2, R3  

DSUB R4, R1, R5  

 
ii) Instruction j is data dependant on instruction k and instruction k data dependant on  
instruction i  

Eg: L.D F4, 0(R1)  
MUL.D F0, F4, F6  

ADD.D F5, F0, F7  

 
Dependences are the property of the programs. A Data value may flow between  
instructions either through registers or through memory locations. Detecting the data flow  

and dependence that occurs through registers is quite straight forward. Dependences that  

 
 
flow through the memory locations are more difficult to detect. A data dependence  

convey three things.  

 
a) The possibility of the Hazard.  

b) The order in which results must be calculated and  

c) An upper bound on how much parallelism can possibly exploited. 
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4.What are correlating predictors? Explain with examples. (June/July 2014) (Jan 
2015)  

 
Correlating Branch Predictor  

It may be possible to improve the prediction accuracy by considering the recent behavior  

of other branches rather than just the branch under consideration. Correlating predictors  

are two-level predictors. Existing correlating predictors add information about the  

behavior of the most recent branches to decide how to predict a given branch.  

 
• Idea: record m most recently executed branches as taken or not taken, and use that  

pattern to select the proper n-bit branch history table (BHT)  

 
5. For the following instructions, using dynamic scheduling show the status of  

R,O.B, reservation station when only MUL.D is ready to commit and two L.D  

committed. (June/July 2013)(June 2016) 

 
L.D F6, 32 (R2)  

L.D F2, 44(R3)  

MUL.D F0, F2, F4  

SUB.D F8, F2, F6  

DIV.D F10,F0,F6  

ADD.D F6,F8,F2  

Also show the types of hazards between instructions.  

 
ROB entry fields  

• Instruction type: branch, store, register operation (i.e., ALU or load)  
• State: indicates if instruction has completed and value is ready  

• Destination: where result is to be written – register number for register operation (i.e.  
ALU or load), memory address for store  

• branch has no destination result  
Value: holds the value of instruction result till time to commit  

Additional reservation station field  
• Destination: Corresponding ROB entry number  

Example  
1. L.D F6, 34(R2)  

 
2. L.D F2, 45(R3  

 
 
 

3. MUL.D F0, F2, F4  

 
4. SUB.D F8, F2, F6  
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5. DIV.D F10, F0, F6  

 
6. ADD.D F6, F8, F2  

 
The position of Reservation stations, ROB and FP registers are indicated below:  

Assume latencies load 1 clock, add 2 clocks, multiply 10 clocks, divide 40 clocks  
Show data structures just before MUL.D goes to commit…  

 

Reservation Stations  

 
 
 
 
 
 
 
 
 
 
 
At the time MUL.D is ready to commit only the two L.D instructions have already  

committed,though others have completed execution .Actually, the MUL.D is at the head  
of the ROB – the L.D instructions are shown only for understanding purposes #X  

represents value field of ROB entry number X  

 
Floating point registers  

 
 
 
 
 
Reorder Buffer  
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6. What is the drawback of 1- bit dynamic branch prediction method? Clearly state  

how it is overcome in 2- bit prediction. Give the state transition diagram of 2-bit  

predictor. (Jan 2014) (June2013)(Jan 2016) 

 
 

 
There are a small number of important branches in programs which have dynamic  

behavior for which dynamic branch prediction performance will be definitely better  
compared to static branch prediction.  

 
• Performance = ƒ(accuracy, cost of misprediction)  

• Branch History Table (BHT) is used to dynamically predict the outcome of the  
current branch instruction. Lower bits of PC address index table of 1-bit values  

– Says whether or not branch taken last time  

o - No address check  

• Problem: in a loop, 1-bit BHT will cause two mispredictions (average is 9 iterations  

before exit):  

– End of loop case, when it exits instead of looping as before  

– First time through loop on next time through code, when it predicts exit instead of  
looping  

 
• Simple two bit history table will give better performance. The four different states of 2  

bit predictor is shown in the state transition diagram.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Correlating Branch Predictor  

It may be possible to improve the prediction accuracy by considering the recent 
behavior  

of other branches rather than just the branch under consideration. Correlating 
predictors  

are two-level predictors. Existing correlating predictors add information about 
the  
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behavior of the most recent branches to decide how to predict a given branch.  

 
• Idea: record m most recently executed branches as taken or not taken, and use 

that  

pattern to select the proper n-bit branch history table (BHT)  

 
• In general, (m,n) predictor means record last m branches to select between 2m 

history  

tables, each with n-bit counters  

 
– Thus, old 2-bit BHT is a (0,2) predictor  

– Global Branch History: m-bit shift register keeping T/NT status of last 
m  

branches.  

 
• Each entry in table has m n-bit predictors. In case of (2,2) predictor, behavior of 

recent  

branches selects between four predictions of next branch, updating just that 
prediction.  

The scheme of the table is shown: 

 
Comparisons of different schemes are shown in the graph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tournament predictor is a multi level branch predictor and uses n bit saturating counter  

to chose between predictors. The predictors used are global predictor and local predictor.  

 
– Advantage of tournament predictor is ability to select the right predictor for a  
particular branch which is particularly crucial for integer benchmarks.  
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– A typical tournament predictor will select the global predictor almost 40% of the  

time for the SPEC integer benchmarks and less than 15% of the time for the SPEC  
FP benchmarks  

 
– Existing tournament predictors use a 2-bit saturating counter per branch to choose  

among two different predictors based on which predictor was most effective oin  
recent prediction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UNIT 4  

1. Explain the basic VLIW approach for exploiting ILP using multiple  

issues? (June/July 2014)  (June2013) (June 2015)(Jan 2016) 

  

 

 
 

Exploiting ILP: Multiple Issue Computers  

 
Multiple Issue Computers  

 
• Benefit  

– CPIs go below one, use IPC instead (instructions/cycle)  

– Example: Issue width = 3 instructions, Clock = 3GHz  
• Peak rate: 9 billion instructions/second, IPC = 3  

• For our 5 stage pipeline, 15 instructions “in flight” at any given time  
• Multiple Issue types  

– Static  
• Most instruction scheduling is done by the compiler  

– Dynamic (superscalar)  
• CPU makes most of the scheduling decisions  
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• Challenge: overcoming instruction dependencies  

– Increased latency for loads  

– Control hazards become worse  

• Requires a more ambitious design  

– Compiler techniques for scheduling  

– Complex instruction decoding logic  

 

Exploiting ILP:Multiple Issue Computers Static Scheduling  

 
Instruction Issuing  

• Have to decide which instruction types can issue in a cycle  

– Issue packet: instructions issued in a single clock cycle  

– Issue slot: portion of an issue packet  

• Compiler assumes a large responsibility for hazard checking, scheduling, etc.  

Static Multiple Issue  

For now, assume a “souped-up” 5-stage MIPS pipeline that can issue a packet with:  

– One slot is an ALU or branch instruction  

One slot is a load/store instruction  

 
 
 
 
 
 
 
 

– 
Static Multiple Issue  
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Static Multiple Issue Scheduling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Static Mult. Issue w/Loop Unrolling  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Static Mult. Issue w/Loop Unrolling 

 
 
 
 
 
 

VTUlive.com 44



 
 
 
 
Exploiting ILP:Multiple Issue Computers Dynamic Scheduling  

 
Dynamic Multiple Issue Computers  

• Superscalar computers  

• CPU generally manages instruction issuing and ordering  

– Compiler helps, but CPU dominates  

• Process  

– Instructions issue in-order  

– Instructions can execute out-of-order  

• Execute once all operands are ready  

– Instructions commit in-order  

• Commit refers to when the architectural register file is updated (current completed state  

of program  

Aside: Data Hazard Refresher  

• Two instructions (i and j), j follows i in program order  

• Read after Read (RAR)  

• Read after Write (RAW)  

– Type:  

– Problem:  

• Write after Read (WAR)  

– Type:  

– Problem:  

• Write after Write (WAW)  

– Type: Problem:  

Superscalar Processors  

• Register Renaming  

– Use more registers than are defined by the architecture  

 
Architectural registers: defined by ISA  

• Physical registers: total registers  

– Help with name dependencies  

• Antidependence  

– Write after Read hazard  

• Output dependence  

– Write after Write hazard  

 

Tomasulo’s Superscalar Computers  

 
• R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”,  

IBM J. of Research and Development, Jan. 1967  
• See also: D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360  

model 91: Machine philosophy and instruction-handling,” IBM J. of Research and  
evelopment, Jan. 1967  
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• Allows out-of-order execution  

• Tracks when operands are available  

– Minimizes RAW hazards  

• Introduced renaming for WAW and WAR  

hazards  

Tomasulo’s Superscalar Computers  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Instruction Execution Process  
• Three parts, arbitrary number of cycles/part  

 
 
• Above does not allow for speculative execution  

• Issue (aka Dispatch)  

– If empty reservation station (RS) that matches instruction, send to RS with operands  

rom register file and/or know which functional unit will send operand  

– If no empty RS, stall until one is available  

 
Rename registers as appropriate  

Instruction Execution Process  

• Execute  

– All branches before instruction must be resolved  
• Preserves exception behavior  

– When all operands available for an instruction, send it to functional unit  

• Monitor common data bus (CDB) to see if result is needed by RS entry  

– For non-load/store reservation stations  
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• If multiple instructions ready, have to pick one to send to functional unit  

– For load/store  
• Compute address, then place in buffer  

• Loads can execute once memory is free  

• Stores must wait for value to be stored, then execute  

 
Write Back  

– Functional unit places on CDB  

• Goes to both register file and reservation stations  

– Use of CDB enables forwarding for RAW hazards  
– Also introduces a latency between result and use of a value  

 
2. what are the key issues in implementing advanced speculation techniques? 

Explain them in detail? (Jun 2014) (June2013) 

 
Tomasulo’s w/HW Speculation  

• Key aspects of this design  

– Separate forwarding (result bypassing) from actual instruction completion  

• Assuming instructions are executing speculatively  
• Can pass results to later instructions, but prevents instruction from performing updates  

that can’t be “undone”  
– Once instruction is no longer speculative it can update register file/memory  

• New step in execution sequence: instruction commit  

• Requires instructions to wait until they can commit Commits still happen in order  

Reorder Buffer (ROB)  

 
Instructions hang out here before committing  

• Provides extra registers for RS/RegFile  

– Is a source for operands  
• Four fields/entry  

– Instruction type  

 
 
• Register number or store address  

– Value field  

• Holds value to write to register or data for store  

– Ready field  

• Has instruction finished executing?  
• Note: store buffers from previous version now in ROB  

Instruction Execution Sequence  
• Issue  

– Issue instruction if opening in RS & ROB  

– Send operands to RS from RegFile and/or ROB  

• Execute  

– Essentially the same as before  

• Write Result  

– Similar to before, but put result into ROB  
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• Commit (next slide)  

 

Committing Instructions  
Look at head of ROB  

• Three types of instructions  

– Incorrectly predicted branch  

• Indicates speculation was wrong  

• Flush ROB  

• Execution restarts at proper location – Store  

• Update memory  

• Remove store from ROB  

– Everything else  

• Update registers  

• Remove instruction from ROB  

 
RUU Superscalar Computers  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling tool SimpleScalar implements an RUU style processor  

– You will be using this tool after Spring Break  

• Architecture similar to speculative Tomasulo’s  

• Register Update Unit (RUU)  

– Controls instructions scheduling and dispatching to functional units  

– Stores intermediate source values for instructions  

– Ensures instruction commit occurs in order!  
– Needs to be of appropriate size  

• Minimum of issue width * number of pipeline stages  

• Too small of an RUU can be a structural hazard!  

• Result bus could be a structural hazard  
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3. What are the key issues in implementing advanced speculation techniques?  

Explain in detail? (June/July 2013)(June 2016) 

 

 
1. separate execution from completion: instructions to execute speculatively but no  

instructions update registers or memory until no more speculative  

 
2. therefore, add a final step – after an instruction is no longer speculative, called  

instruction commit– when it is allowed to make register and memory updates  

 
3. allow instructions to execute and complete out of order but force them to commit in  

order  

 
4. Add hardware called the reorder buffer (ROB), with registers to hold the result of  

an instruction between completion and commit  

 
Tomasulo’s Algorithm with Speculation: Four Stages  

 
1. Issue: get instruction from Instruction Queue  

_ if reservation station and ROB slot free (no structural hazard),  

control issues instruction to reservation station and ROB, and sends to reservation  

station operand values (or reservation station source for values) as well as  

allocated ROB slot number  

 
2. Execution: operate on operands (EX)  

_ when both operands ready then execute;if not ready, watch CDB for result  

 
3. Write result: finish execution (WB)  

_ write on CDB to all awaiting units and ROB; mark reservation station available  

 
4. Commit: update register or memory with ROB result  

_ when instruction reaches head of ROB and results present, update register with  

result or store to memory and remove instruction from ROB  

 
 

_ if an incorrectly predicted branch reaches the head of ROB, flush the ROB, and  

restart at correct successor of branch  

 

 
4 .Write a note on value predictors. (June/July 2014)  (June 2016) 

 

 
There are a small number of important branches in programs which have dynamic  

behavior for which dynamic branch prediction performance will be definitely better  

compared to static branch prediction.  
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• Performance = ƒ(accuracy, cost of misprediction)  

• Branch History Table (BHT) is used to dynamically predict the outcome of the  

current branch instruction. Lower bits of PC address index table of 1-bit values  

– Says whether or not branch taken last time  

o - No address check  

• Problem: in a loop, 1-bit BHT will cause two mispredictions (average is 9 iterations  

before exit):  

– End of loop case, when it exits instead of looping as before  

– First time through loop on next time through code, when it predicts exit instead of  

looping  

 
• Simple two bit history table will give better performance. The four different states of 2  

bit predictor is shown in the state transition diagram.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Correlating Branch Predictor  

It may be possible to improve the prediction accuracy by considering the recent behavior  

of other branches rather than just the branch under consideration. Correlating predictors  

are two-level predictors. Existing correlating predictors add information about the  

behavior of the most recent branches to decide how to predict a given branch.  

 
• Idea: record m most recently executed branches as taken or not taken, and use that  

pattern to select the proper n-bit branch history table (BHT)  

• In general, (m,n) predictor means record last m branches to select between 2m 
history  

tables, each with n-bit counters  

 
– Thus, old 2-bit BHT is a (0,2) predictor  

– Global Branch History: m-bit shift register keeping T/NT status of last 
m  
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branches.  

 
• Each entry in table has m n-bit predictors. In case of (2,2) predictor, behavior of 

recent  

branches selects between four predictions of next branch, updating just that 
prediction.  

The scheme of the table is shown: 

 
Comparisons of different schemes are shown in the graph. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tournament predictor is a multi level branch predictor and uses n bit saturating 
counter  

to chose between predictors. The predictors used are global predictor and local 
predictor.  

 
– Advantage of tournament predictor is ability to select the right predictor for a  

particular branch which is particularly crucial for integer benchmarks.  

 
– A typical tournament predictor will select the global predictor almost 40% of the  
time for the SPEC integer benchmarks and less than 15% of the time for the SPEC  

FP benchmarks  

 
– Existing tournament predictors use a 2-bit saturating counter per branch to choose  

among two different predictors based on which predictor was most effective oin  

recent prediction.  
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5. Explain branch-target buffer. (Dec 2013) (Jan 2015)(Jan 2016) 

 

ROB Data Structure  

 
ROB entry fields  

• Instruction type: branch, store, register operation (i.e., ALU or load)  

• State: indicates if instruction has completed and value is ready  

• Destination: where result is to be written – register number for register operation (i.e.  
ALU or load), memory address for store  

• branch has no destination result  
Value: holds the value of instruction result till time to commit  

Additional reservation station field  

• Destination: Corresponding ROB entry number  

Example  
1. L.D F6, 34(R2)  

 
2. L.D F2, 45(R3  

 
3. MUL.D F0, F2, F4  

 
4. SUB.D F8, F2, F6  

 
5. DIV.D F10, F0, F6  

 
6. ADD.D F6, F8, F2  

 
The position of Reservation stations, ROB and FP registers are indicated below:  

 
Assume latencies load 1 clock, add 2 clocks, multiply 10 clocks, divide 40 clocks  

Show data structures just before MUL.D goes to commit…  

 

Reservation Stations 
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At the time MUL.D is ready to commit only the two L.D instructions have already  

committed,though others have completed execution  
Actually, the MUL.D is at the head of the ROB – the L.D instructions are shown only for  

understanding purposes #X represents value field of ROB entry number X  

 
 
Floating point registers  

 
 
 
 

 

6. Write a short note on value predictor. (Jan 2014) (June 2015)(June 2016) 

 
 

There are a small number of important branches in programs which have dynamic  

behavior for which dynamic branch prediction performance will be definitely better  

compared to static branch prediction.  

 
• Performance = ƒ(accuracy, cost of misprediction)  

• Branch History Table (BHT) is used to dynamically predict the outcome of the  

current branch instruction. Lower bits of PC address index table of 1-bit values  

– Says whether or not branch taken last time  

o - No address check  

• Problem: in a loop, 1-bit BHT will cause two mispredictions (average is 9 iterations  

before exit):  

– End of loop case, when it exits instead of looping as before  

– First time through loop on next time through code, when it predicts exit instead of  

looping  

 
• Simple two bit history table will give better performance. The four different states of 2  

bit predictor is shown in the state transition diagram.  
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Correlating Branch Predictor  

It may be possible to improve the prediction accuracy by considering the recent 
behavior  

of other branches rather than just the branch under consideration. Correlating 
predictors  

are two-level predictors. Existing correlating predictors add information about 
the  

behavior of the most recent branches to decide how to predict a given branch.  

 
• Idea: record m most recently executed branches as taken or not taken, and use 

that  

pattern to select the proper n-bit branch history table (BHT)  

 
• In general, (m,n) predictor means record last m branches to select between 2m 

history  

tables, each with n-bit counters  

 
– Thus, old 2-bit BHT is a (0,2) predictor  

– Global Branch History: m-bit shift register keeping T/NT status of last 
m  

branches.  

 
• Each entry in table has m n-bit predictors. In case of (2,2) predictor, behavior of 

recent  

branches selects between four predictions of next branch, updating just that 
prediction.  

The scheme of the table is shown: 

 
Comparisons of different schemes are shown in the graph.  
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Tournament predictor is a multi level branch predictor and uses n bit saturating counter  

to chose between predictors. The predictors used are global predictor and local predictor.  

 
– Advantage of tournament predictor is ability to select the right predictor for a  
particular branch which is particularly crucial for integer benchmarks.  

 
– A typical tournament predictor will select the global predictor almost 40% of the  

time for the SPEC integer benchmarks and less than 15% of the time for the SPEC  
FP benchmarks  

 
– Existing tournament predictors use a 2-bit saturating counter per branch to choose  

among two different predictors based on which predictor was most effective oin  
recent prediction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. what are the key issues in implementing advanced speculation techniques?  

Explain them in detail? (June2013) (Jan 2015) 
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Tomasulo’s w/HW Speculation  

• Key aspects of this design  

– Separate forwarding (result bypassing) from actual instruction completion  

• Assuming instructions are executing speculatively  

• Can pass results to later instructions, but prevents instruction from performing updates  

that can’t be “undone”  

– Once instruction is no longer speculative it can update register file/memory  

• New step in execution sequence: instruction commit  

• Requires instructions to wait until they can commit Commits still happen in order  

Reorder Buffer (ROB)  

Instructions hang out here before committing  

• Provides extra registers for RS/RegFile  

– Is a source for operands  

• Four fields/entry  

– Instruction type  

• Branch, store, or register operation (ALU & load)  

– Destination field  

• Register number or store address  

– Value field  

• Holds value to write to register or data for store  

– Ready field  

• Has instruction finished executing?  

• Note: store buffers from previous version now in ROB  

Instruction Execution Sequence  

• Issue  

– Issue instruction if opening in RS & ROB  

– Send operands to RS from RegFile and/or ROB  

• Execute  

– Essentially the same as before  

• Write Result  

– Similar to before, but put result into ROB  

• Commit (next slide)  

Committing Instructions  

Look at head of ROB  

• Three types of instructions  

– Incorrectly predicted branch  

• Indicates speculation was wrong  

 
• Flush ROB  

• Execution restarts at proper location – Store  

• Update memory  
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• Remove store from ROB  

– Everything else  

• Update registers  

• Remove instruction from ROB  

 
RUU Superscalar Computers  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling tool SimpleScalar implements an RUU style processor  

– You will be using this tool after Spring Break  

• Architecture similar to speculative Tomasulo’s  

• Register Update Unit (RUU)  

– Controls instructions scheduling and dispatching to functional units  

– Stores intermediate source values for instructions  

– Ensures instruction commit occurs in order!  

– Needs to be of appropriate size  

• Minimum of issue width * number of pipeline stages  

• Too small of an RUU can be a structural hazard!  

• Result bus could be a structural hazard  
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PART B 

 
UNIT 5  

1. Explain the basic schemes for enforcing coherence in a shared memory  

multiprocessor system?  (Jun 2014) (June2013) (Jan 2015)(June 2016) 

 
 
Cache Coherence  

 
Unfortunately, caching shared data introduces a new problem because the view of  

memory held by two different processors is through their individual caches, which,  

without any additional precautions, could end up seeing two different values. I.e, If two  
different processors have two different values for the same location, this difficulty is  

generally referred to as cache coherence problem  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Informally:  

 
– “Any read must return the most recent write”  
– Too strict and too difficult to implement  

– 

• Better:  

– “Any write must eventually be seen by a read”  
– All writes are seen in proper order (“serialization”)  

– 

• Two rules to ensure this:  

 
– “If P writes x and then P1 reads it, P’s write will be seen by P1 if the read  

and write are sufficiently far apart”  

– Writes to a single location are serialized: seen in one order  

• Latest write will be seen  

• Otherwise could see writes in illogical order (could see older  

value after a newer value)  
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The definition contains two different aspects of memory system:  

• Coherence  

• Consistency  

A memory system is coherent if,  

• Program order is preserved.  

• Processor should not continuously read the old data value.  
• Write to the same location are serialized.  

 
The above three properties are sufficient to ensure coherence,When a written value will  

be seen is also important. This issue is defined by memory consistency model. Coherence  
and consistency are complementary.  

Basic schemes for enforcing coherence  

 
Coherence cache provides: 

 
• migration: a data item can be moved to a local cache and used there in a  

transparent fashion.  

• replication for shared data that are being simultaneously read.  

• both are critical to performance in accessing shared data.  

To over come these problems, adopt a hardware solution by introducing a  

protocol tomaintain coherent caches named as Cache Coherence Protocols  

These protocols are implemented for tracking the state of any sharing of a data block.  

Two classes of Protocols  

• Directory based  

• Snooping based  

 
Directory based  

• Sharing status of a block of physical memory is kept in one location called the  

directory.  

• Directory-based coherence has slightly higher implementation overhead than  

snooping.  

• It can scale to larger processor count.  

 
Snooping  

• Every cache that has a copy of data also has a copy of the sharing status of the  

block.  

• No centralized state is kept.  

• Caches are also accessible via some broadcast medium (bus or switch)  

• Cache controller monitor or snoop on the medium to determine whether or not  

they have a copy of a block that is represented on a bus or switch access. 

 
Snooping protocols are popular with multiprocessor and caches attached to single  

shared memory as they can use the existing physical connection- bus to memory, to  

interrogate the status of the caches. Snoop based cache coherence scheme is implemented  

on a shared bus. Any communication medium that broadcasts cache misses to all the  
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processors.  

 
Basic Snoopy Protocols  

• Write strategies  

– Write-through: memory is always up-to-date  

– Write-back: snoop in caches to find most recent copy  

• Write Invalidate Protocol  

– Multiple readers, single writer  

– Write to shared data: an invalidate is sent to all caches which snoop and  

invalidate any copies  

• Read miss: further read will miss in the cache and fetch a new  

copy of the data.  

• Write Broadcast/Update Protocol (typically write through)  

– Write to shared data: broadcast on bus, processors snoop, and update  

any copies  

– Read miss: memory/cache is always up-to-date.  

• Write serialization: bus serializes requests!  
– Bus is single point of arbitration  

 
Examples of Basic Snooping Protocols  

 
Write Invalidate  
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Write Update  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume neither cache initially holds X and the value of X in memory is 0  

 

Example Protocol  

 
• Snooping coherence protocol is usually implemented by incorporating a  

finitestate controller in each node  

• Logically, think of a separate controller associated with each cache block  

– That is, snooping operations or cache requests for different blocks can  

proceed independently  

• In implementations, a single controller allows multiple operations to distinct  

blocks to proceed in interleaved fashion  

– that is, one operation may be initiated before another is completed, even  

through only one cache access or one bus access is allowed at time  

 
Example Write Back Snoopy Protocol  

 
• Invalidation protocol, write-back cache  

– Snoops every address on bus  

– If it has a dirty copy of requested block, provides that block in response  

to the read request and aborts the memory access  

• Each memory block is in one state:  

– Clean in all caches and up-to-date in memory (Shared)  

– OR Dirty in exactly one cache (Exclusive)  

– OR Not in any caches  

• Each cache block is in one state (track these):  

– Shared : block can be read  

– OR Exclusive : cache has only copy, its writeable, and dirty  

– OR Invalid : block contains no data (in uniprocessor cache too)  

• Read misses: cause all caches to snoop bus  

• Writes to clean blocks are treated as misses  
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2. Expalin the directory based coherence for a distributed memory multiprocessor 

system?  (Jun 2014) (June 2015)(Jan 2016)  

 
 
Directory Protocols  

 
• Similar to Snoopy Protocol: Three states  

– Shared: 1 or more processors have the block cached, and the value in  

memory is up-to-date (as well as in all the caches)  

– Uncached: no processor has a copy of the cache block (not valid in any  

cache)  

– Exclusive: Exactly one processor has a copy of the cache block, and it  

has written the block, so the memory copy is out of date  

• The processor is called the owner of the block  

• In addition to tracking the state of each cache block, we must track the  

processors that have copies of the block when it is shared (usually a bit vector for  

each memory block: 1 if processor has copy)  

• Keep it simple(r):  

– Writes to non-exclusive data => write miss  

– Processor blocks until access completes  

– Assume messages received and acted upon in order sent  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• local node: the node where a request originates  

• home node: the node where the memory location and directory entry of an address  

reside  
• remote node: the node that has a copy of a cache block (exclusive or shared)  
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• Comparing to snooping protocols:  

– identical states  

– stimulus is almost identical  

– write a shared cache block is treated as a write miss (without fetch the  

block)  

– cache block must be in exclusive state when it is written  

– any shared block must be up to date in memory  

• write miss: data fetch and selective invalidate operations sent by the directory  

controller (broadcast in snooping protocols)  

 
Directory Operations: Requests and Actions  

• Message sent to directory causes two actions:  

– Update the directory  

– More messages to satisfy request  

• Block is in Uncached state: the copy in memory is the current value; only  

possible requests for that block are:  

– Read miss: requesting processor sent data from memory &requestor  

made only sharing node; state of block made Shared.  

– Write miss: requesting processor is sent the value & becomes the  

Sharing node. The block is made Exclusive to indicate that the only valid copy is  

cached. Sharers indicates the identity of the owner.  

• Block is Shared => the memory value is up-to-date:  

– Read miss: requesting processor is sent back the data from memory &  

requesting processor is added to the sharing set.  

– Write miss: requesting processor is sent the value. All processors in the  

set Sharers are sent invalidate messages, & Sharers is set to identity of  

requesting processor. The state of the block is made Exclusive.  

• Block is Exclusive: current value of the block is held in the cache of the  

processor identified by the set Sharers (the owner) => three possible directory requests:  
– Read miss: owner processor sent data fetch message, causing state of  

block in owner’s cache to transition to Shared and causes owner to send data to 
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directory, where it is written to memory & sent back to requesting processor.  

Identity of requesting processor is added to set Sharers, which still contains 
the identity of the processor that was the owner (since it still has a readable copy). 
State is shared.  

– Data write-back: owner processor is replacing the block and hence must  

write it back, making memory copy up-to-date (the home directory essentially 
becomes the owner), the block is now Uncached, and the Sharer set is empty.  

– Write miss: block has a new owner. A message is sent to old owner causing the cache to 
send the value of the block to the directory from which it is sent to the requesting 
processor, which becomes the new owner. Sharers is set to identity of new owner, and 
state of block is made Exclusive.  

 
3. Explain the directory based cache coherence for a distributed memory 

multiprocessor system along with state transition diagram. (June/July 
2013) (Jan 2014)  

 

Cache Coherence  

Unfortunately, caching shared data introduces a new problem because the 
view of memory held by two different processors is through their individual caches, 
which, without any additional precautions, could end up seeing two different values. I.e, 
If two different processors have two different values for the same location, this 
difficulty is generally referred to as cache coherence problem  

 
 
 
 
 
 
 
 
 
 

• Informally:  

 
– “Any read must return the most recent write”  

– Too strict and too difficult to implement  

– 

• Better:  

– “Any write must eventually be seen by a read”  

– All writes are seen in proper order (“serialization”)  

– 

• Two rules to ensure this:  

 
– “If P writes x and then P1 reads it, P’s write will be seen by P1 if the read  

and write are sufficiently far apart”  
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– Writes to a single location are serialized: seen in one order  

• Latest write will be seen  

• Otherwise could see writes in illogical order (could see older  

value after a newer value)  

 
The definition contains two different aspects of memory system:  

• Coherence  

• Consistency  

A memory system is coherent if,  

• Program order is preserved.  

• Processor should not continuously read the old data value.  

• Write to the same location are serialized.  

 
The above three properties are sufficient to ensure coherence,When a written value 

will be seen is also important. This issue is defined by memory consistency model. 
Coherence and consistency are complementary.  

 

Basic schemes for enforcing coherence  

Coherence cache provides: 

• migration: a data item can be moved to a local cache and used there in a  

transparent fashion.  

• replication for shared data that are being simultaneously read.  

• both are critical to performance in accessing shared data.  

To over come these problems, adopt a hardware solution by 
introducing a protocol to maintain coherent caches named as Cache Coherence Protocols  

These protocols are implemented for tracking the state of any sharing of a data block.  

Two classes of Protocols  

• Directory based  

• Snooping based  

 
Directory based  

• Sharing status of a block of physical memory is kept in one location called 
the directory.  

• Directory-based coherence has slightly higher implementation overhead than  

snooping. 

• It can scale to larger processor count.  

 
Snooping  

• Every cache that has a copy of data also has a copy of the sharing status of 
the block.  

• No centralized state is kept.  

• Caches are also accessible via some broadcast medium (bus or switch)  
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• Cache controller monitor or snoop on the medium to determine whether or 
not they have a copy of a block that is represented on a bus or switch access. 

 
Snooping protocols are popular with multiprocessor and caches attached to single  

shared memory as they can use the existing physical connection- bus to memory, 
to interrogate the status of the caches. Snoop based cache coherence scheme is 
implemented on a shared bus. Any communication medium that broadcasts cache misses 
to all the processors  

 
Basic Snoopy Protocols  

• Write strategies  

– Write-through: memory is always up-to-date  

– Write-back: snoop in caches to find most recent copy  

• Write Invalidate Protocol  

– Multiple readers, single writer  

– Write to shared data: an invalidate is sent to all caches which snoop and  

invalidate any copies  

• Read miss: further read will miss in the cache and fetch a new  

copy of the data.  

• Write Broadcast/Update Protocol (typically write through)  

– Write to shared data: broadcast on bus, processors snoop, and update any copies  

– Read miss: memory/cache is always up-to-date.  

• Write serialization: bus serializes requests! 

– Bus is single point of arbitration  

 
Examples of Basic Snooping Protocols  

 
Write Invalidate  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write Update  
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Example Protocol  

 
• Snooping coherence protocol is usually implemented by incorporating a finitestate  

controller in each node  

 
• Logically, think of a separate controller associated with each cache block  

– That is, snooping operations or cache requests for different blocks can  

proceed independently  

• In implementations, a single controller allows multiple operations to distinct  

blocks to proceed in interleaved fashion  

– that is, one operation may be initiated before another is completed, even  

through only one cache access or one bus access is allowed at time  

 

 
Example Write Back Snoopy Protocol  

 
• Invalidation protocol, write-back cache  

 
– Snoops every address on bus  

– If it has a dirty copy of requested block, provides that block in response to the read  

request and aborts the memory access  

• Each memory block is in one state:  

– Clean in all caches and up-to-date in memory (Shared)  

– OR Dirty in exactly one cache (Exclusive)  

– OR Not in any caches  

• Each cache block is in one state (track these):  

– Shared : block can be read  

– OR Exclusive : cache has only copy, its writeable, and dirty  

– OR Invalid : block contains no data (in uniprocessor cache too)  

• Read misses: cause all caches to snoop bus  
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• Writes to clean blocks are treated as misses  

 
4. Explain any two hardware primitive to implement synchronization with example.  

(June/July 2014) (Dec 2013)(June 2016) 

 
Synchronization: The Basics  

 
Synchronization mechanisms are typically built with user-level software routines  

that rely on hardware –supplied synchronization instructions.  

• Why Synchronize?  

Need to know when it is safe for different processes to use shared data  

• Issues for Synchronization:  
– Uninterruptable instruction to fetch and update memory (atomic  

operation);  
– User level synchronization operation using this primitive;  

– For large scale MPs, synchronization can be a bottleneck; techniques to  

reduce contention and latency of synchronization  

 
Uninterruptable Instruction to Fetch and Update Memory  

• Atomic exchange: interchange a value in a register for a value in memory  
0 _ synchronization variable is free  

1 _ synchronization variable is locked and unavailable  
– Set register to 1 & swap  

– New value in register determines success in getting lock  
0 if you succeeded in setting the lock (you were first)  

1 if other processor had already claimed access  
– Key is that exchange operation is indivisible  

• Test-and-set: tests a value and sets it if the value passes the test  
• Fetch-and-increment: it returns the value of a memory location and atomically  

increments it  
– 0 _ synchronization variable is free  

• Hard to have read & write in 1 instruction: use 2 instead  

 
 
• Load linked (or load locked) + store conditional  

– Load linked returns the initial value  

– Store conditional returns 1 if it succeeds (no other store to same memory  

location since preceding load) and 0 otherwise  

• Example doing atomic swap with LL & SC:  

try: mov R3,R4 ; mov exchange value  

 
ll R2,0(R1) ; load linked  

 
sc R3,0(R1) ; store conditional  

 
beqz R3,try ; branch store fails (R3 = 0)  
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mov R4,R2 ; put load value in R4  

 
• Example doing fetch & increment with LL & SC:  

try: ll R2,0(R1) ; load linked  

addi R2,R2,#1 ; increment (OK if reg–reg)  

sc R2,0(R1) ; store conditional  

beqz R2,try ; branch store fails (R2 = 0)  

 
User Level Synchronization—Operation Using this Primitive  

• Spin locks: processor continuously tries to acquire, spinning around a loop  

trying to get the lock  

li R2,#1  

lockit: exch R2,0(R1) ; atomic exchange  

bnez R2,lockit ; already locked?  

• What about MP with cache coherency?  

– Want to spin on cache copy to avoid full memory latency  

– Likely to get cache hits for such variables  

• Problem: exchange includes a write, which invalidates all other copies; this  

generates considerable bus traffic  

• Solution: start by simply repeatedly reading the variable; when it changes, then  

try exchange (“test and test&set”):  

try: li R2,#1  

lockit: lw R3,0(R1) ;load var  

bnez R3,lockit ; _ 0 _ not free _ spin  

exch R2,0(R1) ; atomic exchange  

bnez R2,try ; already locked?  

 
Memory Consistency Models  

• What is consistency? When must a processor see the new value? e.g.,  

seems that P1: A = 0; P2: B = 0;  

..... .....  

A = 1; B = 1;  

L1: if (B == 0) ... L2: if (A == 0) ...  

 
• Impossible for both if statements L1 & L2 to be true?  

– What if write invalidate is delayed & processor continues?  

• Memory consistency models:  

what are the rules for such cases?  

• Sequential consistency: result of any execution is the same as if the accesses of  

each processor were kept in order and the accesses among different  

processors were interleaved _ assignments before ifs above  

– SC: delay all memory accesses until all invalidates done  

• Schemes faster execution to sequential consistency  

• Not an issue for most programs; they are synchronized  

– A program is synchronized if all access to shared data are ordered by  

synchronization operations  

write (x)  
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...  

release (s) {unlock}  

...  

acquire (s) {lock}  
...  

read(x)  

• Only those programs willing to be nondeterministic are not synchronized: “data  

race”: outcome f(proc. speed)  

• Several Relaxed Models for Memory Consistency since most programs are  

synchronized; characterized by their attitude towards: RAR, WAR, RAW, WAW  

to different addresses  

 
Relaxed Consistency Models : The Basics  

 
• Key idea: allow reads and writes to complete out of order, but to use  

synchronization operations to enforce ordering, so that a synchronized program behaves  

as if the processor were sequentially consistent  

– By relaxing orderings, may obtain performance advantages  

– Also specifies range of legal compiler optimizations on shared data  

– Unless synchronization points are clearly defined and programs are  

synchronized, compiler could not interchange read and write of 2 shared data items  

because might affect the semantics of the program  

• 3 major sets of relaxed orderings:  

1. W_R ordering (all writes completed before next read)  

• Because retains ordering among writes, many programs that operate under  

sequential consistency operate under this model, without additional  

synchronization. Called processor consistency  

2. W _ W ordering (all writes completed before next write)  

3. R _ W and R _ R orderings, a variety of models depending on ordering  

restrictions and how synchronization operations enforce ordering  

• Many complexities in relaxed consistency models; defining precisely what it means for  

a write to complete; deciding when processors can see values that it has written  

 
 
5. List and explain any three hardware primitives to implement synchronization.  

(June2013) (June 2015) 

 
Synchronization: The Basics  

 
Synchronization mechanisms are typically built with user-level software routines  

that rely on hardware –supplied synchronization instructions.  

• Why Synchronize?  

Need to know when it is safe for different processes to use shared data  

• Issues for Synchronization:  

– Uninterruptable instruction to fetch and update memory (atomic  

operation);  

– User level synchronization operation using this primitive;  
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– For large scale MPs, synchronization can be a bottleneck; techniques to  

reduce contention and latency of synchronization  

 
Uninterruptable Instruction to Fetch and Update Memory  

• Atomic exchange: interchange a value in a register for a value in memory  

0 _ synchronization variable is free  

1 _ synchronization variable is locked and unavailable  

– Set register to 1 & swap  

– New value in register determines success in getting lock  

0 if you succeeded in setting the lock (you were first)  

1 if other processor had already claimed access  

– Key is that exchange operation is indivisible  

• Test-and-set: tests a value and sets it if the value passes the test  

• Fetch-and-increment: it returns the value of a memory location and atomically  

increments it  

– 0 _ synchronization variable is free  

• Hard to have read & write in 1 instruction: use 2 instead  

• Load linked (or load locked) + store conditional  

– Load linked returns the initial value  

– Store conditional returns 1 if it succeeds (no other store to same memory  

location since preceding load) and 0 otherwise  

• Example doing atomic swap with LL & SC:  

try: mov R3,R4 ; mov exchange value  

 
ll R2,0(R1) ; load linked  

 
sc R3,0(R1) ; store conditional  

 
beqz R3,try ; branch store fails (R3 = 0)  

 
mov R4,R2 ; put load value in R4  

 
 
• Example doing fetch & increment with LL & SC:  

try: ll R2,0(R1) ; load linked  

addi R2,R2,#1 ; increment (OK if reg–reg)  

sc R2,0(R1) ; store conditional  

beqz R2,try ; branch store fails (R2 = 0)  

 
User Level Synchronization—Operation Using this Primitive  

• Spin locks: processor continuously tries to acquire, spinning around a loop  

trying to get the lock  

li R2,#1  

lockit: exch R2,0(R1) ; atomic exchange  

bnez R2,lockit ; already locked?  

• What about MP with cache coherency?  

– Want to spin on cache copy to avoid full memory latency  
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– Likely to get cache hits for such variables  

• Problem: exchange includes a write, which invalidates all other copies; this  

generates considerable bus traffic  

• Solution: start by simply repeatedly reading the variable; when it changes, then  

try exchange (“test and test&set”):  

try: li R2,#1  
lockit: lw R3,0(R1) ;load var  

bnez R3,lockit ; _ 0 _ not free _ spin  

exch R2,0(R1) ; atomic exchange  

bnez R2,try ; already locked?  

 
Memory Consistency Models  

• What is consistency? When must a processor see the new value? e.g.,  

seems that P1: A = 0; P2: B = 0;  

..... .....  

A = 1; B = 1;  
L1: if (B == 0) ... L2: if (A == 0) ...  

• Impossible for both if statements L1 & L2 to be true?  

– What if write invalidate is delayed & processor continues?  

• Memory consistency models:  

what are the rules for such cases?  

• Sequential consistency: result of any execution is the same as if the accesses of  

each processor were kept in order and the accesses among different  

processors were interleaved _ assignments before ifs above  

– SC: delay all memory accesses until all invalidates done  

• Schemes faster execution to sequential consistency  

• Not an issue for most programs; they are synchronized  

– A program is synchronized if all access to shared data are ordered by  

synchronization operations  

write (x)  

...  

 
release (s) {unlock}  

...  

acquire (s) {lock}  

...  

read(x)  

• Only those programs willing to be nondeterministic are not synchronized: “data  

race”: outcome f(proc. speed)  

• Several Relaxed Models for Memory Consistency since most programs are  

synchronized; characterized by their attitude towards: RAR, WAR, RAW, WAW  

to different addresses  

 
Relaxed Consistency Models : The Basics  

 
• Key idea: allow reads and writes to complete out of order, but to use  

synchronization operations to enforce ordering, so that a synchronized program behaves  
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as if the processor were sequentially consistent  

– By relaxing orderings, may obtain performance advantages  

– Also specifies range of legal compiler optimizations on shared data  

– Unless synchronization points are clearly defined and programs are  

synchronized, compiler could not interchange read and write of 2 shared data items  

because might affect the semantics of the program  

• 3 major sets of relaxed orderings:  

1. W_R ordering (all writes completed before next read)  

• Because retains ordering among writes, many programs that operate under  

sequential consistency operate under this model, without additional  

synchronization. Called processor consistency  

2. W _ W ordering (all writes completed before next write)  

3. R _ W and R _ R orderings, a variety of models depending on ordering  

restrictions and how synchronization operations enforce ordering  

• Many complexities in relaxed consistency models; defining precisely what it means for  

a write to complete; deciding when processors can see values that it has written  

 
6. Explain the directory based coherence for a distributed memory multiprocessor  

system? (Jan 2014) (Jan 2015)(Jan 

2016) 

 

 
Directory Protocols  

• Similar to Snoopy Protocol: Three states  

– Shared: 1 or more processors have the block cached, and the value in  

memory is up-to-date (as well as in all the caches)  

– Uncached: no processor has a copy of the cache block (not valid in any  

cache)  

– Exclusive: Exactly one processor has a copy of the cache block, and it has written the  

block, so the memory copy is out of date  

• The processor is called the owner of the block  

• In addition to tracking the state of each cache block, we must track the processors that  

have copies of the block when it is shared (usually a bit vector for each memory block: 1  

if processor has copy)  

• Keep it simple(r):  

– Writes to non-exclusive data => write miss  

– Processor blocks until access completes  

– Assume messages received and acted upon in order sent 

 
local node: the node where a request originates  

• home node: the node where the memory location and directory entry of an address  

reside  

• remote node: the node that has a copy of a cache block (exclusive or shared)  
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• Comparing to snooping protocols:  

– identical states  

– stimulus is almost identical  

– write a shared cache block is treated as a write miss (without fetch the  

block)  

– cache block must be in exclusive state when it is written  

– any shared block must be up to date in memory  

• write miss: data fetch and selective invalidate operations sent by the directory  

controller (broadcast in snooping protocols)  

 
Directory Operations: Requests and Actions  

• Message sent to directory causes two actions:  

– Update the directory  

– More messages to satisfy request  

• Block is in Uncached state: the copy in memory is the current value; only possible  

requests for that block are:  

– Read miss: requesting processor sent data from memory &requestor made only  

sharing node; state of block made Shared.  

– Write miss: requesting processor is sent the value & becomes the Sharing node.  

The block is made Exclusive to indicate that the only valid copy is  

cached. Sharers indicates the identity of the owner.  

• Block is Shared => the memory value is up-to-date:  

– Read miss: requesting processor is sent back the data from memory &  

requesting processor is added to the sharing set.  
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– Write miss: requesting processor is sent the value. All processors in the set Sharers are  

sent invalidate messages, & Sharers is set to identity of requesting processor. The state of  

the block is made Exclusive.  

• Block is Exclusive: current value of the block is held in the cache of the  

processor identified by the set Sharers (the owner) => three possible directory requests:  

– Read miss: owner processor sent data fetch message, causing state of  

block in owner’s cache to transition to Shared and causes owner to send data to directory,  

where it is written to memory & sent back to requesting processor.  

Identity of requesting processor is added to set Sharers, which still contains the  

identity of the processor that was the owner (since it still has a readable copy). State is  

shared.  

– Data write-back: owner processor is replacing the block and hence must  

write it back, making memory copy up-to-date (the home directory essentially  

becomes the owner), the block is now Uncached, and the Sharer set is empty. 

– Write miss: block has a new owner. A message is sent to old owner  

causing the cache to send the value of the block to the directory from which it is sent to  

the requesting processor, which becomes the new owner. Sharers is set to identity of new  

owner, and state of block is made Exclusive. 

UNIT 6  

 
1. Assume we have a computer where the clock per instruction(CPI) is 1.0 when all  

memory accesses hit the cache. the only data accesses are loads and stores and these  

total 50 % of the instructions. if the mass penality is 25 clock cycles and the mass  

rate is 2%.how much faster would the computer be if all instructions were cache  

hits? (June 2014) (June2013)(Jan 2014) 

 

 
• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26  

 
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19  

 
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92  
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2. Explain in brief ,the types of basic cache optimization? (June 2014) 
(June2013)(Jan 2016) 

 

 
Cache Optimizations  

 
Six basic cache optimizations  

1. Larger block size to reduce miss rate:  
- To reduce miss rate through spatial locality.  

- Increase block size.  
- Larger block size reduce compulsory misses.  

- But they increase the miss penalty.  

2. Bigger caches to reduce miss rate:  

- capacity misses can be reduced by increasing the cache capacity.  
- Increases larger hit time for larger cache memory and higher cost and power.  

3. Higher associativity to reduce miss rate:  
- Increase in associativity reduces conflict misses.  

4. Multilevel caches to reduce penalty:  
- Introduces additional level cache  

- Between original cache and memory. 
- L1- original cache  

L2- added cache.  
L1 cache: - small enough  

- speed matches with clock cycle time.  
L2 cache: - large enough  

- capture many access that would go to main memory.  
Average access time can be redefined as  

Hit timeL1+ Miss rate L1 X ( Hit time L2 + Miss rate L2 X Miss penalty L2)  

5. Giving priority to read misses over writes to reduce miss penalty:  

 
 

- write buffer is a good place to implement this optimization. 

- write buffer creates hazards: read after write hazard.  

6. Avoiding address translation during indexing of the cache to reduce hit time:  

- Caches must cope with the translation of a virtual address from the processor to  

a physical address to access memory.  

- common optimization is to use the page offset.  

- part that is identical in both virtual and physical addresses- to index the cache. 

 

 

3. Explain block replacement strategies to replace a block, with example  

when a cache. (Jan 2015)(June 2016) 
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4. Explain the types of basic cache optimization. (Jan 2014) (Jan 2015) 

Cache Optimizations  

Six basic cache optimizations  

1. Larger block size to reduce miss rate:  

- To reduce miss rate through spatial locality.  

- Increase block size.  

- Larger block size reduce compulsory misses.  
- But they increase the miss penalty.  

2. Bigger caches to reduce miss rate:  
- capacity misses can be reduced by increasing the cache capacity. Increases larger 

hit time for larger cache memory and higher cost and power.  

3. Higher associativity to reduce miss rate:  

- Increase in associativity reduces conflict misses.  

4. Multilevel caches to reduce penalty:  

- Introduces additional level cache  

- Between original cache and memory. 

- L1- original cache  

L2- added cache.  

L1 cache: - small enough  

- speed matches with clock cycle time.  

L2 cache: - large enough  

- capture many access that would go to main memory.  

Average access time can be redefined as  
Hit timeL1+ Miss rate L1 X ( Hit time L2 + Miss rate L2 X Miss penalty L2)  

5. Giving priority to read misses over writes to reduce miss penalty:  

- write buffer is a good place to implement this optimization.  

- write buffer creates hazards: read after write hazard.  

6. Avoiding address translation during indexing of the cache to reduce hit time:  

- Caches must cope with the translation of a virtual address from the processor to  
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a physical address to access memory.  

- common optimization is to use the page offset.  

- part that is identical in both virtual and physical addresses- to index the cache.  

 

5. With a diagram, explain organization of data cache in the opteron  

microprocessor. (June/July 2013)(Jan 2016) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

6. Assume we have a computer where CPI is 1.0 when all memory accesses hits in  

the cache. The only data accesses are loads and stores , and these 50% of the  

instruction. If the miss penalty is of 25 cycles and miss rate is 2% , how much faster  

the computer be , if all the instruction were cache hits ? (Jan 2014) (June-13) (July 
2015) 

 
• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26  

 
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19  

 
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92  
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7 . Briefly explain four basic cache optimization methods.  (Dec2013) (June2013) 
(July 2015)(June 2016) 

 
Six basic cache optimizations  

1. Larger block size to reduce miss rate:  

- To reduce miss rate through spatial locality.  

- Increase block size. 

- Larger block size reduce compulsory misses.  

- But they increase the miss penalty. 

2. Bigger caches to reduce miss rate:  

- capacity misses can be reduced by increasing the cache capacity. 

- Increases larger hit time for larger cache memory and higher cost and power.  

3. Higher associativity to reduce miss rate:  

- Increase in associativity reduces conflict misses.  

 
4. Multilevel caches to reduce penalty:  

- Introduces additional level cache  

- Between original cache and memory. 

- L1- original cache  

L2- added cache.  

L1 cache: - small enough  

- speed matches with clock cycle time.  

L2 cache: - large enough  

- capture many access that would go to main memory.  

Average access time can be redefined as  
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Hit timeL1+ Miss rate L1 X ( Hit time L2 + Miss rate L2 X Miss penalty L2)  

5. Giving priority to read misses over writes to reduce miss penalty:  

- write buffer is a good place to implement this optimization. 

- write buffer creates hazards: read after write hazard.  

6. Avoiding address translation during indexing of the cache to reduce hit time:  

- Caches must cope with the translation of a virtual address from the processor to a  

physical address to access memory.  

- common optimization is to use the page offset.  

- part that is identical in both virtual and physical addresses- to index the cache. 

 

UNIT 7  

 
1. Which are the major categories of the advanced optimization of cache perform  

ance? explain any one in details. (Jun 2014) ( J a n  2 0 1 5 ) (June 2015)(Jan 2016) 

  

 
Advanced Cache Optimizations  

• Reducing hit time  

1. Small and simple caches  

2. Way prediction  

3. Trace caches  

• Increasing cache bandwidth  

4. Pipelined caches  

5. Multibanked caches  

6. Nonblocking caches  

• Reducing Miss Penalty  

7. Critical word first  

8. Merging write buffers  

• Reducing Miss Rate  

9.Compiler optimizations  

• Reducing miss penalty or miss rate via parallelism  

10.Hardware prefetching  

11.Compiler prefetching  

 
 
 
Merging Write Buffer to Reduce Miss Penalty  

•Write buffer to allow processor to continue while waiting to write to memory  

•If buffer contains modified blocks, the addresses can be checked to see if address  

of new data matches the address of a valid write buffer entry -If so, new data are  

combined with that entry  

•Increases block size of write for write-through cache of writes to sequential  

words, bytes since multiword writes more efficient to memory  

•The Sun T1 (Niagara) processor, among many others, uses write merging  
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2.Explain in detail the architecture support for protecting processes from each other  

via virtual memory (Jun 2014) (June/July 2013)(Jan 2015)(June 2016) 

 

 
 
Virtual Memory and Virtual Machines  

Slide Sources: Based on “Computer Architecture” by Hennessy/Patterson.  

Supplemented from various freely downloadable sources  

Security and Privacy  
•Innovations in Computer Architecture and System software  

•Protection through Virtual Memory  
•Protection from Virtual Machines  

–Architectural requirements  

–Performance  

Protection via Virtual Memory  

 
 
 

•Processes  

–Running program  

–Environment (state) needed to continue running it  

•Protect Processes from each other  

–Page based virtual memory including TLB which caches page table  

entries –Example: Segmentation and paging in 80x86  

Processes share hardware without interfering with each other  
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•Provide User Process and Kernel Process  

•Readable portion of Processor state:  

–User supervisor mode bit  

–Exception enable/disable bit  

–Memory protection information  

•System call to transfer to supervisor mode  

–Return like normal subroutine to user mode  

•Mechanism to limit memory access  

Memory protection  

•Virtual Memory  

–Restriction on each page entry in page table  

–Read, write, execute privileges  

–Only OS can update page table  

–TLB entries also have protection field  

•Bugs in OS  

–Lead to compromising security  

–Bugs likely due to huge size of OS code  

Protection via Virtual Machines  

Virtualization  

• Goal:  
– Run multiple instances of different OS on the same hardware  

– Present a transparent view of one or more environments (M-to-N mapping of M “real”  

resources, N “virtual” resources)  

Protection via Virtual Machines  
Virtualization- cont.  

• Challenges:  

– Have to split all resources (processor, memory, hard drive, graphics card, networking  

card etc.) among the different OS -> virtualize the resources  
– The OS can not be aware that it is using virtual resources instead of  

real resources  

 
Problems with virtualization  

• Two components when using virtualization: 

– Virtual Machine Monitor (VMM)  
– Virtual Machine(s) (VM)  

• Para-virtualization:  

– Operating System has been modified in order to run as a VM  

• ‘Fully‘ Virtualized:  
– No modification required of an OS to run as a VM  

 
 
Virtual Machine Monitor-‘hypervisor’  

• Isolates the state of each guest OS from each other  

• Protects itself from guest software  

• Determines how to map virtual resources to physical resources  

– Access to privileged state  

– Address translation  
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– I/O  

– Exceptions and interrupts  

• Relatively small code ( compared to an OS)  

• VMM must run in a higher privilege mode than guest OS  

Managing Virtual Memory  

• Virtual memory offers many of the features required for hardware virtualization  

– Separates the physical memory onto multiple processes  

– Each process ‘thinks’ it has a linear address space of full size  

– Processor holds a page table translating virtual addresses used by a process and the  

according physical memory  
– Additional information restricts processes from  

• Reading a page of on another process or  

• Allow reading but not modifying a memory page or  

• Do not allow to interpret data in the memory page as instructions and do not try to  
execute them  

• Virtual Memory management thus requires  

– Mechanisms to limit memory access to protected memory  

– At least two modes of execution for instructions  

• Privileged mode: an instruction is allowed to do what it whatever it wants -> kernel  

mode for OS  

• Non-privileged mode: user-level processes  

• Intel x86 Architecture: processor supports four levels  

– Level 0 used by OS  

– Level 3 used by regular applications  

•Provide mechanisms to go from non-privileged mode to privileged mode -> system call  

•Provide a portion of processor state that a user process can read but not modify  

• E.g. memory protection information  

• Each guest OS maintains its page tables to do the mapping from virtual address to  

physical address  

• Most simple solution: VMM holds an additional table which maps the physical address  

of a guest OS onto the ‘machine address’  

– Introduces a third level of redirection for every memory access  

• Alternative solution: VMM maintains a shadow page table of each guest OS  

– Copy of the page table of the OS  

– Page tables still works with regular physical addresses  

– Only modifications to the page table are intercepted by the VMM 

 

3. Explain the following advanced optimization of cache:  

1.) Compiler optimizations to reduce miss rate.  

2.) Merging write buffer to reduce miss penalty.  

    3.) Non blocking cache to increase cache band-width.  

(June2013) (June 2015)(Jan 2016) 

 
. Merging Write Buffer to Reduce Miss Penalty  

•Write buffer to allow processor to continue while waiting to write to memory  
•If buffer contains modified blocks, the addresses can be checked to see if 

address  
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of new data matches the address of a valid write buffer entry -If so, new data 
are  

combined with that entry  

•Increases block size of write for write-through cache of writes to 
sequential  

words, bytes since multiword writes more efficient to memory  

•The Sun T1 (Niagara) processor, among many others, uses write merging  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reducing Misses by Compiler Optimizations  

•McFarling [1989] reduced caches misses by 75% on 8KB direct mapped cache, 4 
byte  

blocks in software  

• Instructions  
– Reorder procedures in memory so as to reduce conflict misses  

– Profiling to look at conflicts (using tools they developed)  

• Data  

– Merging Arrays: improve spatial locality by single array of compound elements vs. 
2  

arrays  

– Loop Interchange: change nesting of loops to access data in order  
stored in memory  

– Loop Fusion: Combine 2 independent loops that have same looping and some variables  
overlap  

– Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.  

going down whole columns or rows  

Compiler Optimizations- Reduction comes from software (no Hw ch.)  

Loop Interchange  

•Motivation: some programs have nested loops that access data in nonsequential order  

•Solution: Simply exchanging the nesting of the loops can make the code access the data  

in the order it is stored =>  

reduce misses by improving spatial locality; reordering maximizes use of data in a cache  

block before it is discarded  
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Loop Interchange Example  

/* Before */  

for (j = 0; j < 100; j = j+1)  

for (i = 0; i < 5000; i = i+1)  

x[i][j] = 2 * x[i][j];  

/* After */  
for (i = 0; i < 5000; i = i+1)  

for (j = 0; j < 100; j = j+1)  

x[i][j] = 2 * x[i][j];  

Blocking  

•Motivation: multiple arrays, some accessed by rows and some by columns  

•Storing the arrays row by row (row major order) or column by column (column major  

order) does not help: both rows and columns are used in every iteration of the loop  

(Loop Interchange cannot help)  

•Solution: instead of operating on entire rows and columns of an array, blocked  

algorithms operate on submatrices or blocks => maximize accesses to the data loaded  

into the cache before the data is replaced  

 
 

 

4. Explain internal organization of 64 Mb DRAM. (June/July 2014) (June 
2013) (Dec 2013) (Jan 2015)(June 2016) 

 
DRAM Technology  

• Semiconductor Dynamic Random Access Memory  

• Emphasize on cost per bit and capacity  

• Multiplex address lines ı cutting # of address pins in half  

– Row access strobe (RAS) first, then column access strobe (CAS)  

– Memory as a 2D matrix – rows go to a buffer  

– Subsequent CAS selects subrow  

• Use only a single transistor to store a bit  

– Reading that bit can destroy the information  

– Refresh each bit periodically (ex. 8 milliseconds) by writing back  

• Keep refreshing time less than 5% of the total time  

• DRAM capacity is 4 to 8 times that of SRAM  

• DIMM: Dual inline memory module  

– DRAM chips are commonly sold on small boards called DIMMs  

– DIMMs typically contain 4 to 16 DRAMs  

• Slowing down in DRAM capacity growth  

– Four times the capacity every three years, for more than 20 years  

– New chips only double capacity every two year, since 1998  

• DRAM performance is growing at a slower rate  

– RAS (related to latency): 5% per year  

– CAS (related to bandwidth): 10%+ per year  

 

RAS improvement  

SRAM Technology  
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• Cache uses SRAM: Static Random Access Memory  

• SRAM uses six transistors per bit to prevent the information from being disturbed when  

read  

_no need to refresh  

– SRAM needs only minimal power to retain the charge in  

the standby mode _ good for embedded applications  

– No difference between access time and cycle time for  

SRAM  

• Emphasize on speed and capacity  

– SRAM address lines are not multiplexed  

• SRAM speed is 8 to 16x that of DRAM  

 
Improving Memory Performance  

in a Standard DRAM Chip  

• Fast page mode: time signals that allow repeated accesses to buffer without another row  

access time  

• Synchronous RAM (SDRAM): add a clock signal to DRAM interface, so that the  

repeated transfer would not bear overhead to synchronize with the controller  

– Asynchronous DRAM involves overhead to sync with controller  

– Peak speed per memory module 800—1200MB/sec in 2001  

• Double data rate (DDR): transfer data on both the rising edge and falling edge of  

DRAM clock signal  

– Peak speed per memory module 1600—2400MB/sec in 2001 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
              
 
 
 
 
 
 
 

Fig: Internal organization of 64 MB DRAM 
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UNIT 8  

1. Explain in detail the hardware support for preserving exception behavior during  

Speculation.  July 14) (June 2013) (June 2015)(Jan 
2016)(June 2016) 

 

 
 

H/W Support : Conditional Execution  

• Also known as Predicated Execution  

– Enhancement to instruction set  

– Can be used to eliminate branches  

– All control dependences are converted to data dependences  

• Instruction refers to a condition  

– Evaluated as part of the execution  

• True?  

– Executed normally  

• False?  

– Execution continues as if the instruction were a no-op  

• Example :  

– Conditional move between registers  

– 

Example  
if (A==0)  

S = T;  
Straightforward Code  

BNEZ R1, L;  
ADDU R2, R3, R0  

L:  
Conditional Code  

CMOVZ R2, R3, R1  
Annulled if R1 is not 0  

Conditional Instruction … 
• Can convert control to data dependence  

• In vector computing, it’s called if conversion.  
• Traditionally, in a pipelined system  

– Dependence has to be resolved closer to front of pipeline  
• For conditional execution  

– Dependence is resolved at end of pipeline, closer to the register write  

 
Another example  

• A = abs(B)  

if (B < 0)  
A = -B;  

else  
A = B;  

• Two conditional moves  
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 One unconditional and one conditional move  

• The branch condition has moved into the  

instruction  

– Control dependence becomes data dependence  

– 

Limitations of Conditional Moves  

• Conditional moves are the simplest form of predicated instructions  

• Useful for short sequences  

• For large code, this can be inefficient  

– Introduces many conditional moves  

• Some architectures support full predication  

– All instructions, not just moves  

• Very useful in global scheduling  

– Can handle nonloop branches nicely  

– Eg : The whole if portion can be predicated if the frequent path is not taken  

 

 

 

 

 
 
 
 
 
 
• Assume : Two issues, one to ALU and one to memory; or branch by itself  

• Wastes a memory operation slot in second cycle  

• Can incur a data dependence stall if branch is not taken  

– R9 depends on R8  

 
Predicated Execution  

Assume : LWC is predicated load and loads if third operand is not 0  

 
 
 
 
 
 
 
 
• One instruction issue slot is eliminated  
• On mispredicted branch, predicated instruction will not have any effect  

• If sequence following the branch is short, the entire block of the code can be predicated  
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Some Complications  
• Exception Behavior  

– Must not generate exception if the predicate is false  

• If R10 is zero in the previous example  

– LW R8, 0(R10) can cause a protection fault  

• If condition is satisfied  

– A page fault can still occur  

• Biggest Issue – Decide when to annul an instruction  

– Can be done during issue  

• Early in pipeline  

• Value of condition must be known early, can induce stalls  
– Can be done before commit  

• Modern processors do this  

• Annulled instructions will use functional resources  

• Register forwarding and such can complicate implementation  

 
 
2. Explain the prediction and Speculation support provided in IA64? (Dec 2013) 
(June 2014) 

 

 
IA-64 Pipeline Features  
•Branch Prediction  

–Predicate Registers allow branches to be turned on or off  

–Compiler can provide branch prediction hints  

•Register Rotation  

–Allows faster loop execution in parallel  

•Predication Controls Pipeline Stages  
Cache Features  

•L1 Cache  

–4 way associative  

–16Kb Instruction  
–16Kb Data  

•L2 Cache  

–Itanium  

•6 way associative  

•96 Kb  

–Itanium2  

•8 way associative  

•256 Kb Initially  

–256Kb Data and 1Mb Instruction on Montvale! 

Cache Features  
•L3 Cache  

–Itanium  

•4 way associative  

•Accessible through FSB  

•2-4Mb  
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–Itanium2  

•2 – 4 way associative  

•On Die  

•3Mb  

–Up to 24Mb on Montvale chips(12Mb/core)!  

Register  

Specification  

_128, 65-bit General Purpose Registers  

_128, 82-bit Floating Point Registers  

_128, 64-bit Application Registers  

_8, 64-bit Branch Registers  

_64, 1-bit Predicate Registers  

Register Model  

 _128 General and Floating Point Registers  

 _32 always available, 96 on stack  
 _As functions are called, compiler allocates a specific number of local and  

output  

 registers to use in the function by using register allocation instruction  

“Alloc”.  

 _Programs renames registers to start from 32 to 127.  

 _Register Stack Engine (RSE) automatically saves/restores stack to  

memory when needed  

 _RSE may be designed to utilize unused memory bandwidth to perform  

register spill and fill operations in the background  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dept of CSE,SJBIT,Bangalore 94  
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On function call, machine shifts register window such that previous output registers  

become new locals starting at r32  
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Instruction Encoding  

•Each instruction includes the opcode and three operands  

•Each instructions holds the identifier for a corresponding Predicate Register  

•Each bundle contains 3 independent instructions  

•Each instruction is 41 bits wide  

•Each bundle also holds a 5 bit template field  

 
Distributing Responsibility  

_ILP Instruction Groups  

_Control flow parallelism  

Parallel comparison  

Multiway branches  

_Influencing dynamic events  

Provides an extensive set of hints that the compiler uses to tell the hardware about likely  

branch behavior (taken or not taken, amount to fetch at branch target) and memory  

operations (in what level of the memory hierarchy to cache data).  
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 _Use predicates to eliminate branches, move instructions across branches  

 _Conditional execution of an instruction based on predicate register (64 1-bit  

predicate registers)  

 _Predicates are set by compare instructions  
 _Most instructions can be predicated – each instruction code contains predicate  

field  

 _If predicate is true, the instruction updates the computation state; otherwise, it  

behaves like a nop  
  

Scheduling and Speculation  

• Basic block: code with single entry and exit, exit point can be multiway branch  

• Control Improve ILP by statically move ahead long latency code blocks.  

• path is a frequent execution path  

• Schedule for control paths  

• Because of branches and loops, only small percentage of code is executed regularly  

• Analyze dependences in blocks and paths  

• Compiler can analyze more efficiently - more time, memory, larger view of the program  

• Compiler can locate and optimize the commonly executed blocks  
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Control speculation  

_ Not all the branches can be removed using predication.  

 
_ Loads have longer latency than most instructions and tend to start timecritical  

chains of instructions  

_ Constraints on code motion on loads limit parallelism  

_ Non-EPIC architectures constrain motion of load instruction  

_ IA-64: Speculative loads, can safely schedule load instruction before one or  

more prior branches  

 
Control Speculation  

_Exceptions are handled by setting NaT (Not a Thing) in target register  

_Check instruction-branch to fix-up code if NaT flag set  

_Fix-up code: generated by compiler, handles exceptions  

_NaT bit propagates in execution (almost all IA-64 instructions)  

_NaT propagation reduces required check points  

 
Speculative Load  

_ Load instruction (ld.s) can be moved outside of a basic block even if branch target  

is not known  
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_ Speculative loads does not produce exception - it sets the NaT  

_ Check instruction (chk.s) will jump to fix-up code if NaT is set  

Data Speculation  

_ The compiler may not be able to determine the location in memory being  
referenced (pointers)  

_ Want to move calculations ahead of a possible memory dependency  

_ Traditionally, given a store followed by a load, if the compiler cannot  

determine if the addresses will be equal, the load cannot be moved ahead of the  

store.  

_ IA-64: allows compiler to schedule a load before one or more stores  

_ Use advance load (ld.a) and check (chk.a) to implement  

_ ALAT (Advanced Load Address Table) records target register, memory  

address accessed, and access size  

 
Data Speculation  

1. Allows for loads to be moved ahead of stores even if the compiler is unsure if  

addresses are the same  

2. A speculative load generates an entry in the ALAT  

3. A store removes every entry in the ALAT that have the same address  

4. Check instruction will branch to fix-up if the given address is not in the ALAT  

 
 
 
 
 
 
 
 
 
 
• Use address field as the key for comparison  

• If an address cannot be found, run recovery code  

• ALAT are smaller and simpler implementation than equivalent structures  

for superscalars  

 
 
3.Explain in detail the hardware support for preserving exception behavior during  

speculation. (July 2014) (June2013) (June 2016) 

 
H/W Support : Conditional Execution  

• Also known as Predicated Execution  

– Enhancement to instruction set  

– Can be used to eliminate branches  

– All control dependences are converted to data dependences  

• Instruction refers to a condition  

– Evaluated as part of the execution  
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• True?  

– Executed normally  

• False?  

– Execution continues as if the instruction were a no-op  

• Example :  

– Conditional move between registers  

– 

Example  

if (A==0)  

S = T;  

Straightforward Code  

BNEZ R1, L;  

ADDU R2, R3, R0  

L:  

Conditional Code  

CMOVZ R2, R3, R1  

Annulled if R1 is not 0  

Conditional Instruction … 

• Can convert control to data dependence  

• In vector computing, it’s called if conversion.  

• Traditionally, in a pipelined system  

– Dependence has to be resolved closer to front of pipeline  

• For conditional execution  

– Dependence is resolved at end of pipeline, closer to the register write  

 
Another example  

• A = abs(B)  

if (B < 0)  

A = -B;  

else  

A = B;  

• Two conditional moves  

• One unconditional and one conditional move  

• The branch condition has moved into the  

instruction  

– Control dependence becomes data dependence  

Limitations of Conditional Moves  

• Conditional moves are the simplest form of predicated instructions  

• Useful for short sequences  

• For large code, this can be inefficient  

– Introduces many conditional moves  
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• Some architectures support full predication  

– All instructions, not just moves  

• Very useful in global scheduling  

– Can handle nonloop branches nicely  

– Eg : The whole if portion can be predicated if the frequent path is not 
taken  

 
 
 
 
 
 
 
 
 
 
 
 
 

• Assume : Two issues, one to ALU and one to memory; or branch by itself  

• Wastes a memory operation slot in second cycle  

• Can incur a data dependence stall if branch is not taken  

– R9 depends on R8  

 
Predicated Execution  

Assume : LWC is predicated load and loads if third operand is not 0  

 
 
 
 
 
 
 

• One instruction issue slot is eliminated  

• On mispredicted branch, predicated instruction will not have any effect  

• If sequence following the branch is short, the entire block of the code can be 
predicated  

 
Some Complications  

• Exception Behavior  

– Must not generate exception if the predicate is false  

• If R10 is zero in the previous example  
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– LW R8, 0(R10) can cause a protection fault  

• If condition is satisfied  

– A page fault can still occur  

• Biggest Issue – Decide when to annul an instruction  

– Can be done during issue  

• Early in pipeline  

• Value of condition must be known early, can induce stalls  

– Can be done before commit  

• Modern processors do this  

• Annulled instructions will use functional resources  

• Register forwarding and such can complicate implementation  

 
 
4. Explain the architecture of IA64 Intel processor and also the prediction and  

speculation support provided. (June 2013) (Jan 2014) (Jan 2015) (June 2015)(Jan 
2016) 

 

 
IA-64 and Itanium Processor  

Introducing The IA-64 Architecture  

 
Itanium and Itanium2 Processor  

Slide Sources: Based on “Computer Architecture” by Hennessy/Patterson.  

Supplemented from various freely downloadable sources  

IA-64 is an EPIC  

 

•IA-64 largely depends on software for parallelism  

• VLIW – Very Long Instruction Word  

• EPIC – Explicitly Parallel Instruction Computer  

VLIW points  

•VLIW – Overview  

– RISC technique  

– Bundles of instructions to be run in parallel  

– Similar to superscaling  

– Uses compiler instead of branch prediction hardware  

 
EPIC  

•EPIC – Overview  

– Builds on VLIW  

– Redefines instruction format  

– Instruction coding tells CPU how to process data  

– Very compiler dependent  

– Predicated execution  
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EPIC pros and cons  

 
 

•EPIC – Pros:  
– Compiler has more time to spend with code  
 
– Time spent by compiler is a one-time cost  

– Reduces circuit complexity  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chip Layout  

•Itanium Architecture Diagram 
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Itanium Specs  

•4 Integer ALU's  

•4 multimedia ALU's  

•2 Extended Precision FP Units  

•2 Single Precision FP units  

•2 Load or Store Units  
•3 Branch Units  

•10 Stage 6 Wide Pipeline  

•32k L1 Cache  

•96K L2 Cache  
•4MB L3 Cache(extern)þ  

•800Mhz Clock  

 
 
Intel Itanium  

•800 MHz  

•10 stage pipeline  

•Can issue 6 instructions (2 bundles) per cycle  

•4 Integer, 4 Floating Point, 4 Multimedia, 2 Memory, 3 Branch Units  

•32 KB L1, 96 KB L2, 4 MB L3 caches  

•2.1 GB/s memory bandwidth  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Itanium2 Specs  

•6 Integer ALU's  
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•6 multimedia ALU's  

 
 
•2 Extended Precision FP Units  

•2 Single Precision FP units  

•2 Load and Store Units  

•3 Branch Units  

•8 Stage 6 Wide Pipeline  

•32k L1 Cache  

•256K L2 Cache  

•3MB L3 Cache(on die)þ  

•1Ghz Clock initially  

–Up to 1.66Ghz on Montvale  

 
Itanium2 Improvements  

•Initially a 180nm process  

–Increased to 130nm in 2003  

–Further increased to 90nm in 2007  

•Improved Thermal Management  

•Clock Speed increased to 1.0Ghz  

•Bus Speed Increase from 266Mhz to 400Mhz  

 
 
•L3 cache moved on die  

–Faster access rate  

 
IA-64 Pipeline Features  

•Branch Prediction  

–Predicate Registers allow branches to be turned on or off  

–Compiler can provide branch prediction hints  

•Register Rotation  

–Allows faster loop execution in parallel  

•Predication Controls Pipeline Stages  

Cache Features  

•L1 Cache  

–4 way associative  

–16Kb Instruction  

–16Kb Data  

•L2 Cache  

–Itanium  

•6 way associative  

•96 Kb  

–Itanium2  

•8 way associative  

•256 Kb Initially  

–256Kb Data and 1Mb Instruction on Montvale! 

Cache Features  
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•L3 Cache  

–Itanium  

 
 
•4 way associative  

•Accessible through FSB  

•2-4Mb  

–Itanium2  

•2 – 4 way associative  

•On Die  

•3Mb  

–Up to 24Mb on Montvale chips(12Mb/core)!  

Register  

Specification  

_128, 65-bit General Purpose Registers  

_128, 82-bit Floating Point Registers  

_128, 64-bit Application Registers  

_8, 64-bit Branch Registers  

_64, 1-bit Predicate Registers  

Register Model  

 _128 General and Floating Point Registers  
 _32 always available, 96 on stack  

 _As functions are called, compiler allocates a specific number of local and  

output  

 registers to use in the function by using register allocation instruction  

“Alloc”.  

 _Programs renames registers to start from 32 to 127.  
 _Register Stack Engine (RSE) automatically saves/restores stack to  

memory when needed  
 _RSE may be designed to utilize unused memory bandwidth to perform  

register spill and fill operations in the background  

 
On function call, machine shifts register window such that previous output registers  

become new locals starting at  
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5. Consider the loop below:  

For ( i = 1;i ≤ 100 ; i = i+1 {  

A[ i ]= A[i] + B[i] ; 1 * S1 *1  

B[ i+1]= C[i] + D[i] ; 1 * S2 *1  

}  

What are the dependencies between S1 and S2 ? Is the loop parallel ? If not show  

how to make it parallel. (Dec 2013) (Jan 2015)(June 2016) 

 

•For the loop:  

–for (i=1; i<=100; i=i+1) { A[i+1] = A[i] + C[i]; /* S1 */  

B[i+1] = B[i] + A[i+1]; /* S2 */ }  

 
–what are the dependences?  

•There are two different dependences:  
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–loop-carried: (prevents parallel operation of iterations)  

•S1 computes A[i+1] using value of A[i] computed in previous iteration  

•S2 computes B[i+1] using value of B[i] computed in previous iteration  

–not loop-carried: (parallel operation of iterations is ok)  

•S2 uses the value A[i+1] computed by S1 in the same iteration  

•The loop-carried dependences in this case force successive iterations of the loop to  

execute in series. Why?  

–S1 of iteration i depends on S1 of iteration i-1 which in turn depends on …, etc.  

Another Loop with Dependences  

•Generally, loop-carried dependences hinder ILP  

–if there are no loop-carried dependences all iterations could be executed in parallel  

–even if there are loop-carried dependences it may be possible to parallelize the loop – an  

analysis of the dependences is required…  

 
•For the loop:  

–for (i=1; i<=100; i=i+1) { A[i] = A[i] + B[i]; /* S1 */  

B[i+1] = C[i] + D[i]; /* S2 */ }  

 
–what are the dependences?  

•There is one loop-carried dependence:  

–S1 uses the value of B[i] computed in a previous iteration by S2  

–but this does not force iterations to execute in series. Why…?  

–…because S1 of iteration i depends on S2 of iteration i-1…, and the chain of  

dependences stops here!  

 
Parallelizing Loops with Short Chains of Dependences  

•Parallelize the loop:  

–for (i=1; i<=100; i=i+1) { A[i] = A[i] + B[i]; /* S1 */  

B[i+1] = C[i] + D[i]; /* S2 */ }  

•Parallelized code:  

–A[1] = A[1] + B[1];  

for (i=1; i<=99; i=i+1)  

{ B[i+1] = C[i] + D[i];  

A[i+1] = A[i+1] + B[i+1];  

}  

B[101] = C[100] + D[100];  

–the dependence between the two statements in the loop is no longer loop-carried and  

iterations of the loop may be executed in parallel  
– 
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